ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Barden, M'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1203.002] GALAPAGOS: Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor

GALAPAGOS, Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor (ascl:1010.064), automates source detection, two-dimensional light-profile Sersic modelling and catalogue compilation in large survey applications. Based on a single setup, GALAPAGOS can process a complete set of survey images. It detects sources in the data, estimates a local sky background, cuts postage stamp images for all sources, prepares object masks, performs Sersic fitting including neighbours and compiles all objects in a final output catalogue. For the initial source detection GALAPAGOS applies SExtractor, while GALFIT (ascl:1104.010) is incorporated for modelling Sersic profiles. It measures the background sky involved in the Sersic fitting by means of a flux growth curve. GALAPAGOS determines postage stamp sizes based on SExtractor shape parameters. In order to obtain precise model parameters GALAPAGOS incorporates a complex sorting mechanism and makes use of multiplexing capabilities. It combines SExtractor and GALFIT data in a single output table. When incorporating information from overlapping tiles, GALAPAGOS automatically removes multiple entries from identical sources. GALAPAGOS is programmed in the Interactive Data Language, IDL. A C implementation of the software, GALAPAGOS-C (ascl:1408.011), is available.

[ascl:1203.004] FERENGI: Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images

Bandpass shifting and the (1+z)5 surface brightness dimming (for a fixed width filter) make standard tools for the extraction of structural parameters of galaxies wavelength dependent. If only few (or one) observed high-res bands exist, this dependence has to be corrected to make unbiased statements on the evolution of structural parameters or on galaxy subsamples defined by morphology. FERENGI artificially redshifts low-redshift galaxy images to different redshifts by applying the correct cosmological corrections for size, surface brightness and bandpass shifting. A set of artificially redshifted galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low-redshift (v<7000 km s-1) images as input has been created to use as a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions, and other galaxy properties that are potentially sensitive to resolution, surface brightness, and bandpass issues. The data sets are also available for download from the FERENGI website.

[ascl:1408.007] Skycorr: Sky emission subtraction for observations without plain sky information

Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.

[ascl:1501.013] Molecfit: Telluric absorption correction tool

Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.