ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Luger, Rodrigo'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1807.029] EVEREST: Tools for de-trending stellar photometry

EVEREST (EPIC Variability Extraction and Removal for Exoplanet Science Targets) removes instrumental noise from light curves with pixel level decorrelation and Gaussian processes. The code, written in Python, generates the EVEREST catalog and offers tools for accessing and interacting with the de-trended light curves. EVEREST exploits correlations across the pixels on the CCD to remove systematics introduced by the spacecraft’s pointing error. For K2, it yields light curves with precision comparable to that of the original Kepler mission. Interaction with the EVEREST catalog catalog is available via the command line and through the Python interface. Though written for K2, EVEREST can be applied to additional surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets.

[ascl:1810.005] STARRY: Analytic computation of occultation light curves

STARRY computes light curves for various applications in astronomy: transits and secondary eclipses of exoplanets, light curves of eclipsing binaries, rotational phase curves of exoplanets, light curves of planet-planet and planet-moon occultations, and more. By modeling celestial body surface maps as sums of spherical harmonics, STARRY does all this analytically and is therefore fast, stable, and differentiable. Coded in C++ but wrapped in Python, STARRY is easy to install and use.

[ascl:1811.017] Vplanet: Virtual planet simulator

Vplanet simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.

[ascl:1904.022] eleanor: Extracted and systematics-corrected light curves for TESS-observed stars

eleanor extracts target pixel files from TESS Full Frame Images and produces systematics-corrected light curves for any star observed by the TESS mission. eleanor takes a TIC ID, a Gaia source ID, or (RA, Dec) coordinates of a star observed by TESS and returns, as a single object, a light curve and accompanying target pixel data. The process can be customized, allowing, for example, examination of intermediate data products and changing the aperture used for light curve extraction. eleanor also offers tools that make it easier to work with stars observed in multiple TESS sectors.