ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Deitrick, Russell'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1810.005] STARRY: Analytic computation of occultation light curves

STARRY computes light curves for various applications in astronomy: transits and secondary eclipses of exoplanets, light curves of eclipsing binaries, rotational phase curves of exoplanets, light curves of planet-planet and planet-moon occultations, and more. By modeling celestial body surface maps as sums of spherical harmonics, STARRY does all this analytically and is therefore fast, stable, and differentiable. Coded in C++ but wrapped in Python, STARRY is easy to install and use.

[ascl:1811.017] VPLanet: Virtual planet simulator

VPLanet (Virtual Planetary Laboratory) simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.

[ascl:2111.015] gCMCRT: 3D Monte Carlo Radiative Transfer for exoplanet atmospheres using GPUs

gCMCRT globally processes 3D atmospheric data, and as a fully 3D model, it avoids the biases and assumptions present when using 1D models to process 3D structures. It is well suited to performing the post-processing of large parameter GCM model grids, and provides simple pipelines that convert the 3D GCM structures from many well used GCMs in the community to the gCMCRT format, interpolating chemical abundances (if needed) and performing the required spectra calculation. The high-resolution spectra modes of gCMCRT provide an additional highly useful capability for 3D modellers to directly compare output to high-resolution spectral data.