ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Keywords

A list of keywords associated with codes in the ASCL.

NASA (133), Kepler (28), Spitzer (13), TESS (8), Fermi (6), HITS (5), HST (5), ROSAT (4), CGRO (3), RXTE (3), Swift (3), ASCA (2), Chandra (2), COBE (2), Geotail (2), Heliophysics (2), Herschel (2), LRO (2), Magellan (2), MRO (2), NICER (2), Polar (2), Rosetta (2), Wind (2), WISE (2), WMAP (2), Apollo (1), Cassini (1), Dawn (1), GOES (1), Hinode (1), Hitomi (1), InSight (1), INTEGRAL (1), ISO (1), Juno (1), JWST (1), Lucy (1), Lunar Quest (1), MAVEN (1), MESSENGER (1), MGS (1), NEAR (1), New Horizons (1), NISAR (1), NuSTAR (1), OSIRIS-REx (1), Parker Solar Probe (1), Psyche (1), RHESSI (1), SOFIA (1), SOHO (1), STEREO (1), Suzaku (1), THEMIS (1), TRMM (1)

Codes associated with 'Kepler'

[ascl:1208.004] PyKE: Reduction and analysis of Kepler Simple Aperture Photometry data

PyKE is a python-based PyRAF package that can also be run as a stand-alone program within a unix-based shell without compiling against PyRAF. It is a group of tasks developed for the reduction and analysis of Kepler Simple Aperture Photometry (SAP) data of individual targets with individual characteristics. The main purposes of these tasks are to i) re-extract light curves from manually-chosen pixel apertures and ii) cotrend and/or detrend the data in order to reduce or remove systematic noise structure using methods tunable to user and target-specific requirements. PyKE is an open source project and contributions of new tasks or enhanced functionality of existing tasks by the community are welcome.

[ascl:1209.006] macula: Rotational modulations in the photometry of spotted stars

Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

[ascl:1304.001] PEC: Period Error Calculator

The PEC (Period Error Calculator) algorithm estimates the period error for eclipsing binaries observed by the Kepler Mission. The algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. A simple C implementation of the PEC algorithm is available.

[ascl:1502.020] ketu: Exoplanet candidate search code

ketu, written in Python, searches K2 light curves for evidence of exoplanets; the code simultaneously fits for systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues and the transit signals of interest. Though more computationally expensive than standard search algorithms, it can be efficiently implemented and used to discover transit signals.

[ascl:1503.001] K2flix: Kepler pixel data visualizer

K2flix makes it easy to inspect the CCD pixel data obtained by NASA's Kepler space telescope. The two-wheeled extended Kepler mission, K2, is affected by new sources of systematics, including pointing jitter and foreground asteroids, that are easier to spot by eye than by algorithm. The code takes Kepler's Target Pixel Files (TPF) as input and turns them into contrast-stretched animated gifs or MPEG-4 movies. K2flix can be used both as a command-line tool or using its Python API.

[ascl:1507.013] K-Inpainting: Inpainting for Kepler

Inpainting is a technique for dealing with gaps in time series data, as frequently occurs in asteroseismology data, that may generate spurious peaks in the power spectrum, thus limiting the analysis of the data. The inpainting method, based on a sparsity prior, judiciously fills in gaps in the data, preserving the asteroseismic signal as far as possible. This method can be applied both on ground and space-based data. The inpainting technique improves the oscillation modes detection and estimation, the impact of the observational window function is reduced, and the interpretation of the power spectrum is simplified. K-Inpainting can be used to study very long time series of many stars because its computation is very fast.

[ascl:1601.009] K2fov: Field of view software for NASA's K2 mission

K2fov allows users to transform celestial coordinates into K2's pixel coordinate system for the purpose of preparing target proposals and field of view visualizations. In particular, the package, written in Python, adds the "K2onSilicon" and "K2findCampaigns" tools to the command line, allowing the visibility of targets to be checked in a user-friendly way.

[ascl:1712.011] FBEYE: Analyzing Kepler light curves and validating flares

FBEYE, the "Flares By-Eye" detection suite, is written in IDL and analyzes Kepler light curves and validates flares. It works on any 3-column light curve that contains time, flux, and error. The success of flare identification is highly dependent on the smoothing routine, which may not be suitable for all sources.

[ascl:1604.012] TTVFaster: First order eccentricity transit timing variations (TTVs)

TTVFaster implements analytic formulae for transit time variations (TTVs) that are accurate to first order in the planet–star mass ratios and in the orbital eccentricities; the implementations are available in several languages, including IDL, Julia, Python and C. These formulae compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems.

[ascl:1607.010] K2PS: K2 Planet search

K2PS is an Oxford K2 planet search pipeline. Written in Python, it searches for transit-like signals from the k2sc-detrended light curves.

[ascl:1611.008] Transit Clairvoyance: Predicting multiple-planet systems for TESS

Transit Clairvoyance uses Artificial Neural Networks (ANNs) to predict the most likely short period transiters to have additional transiters, which may double the discovery yield of the TESS (Transiting Exoplanet Survey Satellite). Clairvoyance is a simple 2-D interpolant that takes in the number of planets in a system with period less than 13.7 days, as well as the maximum radius amongst them (in Earth radii) and orbital period of the planet with maximum radius (in Earth days) in order to predict the probability of additional transiters in this system with period greater than 13.7 days.

[ascl:1807.027] kplr: Tools for working with Kepler data using Python

kplr provides a lightweight Pythonic interface to the catalog of planet candidates (Kepler Objects of Interest [KOIs]) in the NASA Exoplanet Archive and the data stored in the Barbara A. Mikulski Archive for Space Telescopes (MAST). kplr automatically supports loading Kepler data using pyfits (ascl:1207.009) and supports two types of data: light curves and target pixel files.

[ascl:1705.006] f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:1706.010] EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[ascl:1803.005] Kadenza: Kepler/K2 Raw Cadence Data Reader

Kadenza enables time-critical data analyses to be carried out using NASA's Kepler Space Telescope. It enables users to convert Kepler's raw data files into user-friendly Target Pixel Files upon downlink from the spacecraft. The primary motivation for this tool is to enable the microlensing, supernova, and exoplanet communities to create quicklook lightcurves for transient events which require rapid follow-up.

[ascl:1807.028] ktransit: Exoplanet transit modeling tool in python

The routines in ktransit create and fit a transiting planet model. The underlying model is a Fortran implementation of the Mandel & Agol (2002) limb darkened transit model. The code calculates a full orbital model and eccentricity can be allowed to vary; radial velocity data can also be calculated via the model and included in the fit.

[ascl:1807.029] EVEREST: Tools for de-trending stellar photometry

EVEREST (EPIC Variability Extraction and Removal for Exoplanet Science Targets) removes instrumental noise from light curves with pixel level decorrelation and Gaussian processes. The code, written in Python, generates the EVEREST catalog and offers tools for accessing and interacting with the de-trended light curves. EVEREST exploits correlations across the pixels on the CCD to remove systematics introduced by the spacecraft’s pointing error. For K2, it yields light curves with precision comparable to that of the original Kepler mission. Interaction with the EVEREST catalog catalog is available via the command line and through the Python interface. Though written for K2, EVEREST can be applied to additional surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets.

[ascl:1811.017] VPLanet: Virtual planet simulator

VPLanet (Virtual Planetary Laboratory) simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.

[ascl:1812.013] Lightkurve: Kepler and TESS time series analysis in Python

Lightkurve analyzes astronomical flux time series data, in particular the pixels and light curves obtained by NASA’s Kepler, K2, and TESS exoplanet missions. This community-developed Python package is designed to be user friendly to lower the barrier for students, astronomers, and citizen scientists interested in analyzing data from these missions. Lightkurve provides easy tools to download, inspect, and analyze time series data and its documentation is supported by a large syllabus of tutorials.

[ascl:1903.015] SPICE: Observation Geometry System for Space Science Missions

The SPICE (Spacecraft Planet Instrument C-matrix [“Camera matrix”] Events) toolkit offers a set of building blocks for constructing tools supporting multi-mission, international space exploration programs and research in planetary science, heliophysics, Earth science, and for observations from terrestrial observatories. It computes many kinds of observation geometry parameters, including the ephemerides, orientations, sizes, and shapes of planets, satellites, comets and asteroids. It can also compute the orientation of a spacecraft, its various moving structures, and an instrument's field-of-view location on a planet's surface or atmosphere. It can determine when a specified geometric event occurs, such as when an object is in shadow or is in transit across another object. The SPICE toolkit is available in FORTRAN 77, ANSI C, IDL, and MATLAB.

[ascl:1908.005] dips: Detrending periodic signals in timeseries

dips detrends timeseries of strictly periodic signals. It does not assume any functional form for the signal or the background or the noise; it disentangles the strictly periodic component from everything else. It has been used for detrending Kepler, K2 and TESS timeseries of periodic variable stars, eclipsing binary stars, and exoplanets.

[ascl:1909.013] EPOS: Exoplanet Population Observation Simulator

EPOS (Exoplanet Population Observation Simulator) simulates observations of exoplanet populations. It provides an interface between planet formation simulations and exoplanet surveys such as Kepler. EPOS can also be used to estimate planet occurrence rates and the orbital architectures of planetary systems.

[ascl:2012.006] Robovetter: Automatic vetting of Threshold Crossing Events (TCEs)

The DR25 Kepler Robovetter is a robotic decision-making code that dispositions each Threshold Crossing Event (TCE) from the final processing (DR 25) of the Kepler data into Planet Candidates (PCs) and False Positives (FPs). The Robovetter provides four major flags to designate each FP TCE as Not Transit-Like (NTL), a Stellar Eclipse (SS), a Centroid Offset (CO), and/or an Ephemeris Match (EM). It produces a score ranging from 0.0 to 1.0 that indicates the Robovetter's disposition confidence, where 1.0 indicates strong confidence in PC, and 0.0 indicates strong confidence in FP. Finally, the Robovetter provides comments in a text string that indicate the specific tests each FP TCE fails and provides supplemental information on all TCEs as necessary.

[ascl:2101.008] EphemMatch: Ephemeris matching of DR25 TCEs, KOIs, and EBs for false positive identification

EphemMatch reads in the period, epoch, positional, and other information of all the Kepler DR25 TCEs, as well as the cumulative KOI list, and lists of EBs from the Kepler Eclipsing Binary Working Group (http://keplerebs.villanova.edu) as well as several catalogs of EBs known from ground-based surveys. The code then performs matching to identify two different objects that have a statistically identical period and epoch (within some tolerance) and perform logic to identify which is the real source (the parent) and which is a false positive due to contamination from the parent (a child).

[ascl:2107.024] K2-CPM: Causal Pixel Model for K2 data

K2-CPM captures variability while preserving transit signals in Kepler data. Working at the pixel level, the model captures very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. The target star's future and past are used and the data points are separated into training and test sets to ensure that information about any transit is perfectly isolated from the model. The method has four tuning parameters, the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, and consistently produces low-noise light curves.

[ascl:2107.025] MCPM: Modified CPM method

MCPM extracts K2 photometry in dense stellar regions; the code is a modification and extension of the K2-CPM package (ascl:2107.024), which was developed for less-crowded fields. MCPM uses the pixel response function together with accurate astrometric grids, combining signals from a few pixels, and simultaneously fits for an astrophysical model to produce extracted more precise K2 photometry.

[ascl:2107.026] K2mosaic: Mosaic Kepler pixel data

K2mosaic stitches the postage stamp-sized pixel masks obtained by NASA's Kepler and K2 missions together into CCD-sized mosaics and movies. The command-line tool's principal use is to take a set of Target Pixel Files (TPF) and turn them into more traditional FITS image files -- one per CCD channel and per cadence. K2mosaic can also be used to create animations from these mosaics. The mosaics produced by K2mosaic also makes the analysis of certain Kepler/K2 targets, such as clusters and asteroids, easier. Moreover such mosaics are useful to reveal the context of single-star observations, e.g., they enable users to check for the presence of instrumental noise or nearby bright objects.

[ascl:2107.027] KeplerPORTS: Kepler Planet Occurrence Rate Tools

KeplerPORTS calculates the detection efficiency of the DR25 Kepler Pipeline. It uses a detection contour model to quantify the recoverability of transiting planet signals due to the Kepler pipeline, and accurately portrays the ability of the Kepler pipeline to generate a Threshold Crossing Event (TCE) for a given hypothetical planet.