**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1210.015]
Tempo2: Pulsar Timing Package

Tempo2 is a pulsar timing package developed to be used both for general pulsar timing applications and also for pulsar timing array research in which data-sets from multiple pulsars need to be processed simultaneously. It was initially developed by George Hobbs and Russell Edwards as part of the Parkes Pulsar Timing Array project. Tempo2 is based on the original Tempo (ascl:1509.002) code and can be used (from the command-line) in a similar fashion. It is very versatile and can be extended by plugins.

[ascl:1310.007]
SMURF: SubMillimeter User Reduction Facility

Jenness, Tim; Chapin, Edward L.; Berry, David S.; Gibb, Andy G.; Tilanus, Remo P. J.; Balfour, Jennifer; Tilanus, Vincent; Currie, Malcolm J.

SMURF reduces submillimeter single-dish continuum and heterodyne data. It is mainly targeted at data produced by the James Clerk Maxwell Telescope but data from other telescopes have been reduced using the package. SMURF is released as part of the bundle that comprises Starlink (ascl:1110.012) and most of the packages that use it. The two key commands are MAKEMAP for the creation of maps from sub millimeter continuum data and MAKECUBE for the creation of data cubes from heterodyne array instruments. The software can also convert data from legacy JCMT file formats to the modern form to allow it to be processed by MAKECUBE. SMURF is a core component of the ORAC-DR (ascl:1310.001) data reduction pipeline for JCMT.

[ascl:1505.034]
dStar: Neutron star thermal evolution code

dStar is a collection of modules for computing neutron star structure and evolution, and uses the numerical, utility, and equation of state libraries of MESA (ascl:1010.083).

[ascl:1708.004]
Astroquery: Access to online data resources

Ginsburg, Adam; Parikh, Madhura; Woillez, Julien; Groener, Austen; Liedtke, Simon; Sipocz, Brigitta; Robitaille, Thomas; Deil, Christoph; Svoboda, Brian; Tollerud, Erik; Persson, Magnus Vilhelm; Séguin-Charbonneau, Loïc; Armstrong, Caden; Mirocha, Jordan; Droettboom, Michael; Allen, James; Moolekamp, Fred; Egeland, Ricky; Singer, Leo; Barbary, Kyle; Grollier, Frédéric; Shiga, David; Moritz Günther, Hans; Parejko, John; Booker, Joseph; Rol, Evert; Edward; Miller, Adam; Willett, Kyle

Astroquery allows users to access online astronomical data from a wide range of sources; it is an Astropy-affiliated package. Each web service has its own sub-package for interfacing with a particular data source.

[ascl:1803.011]
ExtLaw_H18: Extinction law code

Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

ExtLaw_H18 generates the extinction law between 0.8 - 2.2 microns. The law is derived using the Westerlund 1 (Wd1) main sequence (A_Ks ~ 0.6 mag) and Arches cluster field Red Clump at the Galactic Center (A_Ks ~ 2.7 mag). To derive the law a Wd1 cluster age of 5 Myr is assumed, though changing the cluster age between 4 Myr -- 7 Myr has no effect on the law. This extinction law can be applied to highly reddened stellar populations that have similar foreground material as Wd1 and the Arches RC, namely dust from the spiral arms of the Milky Way in the Galactic Plane.

[ascl:1810.009]
PyUltraLight: Pseudo-spectral Python code to compute ultralight dark matter dynamics

PyUltraLight computes non-relativistic ultralight dark matter dynamics in a static spacetime background. It uses pseudo-spectral methods to compute the evolution of a complex scalar field governed by the Schrödinger-Poisson system of coupled differential equations. Computations are performed on a fixed-grid with periodic boundary conditions, allowing for a decomposition of the field in momentum space by way of the discrete Fourier transform. The field is then evolved through a symmetrized split-step Fourier algorithm, in which nonlinear operators are applied in real space, while spatial derivatives are computed in Fourier space. Fourier transforms within PyUltraLight are handled using the pyFFTW pythonic wrapper around FFTW (ascl:1201.015).

[ascl:1809.012]
nestcheck: Nested sampling calculations analysis

Nestcheck analyzes nested sampling runs and estimates numerical uncertainties on calculations using them. The package can load results from a number of nested sampling software packages, including MultiNest (ascl:1109.006), PolyChord (ascl:1502.011), dynesty (ascl:1809.013) and perfectns (ascl:1809.005), and offers the flexibility to add input functions for other nested sampling software packages. Nestcheck utilities include error analysis, diagnostic tests, and plots for nested sampling calculations.

[ascl:1809.005]
perfectns: "Perfect" dynamic and standard nested sampling for spherically symmetric likelihoods and priors

perfectns performs dynamic nested sampling and standard nested sampling for spherically symmetric likelihoods and priors, and analyses the samples produced. The spherical symmetry allows the nested sampling algorithm to be followed “perfectly” - *i.e.* without implementation-specific errors correlations between samples. It is intended for use in research into the statistical properties of nested sampling, and to provide a benchmark for testing the performance of nested sampling software packages used for practical problems - which rely on numerical techniques to produce approximately uncorrelated samples.

[ascl:1902.010]
dyPolyChord: Super fast dynamic nested sampling with PolyChord

dyPolyChord implements dynamic nested sampling using the efficient PolyChord (ascl:1502.011) sampler to provide state-of-the-art nested sampling performance. Any likelihoods and priors which work with PolyChord can be used (Python, C++ or Fortran), and the output files produced are in the PolyChord format.

[ascl:1904.001]
sxrbg: ROSAT X-Ray Background Tool

The ROSAT X-Ray Background Tool (sxrbg) calculates the average X-ray background count rate and statistical uncertainty in each of the six standard bands of the ROSAT All-Sky Survey (RASS) diffuse background maps (R1, R2, R4, R5, R6, R7) for a specified astronomical position and a search region consisting of either a circle with a specified radius or an annulus with specified inner and outer radii centered on the position. The values returned by the tool are in units of 10^-6 counts/second/arcminute^2. sxrbg can also create a count-rate-based spectrum file which can be used with XSpec (ascl:9910.005) to calculate fluxes and offers support for counts statistics (cstat), an alternative method for generating a background spectrum. HEASoft (ascl:1408.004) is a prerequisite for building. The code is in the public domain.

[ascl:1911.004]
PypeIt: Python spectroscopic data reduction pipeline

Prochaska, J. Xavier; Hennawi, Joseph; Cooke, Ryan; Westfall, Kyle; Wang, Feige; Farina, Emanuele Paolo; Hsyu, Tiffany; Wasserman, Asher; Villaume, Alexa; Young, David; Simha, Sunil; Wilde, Matt; Tejos, Nicolas; Isbell, Jacob; Betts, Edward; Holden, Brad

PypeIt reduces data from echelle and low-resolution spectrometers; the code can be run in several modes of reduction that demark the level of sophistication (e.g. quick and dirty vs. MonteCarlo) and also the amount of output written to disk. It also generates numerous data products, including 1D and 2D spectra; calibration images, fits, and meta files; and quality assurance figures.

[ascl:2004.004]
WD: Wilson-Devinney binary star modeling

Wilson-Devinney binary star modeling code (WD) is a complete package for modeling binary stars and their eclipes and consists of two main modules. The LC module generates light and radial velocity curves, spectral line profiles, images, conjunction times, and timing residuals; the DC module handles differential corrections, performing parameter adjustment of light curves, velocity curves, and eclipse timings by the Least Squares criterion. WD handles eccentric orbits and asynchronous rotation, and can compute velocity curves (with proximity and eclipse effects). It offers options for detailed reflection and nonlinear (logarithmic law) limb darkening, adjustment of spot parameters, an optional provision for spots to drift over the surface, and can follow light curve development over large numbers of orbits. Absolute flux solution allow Direct Distance Estimation (DDE) and there are improved solutions for ellipsoidal variables and for eclipsing binaries (EBs) with very shallow eclipses. Absolute flux solutions also can estimate temperatures of both EB components under suitable circumstances.