ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1011.004] MARS: The MAGIC Analysis and Reconstruction Software

With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected atmospheric showers. MARS is a ROOT-based code written in C++, which includes all the necessary algorithms to transform the raw data recorded by the telescopes into information about the physics parameters of the observed targets. An overview of the methods for extracting the basic shower parameters is presented, together with a description of the tools used in the background discrimination and in the estimation of the gamma-ray source spectra.

[ascl:1807.005] MAPPINGS V: Astrophysical plasma modeling code

MAPPINGS V is a update of the MAPPINGS code (ascl:1306.008) and provides new cooling function computations for optically thin plasmas based on the greatly expanded atomic data of the CHIANTI 8 database. The number of cooling and recombination lines has been expanded from ~2000 to over 80,000, and temperature-dependent spline-based collisional data have been adopted for the majority of transitions. The expanded atomic data set provides improved modeling of both thermally ionized and photoionized plasmas; the code is now capable of predicting detailed X-ray spectra of nonequilibrium plasmas over the full nonrelativistic temperature range, increasing its utility in cosmological simulations, in modeling cooling flows, and in generating accurate models for the X-ray emission from shocks in supernova remnants.

[ascl:1306.008] MAPPINGS III: Modelling And Prediction in PhotoIonized Nebulae and Gasdynamical Shocks

MAPPINGS III is a general purpose astrophysical plasma modelling code. It is principally intended to predict emission line spectra of medium and low density plasmas subjected to different levels of photoionization and ionization by shockwaves. MAPPINGS III tracks up to 16 atomic species in all stages of ionization, over a useful range of 102 to 108 K. It treats spherical and plane parallel geometries in equilibrium and time-dependent models. MAPPINGS III is useful for computing models of HI and HII regions, planetary nebulae, novae, supernova remnants, Herbig-Haro shocks, active galaxies, the intergalactic medium and the interstellar medium in general. The present version of MAPPINGS III is a large FORTRAN program that runs with a simple TTY interface for historical and portability reasons.

[ascl:1308.003] MapCurvature: Map Projections

MapCurvature, written in IDL, can create map projections with Goldberg-Gott indicatrices. These indicatrices measure the flexion and skewness of a map, and are useful for determining whether features are faithfully reproduced on a particular projection.

[ascl:1305.012] MapCUMBA: Multi-grid map-making algorithm for CMB experiments

The MapCUMBA package applies a multigrid fast iterative Jacobi algorithm for map-making in the context of CMB experiments.

[ascl:1202.005] Mangle: Angular Mask Software

Mangle deals accurately and efficiently with complex angular masks, such as occur typically in galaxy surveys. Mangle performs the following tasks: converts masks between many handy formats (including HEALPix); rapidly finds the polygons containing a given point on the sphere; rapidly decomposes a set of polygons into disjoint parts; expands masks in spherical harmonics; generates random points with weights given by the mask; and implements computations for correlation function analysis. To mangle, a mask is an arbitrary union of arbitrarily weighted angular regions bounded by arbitrary numbers of edges. The restrictions on the mask are only (1) that each edge must be part of some circle on the sphere (but not necessarily a great circle), and (2) that the weight within each subregion of the mask must be constant. Mangle is complementary to and integrated with the HEALPix package (ascl:1107.018); mangle works with vector graphics whereas HEALPix works with pixels.

[ascl:1502.021] MaLTPyNT: Quick look timing analysis for NuSTAR data

MaLTPyNT (Matteo's Libraries and Tools in Python for NuSTAR Timing) provides a quick-look timing analysis of NuSTAR data, properly treating orbital gaps and exploiting the presence of two independent detectors by using the cospectrum as a proxy for the power density spectrum. The output of the analysis is a cospectrum, or a power density spectrum, that can be fitted with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002). The software also calculates time lags. Though written for NuSTAR data, MaLTPyNT can also perform standard spectral analysis on X-ray data from other satellite such as XMM-Newton and RXTE.

[ascl:1307.009] MAH: Minimum Atmospheric Height

MAH calculates the posterior distribution of the "minimum atmospheric height" (MAH) of an exoplanet by inputting the joint posterior distribution of the mass and radius. The code collapses the two dimensions of mass and radius into a one dimensional term that most directly speaks to whether the planet has an atmosphere or not. The joint mass-radius posteriors derived from a fit of some exoplanet data (likely using MCMC) can be used by MAH to evaluate the posterior distribution of R_MAH, from which the significance of a non-zero R_MAH (i.e. an atmosphere is present) is calculated.

[ascl:1106.010] MAGPHYS: Multi-wavelength Analysis of Galaxy Physical Properties

MAGPHYS is a self-contained, user-friendly model package to interpret observed spectral energy distributions of galaxies in terms of galaxy-wide physical parameters pertaining to the stars and the interstellar medium. MAGPHYS is optimized to derive statistical constraints of fundamental parameters related to star formation activity and dust content (e.g. star formation rate, stellar mass, dust attenuation, dust temperatures) of large samples of galaxies using a wide range of multi-wavelength observations. A Bayesian approach is used to interpret the SEDs all the way from the ultraviolet/optical to the far-infrared.

[ascl:1502.014] Magnetron: Fitting bursts from magnetars

Magnetron, written in Python, decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. Markov Chain Monte Carlo (MCMC) sampling and reversible jumps between models with different numbers of parameters are used to characterize the posterior distributions of the model parameters and the number of components per burst.

[submitted] Magnetizer: computing magnetic fields of evolving galaxies

Computes time and radial dependent magnetic fields for a sample of galaxies in the output of a semi-analytic model of galaxy formation. The magnetic field is obtained by numerically solving the galactic dynamo equations throughout history of each galaxy. Stokes parameters and Faraday rotation measure can also be computed along a random line-of-sight for each galaxy.

[ascl:1010.054] MagnetiCS.c: Cosmic String Loop Evolution and Magnetogenesis

Large-scale coherent magnetic fields are observed in galaxies and clusters, but their ultimate origin remains a mystery. We reconsider the prospects for primordial magnetogenesis by a cosmic string network. We show that the magnetic flux produced by long strings has been overestimated in the past, and give improved estimates. We also compute the fields created by the loop population, and find that it gives the dominant contribution to the total magnetic field strength on present-day galactic scales. We present numerical results obtained by evolving semi-analytic models of string networks (including both one-scale and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including the forces and torques on loops from Hubble redshifting, dynamical friction, and gravitational wave emission. Our predictions include the magnetic field strength as a function of correlation length, as well as the volume covered by magnetic fields. We conclude that string networks could account for magnetic fields on galactic scales, but only if coupled with an efficient dynamo amplification mechanism.

[ascl:1303.009] MAGIX: Modeling and Analysis Generic Interface for eXternal numerical codes

MAGIX provides an interface between existing codes and an iterating engine that minimizes deviations of the model results from available observational data; it constrains the values of the model parameters and provides corresponding error estimates. Many models (and, in principle, not only astrophysical models) can be plugged into MAGIX to explore their parameter space and find the set of parameter values that best fits observational/experimental data. MAGIX complies with the data structures and reduction tools of Atacama Large Millimeter Array (ALMA), but can be used with other astronomical and with non-astronomical data.

[ascl:1604.004] magicaxis: Pretty scientific plotting with minor-tick and log minor-tick support

The R suite magicaxis makes useful and pretty plots for scientific plotting and includes functions for base plotting, with particular emphasis on pretty axis labelling in a number of circumstances that are often used in scientific plotting. It also includes functions for generating images and contours that reflect the 2D quantile levels of the data designed particularly for output of MCMC posteriors where visualizing the location of the 68% and 95% 2D quantiles for covariant parameters is a necessary part of the post MCMC analysis, can generate low and high error bars, and allows clipping of values, rejection of bad values, and log stretching.

[ascl:1709.010] MagIC: Fluid dynamics in a spherical shell simulator

MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

[ascl:1908.019] MAESTROeX: Low Mach number stellar hydrodynamics code

MAESTROeX solves the equations of low Mach number hydrodynamics for stratified atmospheres or stars with a general equation of state. It includes reactions and thermal diffusion and can be used on anything from a single core to 100,000s of processor cores with MPI + OpenMP. MAESTROeX maintains the accuracy of its predecessor MAESTRO (ascl:1010.044) while taking advantage of a simplified temporal integration scheme and leveraging the AMReX software framework for block-structured adaptive mesh refinement (AMR) applications.

[ascl:1010.044] MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows

MAESTRO, a low Mach number stellar hydrodynamics code, simulates long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows, and adaptive mesh refinement (AMR) has been incorporated into the code. The expansion of the base state for full-star flows using a novel mapping technique between the one-dimensional base state and the Cartesian grid is also available.

NOTE: MAESTRO is no longer being actively developed. Users should switch to MAESTROeX (ascl:1908.019) to take advantage of the latest capabilities.

[ascl:1110.018] MADmap: Fast Parallel Maximum Likelihood CMB Map Making Code

MADmap produces maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap has the ability to address problems typically encountered in the analysis of realistic CMB data sets. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analyzing the largest data sets now being collected on computing resources currently available.

[ascl:1712.012] MadDM: Computation of dark matter relic abundance

MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.

[ascl:1306.010] MADCOW: Microwave Anisotropy Dataset Computational softWare

MADCOW is a set of parallelized programs written in ANSI C and Fortran 77 that perform a maximum likelihood analysis of visibility data from interferometers observing the cosmic microwave background (CMB) radiation. This software has been used to produce power spectra of the CMB with the Very Small Array (VSA) telescope.

[ascl:1209.006] macula: Rotational modulations in the photometry of spotted stars

Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

[ascl:1607.018] LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

[ascl:1803.012] LWPC: Long Wavelength Propagation Capability

Long Wavelength Propagation Capability (LWPC), written as a collection of separate programs that perform unique actions, generates geographical maps of signal availability for coverage analysis. The program makes it easy to set up these displays by automating most of the required steps. The user specifies the transmitter location and frequency, the orientation of the transmitting and receiving antennae, and the boundaries of the operating area. The program automatically selects paths along geographic bearing angles to ensure that the operating area is fully covered. The diurnal conditions and other relevant geophysical parameters are then determined along each path. After the mode parameters along each path are determined, the signal strength along each path is computed. The signal strength along the paths is then interpolated onto a grid overlying the operating area. The final grid of signal strength values is used to display the signal-strength in a geographic display. The LWPC uses character strings to control programs and to specify options. The control strings have the same meaning and use among all the programs.

[ascl:1201.016] LumFunc: Luminosity Function Modeling

LumFunc is a numerical code to model the Luminosity Function based on central galaxy luminosity-halo mass and total galaxy luminosity-halo mass relations. The code can handle rest b_J-band (2dFGRS), r'-band (SDSS), and K-band luminosities, and any redshift with redshift dependences specified by the user. It separates the luminosity function (LF) to conditional luminosity functions, LF as a function of halo mass, and also to galaxy types. By specifying a narrow mass range, the code will return the conditional luminosity functions. The code returns luminosity functions for galaxy types as well (broadly divided to early-type and late-type). The code also models the cluster luminosity function, either mass averaged or for individual clusters.

[ascl:1404.001] LTS_LINEFIT & LTS_PLANEFIT: LTS fit of lines or planes

LTS_LINEFIT and LTS_PLANEFIT are IDL programs to robustly fit lines and planes to data with intrinsic scatter. The code combines the Least Trimmed Squares (LTS) robust technique, proposed by Rousseeuw (1984) and optimized in Rousseeuw & Driessen (2006), into a least-squares fitting algorithm which allows for intrinsic scatter. This method makes the fit converge to the correct solution even in the presence of a large number of catastrophic outliers, where the much simpler σ-clipping approach can converge to the wrong solution.

[ascl:1312.006] LTL: The Little Template Library

LTL provides dynamic arrays of up to 7-dimensions, subarrays and slicing, support for fixed-size vectors and matrices including basic linear algebra operations, expression templates-based evaluation, and I/O facilities for ascii and FITS format files. Utility classes for command-line processing and configuration-file processing are provided as well.

[ascl:1505.012] LSSGALPY: Visualization of the large-scale environment around galaxies on the 3D space

LSSGALPY provides visualization tools to compare the 3D positions of a sample (or samples) of isolated systems with respect to the locations of the large-scale structures galaxies in their local and/or large scale environments. The interactive tools use different projections in the 3D space (right ascension, declination, and redshift) to study the relation of the galaxies with the LSS. The tools permit visualization of the locations of the galaxies for different values of redshifts and redshift ranges; the relationship of isolated galaxies, isolated pairs, and isolated triplets to the galaxies in the LSS can be visualized for different values of the declinations and declination ranges.

[ascl:1612.002] LSDCat: Line Source Detection and Cataloguing Tool

LSDCat is a conceptually simple but robust and efficient detection package for emission lines in wide-field integral-field spectroscopic datacubes. The detection utilizes a 3D matched-filtering approach for compact single emission line objects. Furthermore, the software measures fluxes and extents of detected lines. LSDCat is implemented in Python, with a focus on fast processing of large data-volumes.

[ascl:1209.003] LSD: Large Survey Database framework

The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures.

[ascl:1807.033] LSC: Supervised classification of time-series variable stars

LSC (LINEAR Supervised Classification) trains a number of classifiers, including random forest and K-nearest neighbor, to classify variable stars and compares the results to determine which classifier is most successful. Written in R, the package includes anomaly detection code for testing the application of the selected classifier to new data, thus enabling the creation of highly reliable data sets of classified variable stars.

[ascl:1602.005] LRGS: Linear Regression by Gibbs Sampling

LRGS (Linear Regression by Gibbs Sampling) implements a Gibbs sampler to solve the problem of multivariate linear regression with uncertainties in all measured quantities and intrinsic scatter. LRGS extends an algorithm by Kelly (2007) that used Gibbs sampling for performing linear regression in fairly general cases in two ways: generalizing the procedure for multiple response variables, and modeling the prior distribution of covariates using a Dirichlet process.

[ascl:1306.012] LRG DR7 Likelihood Software

This software computes likelihoods for the Luminous Red Galaxies (LRG) data from the Sloan Digital Sky Survey (SDSS). It includes a patch to the existing CAMB software (the February 2009 release) to calculate the theoretical LRG halo power spectrum for various models. The code is written in Fortran 90 and has been tested with the Intel Fortran 90 and GFortran compilers.

[ascl:1902.002] LPNN: Limited Post-Newtonian N-body code for collisionless self-gravitating systems

The Limited Post-Newtonian N-body code (LPNN) simulates post-Newtonian interactions between a massive object and many low-mass objects. The interaction between one massive object and low-mass objects is calculated by post-Newtonian approximation, and the interaction between low-mass objects is calculated by Newtonian gravity. This code is based on the sticky9 code, and can be accelerated with the use of GPU in a CUDA (version 4.2 or earlier) environment.

[ascl:1501.007] LP-VIcode: La Plata Variational Indicators Code

LP-VIcode computes variational chaos indicators (CIs) quickly and easily. The following CIs are included:

  • Lyapunov Indicators, also known as Lyapunov Characteristic Exponents, Lyapunov Characteristic Numbers or Finite Time Lyapunov Characteristic Numbers (LIs)
  • Mean Exponential Growth factor of Nearby Orbits (MEGNO)
  • Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE)
  • Smaller ALignment Index (SALI)
  • Generalized ALignment Index (GALI)
  • Fast Lyapunov Indicator (FLI)
  • Orthogonal Fast Lyapunov Indicator (OFLI)
  • Spectral Distance (SD)
  • dynamical Spectra of Stretching Numbers (SSNs)
  • Relative Lyapunov Indicator (RLI)

[ascl:1010.038] Low Resolution Spectral Templates For AGNs and Galaxies From 0.03 -- 30 microns

We present a set of low resolution empirical SED templates for AGNs and galaxies in the wavelength range from 0.03 to 30 microns based on the multi-wavelength photometric observations of the NOAO Deep-Wide Field Survey Bootes field and the spectroscopic observations of the AGN and Galaxy Evolution Survey. Our training sample is comprised of 14448 galaxies in the redshift range 0<~z<~1 and 5347 likely AGNs in the range 0<~z<~5.58. We use our templates to determine photometric redshifts for galaxies and AGNs. While they are relatively accurate for galaxies, their accuracies for AGNs are a strong function of the luminosity ratio between the AGN and galaxy components. Somewhat surprisingly, the relative luminosities of the AGN and its host are well determined even when the photometric redshift is significantly in error. We also use our templates to study the mid-IR AGN selection criteria developed by Stern et al.(2005) and Lacy et al.(2004). We find that the Stern et al.(2005) criteria suffers from significant incompleteness when there is a strong host galaxy component and at z =~ 4.5, when the broad Halpha emission line is redshifted into the [3.6] band, but that it is little contaminated by low and intermediate redshift galaxies. The Lacy et al.(2004) criterion is not affected by incompleteness at z =~ 4.5 and is somewhat less affected by strong galaxy host components, but is heavily contaminated by low redshift star forming galaxies. Finally, we use our templates to predict the color-color distribution of sources in the upcoming WISE mission and define a color criterion to select AGNs analogous to those developed for IRAC photometry. We estimate that in between 640,000 and 1,700,000 AGNs will be identified by these criteria, but will have serious completeness problems for z >~ 3.4.

[ascl:1308.002] LOSSCONE: Capture rates of stars by a supermassive black hole

LOSSCONE computes the rates of capture of stars by supermassive black holes. It uses a stationary and time-dependent solutions for the Fokker-Planck equation describing the evolution of the distribution function of stars due to two-body relaxation, and works for arbitrary spherical and axisymmetric galactic models that are provided by the user in the form of M(r), the cumulative mass as a function of radius.

[ascl:1309.003] LOSP: Liège Orbital Solution Package

LOSP is a FORTRAN77 numerical package that computes the orbital parameters of spectroscopic binaries. The package deals with SB1 and SB2 systems and is able to adjust either circular or eccentric orbits through a weighted fit.

[ascl:1608.018] LORENE: Spectral methods differential equations solver

LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.

[submitted] loci: Smooth Cubic Multivariate Local Interpolations

loci is a shared library for interpolations in up to 4 dimensions. It is written in C and can be used with C/C++, Python and others. In order to calculate the coefficients of the cubic polynom, only local values are used: The data itself and all combinations of first-order derivatives, i.e. in 2D f_x, f_y and f_xy. This is in contrast to splines, where the coefficients are not calculated using derivatives, but non-local data, which can lead to over-smoothing the result.

[ascl:1606.014] Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python

Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.

[ascl:1706.005] LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1906.020] LIZARD: Particle initial conditions for cosmological simulations

LIZARD (Lagrangian Initialization of Zeldovich Amplitudes for Resimulations of Displacements) creates particle initial conditions for cosmological simulations using the Zel'dovich approximation for the matter and velocity power spectrum.

[ascl:1906.011] Lizard: An extensible Cyclomatic Complexity Analyzer

Lizard is an extensible Cyclomatic Complexity Analyzer for imperative programming languages including C/C++/C#, Python, Java, and Javascript. It counts the nloc (lines of code without comments) and CCN (cyclomatic complexity number), and takes a token count of functions and a parameter count of functions. It also does copy-paste detection (code clone detection/code duplicate detection) and many other forms of static code analysis. Lizard is often used in software-related research and calculates how complex the code looks rather than how complex the code really is; thought it's often very hard to get all the included folders and files right when they are complicated, that accuracy is not needed to determine cyclomatic complexity, which can be useful for measuring the maintainability of a software package.

[ascl:1902.005] LiveData: Data reduction pipeline

LiveData is a multibeam single-dish data reduction system for bandpass calibration and gridding. It is used for processing Parkes multibeam and Mopra data.

[ascl:1112.009] LISACode: A scientific simulator of LISA

LISACode is a simulator of the LISA mission. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. Its also a useful tool for generating realistic data including several kind of sources (Massive Black Hole binaries, EMRIs, cosmic string cusp, stochastic background, etc) and for preparing their analysis. It’s fully integrated to the Mock LISA Data Challenge. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator.

[ascl:1601.007] LIRA: Low-counts Image Reconstruction and Analysis

LIRA (Low-counts Image Reconstruction and Analysis) deconvolves any unknown sky components, provides a fully Poisson 'goodness-of-fit' for any best-fit model, and quantifies uncertainties on the existence and shape of unknown sky. It does this without resorting to χ2 or rebinning, which can lose high-resolution information. It is written in R and requires the FITSio package.

[ascl:1602.006] LIRA: LInear Regression in Astronomy

LIRA (LInear Regression in Astronomy) performs Bayesian linear regression that accounts for heteroscedastic errors in both the independent and the dependent variables, intrinsic scatters (in both variables), time evolution of slopes, normalization and scatters, Malmquist and Eddington bias, and break of linearity. The posterior distribution of the regression parameters is sampled with a Gibbs method exploiting the JAGS (ascl:1209.002) library.

[ascl:1504.019] LineProf: Line Profile Indicators

LineProf implements a series of line-profile analysis indicators and evaluates its correlation with RV data. It receives as input a list of Cross-Correlation Functions and an optional list of associated RV. It evaluates the line-profile according to the indicators and compares it with the computed RV if no associated RV is provided, or with the provided RV otherwise.

[ascl:1710.023] LIMEPY: Lowered Isothermal Model Explorer in PYthon

LIMEPY solves distribution function (DF) based lowered isothermal models. It solves Poisson's equation used on input parameters and offers fast solutions for isotropic/anisotropic, single/multi-mass models, normalized DF values, density and velocity moments, projected properties, and generates discrete samples.

[ascl:1107.012] LIME: Flexible, Non-LTE Line Excitation and Radiation Transfer Method for Millimeter and Far-infrared Wavelengths

LIME solves the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting emergent spectra. The code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of photons. Various physical models can be used as input, ranging from analytical descriptions over tabulated models to SPH simulations. To generate the Delaunay grid we sample the input model randomly, but weigh the sample probability with the molecular density and other parameters, and thereby we obtain an average grid point separation that scales with the local opacity. Slow convergence of opaque models becomes traceable; when convergence between the level populations, the radiation field, and the point separation has been obtained, the grid is ray-traced to produced images that can readily be compared to observations. LIME is particularly well suited for modeling of ALMA data because of the high dynamic range in scales that can be resolved using this type of grid, and can furthermore deal with overlapping lines of multiple molecular and atomic species.

Would you like to view a random code?