Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1001-1050 of 1772 (1747 ASCL, 25 submitted)

Title Date
Abstract Compact
Per Page
[ascl:1402.008] SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

[ascl:1402.009] GalSim: Modular galaxy image simulation toolkit

GalSim is a fast, modular software package for simulation of astronomical images. Though its primary purpose is for tests of weak lensing analysis methods, it can be used for other purposes. GalSim allows galaxies and PSFs to be represented in a variety of ways, and can apply shear, magnification, dilation, or rotation to a galaxy profile including lensing-based models from a power spectrum or NFW halo profile. It can write images in regular FITS files, FITS data cubes, or multi-extension FITS files. It can also compress the output files using various compressions including gzip, bzip2, and rice. The user interface is in python or via configuration scripts, and the computations are done in C++ for speed.

[ascl:1402.010] CPL: Common Pipeline Library

The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

[ascl:1402.011] KROME: Chemistry package for astrophysical simulations

KROME, given a chemical network (in CSV format), automatically generates all the routines needed to solve the kinetics of the system modeled as a system of coupled Ordinary Differential Equations. It provides a large set of physical processes connected to chemistry, including photochemistry, cooling, heating, dust treatment, and reverse kinetics. KROME is flexible and can be used for a wide range of astrophysical simulations. The package contains a network for primordial chemistry, a small metal network appropriate for the modeling of low metallicities environments, a detailed network for the modeling of molecular clouds, and a network for planetary atmospheres as well as a framework for the modelling of the dust grain population.

[ascl:1402.012] QUICKCV: Cosmic variance calculator

QUICKCV is an IDL sample variance/cosmic variance calculator for some geometry.

[ascl:1402.013] CASSIS: Interactive spectrum analysis

CASSIS (Centre d'Analyse Scientifique de Spectres Infrarouges et Submillimetriques), written in Java, is suited for broad-band spectral surveys to speed up the scientific analysis of high spectral resolution observations. It uses a local spectroscopic database made of the two molecular spectroscopic databases JPL and CDMS, as well as the atomic spectroscopic database NIST. Its tools include a LTE model and the RADEX model connected to the LAMDA molecular collisional database. CASSIS can build a line list fitting the various transitions of a given species and to directly produce rotational diagrams from these lists. CASSIS is fully integrated into HIPE, the Herschel Interactive Processing Environment, as a plug-in.

[ascl:1402.014] ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

[ascl:1402.015] BF_dist: Busy Function fitting

The "busy function" accurately describes the characteristic double-horn HI profile of many galaxies. Implemented in a C/C++ library and Python module called BF_dist, it is a continuous, differentiable function that consists of only two basic functions, the error function, erf(x), and a polynomial, |x|^n, of degree n >= 2. BF_dist offers great flexibility in fitting a wide range of HI profiles from the Gaussian profiles of dwarf galaxies to the broad, asymmetric double-horn profiles of spiral galaxies, and can be used to parametrize observed HI spectra of galaxies and the construction of spectral templates for simulations and matched filtering algorithms accurately and efficiently.

[ascl:1402.016] FAMA: Fast Automatic MOOG Analysis

FAMA (Fast Automatic MOOG Analysis), written in Perl, computes the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) automatically and independently of any subjective approach. Based on the widely-used MOOG code, it simultaneously searches for three equilibria, excitation equilibrium, ionization balance, and the relationship between logn(FeI) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. Convergence criteria are not fixed "a priori" but instead are based on the quality of the spectra.

[ascl:1402.017] UVMULTIFIT: Fitting astronomical radio interferometric data

UVMULTIFIT, written in Python, is a versatile library for fitting models directly to visibility data. These models can depend on frequency and fitting parameters in an arbitrary algebraic way. The results from the fit to the visibilities of sources with sizes smaller than the diffraction limit of the interferometer are superior to the output obtained from a mere analysis of the deconvolved images. Though UVMULTIFIT is based on the CASA package, it can be easily adapted to other analysis packages that have a Python API.

[ascl:1402.018] TARDIS: Temperature And Radiative Diffusion In Supernovae

TARDIS creates synthetic spectra for supernova ejecta and is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. TARDIS uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It is written in Python with a modular design that facilitates the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency; this allows users to choose a level of sophistication appropriate for their application.

[ascl:1402.019] ANAigm: Analytic model for attenuation by the intergalactic medium

ANAigm offers an updated version of the Madau model for the attenuation by the intergalactic neutral hydrogen against the radiation from distant objects. This new model is written in Fortran90 and predicts, for some redshifts, more than 0.5--1 mag different attenuation magnitudes through usual broad-band filters relative to the original Madau model.

[ascl:1402.020] XNS: Axisymmetric equilibrium configuration of neutron stars

XNS solves for the axisymmetric equilibrium configuration of neutron stars in general relativity. It can model differentially rotating and magnetic fields that are either purely toroidal, purely poloidal or in the mixed twisted torus configuration. Einsten's equations are solved using the XCFC approximation for the metric in spherical coordinates.

[ascl:1402.021] PyGFit: Python Galaxy Fitter

PyGFit measures PSF-matched photometry from images with disparate pixel scales and PSF sizes; its primary purpose is to extract robust spectral energy distributions (SEDs) from crowded images. It fits blended sources in crowded, low resolution images with models generated from a higher resolution image, thus minimizing the impact of crowding and also yielding consistently measured fluxes in different filters which minimizes systematic uncertainty in the final SEDs.

[ascl:1402.022] DexM: Semi-numerical simulations for very large scales

DexM (Deus ex Machina) efficiently generates density, halo, and ionization fields on very large scales and with a large dynamic range through seminumeric simulation. These properties are essential for reionization studies, especially those involving rare, massive QSOs, since one must be able to statistically capture the ionization field. DexM can also generate ionization fields directly from the evolved density field to account for the ionizing contribution of small halos. Semi-numerical simulations use more approximate physics than numerical simulations, but independently generate 3D cosmological realizations. DexM is portable and fast, and allows for explorations of wide swaths of astrophysical parameter space and an unprecedented dynamic range.

[ascl:1401.001] Kirin: N-body simulation library for GPUs

The use of graphics processing units offers an attractive alternative to specialized hardware, like GRAPE. The Kirin library mimics the behavior of the GRAPE hardware and uses the GPU to execute the force calculations. It is compatible with the GRAPE6 library; existing code that uses the GRAPE6 library can be recompiled and relinked to use the GPU equivalents of the GRAPE6 functions. All functions in the GRAPE6 library have an equivalent GPU implementation. Kirin can be used for direct N-body simulations as well as for treecodes; it can be run with shared-time steps or with block time-steps and allows non-softened potentials. As Kirin makes use of CUDA, it works only on NVIDIA GPUs.

[ascl:1401.002] SpacePy: Python-Based Tools for the Space Science Community

SpacePy provides data analysis and visualization tools for the space science community. Written in Python, it builds on the capabilities of the NumPy and MatPlotLib packages to make basic data analysis, modeling and visualization easier. It contains modules for handling many complex time formats, obtaining data from the OMNI database, and accessing the powerful Onera library. It contains a library of commonly used empirical relationships, performs association analysis, coordinate transformations, radiation belt modeling, and CDF reading, and creates publication quality plots.

[ascl:1401.003] PyMidas: Interface from Python to Midas

PyMidas is an interface between Python and MIDAS, the major ESO legacy general purpose data processing system. PyMidas allows a user to exploit both the rich legacy of MIDAS software and the power of Python scripting in a unified interactive environment. PyMidas also allows the usage of other Python-based astronomical analysis systems such as PyRAF.

[ascl:1401.004] Reflex: Graphical workflow engine for data reduction

Reflex provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. It allows graphically specifying the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches. It eases inspection of the intermediate and final data products and allows repetition of selected processing steps to optimize the data reduction. The data organization necessary to reduce the data is built into the system and is fully automatic; advanced users can plug their own modules and steps into the data reduction sequence. Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so users can immediately start experimenting and familiarize themselves with the system.

[ascl:1401.005] PyDrizzle: Python version of Drizzle

PyDrizzle provides a semi-automated interface for computing the parameters necessary for running Drizzle. PyDrizzle performs the task of determining the parameters necessary for aligning images based on the WCS information in the input image headers, as well as any supplemental alignment information provided in shift files, and combines the images onto the same WCS. Though it does not identify cosmic rays, it has the ability to ignore pixels flagged as bad, such as pixels identified by other programs as affected by cosmic rays.

[ascl:1401.006] Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes

The IDL package transforms images between different instrumental point spread functions (PSFs). It can load an image file and corresponding kernel and return the convolved image, thus preserving the colors of the astronomical sources. Convolution kernels are available for images from Spitzer (IRAC MIPS), Herschel (PACS SPIRE), GALEX (FUV NUV), WISE (W1 - W4), Optical PSFs (multi- Gaussian and Moffat functions), and Gaussian PSFs; they allow the study of the Spectral Energy Distribution (SED) of extended objects and preserve the characteristic SED in each pixel.

[ascl:1401.007] abundance: High Redshift Cluster Abundance

abundance, written in Fortran, provides driver and fitting routines to compute the predicted number of clusters in a ΛCDM cosmology that agrees with CMB, SN, BAO, and H0 measurements (up to 2010) at some specified parameter confidence and the mass that would rule out that cosmology at some specified sample confidence. It also computes the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses.

[ascl:1401.008] massconvert: Halo Mass Conversion

massconvert, written in Fortran, provides driver and fitting routines for converting halo mass definitions from one spherical overdensity to another assuming an NFW density profile. In surveys that probe ever lower cluster masses and temperatures, sample variance is generally comparable to or greater than shot noise and thus cannot be neglected in deriving precision cosmological constraints; massconvert offers an accurate fitting formula for the conversion between different definitions of halo mass.

[ascl:1401.009] PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1401.010] SunPy: Python for Solar Physicists

SunPy is a community-developed free and open-source software package for solar physics and is an alternative to the SolarSoft data analysis environment. SunPy provides data structures for representing the most common solar data types (images, lightcurves, and spectra) and integration with the Virtual Solar Observatory (VSO) and the Heliophysics Event Knowledgebase (HEK) for data acquisition.

[ascl:1312.001] SERPent: Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry

SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.

[ascl:1312.002] WND-CHARM: Multi-purpose image classifier

WND-CHARM quantitatively analyzes morphologies of galaxy mergers and associate galaxies by their morphology. It computes a large set (up to ~2700) of image features for each image based on the WND-CHARM algorithm. It can then split the images into training and test sets and classify them. The software extracts the image content descriptor from raw images, image transforms, and compound image transforms. The most informative features are then selected, and the feature vector of each image is used for classification and similarity measurement using Fisher discriminant scores and a variation of Weighted Nearest Neighbor analysis. WND-CHARM's results comparable favorably to the performance of task-specific algorithms developed for tested datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.

[ascl:1312.003] IMCOM: IMage COMbination

IMCOM allows for careful treatment of aliasing in undersampled imaging data and can be used to test the feasibility of multi-exposure observing strategies for space-based survey missions. IMCOM can also been used to explore focal plane undersampling for an optical space mission such as Euclid.

[ascl:1312.004] BIE: Bayesian Inference Engine

The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates $ heta$ distributed according to $P( heta|D)$ so moments are trivially obtained by summing of the ensemble of variates.

[ascl:1312.005] XAssist: Automatic analysis of X-ray astrophysics data

XAssist provides automation of X-ray astrophysics, specifically data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts, with an emphasis on galaxies. It has been used for data from Chandra, ROSAT, XMM-Newton, and other various projects.

[ascl:1312.006] LTL: The Little Template Library

LTL provides dynamic arrays of up to 7-dimensions, subarrays and slicing, support for fixed-size vectors and matrices including basic linear algebra operations, expression templates-based evaluation, and I/O facilities for ascii and FITS format files. Utility classes for command-line processing and configuration-file processing are provided as well.

[ascl:1312.007] SkyNet: Neural network training tool for machine learning in astronomy

SkyNet is an efficient and robust neural network training code for machine learning. It is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet is implemented in C/C++ and fully parallelized using MPI.

[ascl:1312.008] BAMBI: Blind Accelerated Multimodal Bayesian Inference

BAMBI (Blind Accelerated Multimodal Bayesian Inference) is a Bayesian inference engine that combines the benefits of SkyNet (ascl:1312.007) with MultiNest (ascl:1109.006). It operated by simultaneously performing Bayesian inference using MultiNest and learning the likelihood function using SkyNet. Once SkyNet has learnt the likelihood to sufficient accuracy, inference finishes almost instantaneously.

[ascl:1312.009] YODA: Yet another Object Detection Application

YODA, implemented in C++, performs object detection, photometry and star-galaxy classification on astronomical images. Developed specifically to cope with the multi-band imaging data common in modern extragalactic imaging surveys, it is modular and therefore easily adaptable to specific needs. YODA works under conditions of inhomogeneous background noise across the detection frame, and performs accurate aperture photometry in image sets not sharing a common coordinate system or pixel scale as is often the case in present-day extragalactic survey work.

[ascl:1312.010] GalaxyCount: Galaxy counts and variance calculator

GalaxyCount calculates the number and standard deviation of galaxies in a magnitude limited observation of a given area. The methods to calculate both the number and standard deviation may be selected from different options. Variances may be computed for circular, elliptical and rectangular window functions.

[ascl:1312.011] A_phot: Photon Asymmetry

Photon asymmetry is a novel robust substructure statistic for X-ray cluster observations with only a few thousand counts; it exhibits better stability than power ratios and centroid shifts and has a smaller statistical uncertainty than competing substructure parameters, allowing for low levels of substructure to be measured with confidence. A_phot computes the photon asymmetry (A_phot) parameter for morphological classification of clusters and allows quantifying substructure in samples of distant clusters covering a wide range of observational signal-to-noise ratios. The python scripts are completely automatic and can be used to rapidly classify galaxy cluster morphology for large numbers of clusters without human intervention.

[ascl:1312.012] BINGO: BI-spectra and Non-Gaussianity Operator

The BI-spectra and Non-Gaussianity Operator (BINGO) code, written in Fortran, computes the scalar bi-spectrum and the non-Gaussianity parameter fNL in single field inflationary models involving the canonical scalar field. BINGO can calculate all the different contributions to the bi-spectrum and the parameter fNL for an arbitrary triangular configuration of the wavevectors.

[ascl:1312.013] CJAM: First and second velocity moments calculations

CJAM calculates first and second velocity moments using the Jeans Anisotropic MGE (JAM) models of Cappellari (2008) and Cappellari (2012). These models have been extended to calculate all three (x, y, z) first moments and all six (xx, yy, zz, xy, xz, yz) second moments. CJAM, written in C, is based on the IDL implementation of the line-of-sight calculations by Michele Cappellari.

[ascl:1312.014] SL1M: Synthesis through L1 Minimization

SL1M deconvolves radio synthesis images based on direct inversion of the measured visibilities that can deal with the non-coplanar base line effect and can be applied to telescopes with direction dependent gains. The code is more computationally demanding than some existing methods, but is highly parallelizable and scale well to clusters of CPUs and GPUs. The algorithm is also extremely flexible, allowing the solution of the deconvolution problem on arbitrarily placed pixels.

[ascl:1311.001] SciDB: Open Source DMAS for Scientific Research

SciDB is a DMAS (Data Management and Analytics Software System) optimized for data management of big data and for big analytics. SciDB is organized around multidimensional array storage, a generalization of relational tables, and is designed to be scalable up to petabytes and beyond. Complex analytics are simplified with SciDB because arrays and vectors are first-class objects with built-in optimized operations. Spatial operators and time-series analysis are easy to express. Interfaces to common scientific tools like R as well as programming languages like C++ and Python are provided.

[ascl:1311.002] PyCOOL: Cosmological Object-Oriented Lattice code

PyCOOL is a Python + CUDA program that solves the evolution of interacting scalar fields in an expanding universe. PyCOOL uses modern GPUs to solve this evolution and to make the computation much faster. The code includes numerous post-processing functions that provide useful information about the cosmological model, including various spectra and statistics of the fields.

[ascl:1311.003] AstroAsciiData: ASCII table Python module

ASCII tables continue to be one of the most popular and widely used data exchange formats in astronomy. AstroAsciiData, written in Python, imports all reasonably well-formed ASCII tables. It retains formatting of data values, allows column-first access, supports SExtractor style headings, performs column sorting, and exports data to other formats, including FITS, Numpy/Numarray, and LaTeX table format. It also offers interchangeable comment character, column delimiter and null value.

[ascl:1311.004] PlanetPack: Radial-velocity time-series analysis tool

PlanetPack facilitates and standardizes the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter that can run either in an interactive mode or in a batch mode of automatic script interpretation.

[ascl:1311.005] Spheroid: Electromagnetic Scattering by Spheroids

Spheroid determines the size distribution of polarizing interstellar dust grains based on electromagnetic scattering by spheroidal particles. It contains subroutines to treat the case of complex refractive indices, and also includes checks for some limiting cases.

[ascl:1311.006] CIAO: Chandra Interactive Analysis of Observations

CIAO is a data analysis system written for the needs of users of the Chandra X-ray Observatory. Because Chandra data is 4-dimensional (2 spatial, time, energy) and each dimension has many independent elements, CIAO was built to handle N-dimensional data without concern about which particular axes were being analyzed. Apart from a few Chandra instrument tools, CIAO is mission independent. CIAO tools read and write several formats, including FITS images and tables (which includes event files) and IRAF imh files. CIAO is a powerful system for the analysis of many types of data.

[ascl:1311.007] CUPID: Clump Identification and Analysis Package

The CUPID package allows the identification and analysis of clumps of emission within 1, 2 or 3 dimensional data arrays. Whilst targeted primarily at sub-mm cubes, it can be used on any regularly gridded 1, 2 or 3D data. A variety of clump finding algorithms are implemented within CUPID, including the established ClumpFind (ascl:1107.014) and GaussClumps algorithms. In addition, two new algorithms called FellWalker and Reinhold are also provided. CUPID allows easy inter-comparison between the results of different algorithms; the catalogues produced by each algorithm contains a standard set of columns containing clump peak position, clump centroid position, the integrated data value within the clump, clump volume, and the dimensions of the clump. In addition, pixel masks are produced identifying which input pixels contribute to each clump. CUPID is distributed as part of the Starlink (ascl:1110.012) software collection.

[ascl:1311.008] CUPID: Customizable User Pipeline for IRS Data

Written in c, the Customizable User Pipeline for IRS Data (CUPID) allows users to run the Spitzer IRS Pipelines to re-create Basic Calibrated Data and extract calibrated spectra from the archived raw files. CUPID provides full access to all the parameters of the BCD, COADD, BKSUB, BKSUBX, and COADDX pipelines, as well as the opportunity for users to provide their own calibration files (e.g., flats or darks). CUPID is available for Mac, Linux, and Solaris operating systems.

[ascl:1311.009] CosmoTherm: Thermalization code

CosmoTherm allows precise computation of CMB spectral distortions caused by energy release in the early Universe. Different energy-release scenarios (e.g., decaying or annihilating particles) are implemented using the Green's function of the cosmological thermalization problem, allowing fast computation of the distortion signal. The full thermalization problem can be solved on a case-by-case basis for a wide range of energy-release scenarios using the full PDE solver of CosmoTherm. A simple Monte-Carlo toolkit is included for parameter estimation and forecasts using the Green's function method.

[ascl:1311.010] ARPACK: Solving large scale eigenvalue problems

ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required; only the action of the matrix on a vector is needed. ARPACK is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas.

[ascl:1311.011] MUSIC: MUlti-Scale Initial Conditions

MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10−4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

Would you like to view a random code?