Results 51-100 of 2143 (2107 ASCL, 36 submitted)

[submitted]
Network Flux Transport Demonstration

We have developed a method to efficiently simulate the dynamics of the magnetic flux in the solar network. We call this method Network Flux Transport (NFT). Implemented using a Spherical Centroidal Voronoi Tessellation (SCVT) based network model, magnetic flux is advected by photospheric plasma velocity fields according to the geometry of the SCVT model. We test NFT by simulating the magnetism of the Solar poles. The poles of the sun above 55 deg latitude are free from flux emergence from active regions or ephemeral regions. As such, they are ideal targets for a simplified simulation that relies on the strengths of the NFT model. This simulation method reproduces the magnetic and spatial distributions for the solar poles over two full solar cycles.

[ascl:1910.022]
qnm: Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients calculator

qnm computes the Kerr quasinormal mode frequencies, angular separation constants, and spherical-spheroidal mixing coefficients. The qnm package includes a Leaver solver with the Cook-Zalutskiy spectral approach to the angular sector, and a caching mechanism to avoid repeating calculations. A large cache of low ℓ, m, n modes is available for download and can be installed with a single function call and interpolated to provide good initial guess for root-polishing at new values of spin.

[ascl:1910.021]
AOtools: Adaptive optics modeling and analysis toolkit

The AOtools package offers generic adaptive optics processing tools in addition to astronomy-specific methods; among these are analyzing data in the pupil plane, images and point spread functions in the focal plane, wavefront sensors, modeling of atmospheric turbulence, physical optical propagation of wavefronts, and conversion functions to convert stellar brightness into photon flux for a given waveband. The software also calculates integrated atmospheric parameters, such as coherence time and isoplanatic angle from atmospheric turbulence and wind speed profile.

[ascl:1910.020]
OCD: O'Connell Effect Detector using push-pull learning

OCD (O'Connell Effect Detector) detects eclipsing binaries that demonstrate the O'Connell Effect. This time-domain signature extraction methodology uses a supporting supervised pattern detection algorithm. The methodology maps stellar variable observations (time-domain data) to a new representation known as Distribution Fields (DF), the properties of which enable efficient handling of issues such as irregular sampling and multiple values per time instance. Using this representation, the code applies a metric learning technique directly on the DF space capable of specifically identifying the stars of interest; the metric is tuned on a set of labeled eclipsing binary data from the Kepler survey, targeting particular systems exhibiting the O’Connell Effect. This code is useful for large-scale data volumes such as that expected from next generation telescopes such as LSST.

[ascl:1910.019]
Cobaya: Bayesian analysis in cosmology

Cobaya (Code for BAYesian Analysis) provides a framework for sampling and statistical modeling and enables exploration of an arbitrary prior or posterior using a range of Monte Carlo samplers, including the advanced MCMC sampler from CosmoMC (ascl:1106.025) and the advanced nested sampler PolyChord (ascl:1502.011). The results of the sampling can be analyzed with GetDist (ascl:1910.018). It supports MPI parallelization and is highly extensible, allowing the user to define priors and likelihoods and create new parameters as functions of other parameters.

It includes interfaces to the cosmological theory codes CAMB (ascl:1102.026) and CLASS (ascl:1106.020) and likelihoods of cosmological experiments, such as Planck, Bicep-Keck, and SDSS. Automatic installers are included for those external modules; Cobaya can also be used as a wrapper for cosmological models and likelihoods, and integrated it in other samplers and pipelines. The interfaces to most cosmological likelihoods are agnostic as to which theory code is used to compute the observables, which facilitates comparison between those codes. Those interfaces are also parameter-agnostic, allowing use of modified versions of theory codes and likelihoods without additional editing of Cobaya’s source.

[ascl:1910.018]
GetDist: Monte Carlo sample analyzer

GetDist analyzes Monte Carlo samples, including correlated samples from Markov Chain Monte Carlo (MCMC). It offers a point and click GUI for selecting chain files, viewing plots, marginalized constraints, and LaTeX tables, and includes a plotting library for making custom publication-ready 1D, 2D, 3D-scatter, triangle and other plots. Its convergence diagnostics include correlation length and diagonalized Gelman-Rubin statistics, and the optimized kernel density estimation provides an automated optimal bandwidth choice for 1D and 2D densities with boundary and bias correction. It is available as a standalong package and with CosmoMC (ascl:1106.025).

[ascl:1910.017]
ChainConsumer: Corner plots, LaTeX tables and plotting walks

ChainConsumer consumes the chains output from Monte Carlo processes such as MCMC to produce plots of the posterior surface inferred from the chain distributions, to plot the chains as walks to check for mixing and convergence, and to output parameter summaries in the form of LaTeX tables. It handles multiple models (chains), allowing for model comparison using AIC, BIC or DIC metrics.

[ascl:1910.016]
MiSTree: Construct and analyze Minimum Spanning Tree graphs

MiSTree quickly constructs minimum spanning tree graphs for various coordinate systems, including Celestial coordinates, by using a k-nearest neighbor graph (k NN, rather than a matrix of pairwise distances) which is then fed to Kruskal's algorithm to create the graph. MiSTree bins the MST statistics into histograms and plots the distributions; enabling the inclusion of high-order statistics information from the cosmic web to provide additional information that improves cosmological parameter constraints. Though MiSTree was designed for use in cosmology, it can be used in any field requiring extracting non-Gaussian information from point distributions.

[ascl:1910.015]
MarsLux: Illumination Mars maps generator

MarsLux generates illumination maps of Mars from Digital Terrain Model (DTM), permitting users to investigate in detail the illumination conditions on Mars based on its topography and the relative position of the Sun. MarsLux consists of two Python codes, SolaPar and MarsLux. SolaPar calculates the matrix with solar parameters for one date or a range between the two. The Marslux code generates the illumination maps using the same DTM and the files generated by SolaPar. The resulting illumination maps show areas that are fully illuminated, areas in total shadow, and areas with partial shade, and can be used for geomorphological studies to examine gullies, thermal weathering, or mass wasting processes as well as for producing energy budget maps for future exploration missions.

[ascl:1910.014]
ANNz2: Estimating photometric redshift and probability density functions using machine learning methods

ANNz2, a newer implementation of ANNz (ascl:1209.009), utilizes multiple machine learning methods such as artificial neural networks, boosted decision/regression trees and k-nearest neighbors to measure photo-zs based on limited spectral data. The code dynamically optimizes the performance of the photo-z estimation and properly derives the associated uncertainties. In addition to single-value solutions, ANNz2 also generates full probability density functions (PDFs) in two different ways. In addition, estimators are incorporated to mitigate possible problems of spectroscopic training samples which are not representative or are incomplete. ANNz2 is also adapted to provide optimized solutions to general classification problems, such as star/galaxy separation.

[ascl:1910.013]
E0102-VR: Virtual Reality application to visualize the optical ejecta in SNR 1E 0102.2-7219

E0102-VR facilitates the characterization of the 3D structure of the oxygen-rich optical ejecta in the young supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud. This room-scale Virtual Reality application written for the HTC Vive contributes to the exploration of the scientific potential of this technology for the field of observational astrophysics.

[ascl:1910.012]
AOTOOLS: Reduce IR images from Adaptive Optics

AOTOOLS reduces IR images from adaptive optics. It uses effective dithering, either sky subtraction or dark-subtration, and flat-fielding techniques to determine the effect of the instrument on an image of an object. It also performs bad pixel masking, degrades an AO on-axis PSF due to effects of anisoplanicity, and corrects an AO on-axis PSF due to effects of seeing.

[ascl:1910.011]
LEO-Py: Likelihood Estimation of Observational data with Python

LEO-Py uses a novel technique to compute the likelihood function for data sets with uncertain, missing, censored, and correlated values. It uses Gaussian copulas to decouple the correlation structure of variables and their marginal distributions to compute likelihood functions, thus mitigating inconsistent parameter estimates and accounting for non-normal distributions in variables of interest or their errors.

[ascl:1910.010]
PEXO: Precise EXOplanetology

Feng, Fabo; Lisogorskyi, Maksym; Jones, Hugh R. A.; Kopeikin, Sergei M.; Butler, R. Paul; Anglada-Escude, Guillem; Boss, Alan P.

PEXO provides a global modeling framework for ns timing, μas astrometry, and μm/s radial velocities. It can account for binary motion and stellar reflex motions induced by planetary companions and also treat various relativistic effects both in the Solar System and in the target system (Roemer, Shapiro, and Einstein delays). PEXO is able to model timing to a precision of 1 ns, astrometry to a precision of 1 μas, and radial velocity to a precision of 1 μm/s.

[ascl:1910.009]
orbitize: Orbit-fitting for directly imaged objects

Blunt, Sarah; Wang, Jason; Angelo, Isabel; Ngo, Henry; Cody, Devin; De Rosa, Robert J.; Graham, James; Hirsch, Lea; Nagpal, Vighnesh; Nielsen, Eric L.; Pearce, Logan; Rice, Malena; Tejada, Roberto

orbitize fits the orbits of directly-imaged objects by packaging the Orbits for the Impatient (OFTI) algorithm and a parallel-tempered Markov Chain Monte Carlo (MCMC) algorithm into a consistent API. It accepts observations in three measurement formats, which can be mixed in the same input file, generates orbits, and plots the computed orbital parameters. orbitize offers numerous ways to visualize the data, including histograms, corner plots, and orbit plots. Generated orbits can be saved in HDF5 format for future use and analysis.

[ascl:1910.008]
ECLIPS3D: Linear wave and circulation calculations

ECLIPS3D (Eigenvectors, Circulation, and Linear Instabilities for Planetary Science in 3 Dimensions) calculates a posteriori energy equations for the study of linear processes in planetary atmospheres with an arbitrary steady state, and provides both increased robustness and physical meaning to the obtained eigenmodes. It was developed originally for planetary atmospheres and includes python scripts for data analysis. ECLIPS3D can be used to study the initial spin up of superrotation of GCM simulations of hot Jupiters in addition to being applied to other problems.

[ascl:1910.007]
TLS: Transit Least Squares

TLS is an optimized transit-fitting algorithm to search for periodic transits of small planets. In contrast to BLS: Box Least Squares (ascl:1607.008), which searches for rectangular signals in stellar light curves, TLS searches for transit-like features with stellar limb-darkening and including the effects of planetary ingress and egress. TLS also analyses the entire, unbinned data of the phase-folded light curve. TLS yields a ~10% higher detection efficiency (and similar false alarm rates) compared to BLS though has a higher computational load. This load is partly compensated for by applying an optimized period sampling and transit duration sampling constrained to the physically plausible range.

[ascl:1910.006]
EMERGE: Empirical ModEl for the foRmation of GalaxiEs

Emerge (Empirical ModEl for the foRmation of GalaxiEs) populates dark matter halo merger trees with galaxies using simple empirical relations between galaxy and halo properties. For each model represented by a set of parameters, it computes a mock universe, which it then compares to observed statistical data to obtain a likelihood. Parameter space can be explored with several advanced stochastic algorithms such as MCMC to find the models that are in agreement with the observations.

[ascl:1910.005]
exoplanet: Probabilistic modeling of transit or radial velocity observations of exoplanets

exoplanet is a toolkit for probabilistic modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series using PyMC3 (ascl:1610.016), a flexible and high-performance model building language and inference engine. exoplanet extends PyMC3's language to support many of the custom functions and distributions required when fitting exoplanet datasets. These features include a fast and robust solver for Kepler's equation; scalable Gaussian processes using celerite (ascl:1709.008); and fast and accurate limb darkened light curves using the code starry (ascl:1810.005). It also offers common reparameterizations for limb darkening parameters, and planet radius and impact parameters.

[ascl:1910.004]
DM_phase: Algorithm for correcting dispersion of radio signals

DM_phase maximizes the coherent power of a radio signal instead of its intensity to calculate the best dispersion measure (DM) for a burst such as those emitted by pulsars and fast radio bursts (FRBs). It is robust to complex burst structures and interference, thus mitigating the limitations of traditional methods that search for the best DM value of a source by maximizing the signal-to-noise ratio (S/N) of the detected signal.

[ascl:1910.003]
a3cosmos-gas-evolution: Galaxy cold molecular gas evolution functions

a3cosmos-gas-evolution calculates galaxies' cold molecular gas properties using gas scaling functions derived from the A3COSMOS project. By known galaxies' redshifts or cosmic age, stellar masses, and star formation enhancement to galaxies' star-forming main sequence (Delta MS), the gas scaling functions predict their stellar mass ratio (gas fraction) and gas depletion time.

[ascl:1910.002]
PreProFit: Pressure Profile Fitter for galaxy clusters in Python

PreProFit fits the pressure profile of galaxy clusters using Markov chain Monte Carlo (MCMC). The software can analyze data from different sources and offers flexible parametrization for the pressure profile. PreProFit accounts for Abel integral, beam smearing, and transfer function filtering when fitting data and returns χ2, model parameters and uncertainties in addition to marginal and joint probability contours, diagnostic plots, and surface brightness radial profiles. The code can be used for analytic approximations for the beam and transfer functions for feasibility studies.

[ascl:1910.001]
PINK: Parallelized rotation and flipping INvariant Kohonen maps

Morphological classification is one of the most demanding challenges in astronomy. With the advent of all-sky surveys, an enormous amount of imaging data is publicly available, and are typically analyzed by experts or encouraged amateur volunteers. For upcoming surveys with billions of objects, however, such an approach is not feasible anymore. PINK (Parallelized rotation and flipping INvariant Kohonen maps) is a simple yet effective variant of a rotation-invariant self-organizing map that is suitable for many analysis tasks in astronomy. The code reduces the computational complexity via modern GPUs and applies the resulting framework to galaxy data for morphological analysis.

[submitted]
Magnetizer: computing magnetic fields of evolving galaxies

Computes time and radial dependent magnetic fields for a sample of galaxies in the output of a semi-analytic model of galaxy formation. The magnetic field is obtained by numerically solving the galactic dynamo equations throughout history of each galaxy. Stokes parameters and Faraday rotation measure can also be computed along a random line-of-sight for each galaxy.

[submitted]
HaloAnalysis: read and analyze halo catalogs and merger trees

HaloAnalysis reads and analyzes halo/galaxy catalogs, generated from Rockstar (ascl:1210.008) or AHF (ascl:1102.009), and merger trees generated from Consistent Trees (ascl:1210.011). Written in Python, it offers the following functionality: reads halo/galaxy/tree catalogs from multiple file formats; assigns baryonic particles and galaxy properties to dark-matter halos; combines and re-generates halo/galaxy/tree files in hdf5 format; analyzes properties of halos/galaxies; selects halos to generate zoom-in initial conditions. Includes a Jupyter notebook tutorial.

[submitted]
GizmoAnalysis: read and analyze Gizmo simulations

GizmoAnalysis reads and analyzes N-body simulations run with the Gizmo code (ascl:1410.003). Written in Python, we developed it primarily to analyze FIRE simulations, though it is useable with any Gizmo snapshot files. It offers the following functionality: reads snapshot files and converts particle data to physical units; provides a flexible dictionary class to store particle data and compute derived quantities on the fly; plots images and properties of particles; generates region files for input to MUSIC (ascl:1311.011) to generate cosmological zoom-in initial conditions; computes rates of supernovae and stellar winds, including their nucleosynthetic yields, as used in FIRE simulations. Includes a Jupyter notebook tutorial.

[ascl:1909.014]
fgivenx: Functional posterior plotter

fgivenx plots a predictive posterior of a function, dependent on sampled parameters, for a Bayesian posterior Post(theta|D,M) described by a set of posterior samples {theta_i}~Post. If there is a function parameterized by theta y=f(x;theta), this script produces a contour plot of the conditional posterior P(y|x,D,M) in the (x,y) plane.

[ascl:1909.013]
EPOS: Exoplanet Population Observation Simulator

EPOS (Exoplanet Population Observation Simulator) simulates observations of exoplanet populations. It provides an interface between planet formation simulations and exoplanet surveys such as Kepler. EPOS can also be used to estimate planet occurrence rates and the orbital architectures of planetary systems.

[ascl:1909.012]
HISS: HI spectra stacker

Healy, J.; Blyth, S. -L.; Elson, E.; van Driel, W.; Butcher, Z.; Schneider, S.; Lehnert, M. D.; Minchin, R.

HISS stacks HI (emission and absorption) spectra in a consistent and reliable manner to enable statistical analysis of average HI properties. It provides plots of the stacked spectrum and reference spectrum with any fitted function, of the stacked noise response, and of the distribution of the integrated fluxes when calculating the uncertainties. It also produces a table containing the integrated flux calculated from the fitted functions and the stacked spectrum, among other output files.

[ascl:1909.011]
WVTICs: SPH initial conditions using Weighted Voronoi Tesselations

Arth, Alexander; Donnert, Julius; Steinwandel, Ulrich; Böss, Ludwig; Halbesma, Timo; Pütz, Martin; Hubber, David; Dolag, Klaus

WVTICs generates glass-like initial conditions for Smoothed Particle Hydrodynamics. Relaxation of the particle distribution is done using an algorithm based on Weighted Voronoi Tesselations; additional particle reshuffling can be enabled to improve over- and undersampled maxima/minima. The WBTICs package includes a full suite of analytical test problems.

[ascl:1909.010]
AREPO: Cosmological magnetohydrodynamical moving-mesh simulation code

AREPO is a massively parallel gravity and magnetohydrodynamics code for astrophysics, designed for problems of large dynamic range. It employs a finite-volume approach to discretize the equations of hydrodynamics on a moving Voronoi mesh, and a tree-particle-mesh method for gravitational interactions. AREPO is originally optimized for cosmological simulations of structure formation, but has also been used in many other applications in astrophysics.

[ascl:1909.009]
CLOVER: Convolutional neural network spectra identifier and kinematics predictor

CLOVER (Convnet Line-fitting Of Velocities in Emission-line Regions) is a convolutional neural network (ConvNet) trained to identify spectra with two velocity components along the line of sight and predict their kinematics. It works with Gaussian emission lines (e.g., CO) and lines with hyperfine structure (e.g., NH3). CLOVER has two prediction steps, classification and parameter prediction. For the first step, CLOVER segments the pixels in an input data cube into one of three classes: noise (i.e., no emission), one-component (emission line with single velocity component), and two-component (emission line with two velocity components). For the pixels identified as two-components in the first step, a second regression ConvNet is used to predict centroid velocity, velocity dispersion, and peak intensity for each velocity component.

[ascl:1909.008]
RascalC: Fast code for galaxy covariance matrix estimation

RascalC quickly estimates covariance matrices from two- or three-point galaxy correlation functions. Given an input set of random particle locations and a two-point correlation function (or input set of galaxy positions), RascalC produces an estimate of the associated covariance for a given binning strategy, with non-Gaussianities approximated by a ‘shot-noise-rescaling’ parameter. For the 2PCF, the rescaling parameter can be calibrated by dividing the particles into jackknife regions and comparing sample to theoretical jackknife covariance. RascalC can also be used to compute Legendre-binned covariances and cross-covariances between different two-point correlation functions.

[ascl:1909.007]
EBHLIGHT: General relativistic radiation magnetohydrodynamics with Monte Carlo transport

EBHLIGHT solves the equations of general relativistic radiation magnetohydrodynamics in stationary spacetimes. Fluid integration is performed with the second order shock-capturing scheme HARM (ascl:1209.005) and frequency-dependent radiation transport is performed with the second order Monte Carlo code grmonty (ascl:1306.002). Fluid and radiation exchange four-momentum in an explicit first-order operator-split fashion.

[ascl:1909.006]
ChempyMulti: Multi-star Bayesian inference with Chempy

ChempyMulti is an update to Chempy (ascl:1702.011) and provides yield table scoring and multi-star Bayesian inference. This replaces the ChempyScoring package in Chempy. Chempy is a flexible one-zone open-box chemical evolution model, incorporating abundance fitting and stellar feedback calculations. It includes routines for parameter optimization for simulations and observational data and yield table scoring.

[ascl:1909.005]
HADES: Hexadecapolar Analysis for Dust Estimation in Simulations (of CMB B-mode thermal dust emission)

HADES analyzse dust levels in simulated CMB galactic dust maps with realistic experimental noise and lensing configurations. It allows detection of dust via its anisotropy properties in CMB B-modes. It also includes techniques for computing null-tests and a rudimentary technique for dedusting.

[ascl:1909.004]
TPI: Test Particle Integrator

TPI computes the gravitational dynamics of particles orbiting a supermassive black hole (SBH). A distinction is made to two types of particles: test particles and field particles. Field particles are assumed to move in quasi-static Keplerian orbits around the SBH that precess due to the enclosed mass (Newtonian 'mass precession') and relativistic effects. Otherwise, field-particle-field-particle interactions are neglected. Test particles are integrated in the time-dependent potential of the field particles and the SBH. Relativistic effects are included in the equations of motion (including the effects of SBH spin), and test-particle-test-particle interactions are neglected.

[ascl:1909.003]
SecularMultiple: Hierarchical multiple system secular evolution model

SecularMultiple computes the secular (orbit-averaged) gravitational dynamics of hierarchical multiple systems composed of nested binary orbits (simplex-type systems) with any configuration and any number of bodies. A particle can represent a binary or a body. The structure of the system is determined by linking to other particles with the attributes child1 and child2, and tidal interactions and relativistic corrections are included in an ad hoc fashion. SecularMultiple also includes routines for external perturbations such as flybys and supernovae.

[ascl:1909.002]
MultiColorFits: Colorize and combine multiple fits images for visually aesthetic scientific plots

MultiColorFits is a tool to colorize and combine multiple fits images for making visually aesthetic scientific plots. The standard method to make color composites by combining fits images programmatically in python is to assign three images as separate red, green, and blue channels. This can produce unsatisfactory results for a variety of reasons, such as when less than three images are available, or additional images are desired to be shown. MultiColorFits breaks these limitations by allowing users to apply any color to a given image, not just red, green, or blue. Composites can then be created from an arbitrary number of images. Controls are included for stretching brightness scales with common functions.

[ascl:1909.001]
Auto-multithresh: Automated masking for clean

Auto-multithresh implements an automated masking algorithm for clean. It operates on the residual image within the minor cycle of clean to identify and mask regions of significant emission. It then cascades these significant regions down to lower signal to noise. It includes features to pad the mask to avoid sharp edges and to remove small regions that are unlikely to be significant emission. The algorithm described by this code was incorporated into the tclean task within CASA as auto-multithresh.

[submitted]
CR-SISTEM: Symplectic integrator for lunar core-mantle and orbital dynamics

This integrator is based on the algorithm of Touma and Wisdom (2001, http://ui.adsabs.harvard.edu/abs/2001AJ....122.1030T). The triaxial Moon has a triaxial liquid core, and is perturbed by the Sun and Earth's oblateness. Orbits of the Moon and Earth are fully integrated, and other planets (or additional point-mass satellites) may be included in the integration. Lunar and solar tides on Earth, eccentricity and obliquity tides on the Moon, and lunar core-mantle friction and all included. The tides on Earth and the Moon are treated in the same way Cuk et al (2016, http://ui.adsabs.harvard.edu/abs/2016Natur.539..402C) and many details of their closely-related code can be found in the online supplement of that paper. In the posted version, the lunar core-mantle friction torque is directly proportional to the core-mantle differential rotation, with a fixed damping timescale of 10,000 present-day sidereal months (120 yrs, after Pavlov et al. (2016, https://ui.adsabs.harvard.edu/abs/2016CeMDA.126...61P).

[ascl:1908.025]
FastCSWT: Fast directional Continuous Spherical Wavelet Transform

FastCSWT performs a directional continuous wavelet transform on the sphere. The transform is based on the construction of the continuous spherical wavelet transform (CSWT) developed by Antoine and Vandergheynst (1999). A fast implementation of the CSWT (based on the fast spherical convolution developed by Wandelt and Gorski 2001) is also provided.

[ascl:1908.024]
PYSAT: Python Satellite Data Analysis Toolkit

The Python Satellite Data Analysis Toolkit (pysat) provides a simple and flexible interface for downloading, loading, cleaning, managing, processing, and analyzing space science data. The toolkit supports in situ satellite observations and many different types of ground- and space-based measurements. Its analysis routines are independent of instrument and data source.

[ascl:1908.023]
FIRST Classifier: Automated compact and extended radio sources classifier

FIRST Classifier is an on-line system for automated classification of compact and extended radio sources. It is developed based on a trained Deep Convolutional Neural Network Model to automate the morphological classification of compact and extended radio sources observed in the FIRST radio survey. FIRST Classifier is able to predict the morphological class for a single source or for a list of sources as Compact or Extended (FRI, FRII and BENT).

[ascl:1908.022]
YMW16: Electron-density model

YMW16 models the distribution of free electrons in the Galaxy, the Magellanic Clouds and the inter-galactic medium and can be used to estimate distances for real or simulated pulsars and fast radio bursts (FRBs) based on their position and dispersion measure. The Galactic model is based on 189 pulsars that have independently determined distances as well as dispersion measures, whereas simpler models are used for the electron density in the MC and the IGM.

[ascl:1908.021]
bias_emulator: Halo bias emulator

bias_emulator models the clustering of halos on large scales. It incorporates the cosmological dependence of the bias beyond the mapping of halo mass to peak height. Precise measurements of the halo bias in the simulations are interpolated across cosmological parameter space to obtain the halo bias at any point in parameter space within the simulation cloud. A tool to produce realizations of correlated noise for propagating the modeling uncertainty into error budgets that use the emulator is also provided.

[ascl:1908.020]
QLF: Luminosity function analysis code

QLF derives full posterior distributions for and analyzes luminosity functions models; it also models hydrogen and helium reionization. Used with the included homogenized data, the derived luminosity functions can be easily compared with theoretical models or future data sets.

[ascl:1908.019]
MAESTROeX: Low Mach number stellar hydrodynamics code

MAESTROeX solves the equations of low Mach number hydrodynamics for stratified atmospheres or stars with a general equation of state. It includes reactions and thermal diffusion and can be used on anything from a single core to 100,000s of processor cores with MPI + OpenMP. MAESTROeX maintains the accuracy of its predecessor MAESTRO (ascl:1010.044) while taking advantage of a simplified temporal integration scheme and leveraging the AMReX software framework for block-structured adaptive mesh refinement (AMR) applications.

[ascl:1908.018]
EBAI: Eclipsing Binaries with Artificial Intelligence

Prša, A.; Guinan, E. F.; Devinney, E. J.; DeGeorge, M.; Bradstreet, D. H.; Giammarco, J. M.; Alcock, C. R.; Engle, S. G.

Eclipsing Binaries via Artificial Intelligence (EBAI) automates the process of solving light curves of eclipsing binary stars. EBAI is based on the back-propagating neural network paradigm and is highly flexible in construction of neural networks. EBAI comes in two flavors, serial (ebai) and multi-processor (ebai.mpi), and can be run in training, continued training, and recognition mode.

[ascl:1908.017]
JPLephem: Jet Propulsion Lab ephemerides package

JPLephem loads and uses standard Jet Propulsion Laboratory (JPL) ephemerides for predicting the position and velocity of a planet or other Solar System body. It is one of the foundations of the Skyfield (ascl:1907.024) astronomy library for Python, and can also be used as a standalone package to generate raw vectors.

Would you like to view a random code?