ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 101-200 of 2331 (2295 ASCL, 36 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2006.006] CosmoLike: Cosmological Likelihood analyses

CosmoLike analyzes cosmological data sets and forecasts future missions. It has been used in the analysis of the Dark Energy Survey and to optimize the Large Synoptic Survey Telescope and the Wide-Field Infrared Survey Telescope, and is useful for innovative theory projects that test new concepts and methods to enhance the constraining power of cosmological analyses.

[ascl:2006.005] CosmoCov: Configuration space covariances for projected galaxy 2-point statistics

CosmoCov computes configuration space covariances for projected galaxy 2-point statistics based on the CosmoLike (ascl:2006.006) framework. The package provides a flat sky covariance module, computed with the 2D-FFTLog (ascl:2006.004) algorithm, and a curved sky covariance module.

[ascl:2006.004] 2D-FFTLog: Generalized FFTLog algorithm for non-Gaussian covariance matrices

2D-FFTLog takes the FFTLog algorithm for 1D Hankel transforms and generalizes it for 2D Hankel transforms. The algorithm is useful for efficiently computing non-Gaussian covariance matrices of cosmological 2-point statistics in configuration space from Fourier space covariances. Fast bin-averaging method is also developed for both the logarithmic binning and general binning choices. C and Python versions of the code are available.

[ascl:2006.003] KinMS: Three-dimensional kinematic modeling of arbitrary gas distributions

The KinMS (KINematic Molecular Simulation) package simulates observations of arbitrary molecular/atomic cold gas distributions from interferometers and line observations from integral field units. This modeling tool is optimized for situations where one has analytic forms for e.g. the rotation curve and/or surface brightness profiles (and may want to fit the parameters of these parametric models). It can, however, also be used as a tilted-ring modelling code. The routines are flexible and have been used in various different applications, including investigating the kinematics of molecular gas in early-type galaxies and determining supermassive black-hole masses from CO interferometric observations. They are also useful for creating mock observations from hydrodynamic simulations, and input data-cubes for further simulation in, for example, CASA's (ascl:1107.013) sim_observe tool. Interactive Data Language (IDL) and Python versions of the code are available.

[ascl:2006.002] PRIISM: Python module for Radio Interferometry Imaging with Sparse Modeling

PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.

[ascl:2006.001] HEARSAY: Simulations for the probability of alien contact

HEARSAY computes simulations of the causal contacts between emitters in the Galaxy. It implements the Stochastic Constrained Causal Contact Network (SC3Net) model and explores the parameter space of the model for the emergence of communicating nodes through Monte Carlo simulations and analyzes their causal connections. This model for the abundance and duration of civilizations is based on minimal assumptions and three free parameters, with focus on the statistical properties of empirical models instead of an interpretable model with variables to be determined by observation.

[ascl:2005.020] HIPSTER: HIgh-k Power Spectrum EstimatoR

HIPSTER (HIgh-k Power Spectrum EstimatoR) computes small-scale power spectra and isotropic bispectra for cosmological simulations and galaxy surveys of arbitrary shape. The code computes the Legendre multipoles of the power spectrum, P(k), or bispectrum B(k1,k2), by computing weighted pair counts over the simulation box or survey, truncated at some maximum radius. The code can be run either in 'aperiodic' or 'periodic' mode for galaxy surveys or cosmological simulations respectively. HIPSTER also supports weighted spectra, for example when tracer particles are weighted by their mass in a multi-species simulation. Generalization to anisotropic bispectra is straightforward (and requires no additional computing time) and can be added on request.

[ascl:2005.019] MCRaT: Monte Carlo Radiation Transfer

MCRaT (Monte Carlo Radiation Transfer) analyzes the radiation signature expected from astrophysical outflows. MCRaT injects photons in a FLASH (ascl:1010.082) simulation and individually propagates and compton scatters the photons through the fluid until the end of the simulation. This process of injection and propagating occurs for a user specified number of times until there are no more photons to be injected. Users can then construct light curves and spectra with the MCRaT calculated results. The hydrodynamic simulations used with this version of MCRaT must be in 2D; however, the photon propagation and scattering is done in 3D by assuming cylindrical symmetry. Additionally, MCRaT uses the full Klein–Nishina cross section including the effects of polarization, which can be fully simulated in the code. MCRaT works with FLASH hydrodynamic simulations and PLUTO (ascl:1010.045) AMR simulations, with both 2D spherical (r, equation) and 2D cartesian ((x,y) and (r,z)).

[ascl:2005.018] RFCDE: Random Forests for Conditional Density Estimation

RFCDE provides an implementation of random forests designed for conditional density estimation. It computes a kernel density estimate of y with nearest neighbor weightings defined by the location of the evaluation point x relative to the leaves in the random forest.

[ascl:2005.017] cdetools: Tools for Conditional Density Estimates

cdetools provides tools for evaluating conditional density estimates and has applications to photometric redshift estimation and likelihood-free cosmological inference. Available in R and Python, it provides functions for computing a so-called CDE loss function for tuning and assessing the quality of individual probability density functions (PDFs) and diagnostic functions that probe the population-level performance of the PDFs.

[ascl:2005.016] RAPP: Robust Automated Photometry Pipeline

RAPP is a robust automated photometry pipeline for blurred images. RAPP requires that the observed images contain at least three stars and applies bias, dark, and flat field correction on blurred observational raw data; it also uses the median of adjacent pixels to eliminate outliers. It also uses star enhancement and robust image matching, extracts stars, and performs aperture photometry to extract information from blurred images.

[ascl:2005.015] AMPEL: Alert Management, Photometry, and Evaluation of Light curves

AMPEL provides an analysis framework for high-throughput surveys and is suited for streamed data. The package combines the functionality of an alert broker with a generic framework capable of hosting user-contributed code; it encourages provenance and keeps track of the varying information states that a transient displays. The latter concept includes information gathered over time and data policies such as access or calibration levels.

[ascl:2005.014] FETCH: Fast Extragalactic Transient Candidate Hunter

FETCH (Fast Extragalactic Transient Candidate Hunter) provides real-time classification of candidates from single pulse search pipelines. The package takes in a candidate file of frequency-time and DM-time data and, for each candidate and choice of model, provides the probability that the candidate is an FRB. FETCH also provides a framework for fine-tuning the models to further improve its performance for particular backends.

[ascl:2005.013] qubefit: MCMC kinematic modeling

qubefit fits an observed data cube to generate a model cube from a user-defined emission model. The model cube is convolved with the observed beam, after which residuals between the convolved model and the observed data cube are minimized using a Markov chain Monte Carlo approach. qubefit also determines estimates of the uncertainty for each parameter of the model.

[ascl:2005.012] 2DBAT: 2D Bayesian Automated Tilted-ring fitter

2DBAT implements Bayesian fits of 2D tilted-ring models to derive rotation curves of galaxies. It performs 2D tilted-ring analysis based on a Bayesian Markov Chain Monte Carlo (MCMC) technique, thus quantifying the kinematic geometry of galaxy discs, and deriving high-quality rotation curves that can be used for mass modeling of baryons and dark matter halos.

[ascl:2005.011] gotetra: Cosmic velocity fields tracking through the use of tetrahedra

gotetra uses phase-space tesselation techniques to extract information about cosmological N-body simulations. The key applications of this Go-based code are the measurement of splashback shells around halos and the generation of high resolution images of density fields. The package includes routines to generates 3D and 2D (projected) density fields from a particle snapshot generated by a cosmological N-body simulation, measure density along lines of sight from the center of halos, and compresse the position space data from cosmological N-body simulations. Included are two helper libraries with functions for calculating cosmological quantities and computing a number of useful mathematical functions.

[ascl:2005.010] NNKCDE: Nearest Neighbor Kernel Conditional Density Estimation

NNKCDE is a simple and easily interpretable Conditional Density Estimation (CDE) method. It computes a kernel density estimate of y using the k nearest neighbors of the evaluation point x. The model has only two tuning parameters: the number of nearest neighbors k and the bandwidth h of the smoothing kernel in y-space. Both tuning parameters are chosen in a principled way by minimizing the CDE loss on validation data.

[ascl:2005.009] s3PCF: Compute the 3-point correlation function in the squeezed limit

s3PCF computes the 3-point correlation function (3PCF) in the squeezed limit given galaxy positions and pair positions. The code is currently written specifically for the Abacus simulations, but the main functionalities can be also easily adapted for other galaxy catalogs with the appropriate properties.

[ascl:2005.008] HiFLEx: Echelle data reduction pipeline

HiFLEx reduces echelle data taken with a single or bifurcated fiber input. It takes a FITS image file (i.e., a CCD image) and runs data reduction steps, extracts out orders from an Echelle spectrograph (regardless of separation and curvature, as long as orders are distinguishable from one-another), applies the wavelength correction, measures the radial velocity, and performs further calibration steps.

[ascl:2005.007] Carpyncho: VVV Catalog browser toolkit

Carpyncho browses catalogs to search for and characterize time variable data of the Vista Variables in the Via Lactea (VVV) Survey. The stacked pawprint data from the Cambridge Astronomical Science Unit's (CASU) Vista Data Flow System (VDFS) v>= 1.3 catalogs have been crossed matched with the VDFS CASU v1.3 tile catalogs into Parquet files, allowing detection and classification of periodic variables within this dataset.

[ascl:2005.006] FFANCY: Fast Folding Algorithm for pulsar searching

FFANCY uses the Fast Folding Algorithm (FFA) on a distributed-computing framework to search for pulsars in time-domain series data. This enables the algorithm to be applied to all-sky blind pulsar surveys. The package runs an implementation of the FFA on real or simulated pulsar time series data in either SIGPROC (ascl:1107.016) or PRETSO (ascl:1107.017) format with a choice of additional algorithms to be used in the evaluation of each folded profile and outputs a periodogram along with other output threads used for testing. It also contains routines that convert the periodogram output into a list of pulsar candidates with options for candidate grouping and harmonic matching, generate simulated pulsar profiles for use in testing profile evaluation algorithms independent of the FFA, provide basic statistics for the folded profiles produced by progeny, test individual profiles using profiles produced by progeny, and other complementary functions.

[ascl:2005.005] RoLo: Calculate radius and potential of the Roche Lobe

RoLo (Roche Lobe) calculates the radius and potential of the Roche Lobe for any specified direction, and also gives some other commonly used quantities (such as the Lagrange points). The calculator is valid for any mass ratio q between 0.01 and 100. The coordinates are spherical-polar (R, theta, phi) centered on one star (M1), with the x-axis (theta=pi/2, phi=0) pointing towards the other star (M2). The mass ratio is defined as q=M2/M1. Distances are given in units of the binary separation, a. A circular orbit is assumed.

[ascl:2005.004] REDFIT: Red-noise spectra directly from unevenly spaced time series

Time series are commonly unevenly spaced in time make it difficult to obtain an accurate estimate of their typical red-noise spectrum. REDFIT overcomes this problem by fitting a first-order autoregressive (AR1) process directly to unevenly spaced time series. Hence, interpolation in the time domain and its inevitable bias can be avoided. The program can be used to test if peaks in the spectrum of a time series are significant against the red-noise background from an AR1 process.

[ascl:2005.003] RM-Tools: Rotation measure (RM) synthesis and Stokes QU-fitting

RM-Tools analyzes radio polarization data, specifically the use of Faraday rotation measure synthesis and Stokes QU model fitting. It contains routines for both single-pixel 1D polarized spectra as well as 3D polarization cubes. RM-Tools is intended to serve as a toolkit for studies of polarized radio sources and measurements of their Faraday rotation. RM-Tools is the core package for the pipelines used for the POlarized Sky Survey of the Universe's Magnetism (POSSUM) and the polarization component of the Very Large Array Sky Survey (VLASS). The package is maintained by the Canadian Initiative for Radio Astronomy Data Analysis (CIRADA; cirada.org).

[ascl:2005.002] michi2: SED and SLED fitting tool

michi2 fits combinations of arbitrary numbers of libraries/components to a given observational data. Written in C++ and Python, this chi-square fitting tool can fit a galaxy's spectral energy distribution (SED) with stellar, active galactic nuclear, dust and radio SED templates, and fit a galaxy's spectral line energy distribution (SLED) with one or more gas components using radiative transfer LVG model grid libraries.

michi2 first samples the high-dimensional parameter space (N1*N2*N3*..., where N is the number of independent templates in each library, and 1/2/3 is the ID of components) in an optimized way for a few thousand or tens of thousand times to compute the chi-square to the input observational data, then uses Python scripts to analyze the chi-square distribution and derive the best-fit, median, lower and higher 1-sigma values for each parameter in each library/component. This tool is useful for fitting larger number of templates and arbitrary combinations of libraries/components, including some constraining of one library/component onto another.

[ascl:2005.001] RID: Relativistic Image Doubling in water Cherenkov detectors

RID (Relativistic Image Doubling in water Cherenkov detectors) uses Monte Carlo simulations to find the relative fraction of charged, relativistic particles entering a HAWC-like Water Cherenkov Detector that can cause a Relativistic Image Doubling (RID) effect visible to at least one of the internal detectors. The technique is available in C++ and Fortran; RID also includes python code for the horizontal incidence of the muon inside the tank.

[ascl:2004.016] PRECISION: Astronomical infrared observations data reduction

PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.

[ascl:2004.015] IRDAP: SPHERE-IRDIS polarimetric data reduction pipeline

IRDAP (IRDIS Data reduction for Accurate Polarimetry) accurately reduces SPHERE-IRDIS polarimetric data. It is a highly-automated end-to-end pipeline; its core feature is model-based correction of the instrumental polarization effects. IRDAP handles data taken both in field- and pupil-tracking mode and using the broadband filters Y, J, H and Ks. Data taken with the narrowband filters can be reduced as well, although with a somewhat worse accuracy. For pupil-tracking observations IRDAP can additionally apply angular differential imaging.

[ascl:2004.014] PyKat: Python interface and tools for Finesse

The Python wrapper PyKat extends the optical interferometer modeling software Finesse (ascl:2004.013). It provides an efficient GUI for conducting complex numerical simulations and manipulating and viewing simulation setups, and enables the use of Python's extensive scientific software ecosystem.

[ascl:2004.013] Finesse: Frequency domain INterfErometer Simulation SoftwarE

Finesse is a numeric simulation for laser interferometers and models parametric instabilities, easily providing the required mechanical-to-optical transfer functions in imperfect and arbitrary interferometer configurations using Hermite-Gaussian beams. The code has been used to apply limits to the number and type of higher order modes used in simulation and investigate the potential use of higher order Laguerre-Gauss modes to reduce thermal noise in future gravitational wave detector designs. The PyKat wrapper (ascl:2004.014) helps automate complex Finesse tasks.

[ascl:2004.012] ArviZ: Exploratory analysis of Bayesian models

ArviZ provides backend-agnostic tools for diagnostics and visualizations of Bayesian inference by first converting inference data into xarray objects. It includes functions for posterior analysis, model checking, comparison and diagnostics. ArviZ’s functions work with NumPy arrays, dictionaries of arrays, xarray datasets, and have built-in support for PyMC3 (ascl:1610.016), PyStan, CmdStanPy, Pyro (ascl:1507.018), NumPyro, emcee (ascl:1303.002), and TensorFlow Probability objects. A Julia wrapper is also available.

[ascl:2004.011] FUNDPAR: Deriving FUNDamental PARameters from equivalent widths

FUNDPAR determines fundamental parameters of solar-type stars, by using as input the Equivalent Widths of Fe I,II lines. The code uses solar-scaled ATLAS9 model atmospheres with NEWODF opacities, together with the 2009 version of the MOOG (ascl:1202.009) program. Parameter files control different details, such as the mixing-length parameter, the overshooting, and the damping of the lines. FUNDPAR also derives the uncertainties of the parameters.

[ascl:2004.010] kombine: Kernel-density-based parallel ensemble sampler

kombine is an ensemble sampler built for efficiently exploring multimodal distributions. By using estimates of ensemble’s instantaneous distribution as a proposal, it achieves very fast burnin, followed by sampling with very short autocorrelation times.

[ascl:2004.009] stardate: Measure precise stellar ages

stardate measures precise stellar ages by combining isochrone fitting with gyrochronology (rotation-based ages) to increase the precision of stellar ages on the main sequence. The best possible ages provided by stardate will be for stars with rotation periods, though ages can also be predicted for stars without rotation periods. stardate is an extension to isochrones that incorporates gyrochronology and the code reverts back to isochrones when no rotation period is provided.

[ascl:2004.008] PPMAP: Column density mapping with extra dimensions

PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.

[ascl:2004.007] PyCosmo: Multi-purpose cosmology calculation tool

PyCosmo provides accurate predictions for cosmological observables including background quantities, power spectra and Limber and beyond-Limber angular power spectra. The software is designed to be interactive and user-friendly. It is available for download and is also offered on an interactive platform (PyCosmo Hub), which allows users to perform their own computations using Jupyter Notebooks without installing any software.

[ascl:2004.006] ASTRAEUS: Semi-analytical semi-numerical galaxy evolution and reionization code

ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in n-body dArk mattEr simUlationS) self-consistently derives the evolution of galaxies and the reionization of the IGM based on the merger trees and density fields of a DM-only N-body simulation. It models gas accretion, star formation, SN feedback, the time and spatial evolution of the ionized regions, accounting for recombinations, HI fractions and photoionization rates within ionized regions, and radiative feedback. ASTRAEUS is for studying the galaxy-reionization interplay in the first billion years. The underlying code is written in C and is MPI-parallelized; its modular design allows new physical processes and galaxy properties to be added easily. ASTRAEUS can be run on a tree-branch-by-tree-branch basis (i.e., fully vertical) or on a redshift-by-redshift basis (i.e., fully horizontal) when evolving the galaxies by using local horizontal merger trees.

[ascl:2004.005] PyWD2015: Wilson-Devinney code GUI

PyWD2015 provides a modern graphical user interface (GUI) for the 2015 version of the Wilson-Devinney (WD) code (ascl:2004.004). The GUI is written in Python 2.7 and uses the Qt4 interface framework. At its core, PyWD2015 generates lcin and dcin files from user inputs and sends them to WD, then reads and visualizes the output in a user-friendly way. It also includes tools that make the technical aspects of the modeling process significantly easier.

[ascl:2004.004] WD: Wilson-Devinney binary star modeling

Wilson-Devinney binary star modeling code (WD) is a complete package for modeling binary stars and their eclipes and consists of two main modules. The LC module generates light and radial velocity curves, spectral line profiles, images, conjunction times, and timing residuals; the DC module handles differential corrections, performing parameter adjustment of light curves, velocity curves, and eclipse timings by the Least Squares criterion. WD handles eccentric orbits and asynchronous rotation, and can compute velocity curves (with proximity and eclipse effects). It offers options for detailed reflection and nonlinear (logarithmic law) limb darkening, adjustment of spot parameters, an optional provision for spots to drift over the surface, and can follow light curve development over large numbers of orbits. Absolute flux solution allow Direct Distance Estimation (DDE) and there are improved solutions for ellipsoidal variables and for eclipsing binaries (EBs) with very shallow eclipses. Absolute flux solutions also can estimate temperatures of both EB components under suitable circumstances.

[ascl:2004.003] IllinoisGRMHD: GRMHD code for dynamical spacetimes

IllinoisGRMHD is an open-source, highly-extensible rewrite of the original closed-source general relativistic (ideal) magnetohydrodynamics (GRMHD) code of the Illinois Numerical Relativity (ILNR) Group. Reducing the learning curve was the primary focus of this rewrite, with the goal of facilitating community involvement in the code's use and development, as well as reducing the human effort necessary to generate new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids while being nearly twice as fast at scales of hundreds to thousands of cores.

[ascl:2004.002] Tangra: Software for video photometry and astrometry

Tangra performs scientific grade data reduction of GPS time-tagged video observations, including reduction of stellar occultation light curves and astrometry of close flybys of Near Earth Objects. It offers Dark and Flat frame image correction, PSF and aperture photometry, multiple methods for deriving a background as well as extensibility via add-ins. Tangra is actively developed for Windows and the current version of the software supports UCAC2, UCAC3, UCAC4, NOMAD, PPMXL and Gaia DR2 star catalogues for astrometry. The software can perform motion-fitting for fast objects and derive a mini-normal astrometric positions. The supported video file formats are AVI, SER, ADV and AAV. Tangra can be also used with observations recorded as a sequence of FITS files. There are also versions for Linux and OS-X with more limited functionality.

[ascl:2004.001] Locus: Optimized differential photometry

Locus implements the Locus Algorithm, which maximizes the performance of differential photometry systems by optimizing the number and quality of reference stars in the Field of View with the target.

[ascl:2003.014] Torch: Coupled gas and N-body dynamics simulator

Torch simulates coupled gas and N-body dynamics in astrophysical systems such as newly forming star clusters. It combines the FLASH (ascl:1010.082) code for gas dynamics and the ph4 code for direct N-body evolution via the AMUSE framework.

[ascl:2003.013] AstroHOG: Analysis correlations using the Histograms of Oriented Gradients

AstroHOG compares extended spectral-line observations (PPV cubes); the histogram of oriented gradients (HOG) technique takes as input two PPV cubes and provides an estimate of their spatial correlation across velocity channels to study spatial correlation between different tracers of the ISM.

[ascl:2003.012] PYSOLATOR: Remove orbital modulation from a binary pulsar and/or its companion

PYSOLATOR removes the orbital modulation from a binary pulsar and/or its companion. In essence, it subtracts the predicted Roemer delay for the given orbit and then resamples the time series so as to make the signal appear as if it were emitted from the barycenter of the binary system, making the search for pulses easier and faster.

[ascl:2003.011] HOMER: A Bayesian inverse modeling code

HOMER (Helper Of My Eternal Retrievals) is a machine-learning-accelerated Bayesian inverse modeling code. Given some data and uncertainties, the code determines the posterior distribution of a model. HOMER uses MC3 (ascl:1610.013) for its MCMC; its forward model is a neural network surrogate model trained by MARGE (ascl:2003.010). The code produces plots of the 1D marginalized posteriors, 2D pairwise posteriors, and parameter history traces, and can also overplot the 1D and 2D posteriors for comparison with another posterior. HOMER computes the Bhattacharyya coefficient to compare the similarity of two 1D marginalized posteriors.

[ascl:2003.010] MARGE: Machine learning Algorithm for Radiative transfer of Generated Exoplanets

MARGE (Machine learning Algorithm for Radiative transfer of Generated Exoplanets) generates exoplanet spectra across a defined parameter space, processes the output, and trains, validates, and tests machine learning models as a fast approximation to radiative transfer. It uses BART (ascl:1608.004) for spectra generation and modifies BART’s Bayesian sampler (MC3, ascl:1610.013) with a random uniform sampler to propose models within a defined parameter space. More generally, MARGE provides a framework for training neural network models to approximate a forward, deterministic process.

[ascl:2003.009] TOASTER: Times-Of-Arrival Tracker

TOASTER is a pulse times-of-arrival (TOA) tracker. It stores reduced/folded observations, meta data, templates, parfiles, TOAs, and timefiles in an organized manner using an SQL database. TOASTER also provides a full-featured python toolkit for reliably interacting with the data and database, and provides scripts that, for example, list and summarize the TOAs in the data base, and generate TOA files in multiple formats. The framework can also be used to generate TOAs from observations using flexible and reproducible plugins referred to as "manipulators".

[ascl:2003.008] CoastGuard: Automated timing data reduction pipeline

CoastGuard reduces Effelsberg data; it is written in python and based on PSRCHIVE (ascl:1105.014). Though primarily designed for Effelsberg PSRIX data, it contains components sufficiently general for use with psrchive-compatible data files from other observing systems. In particular, the radio frequency interference (RFI) removal algorithm has been applied to data from the Parkes Telescope and has also been adopted by the LOFAR pulsar timing data reduction pipeline.

[ascl:2003.007] RAPID: Real-time Automated Photometric IDentification

RAPID (Real-time Automated Photometric IDentification) classifies multiband photometric light curves into several different transient classes. It uses a deep recurrent neural network to produce time-varying classifications, and because it does not rely on deriving computationally expensive features from the data, it is well suited for processing alerts that wide-field surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST) will produce.

[ascl:2003.006] PORTAL: POlarized Radiative Transfer Adapted to Lines

PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes

[ascl:2003.005] RHT: Rolling Hough Transform

The RHT (Rolling Hough Transform) measures linear intensity as a function of orientation in images. This machine vision algorithm works on any image-space (2D) data, and quantifies the presence of linear structure as a function of orientation. The RHT can be used to identify linear features in images, to quantify the orientation of structure in images, and to map image intensity from 2D x-y space to 3D x-y-orientation space. An option in the code allows the user to quantify intensity as a function of direction (modulo 2pi) rather than orientation (modulo pi). The RHT was first used to discover that filamentary structures in neutral hydrogen emission are aligned with the ambient magnetic field.

[ascl:2003.004] scousepy: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

scousepy is a Python implementation of spectral line-fitting IDL code SCOUSE (ascl:1601.003). It fits a large amount of complex astronomical spectral line data in a systematic way.

[ascl:2003.003] acorns: Agglomerative Clustering for ORganising Nested Structures

acorns generates a hierarchical system of clusters within discrete data by using an n-dimensional unsupervised machine-learning algorithm that clusters spectroscopic position-position-velocity data. The algorithm is based on a technique known as hierarchical agglomerative clustering. Although acorns was designed with the analysis of discrete spectroscopic position-position-velocity (PPV) data in mind (rather than uniformly spaced data cubes), clustering can be performed in n-dimensions and the algorithm can be readily applied to other data sets in addition to PPV measurements.

[ascl:2003.002] MAGNETAR: Histogram of relative orientation calculator for MHD observations

MAGNETAR is a set of tools for the study of the magnetic field in simulations of MHD turbulence and polarization observations. It calculates the histogram of relative orientation between density structure in the magnetic field in data cubes from simulations of MHD turbulence and observations of polarization using the method of histogram of relative orientations (HRO).

[ascl:2003.001] TESS-Point: High precision TESS pointing tool

TESS-Point converts astronomical target coordinates given in right ascension and declination to detector pixel coordinates for the MIT-led NASA Transiting Exoplanet Survey Satellite (TESS) spacecraft. The program can also provide detector pixel coordinates for a star by TESS input catalog identifier number and common astronomical name. Tess-point outputs the observing sector number, camera number, detector number, and pixel column and row.

[ascl:2002.022] DISKMODs: Accretion Disk Radial Structure Models

DISKMODs provides radial structure models of accretion disk solutions. The following models are included: Novikov-Thorne thin disk model and Sadowski polytropic slim disk model. Each model implements a common interface that gives the radial dependence of selected geometrical, physical and thermodynamic quantities of the accretion flow. The model interpolates through a set of tabulated numerical solutions. These solutions are computed for a reference mass M=10 Msun. The model can rescale the disk structure to any mass, with masses in the range of 5-20 Msun giving reasonably good results.

[ascl:2002.021] CR-SISTEM: Symplectic integrator for lunar core-mantle and orbital dynamics

CR-SISTEM models lunar orbital and rotational dynamics, taking into account the effects of a liquid core. Orbits of the Moon and Earth are fully integrated, and other planets (or additional point-mass satellites) may be included in the integration. Lunar and solar tides on Earth, eccentricity and obliquity tides on the Moon, and lunar core-mantle friction are included. The integrator is one file (crsistem5.for) written in FORTRAN 90, uses seven input files (settings.in, planets.in, moons.in, tidal.in, lunar.in, precess.in and core.in), and has at least eight output files (planet101.out, moon101.out, pole.out, spin_orb.out, spin_ecl.out, cspin_ecl.out, long.out and clong.out); additional moons and planets would add more output. The input files provided with the code set up a 1 Myr simulation of a slow-spinning Moon on an orbit of 40 Earth radii, which will then dynamically relax to the lowest-energy state (in this case it is a synchronous rotation with a core spinning separately from the mantle).

[ascl:2002.020] ExoCAM: Exoplanet Community Atmospheric Model

ExoCAM adapts the NCAR Community Earth System Model (CESM) for planetary and exoplanetary applications. The system files, source code, initial conditions files, and namelists provided do not run standalone. ExoCAM is a patch to be used with standard distributions of CESM version 1.2.1 (http://www.cesm.ucar.edu/models/current.html), and is also intended to be run with ExoRT (ascl:2002.019), a correlated-k radiative transfer package.

[ascl:2002.019] ExoRT: Two-stream radiative transfer code

ExoRT is a flexible, two-stream radiative transfer code that interfaces with CAM/CESM (http://www.cesm.ucar.edu/models/current.html) or 1D offline; it is also used with ExoCAM (ascl:2002.020). Quadrature is used for shortwave and hemispheric mean is used for longwave. The gas phase optical depths are calculate using a correlated K-distribution method, with overlapping bands treated using an amount weighted scheme. Cloud optics are treated using mie scattering for both liquid and ice clouds, and cloud overlap is treated using Monte Carlo Independent Column Approximation.

[ascl:2002.018] Bayesfit: Command-line program for combining Tempo2 and MultiNest components

Bayesfit pulls together Tempo2 (ascl:1210.015) and MultiNest (ascl:1109.006) components to provide additional functionality such as the specification of priors; Nelder–Mead optimization of the maximum-posterior point; and the capability of computing the partially marginalized likelihood for a given subset of timing-model parameters. Bayesfit is a single python command-line application.

[ascl:2002.017] libstempo: Python wrapper for Tempo2

libstempo uses the Tempo2 library (ascl:1210.015) to load a pulsar's tim/par files, providing Python access to the TOAs, the residuals, the timing-model parameters, the fit procedure, and more.

[ascl:2002.016] Cobra: Bayesian pulsar searching

Cobra uses single pulse time series data to search for and time pulsars, performing a fully phase coherent timing analysis. The GPU-accelerated Bayesian analysis package, written in Python, incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries. Cobra builds a model pulse train that incorporates effects such as aliasing, scattering and binary motion and a simple Gaussian profile and compares this directly to the data; the software can thus combine data over multiple frequencies, epochs, or even across telescopes.

[ascl:2002.015] GizmoAnalysis: Read and analyze Gizmo simulations

GizmoAnalysis reads and analyzes N-body simulations run with the Gizmo code (ascl:1410.003). Written in Python, it was developed primarily to analyze FIRE simulations, though it is usable with any Gizmo snapshot files. It offers the following functionality: reads snapshot files and converts particle data to physical units; provides a flexible dictionary class to store particle data and compute derived quantities on the fly; plots images and properties of particles; and generates region files for input to MUSIC (ascl:1311.011) to generate cosmological zoom-in initial conditions. GizmoAnalysis also computes rates of supernovae and stellar winds, including their nucleosynthetic yields, as used in FIRE simulations. The software package includes a tutorial in a Jupyter notebook.

[ascl:2002.014] HaloAnalysis: Read and analyze halo catalogs and merger trees

HaloAnalysis reads and analyzes halo/galaxy catalogs, generated from Rockstar (ascl:1210.008) or AHF (ascl:1102.009), and merger trees generated from Consistent Trees (ascl:1210.011). Written in Python, it offers the following functionalities: reads halo/galaxy/tree catalogs from multiple file formats; assigns baryonic particles and galaxy properties to dark-matter halos; combines and re-generates halo/galaxy/tree files in hdf5 format; analyzes properties of halos/galaxies; and selects halos to generate zoom-in initial conditions. The code includes a tutorial in the form of a Jupyter notebook.

[ascl:2002.013] GWecc: Calculator for pulsar timing array signals due to eccentric supermassive binaries

GWecc computes the pulsar timing array (PTA) signals induced by eccentric supermassive binaries. Written in C++, it computes the plus/cross polarizations as well as Earth and pulsar terms of the PTA signal given the binary parameters and the sky locations of the binary and the pulsar. A python wrapper is included through which GWecc can be used to simulate, search for and constrain gravitational wave-emitting eccentric supermassive binaries using packages such as ENTERPRISE (ascl:1912.015) and libstempo (ascl:2002.017).

[ascl:2002.012] DMRadon: Radon Transform calculation tools

DMRadon calculates the Radon Transform for use in the analysis of Directional Dark Matter Direct Detection. The code can calculate speed distributions, velocity distribution, velocity integral (eta) and Radon Transforms or a standard Maxwell-Boltzmann distribution. DMRadon also calculates the velocity distribution averaged over different angular bins.

[ascl:2002.011] PyHammer: Python spectral typing suite

PyHammer performs rapid and automatic spectral classification of stars according to the Morgan-Keenan classification system; it is a Python revision of the IDL code The Hammer (ascl:1405.003) and offers additional capabilities. Working in the range of 3,650-10,200 Angstroms, the automatic spectral typing algorithm compares important spectral lines to template spectra and determines the best matching spectral type, ranging from O to L type stars. The code can also determine a star's metallicity ([Fe/H]) and radial velocity shifts. Once the automatic classification algorithm has run, PyHammer provides the user an interface for determining spectral types visually by comparing their spectra to provided templates.

[ascl:2002.010] Apercal: Pipeline for the Westerbork Synthesis Radio Telescope Apertif upgrade

Apercal is a dedicated, automated data reduction and analysis pipeline written for the Apertif (APERture Tile In Focus) upgrade to the Westerbork Synthesis Radio Telescope. This upgrade dramatically increases the field of view and survey speed of the telescope and is being used for survey observations that can produce 5 terabytes of data for each observation. Apercal uses existing and new tools and parallelization to provide the performance needed for the large volume of data produced Apertif surveys. The software is written entirely in Python and uses third–party astronomical software, such as AOFlagger (ascl:1010.017), CASA (ascl:1107.013), and Miriad (ascl:1106.007), for certain tasks. Apercal is modular, making it possible to run specific modules manually instead of the full pipeline, and information can be exchanged between modules because status parameters are written and read from a python pickled dictionary file. The pipeline can also run fully automatically.

[ascl:2002.009] DASH: Deep Automated Supernova and Host classifier

DASH classifies the type, age, redshift and host for any supernova spectra based on the learned features, through use of a deep convolutional neural network to train a matching algorithm, of each supernova’s type and age. The Python library allows a user to classify spectra; the software is fast and can classify thousands of spectra in seconds. A graphical interface that enables a user to view and classify a spectrum is also available.

[ascl:2002.008] ExoSim: Simulator for predicting signal and noise in transit spectroscopy observations

ExoSim models host star and planet transit events, simulating the temporal change in stellar flux due to the light curve. It is wavelength-dependent, using an input planet spectrum to determine the light curve depth for any given wavelength and can capture temporal effects, such as correlated noise. ExoSim's star spot simulator produces simulated observations that include spot and facula contamination. The code is flexible and can be generically applied to different instruments that simulate specific time-dependent processes.

[ascl:2002.007] ProSpect: Spectral generation package

ProSpect generates good quality SEDs that can be used to estimate the broad band photometric properties of galaxies that have known star formation and gas metallicity histories. It allows for complex star formation and metallicity histories to be specified, and can be used in a generative or fitting (Bayesian) mode. ProSpect provides a high level interface to the BC03 (low and high resolution) and EMILES libraries, as well as the Dale 2014 dust emission templates. Its source code is available for download, and it is also available as an interactive web tool.

[ascl:2002.006] ScamPy: Sub-halo Clustering and Abundance Matching Python interface

ScamPy "paints" an observed population of cosmological objects on top of the DM-halo/subhalo hierarchy obtained from DM-only simulations. The method combines the Halo Occupation Distribution (HOD) method with sub-halo abundance matching (SHAM); the two processes together are dubbed Sub-halo clustering and abundance matching (SCAM). The procedure requires applying the two methods in sequence; by applying the HOD scheme, the host sub-haloes are selected, and the SHAM algorithm associates an observable property of choice to each sub-halo. The provided python interface allows users to load and populate DM halos and sub-halos obtained by FoF and SUBFIND algorithms applied to DM snapshots at any redshift. The software is highly-optimized and flexible.

[ascl:2002.005] ODUSSEAS: Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes

ODUSSEAS (Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes) uses machine learning to derive the Teff and [Fe/H] of M dwarf stars by using their optical spectra obtained by different spectrographs with different resolutions. The software uses the measurement of the pseudo equivalent widths for more than 4000 stellar absorption lines and the machine learning Python package scikit-learn (https://scikit-learn.org/stable/) to predict the stellar parameters.

[ascl:2002.004] triceratops: Candidate exoplanet rating tool

triceratops (Tool for Rating Interesting Candidate Exoplanets and Reliability Analysis of Transits Originating from Proximate Stars) validates planet candidates from the Transiting Exoplanet Survey Satellite (TESS). The code calculates the probabilities of a wide range of transit-producing scenarios using the primary transit of the planet candidate and preexisting knowledge of its host and nearby stars. It then uses the known properties of these stars to calculate star-specific priors for each scenario with estimates of stellar multiplicity and planet occurrence rates.

[ascl:2002.003] ORIGIN: detectiOn and extRactIon of Galaxy emIssion liNes

ORIGIN performs blind detection of faint emitters in MUSE datacubes. The algorithm is tuned to detect faint spatial-spectral emission signatures while allowing for a stable false detection rate over the data cube, and providing in the same time an automated and reliable estimation of the purity. ORIGIN implements a nuisance removal part based on a continuum subtraction combining a Discrete Cosine Transform and an iterative Principal Component Analysis and a detection part based on the local maxima of Generalized Likelihood Ratio test statistics obtained for a set of spatial-spectral profiles of emission line emitters. In addition, it performs a purity estimation in which the proportion of true emission lines is estimated from the data itself: the distribution of the local maxima in the noise only configuration is estimated from that of the local minima.

[ascl:2002.002] RASCAS: Resonant line transfer in AMR simulations

The massively parallel code RASCAS (RAdiative SCattering in Astrophysical Simulations) performs radiative transfer on an adaptive mesh with an octree structure using the Monte Carlo technique. The code features full MPI parallelization, domain decomposition, adaptive load-balancing, and a standard peeling algorithm to construct mock observations. The radiative transport of resonant line photons through different mixes of species (e.g. HI, SiII, MgII, FeII), including their interaction with dust, is implemented in a modular fashion to allow new transitions to be easily added to the code. RASCAS may also be used to propagate photons at any wavelength (e.g. stellar continuum or fluorescent lines), and has been designed to be easily customizable and to process simulations of arbitrarily large sizes on large supercomputers.

[ascl:2002.001] SDAR: Slow-Down Algorithmic Regularization code for solving few-body problems

SDAR (Slow-Down Algorithmic Regularization) simulates the long-term evolution of few-body systems such as binaries and triples. The algorithm used provides a few orders of magnitude faster performance than the classical N-body method. The secular evolution of hierarchical systems, e.g. Kozai-Lidov oscillation, can be well reproduced. The code is written in the C++ language and can be used either as a stand-alone tool or a library to be plugged in other N-body codes. The high precision of the floating point to 62 digits is also supported.

[submitted] Determination of Length of (Earth) Day [LOD] in the past geologic epochs

The protocol describes the algorithm of arriving at LOD in a given past geological Epoch. First the lunar orbital radius of the given geologic epoch has to be determined. For this the velocity of recession of Moon for the accelerated phase has to be determined. The spatial integral of the reciprocal of Velocity of recession gives the the transit time of Moon from desired orbit to the present orbit.Through several iterations the transit time is made to converge on the geologic epoch. Once we determine the desired orbital radius it has to be substituted in the LOD expression to determine the LOD in the given geologic epoch.

[submitted] MERA: Analysis Tool for Astrophysical Simulation Data in the Julia Language

MERA works with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations such as those produced by the hydrodynamic code RAMSES (ascl:1011.007) and is written entirely in the Julia language. The package provides essential functions for efficient and memory lightweight data loading and analysis. The core of MERA is a database framework.

[submitted] pycf3 - Cosmicflows-3 Distance-Velocity Calculator client for Python

The project is a simple Python client for Cosmicflows-3 Distance-Velocity Calculator at distances less than 400 Mpc (http://edd.ifa.hawaii.edu/CF3calculator/)

Compute expectation distances or velocities based on smoothed velocity field from the Wiener filter model of https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5438G/abstract.

[submitted] StarburstPy: Python Wrapper for Starburst99

StarburstPy is a python wrapper for Starburst99 (ascl:1104.003). The code contains methods for setting all inputs, running Starburst99, and reading output data into python dictionaries.

[ascl:2001.015] gnm: The MCMC Jagger

gnm is an implementation of the affine-invariant sampler for Markov chain Monte Carlo (MCMC) that uses the Gauss-Newton-Metropolis (GNM) Algorithm. The GNM algorithm is specialized in sampling highly non-linear posterior probability distribution functions of the form exp(-||f(x)||^2/2). The code includes dynamic hyper-parameter optimization to increase performance of the sampling; other features include the Jacobian tester and an error bars creator.

[ascl:2001.014] Peasoup: C++/CUDA GPU pulsar searching library

The NVIDIA GPU-based pipeline code peasoup provides a one-step pulsar search, including searching for pulsars with up to moderate accelerations, with only one command. Its features include dedispersion, dereddening in the Fourier domain, resampling, peak detection, and optional time series folding. peasoup's output is the candidate list.

[ascl:2001.013] RPPPS: Re-analyzing Pipeline for Parkes Pulsar Survey

RPPPS (Re-analysing Pipeline for Parkes Pulsar Survey) uses Linux shell scripts, C language, and python code and two parallel strategies to reorganize the PRESTO (ascl:1107.017) pulsar search pipeline to run multiple processes in parallel, thus accelerating the search for pulsars. Though originally designed for reprocessing PMPS data, the code has also been successfully used with FAST (Five-hundred-meter Aperture Spherical radio Telescope) drift scan data. The pipeline is only CPU-based and can be easily and quickly deployed in computing nodes for testing purposes or data processes.

[ascl:2001.012] MCMCI: Markov Chain Monte Carlo + Isochrones method for characterizing exoplanetary systems

MCMCI (Markov chain Monte Carlo + isochrones) characterizes a whole exoplanetary system directly by modeling the star and its planets simultaneously. The code, written in Fortran, uses light curves and basic stellar parameters with a transit analysis algorithm that interacts with stellar evolutionary models, thus using both model-dependent and empirical age indicators to characterize the system.

[ascl:2001.011] ExoTETHyS: Exoplanetary transits and eclipsing binaries modeler

ExoTETHyS models exoplanetary transits, eclipsing binaries, and related phenomena. The package calculates stellar limb-darkening coefficients down to <10 parts per million (ppm) and generates an exact transit light-curve based on the entire stellar intensity profile rather than limb-darkening coefficients.

[ascl:2001.010] CosMOPED: Compressed Planck likelihood

CosMOPED (Cosmological MOPED) uses the MOPED (Multiple/Massively Optimised Parameter Estimation and Data compression) compression scheme to compress the Planck power spectrum. This convenient and lightweight compressed likelihood code is implemented in Python. To compute the likelihood for the LambdaCDM model using CosMOPED, one needs only six compression vectors, one for each parameter, and six numbers from compressing the Planck data using the six compression vectors. Using these, the likelihood of a theory power spectrum given the Planck data is the product of six one-dimensional Gaussians. Extended cosmological models require computing extra compression vectors.

[ascl:2001.009] ORCS: Analysis engine for SITELLE spectral cubes

ORCS (Outils de Réduction de Cubes Spectraux) is an analysis engine for SITELLE spectral cubes. The software extracts integrated spectra, fits the sinc emission lines, and recalibrates data in wavelength, astrometry and flux. ORCS offers a choice between a Bayesian or a classical fitting algorithm
, and also provides automatic source detection and radial velocity correction.

[ascl:2001.008] DebrisDiskFM: Debris Disk Forward Modeling

DebrisDiskFM provides forward modeling for circumstellar debris disks in scattered light using the MCFOST disk modeling software to generate disk model images using given input parameters and emcee (ascl:1303.002) to obtain the posterior distributions for these parameters.

[ascl:2001.007] BTS: Behind The Spectrum

Behind The Spectrum (BTS) is a fully-automated multiple-component fitter for optically-thin spectra. Written as a python module, the routine uses the first, second and third derivatives to determine thenumber of components in the spectrum. A least-squared fitting routine then determines the best fit with that number of components, checking for over-fitting and over-lapping velocity centroids.

[ascl:2001.006] Protostellar Evolution: Stellar evolution simulator

Protostellar Evolution simulates the evolution of stellar stellar radius and luminosity from the bound core stage through to the core hydrogen ignition as a zero-age main-sequence (ZAMS) star and beyond. Written in Fortran 90, the code is implemented as a module of the FLASH astrophysical fluid dynamics code (ascl:1010.082).

[ascl:2001.005] FAKEOBS: Model visibilities generator

The CASA (1107.013) task FAKEOBS generates model visibilities from already-existing measurement sets. This task can be used to substitute all the visibilities of the target with simulations computed from any model image. The measurement can either be with real or simulated data, the target can have been observed in mosaic mode, and there can be several sources (e.g., bandpass calibrator, flux/phase calibrator, and target).

[ascl:2001.004] FragMent: Fragmentation techniques for studying filaments

FragMent studies fragmentation in filaments by collating a number of different techniques, including nearest neighbour separations, minimum spanning tree, two-point correlation function, and Fourier power spectrum. It also performs model selection using a frequentist and Bayesian approach to find the best descriptor of a filament's fragmentation. While the code was designed to investigate filament fragmentation, the functions are general and may be used for any set of 2D points to study more general cases of fragmentation.

[ascl:2001.003] sf3dmodels: Star-forming regions 3D modelling package

sf3dmodels models star-forming regions; it brings together analytical models in order to compute their physical properties in a 3-dimensional grid. The package can couple different models in a single grid to recreate complex star forming systems such as those being revealed by current instruments. The output data can be read with LIME (ascl:1107.012) or RADMC-3D (ascl:1108.016) to carry out radiative transfer calculations of the modeled region.

[ascl:2001.002] TRANSPHERE: 1-D spherical continuum radiative transfer

TRANSPHERE is a simple dust continuum radiative transfer code for spherically symmetric circumstellar envelopes. It handles absorption and re-emission and computes the dust temperature self-consistently; it does not, however, deal with scattering. TRANSPHERE uses a variable eddington factor method for the radiative transfer. The RADMD code (ascl:1108.016) is more versatile, but for a spherically symmetric problem for which scattering is of much concern, it may be easier to use a simple code such as TRANSPHERE.

Please note that this code has not been updated since 2006.

[ascl:2001.001] Min-CaLM: Mineral compositional analysis on debris disk spectra

Min-CaLM performs automated mineral compositional analysis on debris disk spectra. The user inputs the debris disk spectrum, and using Min-CaLM's built-in mineralogical library, Min-CaLM calculates the relative mineral abundances within the disk. To do this calculation, Min-CaLM converts the debris disk spectrum and the mineralogical library spectra into a system of linear equations, which it then solves using non-negative least square minimization. This code comes with a GitHub tutorial on how to use the Min-CaLM package.

[submitted] amber_meta

amber_meta integrates a few routines to launch AMBER (the “Apertif Monitor for Bursts Encountered in Real-time”, https://github.com/AA-ALERT/AMBER) in a systematic manner. To avoid typing a string in the command line manually with all parameters required to launch AMBER, amber_meta generates the command from configuration files, and can directly launch AMBER instances.

[submitted] Time-domain astronomy sandbox

Time-domain astronomy sandbox consists in a series of classes to simulate and process time-domain astronomy data products in Python. The code was originally developed to model Fast Radio Burst (FRB) and Radio Frequency Interference (RFI), and evaluate different RFI mitigation methods and their effect on FRB search.

[submitted] SDSS Dual Active Nuclei Galaxy Detection Pipeline

Dual Active Nuclei Galaxies (DAGNs) are rare occurrences in the sky. Until now, most AGNs have been described to be found serendipitously, or by manual observation. In recent years, there has been an increasing interest in such dual AGNs and their astrophysical properties. Their study is important to the understanding of galaxy formation, star formation and these objects are the precursors to Gravitational Wave Sources.

Hence, we have devised a pipeline, that along with systematic data collection, can detect such dual AGN candidates. A novel algorithm 'Graph-Boosted Gradient Ascent' has been devised to detect whether an R-band image of a galaxy is a potential candidate for a DAGN or not. The pipeline can be cloned to a user's machine, and by joining the AstrIRG_DAGN group on SciServer, astronomers can collectively contribute to the mining of DAGNs.

Would you like to view a random code?