Results 601-700 of 2352 (2312 ASCL, 40 submitted)

[ascl:1807.009]
HELIOS: Radiative transfer code for exoplanetary atmospheres

Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

HELIOS, a radiative transfer code, is constructed for studying exoplanetary atmospheres. The model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. Though HELIOS can be used alone, the opacity calculator HELIOS-K (ascl:1503.004) can be used with it to provide the molecular opacities.

[ascl:1807.008]
HII-CHI-mistry_UV: Oxygen abundance and ionizionation parameters for ultraviolet emission lines

HII-CHI-mistry_UV derives oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas phase ionized by massive stars. The code first fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionization parameter from carbon lines in the UV. An optical version of this Python code, HII-CHI-mistry (ascl:1807.007), is also available.

[ascl:1807.007]
HII-CHI-mistry: Oxygen abundance and ionizionation parameters for optical emission lines

HII-CHI-mistry calculates the oxygen abundance for gaseous nebulae ionized by massive stars using optical collisionally excited emission lines. This code takes the extinction-corrected emission line fluxes and, based on a *Χ*^{2} minimization on a photoionization models grid, determines chemical-abundances (O/H, N/O) and ionization parameters. An ultraviolet version of this Python code, HII-CHI-mistry-UV (ascl:1807.008), is also available.

[ascl:1807.006]
pyqz: Emission line code

pyqz computes the values of log(Q) [the ionization parameter] and 12+log(O/H) [the oxygen abundance, either total or in the gas phase] for a given set of strong emission lines fluxes from HII regions. The log(Q) and 12+log(O/H) values are interpolated from a finite set of diagnostic line ratio grids computed with the MAPPINGS V code (ascl:1807.005). The grids used by pyqz are chosen to be flat, without wraps, to decouple the influence of log(Q) and 12+log(O/H) on the emission line ratios.

[ascl:1807.005]
MAPPINGS V: Astrophysical plasma modeling code

MAPPINGS V is a update of the MAPPINGS code (ascl:1306.008) and provides new cooling function computations for optically thin plasmas based on the greatly expanded atomic data of the CHIANTI 8 database. The number of cooling and recombination lines has been expanded from ~2000 to over 80,000, and temperature-dependent spline-based collisional data have been adopted for the majority of transitions. The expanded atomic data set provides improved modeling of both thermally ionized and photoionized plasmas; the code is now capable of predicting detailed X-ray spectra of nonequilibrium plasmas over the full nonrelativistic temperature range, increasing its utility in cosmological simulations, in modeling cooling flows, and in generating accurate models for the X-ray emission from shocks in supernova remnants.

[ascl:1807.004]
ARKCoS: Radial kernel convolution on the sphere

ARKCoS (Accelerated radial kernel convolution on the sphere) efficiently convolves pixelated maps on the sphere with radially symmetric kernels with compact support. It performs the convolution along isolatitude rings in Fourier space and integrates in longitudinal direction in pixel space. The computational costs scale linearly with the kernel support, making the method most beneficial for convolution with compact kernels. Typical applications include CMB beam smoothing, symmetric wavelet analyses, and point-source filtering operations. The software is written in C++/CUDA and provides two independent code paths to do the necessary computation either on conventional hardware (CPUs), or on graphics processing units (GPUs).

[ascl:1807.003]
PyAutoLens: Strong lens modeling

PyAutoLens models and analyzes galaxy-scale strong gravitational lenses. This automated module suite simultaneously models the lens galaxy's light and mass while reconstructing the extended source galaxy on an adaptive pixel-grid. Source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing PyAutoLens to cleanly deblend its light from the source. Bayesian model comparison is used to automatically chose the complexity of the light and mass models. PyAutoLens provides accurate light, mass, and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

[ascl:1807.002]
Warpfield: Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution

Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥10^{5} M_{☉}). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation f_{esc, I}, the minimum star formation efficiency ∊_{min} required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.

[ascl:1807.001]
POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:1806.032]
pwv_kpno: Modeling atmospheric absorption

pwv_kpno provides models for the atmospheric transmission due to precipitable water vapor (PWV) at user specified sites. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column density along the line of sight. The pwv_kpno package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission between 3,000 and 12,000 Å. By default, models are provided for Kitt Peak National Observatory (KPNO). Additional locations can be added by the user for any of the hundreds of SuomiNet locations worldwide.

[ascl:1806.031]
ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology

Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.

[ascl:1806.030]
foxi: Forecast Observations and their eXpected Information

Using information theory and Bayesian inference, the foxi Python package computes a suite of expected utilities given futuristic observations in a flexible and user-friendly way. foxi requires a set of n-dim prior samples for each model and one set of n-dim samples from the current data, and can calculate the expected ln-Bayes factor between models, decisiveness between models and its maximum-likelihood averaged equivalent, the decisivity, and the expected Kullback-Leibler divergence (i.e., the expected information gain of the futuristic dataset). The package offers flexible inputs and is designed for all-in-one script calculation or an initial cluster run then local machine post-processing, which should make large jobs quite manageable subject to resources and includes features such as LaTeX tables and plot-making for post-data analysis visuals and convenience of presentation.

[ascl:1806.029]
EXO-NAILER: EXOplanet traNsits and rAdIal veLocity fittER

EXO-NAILER (EXOplanet traNsits and rAdIal veLocity fittER) efficiently fits exoplanet transit lightcurves, radial velocities (RVs) or both. The code handles data taken with different instruments. For RVs, a different center-of-mass velocity can be fitted for each instrument to account for offsets between them; if jitter is included, a different jitter term can also fitted for each instrument. For transits, a different photometric jitter can be fitted to each instrument as can different limb-darkening coefficients and different transit depths. In addition to general options that need to be set, EXO-NAILER also requires that photometry and radial velocity options be defined for each instrument.

[ascl:1806.028]
PyMUSE: VLT/MUSE data analyzer

PyMUSE analyzes VLT/MUSE datacubes. The package is optimized to extract 1-D spectra of arbitrary spatial regions within the cube and also for producing images using photometric filters and customized masks. It is intended to provide the user the tools required for a complete analysis of a MUSE data set.

[ascl:1806.027]
fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2

fcmaker creates astronomical finding charts for Observing Blocks (OBs) on the p2 web server from the European Southern Observatory (ESO). It automates the creation of ESO-compliant finding charts for Service Mode and/or Visitor Mode OBs at the Very Large Telescope (VLT). The design of the fcmaker finding charts, based on an intimate knowledge of VLT observing procedures, is fine-tuned to best support night time operations. As an automated tool, fcmaker also allows observers to independently check visually, for the first time, the observing sequence coded inside an OB. This includes, for example, the signs of telescope and position angle offsets.

[ascl:1806.026]
BWED: Brane-world extra dimensions

Braneworld-extra-dimensions places constraints on the size of the AdS5 radius of curvature within the Randall-Sundrum brane-world model in light of the near-simultaneous detection of the gravitational wave event GW170817 and its optical counterpart, the short γ-ray burst event GRB170817A. The code requires a (supplied) patch to the Montepython cosmological MCMC sampler (ascl:1805.027) to sample the posterior distribution of the 4-dimensional parameter space in VBV17 and obtain constraints on the parameters.

[ascl:1806.025]
BRATS: Broadband Radio Astronomy ToolS

BRATS (Broadband Radio Astronomy ToolS) provides tools for the spectral analysis of broad-bandwidth radio data and legacy support for narrowband telescopes. It can fit models of spectral ageing on small spatial scales, offers automatic selection of regions based on user parameters (e.g. signal to noise), and automatic determination of the best-fitting injection index. It includes statistical testing, including Chi-squared, error maps, confidence levels and binning of model fits, and can map spectral index as a function of position. It also provides the ability to reconstruct sources at any frequency for a given model and parameter set, subtract any two FITS images and output residual maps, easily combine and scale FITS images in the image plane, and resize radio maps.

[ascl:1806.024]
RMextract: Ionospheric Faraday Rotation calculator

RMextract calculates Ionospheric Faraday Rotation for a given epoch, location and line of sight. This Python code extracts TEC, vTEC, Earthmagnetic field and Rotation Measures from GPS and WMM data for radio interferometry observations.

[ascl:1806.023]
Spheral++: Coupled hydrodynamical and gravitational numerical simulations

Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.

[ascl:1806.022]
Keras: The Python Deep Learning library

Keras is a high-level neural networks API written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It focuses on enabling fast experimentation.

[ascl:1806.021]
LASR: Linear Algorithm for Significance Reduction

LASR removes stellar variability in the light curves of δ-Scuti and similar stars. It subtracts oscillations from a time series by minimizing their statistical significance in frequency space.

[ascl:1806.020]
exoinformatics: Compute the entropy of a planetary system's size-ordering

exoinformatics computes the entropy of a planetary system's size ordering using three different entropy methods: tally-scores, integral path, and change points.

[ascl:1806.019]
SYGMA: Modeling stellar yields for galactic modeling

SYGMA (Stellar Yields for Galactic Modeling Applications) follows the ejecta of simple stellar populations as a function of time to model the enrichment and feedback from simple stellar populations. It is the basic building block of the galaxy code One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) and is part of the NuGrid Python Chemical Evolution Environment (NuPyCEE, ascl:1610.015). Stellar yields of AGB and massive stars are calculated with the same nuclear physics and are provided by the NuGrid collaboration.

[ascl:1806.018]
OMEGA: One-zone Model for the Evolution of GAlaxies

OMEGA (One-zone Model for the Evolution of GAlaxies) calculates the global chemical evolution trends of galaxies. From an input star formation history, it uses SYGMA to create as a function of time multiple simple stellar populations with different masses, ages, and initial compositions. OMEGA offers several prescriptions for modeling the star formation efficiency and the evolution of galactic inflows and outflows. OMEGA is part of the NuGrid (ascl:1610.015) chemical evolution package.

[ascl:1806.017]
RadFil: Radial density profile builder for interstellar filaments

RadFil is a radial density profile building and fitting tool for interstellar filaments. The software uses an image array and (in most cases) a boolean mask array that delineates the boundary of the filament to build and fit a radial density profile for the filaments.

[ascl:1806.016]
DirectDM-py: Dark matter direct detection

DirectDM, written in Python, takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Mathematica implementation of DirectDM is also available (ascl:1806.015).

[ascl:1806.015]
DirectDM-mma: Dark matter direct detection

The Mathematica code DirectDM takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Python implementation of DirectDM is also available (ascl:1806.016).

[ascl:1806.014]
pile-up: Monte Carlo simulations of star-disk torques on hot Jupiters

The pile-up gnuplot script generates a Monte Carlo simulation with a selectable number of randomized drawings (1000 by default, ~1min on a modern laptop). For each realization, the script calculates the torque acting on a hot Jupiter around a young, solar-type star as a function of the star-planet distance. The total torque on the planet is composed of the disk torque in the type II migration regime (that is, the planet is assumed to have opened up a gap in the disk) and of the stellar tidal torque. The model has four free parameters, which are drawn from a normal or lognormal distribution: (1) the disk's gas surface density at 1 astronomical unit, (2) the magnitude of tidal dissipation within the star, (3) the disk's alpha viscosity parameter, and (4) and the mean molecular weight of the gas in the disk midplane. For each realization, the total torque is screened for a distance at which it becomes zero. If present, then this distance would represent a tidal migration barrier to the planet. In other words, the planet would stop migrating. This location is added to a histogram on top of the main torque-over-distance panel and the realization is counted as one case that contributes to the overall survival rate of hot Jupiters. Finally, the script generates an output file (PDF by default) and prints the hot Jupiter survival rate for the assumed parameterization of the star-planet-disk system.

[ascl:1806.013]
SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[ascl:1806.012]
WDEC: White Dwarf Evolution Code

WDEC (White Dwarf Evolution Code), written in Fortran, offers a fast and fairly easy way to produce models of white dwarfs. The code evolves hot (~100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models.

[ascl:1806.011]
P2DFFT: Parallelized technique for measuring galactic spiral arm pitch angles

P2DFFT is a parallelized version of 2DFFT (ascl:1608.015). It isolates and measures the spiral arm pitch angle of galaxies. The code allows direct input of FITS images, offers the option to output inverse Fourier transform FITS images, and generates idealized logarithmic spiral test images of a specified size that have 1 to 6 arms with pitch angles of -75 degrees to 75 degrees. Further, it can output Fourier amplitude versus inner radius and pitch angle versus inner radius for each Fourier component (m = 0 to m = 6), and calculates the Fourier amplitude weighted mean pitch angle across m = 1 to m = 6 versus inner radius.

[ascl:1806.010]
SpaghettiLens: Web-based gravitational lens modeling tool

SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.

[ascl:1806.009]
GLASS: Parallel, free-form gravitational lens modeling tool and framework

GLASS models strong gravitational lenses. It produces an ensemble of possible models that fit the observed input data and conform to certain constraints specified by the user. GLASS makes heavy use of the numerical routines provided by the numpy and scipy packages as well as the linear programming package GLPK. This latter package, and its Python interface, is provided with GLASS and installs automatically in the GLASS build directory.

[ascl:1806.008]
gsf: galactic structure finder

Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Stinson, Gregory S.; Wang, Liang

gsf applies Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. The gsf analysis package assumes that the simulation snapshot has been pre-processed with a halo finder. It is based on pynbody (ascl:1305.002) and the scikit-learnpython package for Machine Learning; after loading, orienting, and transforming a simulation snapshot to physical units, it runs the clustering algorithm and performs the direct N-body gravity force using all the particles in the given halo.

[ascl:1806.007]
PyAMOR: AMmOnia data Reduction

PyAMOR models spectra of low level ammonia transitions (between (J,K)=(1,1) and (5,5)) and derives parameters such as intrinsic linewidth, optical depth, and rotation temperature. For low S/N or low spectral resolution data, the code uses cross-correlation between a model and a regridded spectrum (e.g. 10 times smaller channel width) to find the velocity, then fixes it and runs the minimization process. For high S/N data, PyAMOR runs with the velocity as a free parameter.

[ascl:1806.006]
QE: Quantum opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization

Giannozzi, P.; Andreussi, O.; Baroni, S.; Bonini, Nicola; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, Guido L.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dabo, Ismaila; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Fabris, Stefano; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Gougoussis, Christos; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Martin-Samos, Layla; Marzari, N.; Mauri, F.; Mazzarello, Riccardo; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Sbraccia, Scandolo, Sandro; Carlo; Schlipf, M.; Sclauzero, Gabriele; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wentzcovitch, Renata M.; Wu, X.

Quantum ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization) is an integrated suite of codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials. QE performs ground-state calculations such as self-consistent total energies, forces, stresses and Kohn-Sham orbitals, Car-Parrinello and Born-Oppenheimer molecular dynamics, and quantum transport such as ballistic transport, coherent transport from maximally localized Wannier functions, and Kubo-Greenwood electrical conductivity. It can also determine spectroscopic properties and examine time-dependent density functional perturbations and electronic excitations, and has a wide range of other functions.

[ascl:1806.005]
Indri: Pulsar population synthesis toolset

Indri models the population of single (not in binary or hierarchical systems) neutron stars. Given a starting distribution of parameters (birth place, velocity, magnetic field, and period), the code moves a set of stars through the time (by evolving spin period and magnetic field) and the space (by propagating through the Galactic potential). Upon completion of the evolution, a set of observables is computed (radio flux, position, dispersion measure) and compared with a radio survey such as the Parkes Multibeam Survey. The models' parameters are optimised by using the Markov Chain Monte Carlo technique.

[ascl:1806.004]
WiseView: Visualizing motion and variability of faint WISE sources

WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

[ascl:1806.003]
pyZELDA: Python code for Zernike wavefront sensors

pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

[ascl:1806.002]
BHDD: Primordial black hole binaries code

BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

[ascl:1806.001]
feets: feATURE eXTRACTOR FOR tIME sERIES

feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

[ascl:1805.032]
PyCCF: Python Cross Correlation Function for reverberation mapping studies

PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.

[ascl:1805.031]
CubiCal: Suite for fast radio interferometric calibration

CubiCal implements several accelerated gain solvers which exploit complex optimization for fast radio interferometric gain calibration. The code can be used for both direction-independent and direction-dependent self-calibration. CubiCal is implemented in Python and Cython, and multiprocessing is fully supported.

[ascl:1805.030]
PyCBC: Gravitational-wave data analysis toolkit

PyCBC analyzes data from gravitational-wave laser interferometer detectors, finds signals, and studies their parameters. It contains algorithms that can detect coalescing compact binaries and measure the astrophysical parameters of detected sources. PyCBC was used in the first direct detection of gravitational waves by LIGO and is used in the ongoing analysis of LIGO and Virgo data.

[ascl:1805.029]
DeepMoon: Convolutional neural network trainer to identify moon craters

DeepMoon trains a convolutional neural net using data derived from a global digital elevation map (DEM) and catalog of craters to recognize craters on the Moon. The TensorFlow-based pipeline code is divided into three parts. The first generates a set images of the Moon randomly cropped from the DEM, with corresponding crater positions and radii. The second trains a convnet using this data, and the third validates the convnet's predictions.

[ascl:1805.028]
SP_Ace: Stellar Parameters And Chemical abundances Estimator

SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

[ascl:1805.027]
MontePython 3: Parameter inference code for cosmology

MontePython 3 provides numerous ways to explore parameter space using Monte Carlo Markov Chain (MCMC) sampling, including Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a Fisher sampling method. This improved version of the Monte Python (ascl:1307.002) parameter inference code for cosmology offers new ingredients that improve the performance of Metropolis-Hastings sampling, speeding up convergence and offering significant time improvement in difficult runs. Additional likelihoods and plotting options are available, as are post-processing algorithms such as Importance Sampling and Adding Derived Parameter.

[ascl:1805.026]
PySE: Python Source Extractor for radio astronomical images

Spreeuw, Hanno; Swinbank, John; Molenaar, Gijs; Staley, Tim; Rol, Evert; Sanders, John; Scheers, Bart; Kuiack, Mark

PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

[ascl:1805.025]
GLACiAR: GaLAxy survey Completeness AlgoRithm

GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

[ascl:1805.024]
ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

[ascl:1805.023]
PROM7: 1D modeler of solar filaments or prominences

PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).

[ascl:1805.022]
BCcodes: Bolometric Corrections and Synthetic Stellar Photometry

BCcodes computes bolometric corrections and synthetic colors in up to 5 filters for input values of the stellar parameters Teff, log(g), [Fe/H], E(B-V) and [alpha/Fe].

[ascl:1805.021]
PampelMuse: Crowded-field 3D spectroscopy

PampelMuse analyzes integral-field spectroscopic observations of crowded stellar fields and provides several subroutines to perform the individual steps of the data analysis. All analysis steps assume that the IFS data has been properly reduced and that all the instrumental artifacts have been removed. PampelMuse is designed to correctly handle IFS data regardless of which instrument was used to observe the data. In addition to the actual data, the software also requires an estimate of the variances for the analysis; optionally, it can use a bad pixel mask. The analysis relies on the presence of a reference catalogue, containing coordinates and magnitudes of the stars in and around the observed field.

[ascl:1805.020]
SWIFT: SPH With Inter-dependent Fine-grained Tasking

Schaller, Matthieu; Gonnet, Pedro; Draper, Peter W.; Chalk, Aidan B. G.; Bower, Richard G.; Willis, James; Hausammann, Loïc

SWIFT runs cosmological simulations on peta-scale machines for solving gravity and SPH. It uses the Fast Multipole Method (FMM) to calculate gravitational forces between nearby particles, combining these with long-range forces provided by a mesh that captures both the periodic nature of the calculation and the expansion of the simulated universe. SWIFT currently uses a single fixed but time-variable softening length for all the particles. Many useful external potentials are also available, such as galaxy haloes or stratified boxes that are used in idealised problems. SWIFT implements a standard LCDM cosmology background expansion and solves the equations in a comoving frame; equations of state of dark-energy evolve with scale-factor. The structure of the code allows implementation for modified-gravity solvers or self-interacting dark matter schemes to be implemented. Many hydrodynamics schemes are implemented in SWIFT and the software allows users to add their own.

[ascl:1805.019]
HENDRICS: High ENergy Data Reduction Interface from the Command Shell

HENDRICS, a rewrite and update to MaLTPyNT (ascl:1502.021), contains command-line scripts based on Stingray (ascl:1608.001) to perform a quick-look (spectral-)timing analysis of X-ray data, treating the gaps in the data due, e.g., to occultation from the Earth or passages through the SAA, properly. Despite its original main focus on NuSTAR, HENDRICS can perform standard aperiodic timing analysis on X-ray data from, in principle, any other satellite, and its features include power density and cross spectra, time lags, pulsar searches with the Epoch folding and the Z_n^2 statistics, color-color and color-intensity diagrams. The periodograms produced by HENDRICS (such as a power density spectrum or a cospectrum) can be saved in a format compatible with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002)

[ascl:1805.018]
CUBE: Information-optimized parallel cosmological N-body simulation code

CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.

[ascl:1805.017]
SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

[ascl:1805.016]
xspec_emcee: XSPEC-friendly interface for the emcee package

XSPEC_EMCEE is an XSPEC-friendly interface for emcee (ascl:1303.002). It carries out MCMC analyses of X-ray spectra in the X-ray spectral fitting program XSPEC (ascl:9910.005). It can run multiple xspec processes simultaneously, speeding up the analysis, and can switch to parameterizing norm

parameters in log space.

[ascl:1805.015]
BinMag: Widget for comparing stellar observed with theoretical spectra

BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, and instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.

[ascl:1805.014]
OSS: OSSOS Survey Simulator

Comparing properties of discovered trans-Neptunian Objects (TNOs) with dynamical models is impossible due to the observational biases that exist in surveys. The OSSOS Survey Simulator takes an intrinsic orbital model (from, for example, the output of a dynamical Kuiper belt emplacement simulation) and applies the survey biases, so the biased simulated objects can be directly compared with real discoveries.

[ascl:1805.012]
Arcmancer: Geodesics and polarized radiative transfer library

Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.

[ascl:1805.011]
PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:1805.010]
StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.

[ascl:1805.009]
STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission

STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.

[ascl:1805.008]
AGAMA: Action-based galaxy modeling framework

The AGAMA library is a collection of tools for constructing and analyzing models of galaxies. It computes gravitational potential and forces, performs orbit integration and analysis, and can convert between position/velocity and action/angle coordinates. It offers a framework for finding best-fit parameters of a model from data and self-consistent multi-component galaxy models, and contains useful auxiliary utilities such as various mathematical routines. The core of the library is written in C++, and there are Python and Fortran interfaces. AGAMA may be used as a plugin for the stellar-dynamical software packages galpy (ascl:1411.008), AMUSE (ascl:1107.007), and NEMO (ascl:1010.051).

[ascl:1805.007]
exocartographer: Constraining surface maps orbital parameters of exoplanets

exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.

[ascl:1805.006]
StePS: Stereographically Projected Cosmological Simulations

StePS (Stereographically Projected Cosmological Simulations) compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to simulate the evolution of the large-scale structure. This eliminates the need for periodic boundary conditions, which are a numerical convenience unsupported by observation and which modifies the law of force on large scales in an unrealistic fashion. StePS uses stereographic projection for space compactification and naive O(N2) force calculation; this arrives at a correlation function of the same quality more quickly than standard (tree or P3M) algorithms with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence StePS can function as a high-speed prediction tool for modern large-scale surveys.

[ascl:1805.005]
3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

[ascl:1805.004]
EARL: Exoplanet Analytic Reflected Lightcurves package

EARL (Exoplanet Analytic Reflected Lightcurves) computes the analytic form of a reflected lightcurve, given a spherical harmonic decomposition of the planet albedo map and the viewing and orbital geometries. The EARL Mathematica notebook allows rapid computation of reflected lightcurves, thus making lightcurve numerical experiments accessible.

[ascl:1805.003]
lcps: Light curve pre-selection

lcps searches for transit-like features (i.e., dips) in photometric data. Its main purpose is to restrict large sets of light curves to a number of files that show interesting behavior, such as drops in flux. While lcps is adaptable to any format of time series, its I/O module is designed specifically for photometry of the Kepler spacecraft. It extracts the pre-conditioned PDCSAP data from light curves files created by the standard Kepler pipeline. It can also handle csv-formatted ascii files. lcps uses a sliding window technique to compare a section of flux time series with its surroundings. A dip is detected if the flux within the window is lower than a threshold fraction of the surrounding fluxes.

[ascl:1805.002]
dftools: Distribution function fitting

dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.

[ascl:1805.001]
powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

[submitted]
pydftools: Distribution function fitting in Python

pydftools is a pure-python port of the dftools R package (ascl:1805.002), which finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a MF (P=1), a mass-size distribution (P=2) or the mass-spin-morphology distribution (P=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions. Though this package imitates the dftools package quite closely while being as Pythonic as possible, it has not implemented 2D+ nor non-parametric.

[ascl:1804.026]
KSTAT: KD-tree Statistics Package

KSTAT calculates the 2 and 3-point correlation functions in discreet point data. These include the two-point correlation function in 2 and 3-dimensions, the anisotripic 2PCF decomposed in either sigma-pi or Kazin's dist. mu projection. The 3-point correlation function can also work in anisotropic coordinates. The code is based on kd-tree structures and is parallelized using a mixture of MPI and OpenMP.

[ascl:1804.025]
FastChem: An ultra-fast equilibrium chemistry

FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

[ascl:1804.024]
LFlGRB: Luminosity function of long gamma-ray bursts

LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.

[ascl:1804.023]
LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.

[ascl:1804.022]
UniDAM: Unified tool to estimate Distances, Ages, and Masses

UniDAM obtains a homogenized set of stellar parameters from spectrophotometric data of different surveys. Parallax and extinction data can be incorporated into the isochrone fitting method used in UniDAM to reduce distance and age estimate uncertainties for TGAS stars for distances up to 1 kpc and decrease distance Gaia end-of-mission parallax uncertainties by about a factor of 20 and age uncertainties by a factor of two for stars up to 10 kpc away from the Sun.

[ascl:1804.021]
allantools: Allan deviation calculation

allantools calculates Allan deviation and related time & frequency statistics. The library is written in Python and has a GPL v3+ license. It takes input data that is either evenly spaced observations of either fractional frequency, or phase in seconds. Deviations are calculated for given tau values in seconds. Several noise generators for creating synthetic datasets are also included.

[ascl:1804.020]
Agatha: Disentangling period signals from correlated noise in a periodogram framework

Agatha is a framework of periodograms to disentangle periodic signals from correlated noise and to solve the two-dimensional model selection problem: signal dimension and noise model dimension. These periodograms are calculated by applying likelihood maximization and marginalization and combined in a self-consistent way. Agatha can be used to select the optimal noise model and to test the consistency of signals in time and can be applied to time series analyses in other astronomical and scientific disciplines. An interactive web implementation of the software is also available at http://agatha.herts.ac.uk/.

[ascl:1804.019]
ViSBARD: Visual System for Browsing, Analysis and Retrieval of Data

Roberts, D. Aaron; Boller, Ryan; Rezapkin, V.; Coleman, J.; McGuire, R.; Goldstein, M.; Kalb, V.; Kulkarni, R.; Luckyanova, M.; Byrnes, J.; Kerbel, U.; Candey, R.; Holmes, C.; Chimiak, R.; Harris, B.

ViSBARD interactively visualizes and analyzes space physics data. It provides an interactive integrated 3-D and 2-D environment to determine correlations between measurements across many spacecraft. It supports a variety of spacecraft data products and MHD models and is easily extensible to others. ViSBARD provides a way of visualizing multiple vector and scalar quantities as measured by many spacecraft at once. The data are displayed three-dimesionally along the orbits which may be displayed either as connected lines or as points. The data display allows the rapid determination of vector configurations, correlations between many measurements at multiple points, and global relationships. With the addition of magnetohydrodynamic (MHD) model data, this environment can also be used to validate simulation results with observed data, use simulated data to provide a global context for sparse observed data, and apply feature detection techniques to the simulated data.

[ascl:1804.018]
3DView: Space physics data visualizer

Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.

3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.

[ascl:1804.017]
APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data

Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García, T.

APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.

[ascl:1804.016]
surrkick: Black-hole kicks from numerical-relativity surrogate models

surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

[ascl:1804.015]
NR-code: Nonlinear reconstruction code

NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

[ascl:1804.014]
IMNN: Information Maximizing Neural Networks

This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

[ascl:1804.013]
CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

[ascl:1804.012]
Lenstronomy: Multi-purpose gravitational lens modeling software package

Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.

[ascl:1804.011]
DESCQA: Synthetic Sky Catalog Validation Framework

Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph

The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at https://portal.nersc.gov/projecta/lsst/descqa/v2/.

[ascl:1804.010]
SMERFS: Stochastic Markov Evaluation of Random Fields on the Sphere

SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n *X* n grid in O(*n*^{2} log *n*) and efficiently derives the necessary conditional covariance matrices.

[ascl:1804.009]
orbit-estimation: Fast orbital parameters estimator

orbit-estimation tests and evaluates the Stäckel approximation method for estimating orbit parameters in galactic potentials. It relies on the approximation of the Galactic potential as a Stäckel potential, in a prolate confocal coordinate system, under which the vertical and horizontal motions decouple. By solving the Hamilton Jacobi equations at the turning points of the horizontal and vertical motions, it is possible to determine the spatial boundary of the orbit, and hence calculate the desired orbit parameters.

[ascl:1804.008]
EGG: Empirical Galaxy Generator

Schreiber, C.; Elbaz, D.; Pannella, M.; Merlin, E.; Castellano, M.; Fontana, A.; Bourne, N.; Boutsia, K.; Cullen, F.; Dunlop, J.; Ferguson, H. C.; Michałowski, M. J.; Okumura, K.; Santini, P.; Shu, X. W.; Wang, T.; White, C.

The Empirical Galaxy Generator (EGG) generates fake galaxy catalogs and images with realistic positions, morphologies and fluxes from the far-ultraviolet to the far-infrared. The catalogs are generated by egg-gencat and stored in binary FITS tables (column oriented). Another program, egg-2skymaker, is used to convert the generated catalog into ASCII tables suitable for ingestion by SkyMaker (ascl:1010.066) to produce realistic high resolution images (e.g., Hubble-like), while egg-gennoise and egg-genmap can be used to generate the low resolution images (e.g., Herschel-like). These tools can be used to test source extraction codes, or to evaluate the reliability of any map-based science (stacking, dropout identification, etc.).

[ascl:1804.007]
chroma: Chromatic effects for LSST weak lensing

Chroma investigates biases originating from two chromatic effects in the atmosphere: differential chromatic refraction (DCR), and wavelength dependence of seeing. These biases arise when using the point spread function (PSF) measured with stars to estimate the shapes of galaxies with different spectral energy distributions (SEDs) than the stars.

[ascl:1804.006]
ProFound: Source Extraction and Application to Modern Survey Data

ProFound detects sources in noisy images, generates segmentation maps identifying the pixels belonging to each source, and measures statistics like flux, size, and ellipticity. These inputs are key requirements of ProFit (ascl:1612.004), our galaxy profiling package; these two packages used in unison semi-automatically profile large samples of galaxies. The key novel feature introduced in ProFound is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. ProFound offers good initial parameter estimation for ProFit, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the ProFound and ProFit pipeline.

[ascl:1804.005]
DaCHS: Data Center Helper Suite

DaCHS, the Data Center Helper Suite, is an integrated package for publishing astronomical data sets to the Virtual Observatory. Network-facing, it speaks the major VO protocols (SCS, SIAP, SSAP, TAP, Datalink, etc). Operator-facing, many input formats, including FITS/WCS, ASCII files, and VOTable, can be processed to publication-ready data. DaCHS puts particular emphasis on integrated metadata handling, which facilitates a tight integration with the VO's Registry

[ascl:1804.004]
AstroCV: Astronomy computer vision library

AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

[ascl:1804.003]
DPPP: Default Pre-Processing Pipeline

DPPP (Default Pre-Processing Pipeline, also referred to as NDPPP) reads and writes radio-interferometric data in the form of Measurement Sets, mainly those that are created by the LOFAR telescope. It goes through visibilities in time order and contains standard operations like averaging, phase-shifting and flagging bad stations. Between the steps in a pipeline, the data is not written to disk, making this tool suitable for operations where I/O dominates. More advanced procedures such as gain calibration are also included. Other computing steps can be provided by loading a shared library; currently supported external steps are the AOFlagger (ascl:1010.017) and a bridge that enables loading python steps.

[ascl:1804.002]
ipole: Semianalytic scheme for relativistic polarized radiative transport

ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

[ascl:1804.001]
ASERA: A Spectrum Eye Recognition Assistant

ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.

[ascl:1803.015]
RAPTOR: Imaging code for relativistic plasmas in strong gravity

Bronzwaer, Thomas; Davelaar, Jordy; Younsi, Ziri; Mościbrodzka, Monika; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

RAPTOR produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime, is hardware-agnostic and may be compiled and run on both GPUs and CPUs. RAPTOR is useful for studying accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fastlight and slow-light paradigms.

Would you like to view a random code?