[ascl:1601.021]
ISO: Isochrone construction

ISO transforms MESA history files into a uniform basis for interpolation and then constructs new stellar evolution tracks and isochrones from that basis. It is written in Fortran and requires MESA (ascl:1010.083), primarily for interpolation. Though designed to ingest MESA star history files, tracks from other stellar evolution codes can be incorporated by loading the tracks into the data structures used in the codes.

[ascl:1601.020]
ProC: Process Coordinator

Hovest, Wolfgang; Knoche, Jörg; Hell, Reinhard; Doerl, Uwe; Riller, Thomas; Matthai, Frank; Ensslin, Torsten; Rachen, Jörg; Robbers, Georg; Adorf, Hans-Martin; Reinecke, Martin; Bartelmann, Matthias

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[ascl:1601.019]
WzBinned: Binned and uncorrelated estimates of dark energy EOS extractor

WzBinned extracts binned and uncorrelated estimates of dark energy equation of state w(z) using Type Ia supernovae Hubble diagram and other cosmological probes and priors. It can handle an arbitrary number of input distance modulus data (entered as an input file SNdata.dat) and various existing cosmological information.

[ascl:1601.018]
MATPHOT: Stellar photometry and astrometry with discrete point spread functions

A discrete Point Spread Function (PSF) is a sampled version of a continuous two-dimensional PSF. The shape information about the photon scattering pattern of a discrete PSF is typically encoded using a numerical table (matrix) or a FITS image file. MATPHOT shifts discrete PSFs within an observational model using a 21-pixel- wide damped sinc function and position partial derivatives are computed using a five-point numerical differentiation formula. MATPHOT achieves accurate and precise stellar photometry and astrometry of undersampled CCD observations by using supersampled discrete PSFs that are sampled two, three, or more times more finely than the observational data.

[ascl:1601.017]
BASCS: Bayesian Separation of Close Sources

BASCS models spatial and spectral information from overlapping sources and the background, and jointly estimates all individual source parameters. The use of spectral information improves the detection of both faint and closely overlapping sources and increases the accuracy with which source parameters are inferred.

[ascl:1601.016]
Fit Kinematic PA: Fit the global kinematic position-angle of galaxies

Fit kinematic PA measures the global kinematic position-angle (PA) from integral field observations of a galaxy stellar or gas kinematics; the code is available in IDL and Python.

[ascl:1601.015]
QDPHOT: Quick & Dirty PHOTometry

QDPHOT is a fast CCD stellar photometry task which quickly produces CCD stellar photometry from two CCD images of a star field. It was designed to be a data mining tool for finding high-quality stellar observations in the data archives of the National Virtual Observatory. QDPHOT typically takes just a few seconds to analyze two Hubble Space Telescope WFPC2 observations of Local Group star clusters. It is also suitable for real-time data-quality analysis of CCD observations; on-the-fly instrumental color-magnitude diagrams can be produced at the telescope console during the few seconds between CCD readouts.

[ascl:1601.014]
Nulike: Neutrino telescope likelihood tools

Nulike is software for including full event-level information in likelihood calculations for neutrino telescope searches for dark matter annihilation. It includes both angular and spectral information about neutrino events as well as their total number, and can be used for single models without reference to the rest of a parameter space.

[ascl:1601.013]
ImpactModel: Black Hole Accretion Disk Impact Model

ImpactModel, written in Cython, computes the accretion disc impact spectrum at given frequencies and can compute other model quantities as a function of time.

[ascl:1601.012]
SavGolFilterCov: Savitzky Golay filter for data with error covariance

A Savitzky–Golay filter is often applied to data to smooth the data without greatly distorting the signal; however, almost all data inherently comes with noise, and the noise properties can differ from point to point. This python script improves upon the traditional Savitzky-Golay filter by accounting for error covariance in the data. The inputs and arguments are modeled after scipy.signal.savgol_filter.

[ascl:1601.011]
LACEwING: LocAting Constituent mEmbers In Nearby Groups

LACEwING (LocAting Constituent mEmbers In Nearby Groups) uses the kinematics (positions and motions) of stars to determine if they are members of one of 10 nearby young moving groups or 4 nearby open clusters within 100 parsecs. It is written for Python 2.7 and depends upon Numpy, Scipy, and Astropy (ascl:1304.002) modules. LACEwING can be used as a stand-alone code or as a module in other code. Additional python programs are present in the repository for the purpose of recalibrating the code and producing other analyses, including a traceback analysis.

[ascl:1601.010]
PARAVT: Parallel Voronoi Tessellation code

We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition take into account consistent boundary computation between tasks, and support periodic conditions. In addition, the code compute neighbors lists, Voronoi density and Voronoi cell volumes for each particle, and can compute density on a regular grid.

[ascl:1601.009]
K2fov: Field of view software for NASA's K2 mission

K2fov allows users to transform celestial coordinates into K2's pixel coordinate system for the purpose of preparing target proposals and field of view visualizations. In particular, the package, written in Python, adds the "K2onSilicon" and "K2findCampaigns" tools to the command line, allowing the visibility of targets to be checked in a user-friendly way.

[ascl:1601.008]
CosmicPy: Interactive cosmology computations

CosmicPy performs simple and interactive cosmology computations for forecasting cosmological parameters constraints; it computes tomographic and 3D Spherical Fourier-Bessel power spectra as well as Fisher matrices for galaxy clustering. Written in Python, it relies on a fast C++ implementation of Fourier-Bessel related computations, and requires NumPy, SciPy, and Matplotlib.

[ascl:1601.007]
LIRA: Low-counts Image Reconstruction and Analysis

LIRA (Low-counts Image Reconstruction and Analysis) deconvolves any unknown sky components, provides a fully Poisson 'goodness-of-fit' for any best-fit model, and quantifies uncertainties on the existence and shape of unknown sky. It does this without resorting to χ2 or rebinning, which can lose high-resolution information. It is written in R and requires the FITSio package.

[ascl:1601.006]
SAGE: Semi-Analytic Galaxy Evolution

Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M.

SAGE (Semi-Analytic Galaxy Evolution) models galaxy formation in a cosmological context. SAGE has been rebuilt to be modular and customizable. The model runs on any dark matter cosmological N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties.

[ascl:1601.005]
ctools: Cherenkov Telescope Science Analysis Software

Knödlseder, Jürgen; Mayer, Michael; Deil, Christoph; Buehler, Rolf; Bregeon, Johan; Martin, Pierrick

ctools provides tools for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided that the data and response functions are available in the format defined for CTA. ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-wise data analysis. A Python module allows control of all executables, and the creation of shell or Python scripts and pipelines is supported. ctools provides cscripts, which are Python scripts complementing the binary executables. Extensions of the ctools package by user defined binary executables or Python scripts is supported. ctools are based on GammaLib (ascl:1110.007).

[ascl:1601.004]
Odyssey: Ray tracing and radiative transfer in Kerr spacetime

Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

[ascl:1601.003]
SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

[ascl:1601.002]
Hyper-Fit: Fitting routines for multidimensional data with multivariate Gaussian uncertainties

The R package Hyper-Fit fits hyperplanes (hyper.fit) and creates 2D/3D visualizations (hyper.plot2d / hyper.plot3d) to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimensional dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane. A web interface for online fitting is also available at http://hyperfit.icrar.org.

[ascl:1601.001]
TRADES: TRAnsits and Dynamics of Exoplanetary Systems

TRADES (TRAnsits and Dynamics of Exoplanetary Systems) simultaneously fits observed radial velocities and transit times data to determine the orbital parameters of exoplanetary systems from observational data. It uses a dynamical simulator for N-body systems that also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis.

[ascl:1512.020]
TACT: The Action Computation Tool

The Action Computation Tool (TACT) tests methods for estimating actions, angles and frequencies of orbits in both axisymmetric and triaxial potentials, including general spherical potentials, analytic potentials (Isochrone and Harmonic oscillator), axisymmetric Stackel fudge, average generating function from orbit (AvGF), and others. It is written in C++; code is provided to compile the routines into a Python library. TM (ascl:1512.014) and LAPACK are required to access some features.

[ascl:1512.019]
UPSILoN: AUtomated Classification of Periodic Variable Stars using MachIne LearNing

UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing) classifies periodic variable stars such as Delta Scuti stars, RR Lyraes, Cepheids, Type II Cepheids, eclipsing binaries, and long-period variables (i.e. superclasses), and their subclasses (e.g. RR Lyrae ab, c, d, and e types) using well-sampled light curves from any astronomical time-series surveys in optical bands regardless of their survey-specific characteristics such as color, magnitude, and sampling rate. UPSILoN consists of two parts, one which extracts variability features from a light curve, and another which classifies a light curve, and returns extracted features, a predicted class, and a class probability. In principle, UPSILoN can classify any light curves having arbitrary number of data points, but using light curves with more than ~80 data points provides the best classification quality.

[ascl:1512.018]
growl: Growth factor and growth rate of expanding universes

Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

[ascl:1512.017]
FFTLog: Fast Fourier or Hankel transform

FFTLog is a set of Fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFTLog can be regarded as a natural analogue to the standard Fast Fourier Transform (FFT), in the sense that, just as the normal FFT gives the exact (to machine precision) Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m, of a logarithmically spaced periodic sequence.

[ascl:1512.016]
ZeldovichRecon: Halo correlation function using the Zeldovich approximation

ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants:

- zelrecon.cpp, which computes the various contributions to the correlation function;

- zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and

- a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.

[ascl:1512.015]
Spirality: Spiral arm pitch angle measurement

Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

[ascl:1512.014]
TM: Torus Mapper

TM (Torus Mapper) produces models for orbits in action-angle coordinates in axisymmetric potentials using torus mapping, a non-perturbative technique for creating orbital tori for specified values of the action integrals. It can compute a star's position at any time given an orbital torus and a star’s position at a reference time, and also provides a way to choose initial conditions for N-body simulations of realistic disc

galaxies that start in perfect equilibrium. TM provides some advantages over use of a standard time-stepper to

create orbits.

[ascl:1512.013]
CounterPoint: Zeeman-split absorption lines

CounterPoint works in concert with MoogStokes (ascl:1308.018). It applies the Zeeman effect to the atomic lines in the region of study, splitting them into the correct number of Zeeman components and adjusting their relative intensities according to the predictions of Quantum Mechanics, and finally creates a Moog-readable line list for use with MoogStokes. CounterPoint has the ability to use VALD and HITRAN line databases for both atomic and molecular lines.

[ascl:1512.012]
DiffuseModel: Modeling the diffuse ultraviolet background

DiffuseModel calculates the scattered radiation from dust scattering in the Milky Way based

on stars from the Hipparcos catalog. It uses Monte Carlo to implement multiple scattering and assumes a user-supplied grid for the dust distribution. The output is a FITS file with the diffuse light over the Galaxy. It is intended for use in the UV (900 - 3000 A) but may be modified for use in other wavelengths and galaxies.

[ascl:1512.011]
ExoData: Open Exoplanet Catalogue exploration and analysis tool

ExoData is a python interface for accessing and exploring the Open Exoplanet Catalogue. It allows searching of planets (including alternate names) and easy navigation of hierarchy, parses spectral types and fills in missing parameters based on programmable specifications, and provides easy reference of planet parameters such as GJ1214b.ra, GJ1214b.T, and GJ1214b.R. It calculates values such as transit duration, can easily rescale units, and can be used as an input catalog for large scale simulation and analysis of planets.

[ascl:1512.010]
CubeIndexer: Indexer for regions of interest in data cubes

Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio

CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.

[ascl:1512.009]
DRACULA: Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy

Aguena, Michel; Busti, Vinicius C.; Camacho, Hugo; Sasdelli, Michele; Ishida, Emille E. O.; Vilalta, Ricardo; Trindade, Arlindo M. M.; Gieseke, Fabien; de Souza, Rafael S.; Fantaye, Yabebal T.; Mazzali, Paolo A.

DRACULA classifies objects using dimensionality reduction and clustering. The code has an easy interface and can be applied to separate several types of objects. It is based on tools developed in scikit-learn, with some usage requiring also the H2O package.

[ascl:1512.008]
Bisous model: Detecting filamentary pattern in point processes

The Bisous model is a marked point process that models multi-dimensional patterns. The Bisous filament finder works directly with galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field; these two fields are used to extract filament spines from the data.

[ascl:1512.007]
AstroBlend: Visualization package for use with Blender

AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

[ascl:1512.006]
GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

[ascl:1512.005]
ALFA: Automated Line Fitting Algorithm

ALFA fits emission line spectra of arbitrary wavelength coverage and resolution, fully automatically. It uses a catalog of lines which may be present to construct synthetic spectra, the parameters of which are then optimized by means of a genetic algorithm. Uncertainties are estimated using the noise structure of the residuals. An emission line spectrum containing several hundred lines can be fitted in a few seconds using a single processor of a typical contemporary desktop or laptop PC. Data cubes in FITS format can be analysed using multiple processors, and an analysis of tens of thousands of deep spectra obtained with instruments such as MUSE will take a few hours.

[ascl:1512.004]
EDRSX: Extensions to the EDRS package

EDRSX extends the Electronography Data Reduction System (EDRS, ascl:1512.0030). It makes more versatile analysis of IRAS images than was otherwise available possible. EDRSX provides facilities for converting images into and out of EDRS format, accesses RA and DEC information stored with IRAS images, and performs several standard image processing operations such as displaying image histograms and statistics, and Fourier transforms. This enables such operations to be performed as estimation and subtraction of non-linear backgrounds, de-striping of IRAS images, modelling of image features, and easy aligning of separate images, among others.

[ascl:1512.003]
EDRS: Electronography Data Reduction System

The Electronography Data Reduction System (EDRS) reduces and analyzes large format astronomical images and was written to be used from within ASPIC (ascl:1510.006). In its original form it specialized in the reduction of electronographic data but was built around a set of utility programs which were widely applicable to astronomical images from other sources. The programs align and calibrate images, handle lists of (X,Y) positions, apply linear geometrical transformations and do some stellar photometry. This package is now obsolete.

[ascl:1512.002]
GetData: A filesystem-based, column-oriented database format for time-ordered binary data

The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

[ascl:1512.001]
IRACpm: Distortion correction for IRAC astrometric data

The IRACpm R package applies a 7-8 order distortion correction to IRAC astrometric data from the Spitzer Space Telescope and includes a function for measuring apparent proper motions between different Epochs. These corrections are applicable only to positions measured by APEX; cryogenic images benefit from a correction for varying intra-pixel sensitivity prior to the application of the distortion.

[ascl:1511.023]
PromptNuFlux: Prompt atmospheric neutrino flux calculator

PromptNuFlux computes the prompt atmospheric neutrino flux E3Φ(GeV2/(cm2ssr)), including the total associated theory uncertainty, for a range of energies between E=103 GeV and E=107.5 GeV. Results are available for five different parametrizations of the input cosmic ray flux: BPL, H3P, H3A, H14a, H14b.

[ascl:1511.022]
ZInCo: Zoomed Initial Conditions

ZInCo manipulates existing initial conditions (ICs) compatible with GADGET-2/3 (ascl:0003.001) ICs, allowing different flavors of zoom-in simulations rather then producing new ICs from scratch. The code can manipulate initial conditions with multiple types of particles, unlike the vast majority of zoom-in ICs codes available, preserving their properties and random field. This allows ZInCo to take advantage of other codes that produce ICs featuring a broad range of different cosmologies; it can be used also on existing ICs even in the unlikely case nothing is known about their properties. The code is written in C++ and parallelized using MPI.

[ascl:1511.021]
EPIC: E-field Parallel Imaging Correlator

E-field Parallel Imaging Correlator (EPIC), a highly parallelized Object Oriented Python package, implements the Modular Optimal Frequency Fourier (MOFF) imaging technique. It also includes visibility-based imaging using the software holography technique and a simulator for generating electric fields from a sky model. EPIC can accept dual-polarization inputs and produce images of all four instrumental cross-polarizations.

[ascl:1511.020]
Mercury-T: Tidally evolving multi-planet systems code

Mercury-T calculates the evolution of semi-major axis, eccentricity, inclination, rotation period and obliquity of the planets as well as the rotation period evolution of the host body; it is based on the N-body code Mercury (Chambers 1999, ascl:1201.008). It is flexible, allowing computation of the tidal evolution of systems orbiting any non-evolving object (if its mass, radius, dissipation factor and rotation period are known), but also evolving brown dwarfs (BDs) of mass between 0.01 and 0.08 M⊙, an evolving M-dwarf of 0.1 M⊙, an evolving Sun-like star, and an evolving Jupiter.

[ascl:1511.019]
CosmoBolognaLib: Open source C++ libraries for cosmological calculations

CosmoBolognaLib contains numerical libraries for cosmological calculations; written in C++, it is intended to define a common numerical environment for cosmological investigations of the large-scale structure of the Universe. The software aids in handling real and simulated astronomical catalogs by measuring one-point, two-point and three-point statistics in configuration space and performing cosmological analyses. These open source libraries can be included in either C++ or Python codes.

[ascl:1511.018]
LDC3: Three-parameter limb darkening coefficient sampling

LDC3 samples physically permissible limb darkening coefficients for the Sing et al. (2009) three-parameter law. It defines the physically permissible intensity profile as being everywhere-positive, monotonically decreasing from center to limb and having a curl at the limb. The approximate sampling method is analytic and thus very fast, reproducing physically permissible samples in 97.3% of random draws (high validity) and encompassing 94.4% of the physically permissible parameter volume (high completeness).

[ascl:1511.017]
DES exposure checker: Dark Energy Survey image quality control crowdsourcer

DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

[ascl:1511.016]
JKTLD: Limb darkening coefficients

JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.

[ascl:1511.015]
George: Gaussian Process regression

George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

[ascl:1511.014]
HumVI: Human Viewable Image creation

HumVI creates a composite color image from sets of input FITS files, following the Lupton et al (2004, ascl:1511.013) composition algorithm. Written in Python, it takes three FITS files as input and returns a color composite, color-saturated png image with an arcsinh stretch. HumVI reads the zero points out of the FITS headers and uses them to put all the images on the same flux scale; photometrically calibrated images produce the best results.

[ascl:1511.013]
CCDtoRGB: RGB image production from three-band atronomical images

Lupton, Robert; Blanton, Michael R.; Fekete, George; Hogg, David W.; O'Mullane, Wil; Szalay, Alex; Wherry, Nicholas

CCDtoRGB produces red‐green‐blue (RGB) composites from three‐band astronomical images, ensuring an object with a specified astronomical color has a unique color in the RGB image rather than burnt‐out white stars. Use of an arcsinh stretch shows faint objects while simultaneously preserving the structure of brighter objects in the field, such as the spiral arms of large galaxies.

[ascl:1511.012]
milkywayproject_triggering: Correlation functions for two catalog datasets

This triggering code calculates the correlation function between two astrophysical data catalogs using the Landy-Szalay approximator generalized for heterogeneous datasets (Landy & Szalay, 1993; Bradshaw et al, 2011) or the auto-correlation function of one dataset. It assumes that one catalog has positional information as well as an object size (effective radius), and the other only positional information.

[ascl:1511.011]
SparsePZ: Sparse Representation of Photometric Redshift PDFs

SparsePZ uses sparse basis representation to fully represent individual photometric redshift probability density functions (PDFs). This approach requires approximately half the parameters for the same multi-Gaussian fitting accuracy, and has the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function. Only 10-20 points per galaxy are needed to reconstruct both the individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9 per cent when compared to the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage of 200 original values by a factor of 10-20. This basis representation can be directly extended to a cosmological analysis, thereby increasing computational performance without losing resolution or accuracy.

[ascl:1511.010]
Galileon-Solver: N-body code

Galileon-Solver adds an extra force to PMCode (ascl:9909.001) using a modified Poisson equation to provide a non-linearly transformed density field, with the operations all performed in real space. The code's implicit spherical top-hat assumption only works over fairly long distance averaging scales, where the coarse-grained picture it relies on is a good approximation of reality; it uses discrete Fourier transforms and cyclic reduction in the usual way.

[ascl:1511.009]
Pangloss: Reconstructing lensing mass

Pangloss reconstructs all the mass within a light cone through the Universe. Understanding complex mass distributions like this is important for accurate time delay lens cosmography, and also for accurate lens magnification estimation. It aspires to use all available data in an attempt to make the best of all mass maps.

[ascl:1511.008]
MCAL: M dwarf metallicity and temperature calculator

MCAL calculates high precision metallicities and effective temperatures for M dwarfs; the method behaves properly down to R = 40 000 and S/N = 25, and results were validated against a sample of stars in common with SOPHIE high resolution spectra.

[ascl:1511.007]
MHF: MLAPM Halo Finder

MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.

[ascl:1511.006]
T-Matrix: Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles

The T-Matrix package includes codes to compute electromagnetic scattering by homogeneous, rotationally symmetric nonspherical particles in fixed and random orientations, randomly oriented two-sphere clusters with touching or separated components, and multi-sphere clusters in fixed and random orientations. All codes are written in Fortran-77. LAPACK-based, extended-precision, Gauss-elimination- and NAG-based, and superposition codes are available, as are double-precision superposition, parallelized double-precision, double-precision Lorenz-Mie codes, and codes for the computation of the coefficients for the generalized Chebyshev shape.

[ascl:1511.005]
pyhrs: Spectroscopic data reduction package for SALT

The pyhrs package reduces data from the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT). HRS is a dual-beam, fiber fed echelle spectrectrograph with four modes of operation: low (R~16000), medium (R~34000), high (R~65000), and high stability (R~65000). pyhrs, written in Python, includes all of the steps necessary to reduce HRS low, medium, and high resolution data; this includes basic CCD reductions, order identification, wavelength calibration, and extraction of the spectra.

[ascl:1511.004]
Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis

Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.

[ascl:1511.003]
SkyView Virtual Telescope

The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well.

SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

[ascl:1511.002]
JSPAM: Interacting galaxies modeller

JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

[ascl:1511.001]
SuperFreq: Numerical determination of fundamental frequencies of an orbit

SuperFreq numerically estimates the fundamental frequencies and orbital actions of pre-computed orbital time series. It is an implementation of a version of the Numerical Analysis of Fundamental Frequencies close to that by Monica Valluri, which itself is an implementation of an algorithm first used by Jacques Laskar.

[ascl:1510.007]
ccdproc: CCD data reduction software

Craig, M. W.; Crawford, S. M.; Deil, Christoph; Gomez, Carlos; Günther, Hans Moritz; Heidt, Nathan; Horton, Anthony; Karr, Jennifer; Nelson, Stefan; Ninan, Joe Phillip; Pattnaik, Punyaslok; Rol, Evert; Schoenell, William; Seifert, Michael; Singh, Sourav; Sipocz, Brigitta; Stotts, Connor; Streicher, Ole; Tollerud, Erik; Walker, Nathan; ccdproc contributors

Ccdproc is an affiliated package for the AstroPy package for basic data reductions of CCD images. The ccdproc package provides many of the necessary tools for processing of ccd images built on a framework to provide error propagation and bad pixel tracking throughout the reduction process.

[submitted]
Xsmurf - Measuring multifractal properties with the continuous wavelet transform modulus maxima (WTMM) method

Xsmurf is a software package written in C/Tcl/Tk that implements the continuous wavelet transform modulus maxima method, an image processing tool for measuring fractal and multifractal properties in experimental and simulation data.

Multifractal analysis is described in the following page: http://www.scholarpedia.org/article/Wavelet-based_multifractal_analysis

Xsmurf has been used in multiple applications in astrophysics, e.g. :

- analysis of solar magnetograms for characterizing complexity of evolving regions

- fractal/multifractal nature and anisotropic structure of Galactic atomic hydrogen (H I)

- analysis of simulation data (velocity field, ...) of turbulent flow

[ascl:1510.006]
ASPIC: STARLINK image processing package

Davenhall, A. C.; Hartley, Ken F.; Penny, Alan J.; Kelly, B. D.; King, Dave J.; Lupton, W. F.; Tudhope, D.; Pike, C. D.; Cooke, J. A.; Pence, W. D.; Wallace, Patrick T.; Brownrigg, D. R. K.; Baines, Dave W. T.; Warren-Smith, Rodney F.; McNally, B. V.; Bell, L. L.; Jones, T. A.; Terrett, Dave L.; Pearce, D. J.; Carey, J. V.; Currie, Malcolm J.; Benn, Chris; Beard, S. M.; Giddings, Jack R.; Balona, Luis A.; Harrison, B.; Wood, Roger; Sparkes, Bill; Allan, Peter M.; Berry, David S.; Shirt, J. V.

ASPIC handled basic astronomical image processing. Early releases concentrated on image arithmetic, standard filters, expansion/contraction/selection/combination of images, and displaying and manipulating images on the ARGS and other devices. Later releases added new astronomy-specific applications to this sound framework. The ASPIC collection of about 400 image-processing programs was written using the Starlink "interim" environment in the 1980; the software is now obsolete.

[submitted]
allantools: Allan deviation calculation

allantools calculates Allan deviation and related time & frequency statistics. The library is written in Python and has a GPL v3+ license. It takes input data that is either evenly spaced observations of either fractional frequency, or phase in seconds. Deviations are calculated for given tau values in seconds. Several noise generators for creating synthetic datasets are also included.

[ascl:1510.005]
GALFORM: Galactic modeling

GALFORM is a semi-analytic model for calculating the formation and evolution of galaxies in hierarchical clustering cosmologies. Using a Monte Carlo algorithm to follow the merging evolution of dark matter haloes with arbitrary mass resolution, it incorporates realistic descriptions of the density profiles of dark matter haloes and the gas they contain. It follows the chemical evolution of gas and stars, and the associated production of dust and includes a detailed calculation of the sizes of discs and spheroids.

[ascl:1510.004]
DEBiL: Detached Eclipsing Binary Light curve fitter

DEBiL rapidly fits a large number of light curves to a simple model. It is the central component of a pipeline for systematically identifying and analyzing eclipsing binaries within a large dataset of light curves; the results of DEBiL can be used to flag light curves of interest for follow-up analysis.

[ascl:1510.003]
PyLDTk: Python toolkit for calculating stellar limb darkening profiles and model-specific coefficients for arbitrary filters

PyLDTk automates the calculation of custom stellar limb darkening (LD) profiles and model-specific limb darkening coefficients (LDC) using the library of PHOENIX-generated specific intensity spectra by Husser et al. (2013). It facilitates exoplanet transit light curve modeling, especially transmission spectroscopy where the modeling is carried out for custom narrow passbands. PyLDTk construct model-specific priors on the limb darkening coefficients prior to the transit light curve modeling. It can also be directly integrated into the log posterior computation of any pre-existing transit modeling code with minimal modifications to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the whole parameter space that can explain the profile without the need to approximate this constraint by a prior distribution. This is useful when using a high-order limb darkening model where the coefficients are often correlated, and the priors estimated from the tabulated values usually fail to include these correlations.

[ascl:1510.002]
batman: BAsic Transit Model cAlculatioN in Python

batman provides fast calculation of exoplanet transit light curves and supports calculation of light curves for any radially symmetric stellar limb darkening law. It uses an integration algorithm for models that cannot be quickly calculated analytically, and in typical use, the batman Python package can calculate a million model light curves in well under ten minutes for any limb darkening profile.

[ascl:1510.001]
GGADT: Generalized Geometry Anomalous Diffraction Theory

GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

[ascl:1509.010]
PyCS : Python Curve Shifting

PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.

[ascl:1509.009]
OPERA: Objective Prism Enhanced Reduction Algorithms

OPERA (Objective Prism Enhanced Reduction Algorithms) automatically analyzes astronomical images using the objective-prism (OP) technique to register thousands of low resolution spectra in large areas. It detects objects in an image, extracts one-dimensional spectra, and identifies the emission line feature. The main advantages of this method are: 1) to avoid subjectivity inherent to visual inspection used in past studies; and 2) the ability to obtain physical parameters without follow-up spectroscopy.

[ascl:1509.008]
GFARGO: FARGO for GPU

GFARGO is a GPU version of FARGO. It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionnalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

[ascl:1509.007]
pycola: N-body COLA method code

pycola is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains, which trades accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing. The COLA method achieves its speed by calculating the large-scale dynamics exactly using LPT while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos.

[ascl:1509.006]
FARGO3D: Hydrodynamics/magnetohydrodynamics code

A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.

[ascl:1509.005]
TRUVOT: True Background Technique for the Swift UVOT Grisms

TRUVOT decontaminates Swift UVOT grism spectra for transient objects. The technique makes use of template images in a process similar to image subtraction.

[ascl:1509.004]
FalconIC: Initial conditions generator for cosmological N-body simulations in Newtonian, Relativistic and Modified theories

FalconIC generates discrete particle positions, velocities, masses and pressures based on linear Boltzmann solutions that are computed by libraries such as CLASS and CAMB. FalconIC generates these initial conditions for any species included in the selection, including Baryons, Cold Dark Matter and Dark Energy fluids. Any species can be set in Eulerian (on a fixed grid) or Lagrangian (particle motion) representation, depending on the gauge and reality chosen. That is, for relativistic initial conditions in the synchronous comoving gauge, Dark Matter can only be described in an Eulerian representation. For all other choices (Relativistic in Longitudinal gauge, Newtonian with relativistic expansion rates, Newtonian without any notion of radiation), all species can be treated in all representations. The code also computes spectra. FalconIC is useful for comparative studies on initial conditions.

[ascl:1509.003]
AFR (ASPFitsReader): A pulsar FITS file reader and analysis package

AFR, or ASPFitsReader, reduces, processes, and manipulates pulsar data, including calibration, template profile creation, and interactive excision of radio frequency interference from pulsar profile data. It also creates times-of-arrival compatible with Tempo (ascl:1509.002) and Tempo2 (ascl:1210.015) timing software.

[ascl:1509.002]
Tempo: Pulsar timing data analysis

Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.

Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.

[ascl:1509.001]
XSHPipelineManager: Wrapper for the VLT/X-shooter Data Reduction Pipeline

XSHPipelineManager provides a framework for reducing spectroscopic observations taken by the X-shooter spectrograph at the Very Large Telescope. This Python code wraps recipes developed by the European Southern Observatory and runs the full X-shooter data reduction pipeline. The code offers full flexibility in terms of what data reduction recipes to include and which calibration files to use. During the data reduction chain restart-files are saved, making it possible to restart at any step in the chain.

[ascl:1508.010]
SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer

The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.

[ascl:1508.009]
Trilogy: FITS image conversion software

Trilogy automatically scales and combines FITS images to produce color or grayscale images using Python scripts. The user assigns images to each color channel (RGB) or a single image to grayscale luminosity. Trilogy determines the intensity scaling automatically and independently in each channel to display faint features without saturating bright features. Each channel's scaling is determined based on a sample of the image (or summed images) and two input parameters. One parameter sets the output luminosity of "the noise," currently determined as 1-sigma above the sigma-clipped mean. The other parameter sets what fraction of the data (if any) in the sample region should be allowed to saturate. Default values for these parameters (0.15% and 0.001%, respectively) work well, but the user is able to adjust them. The scaling is accomplished using the logarithmic function y = a log(kx + 1) clipped between 0 and 1, where a and k are constants determined based on the data and desired scaling parameters as described above.

[ascl:1508.008]
NGMIX: Gaussian mixture models for 2D images

NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

[ascl:1508.007]
TreeCorr: Two-point correlation functions

TreeCorr efficiently computes two-point correlation functions. It can compute correlations of regular number counts, weak lensing shears, or scalar quantities such as convergence or CMB temperature fluctuations. Two-point correlations may be auto-correlations or cross-correlations, including any combination of shear, kappa, and counts. Two-point functions can be done with correct curved-sky calculation using RA, Dec coordinates, on a Euclidean tangent plane, or in 3D using RA, Dec and a distance. The front end is written in Python, which can be used as a Python module or as a standalone executable using configuration files; the actual computation of the correlation functions is done in C++ using ball trees (similar to kd trees), making the calculation extremely efficient, and when available, OpenMP is used to run in parallel on multi-core machines.

[ascl:1508.006]
SExSeg: SExtractor segmentation

SExSeg forces SExtractor (ascl:1010.064) to run using a pre-defined segmentation map (the definition of objects and their borders). The defined segments double as isophotal apertures. SExSeg alters the detection image based on a pre-defined segmenation map while preparing your "analysis image" by subtracting the background in a separate SExtractor run (using parameters you specify). SExtractor is then run in "double-image" mode with the altered detection image and background-subtracted analysis image.

[ascl:1508.005]
ColorPro: PSF-corrected aperture-matched photometry

ColorPro automatically obtains robust colors across images of varied PSF. To correct for the flux lost in images with poorer PSF, the "detection image" is blurred to match the PSF of these other images, allowing observation of how much flux is lost. All photometry is performed in the highest resolution frame (images being aligned given WCS information in the FITS headers), and identical apertures are used in every image. Usually isophotal apertures are used, as determined by SExtractor (ascl:1010.064). Using SExSeg (ascl:1508.006), object aperture definitions can be pre-defined and object detections from different image filters can be combined automatically into a single comprehensive "segmentation map." After producing the final photometric catalog, ColorPro can automatically run BPZ (ascl:1108.011) to obtain Bayesian Photometric Redshifts.

[ascl:1508.004]
FRELLED: FITS Realtime Explorer of Low Latency in Every Dimension

FRELLED (FITS Realtime Explorer of Low Latency in Every Dimension) creates 3D images in real time from 3D FITS files and is written in Python for the 3D graphics suite Blender. Users can interactively generate masks around regions of arbitrary geometry and use them to catalog sources, hide regions, and perform basic analysis (*e.g.*, image statistics within the selected region, generate contour plots, query NED and the SDSS). World coordinates are supported and multi-volume rendering is possible. FRELLED is designed for viewing HI data cubes and provides a number of tasks to commonly-used MIRIAD (ascl:1106.007) tasks (e.g. mbspect); however, many of its features are suitable for any type of data set. It also includes an n-body particle viewer with the ability to display 3D vector information as well as the ability to render time series movies of multiple FITS files and setup simple turntable rotation movies for single files.

[ascl:1508.003]
REDUCEME: Long-slit spectroscopic data reduction and analysis

Cardiel, N; Gorgas, J.; Pedraz, S.; Cenarro, J.; Alonso, O; Gil de Paz, A.; García-Dabó, E.; Sánchez-Blázquez, P.; Mármol-Queraltó, E.; Toloba, E.

The astronomical data reduction package REDUCEME reduces and analyzes long-slit spectroscopic data. The package uses the unformatted FORTRAN raw data format, so requires FITS files be transformed to REDUCEME format; the reverse operation (from REDUCEME to FITS format) is also available. The package is a set of programs written in FORTRAN 77 and includes shell scripts (using the C shell syntax) to perform routine tasks; it can be extended by the inclusion of external programs. REDUCEME uses PGPLOT (ascl:1103.002) for line plots and images, and a subset of subroutines, called BUTTON, enables the user to communicate interactively with the image display employing graphic buttons. One advantage of using REDUCEME is that for each image an associated error image can also be processed throughout the reduction process, allowing for a careful control of the error propagation.

[ascl:1508.002]
NICOLE: NLTE Stokes Synthesis/Inversion Code

NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.

[ascl:1508.001]
HMcode: Halo-model matter power spectrum computation

HMcode computes the halo-model matter power spectrum. It is written in Fortran90 and has been designed to quickly (~0.5s for 200 k-values across 16 redshifts on a single core) produce matter spectra for a wide range of cosmological models. In testing it was shown to match spectra produced by the 'Coyote Emulator' to an accuracy of 5 per cent for k less than 10h Mpc^-1. However, it can also produce spectra well outside of the parameter space of the emulator.

[ascl:1507.020]
IEHI: Ionization Equilibrium for Heavy Ions

IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

[ascl:1507.019]
AstroStat: Statistical analysis tool

AstroStat performs statistical analysis on data and is compatible with Virtual Observatory (VO) standards. It accepts data in a variety of formats and performs various statistical tests using a menu driven interface. Analyses, performed in R, include exploratory tests, visualizations, distribution fitting, correlation and causation, hypothesis testing, multivariate analysis and clustering. AstroStat is available in two versions with an identical interface and features: as a web service that can be run using any standard browser and as an offline application.

[ascl:1507.018]
pyro: Python-based tutorial for computational methods for hydrodynamics

pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.

[ascl:1507.017]
REDSPEC: NIRSPEC data reduction

REDSPEC is an IDL based reduction package designed with NIRSPEC in mind though can be used to reduce data from other spectrographs as well. REDSPEC accomplishes spatial rectification by summing an *A+B* pair of a calibration star to produce an image with two spectra; the image is remapped on the basis of polynomial fits to the spectral traces and calculation of gaussian centroids to define their separation, producing straight spectral traces with respect to the detector rows. The raw images are remapped onto a coordinate system with uniform intervals in spatial extent along the slit and in wavelength along the dispersion axis.

[ascl:1507.016]
Least Asymmetry: Centering Method

Lust, Nate B.; Britt, Daniel; Harrington, Joseph; Nymeyer, Sarah; Stevenson, Kevin B.; Ross, Emily L.; Bowman, William; Fraine, Jonathan

Least Asymmetry finds the center of a distribution of light in an image using the least asymmetry method; the code also contains center of light and fitting a Gaussian routines. All functions in Least Asymmetry are designed to take optional weights.

[ascl:1507.015]
DALI: Derivative Approximation for LIkelihoods

DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.

Would you like to view a random code?