ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1-100 of 2372 (2337 ASCL, 35 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2011.030] DDCalc: Dark matter direct detection phenomenology package

DDCalc performs various dark matter direct detection calculations, including signal rate predictions, constraints on light DM, and likelihoods for several experiments. It offers eighteen non-relativistic effective operators to describe velocity and momentum transfer, and elastic scattering of DM particles off nucleons, and has an extended detector interface.

[ascl:2011.029] DarkBit: Dark matter constraints calculator

DarkBit computes dark matter constraints on extensions to the Standard Model of particle physics. Written in the GAMBIT (ascl:1708.030) framework, it seamlessly integrates with other tools in the statistical fitting framework; it is also available as a standalone tool. It offers a signal yield calculator for gamma-ray observations, provides likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes, and provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states.

[ascl:2011.028] CWITools: Tools for Cosmic Web Imager data

CWITools analyzes integral field spectroscopy data from the Palomar and Keck Cosmic Web Imagers, and can be adapted for any three-dimensional integral field spectroscopy data. The package is modular, allowing users to construct data analysis pipelines to suit their own scientific needs, and includes tools for reducing data cubes, extracting a target signal, making emission maps, spectra, and other products. It also fits emission line and radial profiles and obtains final scalar quantities such as size and luminosity, among other tasks. It also contains helper functions that can, for example, obtain the wavelength axis from a 3D header, and create an auto-populated list of nebular emission lines or sky lines.

[ascl:2011.027] kīauhōkū: Stellar model grid interpolation

Kīauhōkū interacts with, manipulates, and interpolates between stellar evolutionary tracks in a model grid. It was built for interacting with YREC models, but other stellar evolution model grids, including MIST, Dartmouth, and GARSTEC, are also available.

[ascl:2011.026] DeepShadows: Finding low-surface-brightness galaxies in survey images

DeepShadows uses a convolutional neural networks (CNNs) to separate low-surface-brightness galaxies (LSBGs) from artifacts (such as Galactic cirrus and star-forming regions) in survey images. The model is trained and tested on labeled LSBGs and artifacts from the Dark Energy Survey and demonstrates that CNNs offer a promising path in the quest to study the low-surface-brightness universe.

[ascl:2011.025] PNICER: Extinction estimator

PNICER estimates extinction for individual sources and creates extinction maps using unsupervised machine learning algorithms. Extinction towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field observations. PNICER also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps including the NICEST correction for cloud substructure.

[ascl:2011.024] ACStools: Python tools for Hubble Space Telescope Advanced Camera for Surveys data

The ACStools package contains Python tools to work with data from the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The package has several calibration utilities and a zeropoints calculator, can detect satellite trails, and offers destriping, polarization, and photometric tools.

[ascl:2011.023] reproject: Python-based astronomical image reprojection

reproject implements image reprojection (resampling) methods for astronomical images using various techniques via a uniform interface. Reprojection re-grids images from one world coordinate system to another (for example changing the pixel resolution, orientation, coordinate system). reproject works on celestial images by interpolation, as well as by finding the exact overlap between pixels on the celestial sphere. It can also reproject to/from HEALPIX projections by relying on the astropy-healpix package.

[ascl:2011.022] GPCAL: Instrumental polarization calibration in VLBI data

GPCAL performs instrumental polarization calibration in very long baseline interferometry (VLBI) data. It enhances the calibration accuracy by enabling users to fit the model to multiple calibrators data simultaneously and to take into account the calibrators linear polarization structures instead of using the conventional similarity assumption. GPCAL is based on AIPS (ascl:9911.003) and uses ParselTongue (ascl:1208.020) to run AIPS tasks.

[ascl:2011.021] HSTCosmicrays: Analyzing cosmic rays in HST calibration data

HSTCosmicrays finds and characterizes cosmic rays found in dark frames (exposures taken with the shutter closed) taken with instruments on the Hubble Space Telescope (HST). Dark exposures are obtained routinely by all the Hubble Space Telescope instruments for calibration. The main processing pipeline runs locally or in the cloud on AWS utilizing the HST Public Dataset.

[ascl:2011.020] REBOUNDx: Adding effects in REBOUND N-body integrations

REBOUNDx incorporates additional physics into REBOUND (ascl:1110.016) simulations. Users can add effects from a list of pre-implemented astrophysical forces or contribute new ones. The main code is written in C, and a Python wrapper is provided for interfacing with other libraries. The REBOUNDx source code is machine independent and a binary format to save REBOUNDx configurations interfaces with the SimulationArchive class in REBOUND, making it possible to share and reproduce results bit by bit.

[ascl:2011.019] Scintools: Pulsar scintillation data tools

SCINTOOLS (SCINtillation TOOLS) simulates and analyzes pulsar scintillation data. The code can be used for processing observed dynamic spectra, computing secondary spectra and ACFs, measuring scintillation arcs, simulating dynamic spectra, and modeling pulsar transverse velocities through scintillation arcs or diffractive timescales.

[ascl:2011.018] Clustering: Code for clustering single pulse events

Clustering is a modified version of the single-pulse sifting algorithm RRATrap (ascl:2011.017) combined with DBSCAN codes to cluster single pulse events.

[ascl:2011.017] RRATtrap: Rotating Radio Transient identifier

RRATtrap is a single-pulse sifting algorithm to identify Rotating Radio Transients (RRATs) and transients using output from the PRESTO (ascl:1107.017) routine single_pulse_search.py. It can be integrated into pulsar survey data analysis pipelines and, in addition to finding RRATs, it can also identify Fast Radio Bursts.

[ascl:2011.016] GoFish: Molecular line detections in protoplanetary disks

GoFish exploits the known rotation of a protoplanetary disk to shift all emission to a common line center in order to stack them, increasing the signal-to-noise of the spectrum, detecting weaker lines, or super-sampling the spectrum to better resolve the line profile.

[ascl:2011.015] EvapMass: Minimum mass of planets predictor

EvapMass predicts the minimum masses of planets in multi-planet systems using the photoevaporation-driven evolution model. The planetary system requires both a planet above and below the radius gap to be useful for this test. EvapMass includes an example Jupyter notebook for the Kepler-36 system. EvalMass can be used to identify TESS systems that warrant radial-velocity follow-up to further test the photoevaporation model.

[ascl:2011.014] SEDkit: Spectral energy distribution construction and analysis tools

SEDkit constructs and analyzes simple spectral energy distributions (SED). This collection of pure Python modules creates individual SEDs or SED catalogs from spectra and/or photometry and calculates fundamental parameters (fbol, Mbol, Lbol, Teff, mass, log(g)).

[ascl:2011.013] TLC: Tidally Locked Coordinates

Tidally Locked Coordinates converts global climate model (GCM) output from standard/Earth-like coordinates into a tidally locked coordinate system. The transformations in Tidally Locked Coordinates are useful for plotting and analyzing GCM simulations of slowly rotating tidally locked planets such as Earth-like planets inside the habitable zone of small stars. They can be used to leverage the fact that a slowly rotating planet's climate will start to look approximately symmetric about the axis of insolation.

[ascl:2011.012] wobble: Time-series spectra analyzer

wobble analyzes time-series spectra. It was designed with stabilized extreme precision radial velocity (EPRV) spectrographs in mind, but is highly flexible and extensible to a variety of applications. It takes a data-driven approach to deriving radial velocities and requires no a priori knowledge of the stellar spectrum or telluric features.

[ascl:2011.011] frbcat: Fast Radio Burst CATalog querying package

frbcat queries and downloads Fast Radio Burst (FRB) data from the FRBCAT Catalogue web page, the CHIME-REPEATERS web page and the Transient Name Server (TNS). It is written in Python and can be installed using pip.

[ascl:2011.010] ARES: Accelerated Reionization Era Simulations

The Accelerated Reionization Era Simulations (ARES) code rapidly generates models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or global radiation background calculator.

[ascl:2011.009] HaloGen: Modular halo model code

HaloGen computes all auto and cross spectra and halo model trispectrum in simple configurations. This modular halo model code computes 3d power spectra, and the corresponding projected 2d power spectra in the Limber and flat sky approximations. The observables include matter density, galaxy lensing, CMB lensing, thermal Sunyaev-Zel'dovich, cosmic infrared background, tracers with any dn/dz, b(z) and HOD.

[ascl:2011.008] GOTHIC: Double nuclei galaxy detector

GOTHIC (Graph-bOosTed iterated HIll Climbing) detects whether a given image of a galaxy has characteristic features of a double nuclei galaxy (DNG). Galaxy interactions and mergers play a crucial role in the hierarchical growth of structure in the universe; galaxy mergers can lead to the formation of elliptical galaxies and larger disk galaxies, as well as drive galaxy evolution through star formation and nuclear activity. During mergers, the nuclei of the individual galaxies come closer and finally form a double nuclei galaxy. Although mergers are common, the detection of double-nuclei galaxies (DNGs) is rare and fairly serendipitous. Their properties can help us understand the formation of supermassive black hole (SMBH) binaries, dual active galactic nuclei (DAGN) and the associated feedback effects. GOTHIC provides an automatic and systematic way to survey data for the discovery of double nuclei galaxies.

[ascl:2011.007] DYNAMITE: DYnamics, Age and Metallicity Indicators Tracing Evolution

DYNAMITE (DYnamics, Age and Metallicity Indicators Tracing Evolution) is a triaxial dynamical modeling code for stellar systems and is based on existing codes for Schwarzschild modeling in triaxial systems. DYNAMITE provides an easy-to-use object oriented Python wrapper that extends the scope of pre-existing triaxial Schwarzschild codes with a number of new features, including discrete kinematics, more flexible descriptions of line-of-sight velocity distributions, and modeling of stellar population information. It also offers more efficient steps through parameter space, and can use GPU acceleration.

[ascl:2011.006] tlpipe: Data processing pipeline for the Tianlai experiment

tlpipe processes the drift scan survey data from the Tianlai experiment; the Tainlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. tlpipe performs offline data processing tasks such as radio frequency interference (RFI) flagging, array calibration, binning, and map-making, in addition to other tasks. It includes utility functions needed for the data analysis, such as data selection, transformation, visualization and others. tlpipe implements a number of new algorithms are implemented, including the eigenvector decomposition method for array calibration and the Tikhnov regularization for m-mode analysis.

[submitted] MUSE-PSFR

The MUSE-PSFR code allows to reconstruct a PSF for the MUSE WFM-AO mode, using telemetry data from SPARTA.

[ascl:2011.005] DarkCapPy: Dark Matter Capture and Annihilation

DarkCapPy calculates rates associated with dark matter capture in the Earth, annihilation into light mediators, and observable decay of the light mediators near the surface of the Earth. This Python/Jupyter package can calculate the Sommerfeld enhancement at the center of the Earth and the timescale for capture-annihilation equilibrium, and can be modified for other compact astronomical objects and mediator spins.

[ascl:2011.004] MCMCDiagnostics: Markov Chain Monte Carlo convergence diagnostics

MCMCDiagnostics contains two diagnostics, written in Julia, for Markov Chain Monte Carlo. The first is potential_scale_reduction(chains...), which estimates the potential scale reduction factor, also known as Rhat, for multiple scalar chains
. The second, effective_sample_size(chain), calculates the effective sample size for scalar chains. These diagnostics are intended as building blocks for use by other libraries.

[ascl:2011.003] Kalkayotl: Inferring distances to stellar clusters from Gaia parallaxes

Kalkayotl obtains samples of the joint posterior distribution of cluster parameters and distances to the cluster stars from Gaia parallaxes using Bayesian inference. The code is designed to deal with the parallax spatial correlations of Gaia data, and can accommodate different values of parallax zero point and spatial correlation functions.

[ascl:2011.002] CAPTURE: Interferometric pipeline for image creation from GMRT data

CAPTURE (CAsa Pipeline-cum-Toolkit for Upgraded Giant Metrewave Radio Telescope data REduction) produces continuum images from radio interferometric data. Written in Python, it uses CASA (ascl:1107.013) tasks to analyze data obtained by the GMRT. It can produce self-calibrated images in a fully automatic mode or can run in steps to allow the data to be inspected throughout processing.

[ascl:2011.001] AdaMet: Adaptive Metropolis for Bayesian analysis

AdaMet (Adaptive Metropolis) performs efficient Bayesian analysis. The user-friendly Python package is an implementation of the Adaptive Metropolis algorithm. In many real-world applications, it is more efficient and robust than emcee (ascl:1303.002), which warm-up phase scales linearly with the number of walkers. For this reason, and because of its didactic value, the AdaMet code is provided as an alternative.

[ascl:2010.015] relxill: Reflection models of black hole accretion disks

relxill self-consistently connects an angle-dependent reflection model constructed with XILLVER (http://www.srl.caltech.edu/personnel/javier/xillver/index.html) with the relativistic blurring code RELLINE (ascl:1505.021). It calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account.

[ascl:2010.014] Pix2Prof: Deep learning for textraction of useful sequential information from galaxy imagery

Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.

[ascl:2010.013] Legolas: Large Eigensystem Generator for One-dimensional pLASmas

Legolas (Large Eigensystem Generator for One-dimensional pLASmas) is a finite element code for MHD spectroscopy of 1D Cartesian/cylindrical equilibria with flow that balance pressure gradients, enriched with various non-adiabatic effects. The code's capabilities range from full spectrum calculations to eigenfunctions of specific modes to full-on parametric studies of various equilibrium configurations in different geometries.

[ascl:2010.012] Astronomaly: Flexible framework for anomaly detection in astronomy

Astronomaly actively detects anomalies in astronomical data. A python back-end runs anomaly detection based on machine learning; a JavaScript front-end provides data viewing and labeling. The package works on many common astronomy data types, including one-dimensional data and images, and offering extendable techniques for preprocessing, feature extraction, and machine learning.

[ascl:2010.011] ROGER: Automatic classification of galaxies using phase-space information

ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) predicts the dynamical properties of galaxies using the projected phase-space information. Written in R, it offers a choice of machine learning methods to classify the dynamical properties of galaxies. An interface for online use of the software is available at https://mdelosrios.shinyapps.io/roger_shiny/.

[ascl:2010.010] lenspyx: Curved-sky python lensed CMB maps simulation package

lenspyx creates curved-sky python lensed CMB maps simulations; the software allows those familiar with healpy (ascl:2008.022) to build very easily lensed CMB simulations. Parallelization is done with openmp. The numerical cost is approximately that of an high-res harmonic transform. lenspyx provides two methods to build a simulation; one method computes a deflected spin-0 healpix map from its alm and deflection field alm, and the other computes a deflected spin-weight Healpix map from its gradient and curl modes and deflection field alm. lenspyx can be used in conjunction with the Planck 2018 CMB lensing pipeline plancklens (ascl:2010.009) to reproduce the published map and band-powers.

[ascl:2010.009] plancklens: Planck 2018 lensing pipeline

plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).

[ascl:2010.008] Exo-DMC: Exoplanet Detection Map Calculator

The Exoplanet Detection Map Calculator (Exo-DMC) performs statistical analysis of exoplanet surveys results using Monte Carlo methods. Written in Python, it is the latest rendition of the MESS (Multi-purpose Exoplanet Simulation System, ascl:1111.009). Exo-DMC combines the information on the target stars with instrument detection limits to estimate the probability of detection of companions within a user defined range of masses and physical separations, ultimately generating detection probability maps. The software allows for a high level of flexibility in terms of possible assumptions on the synthetic planet population to be used for the determination of the detection probability.

[ascl:2010.007] stella: Stellar flares identifier

stella creates and trains a neural network to identify stellar flares. Within stella, users can simulate flares as a training set, run a neural network, and feed in their own data to the neural network model. The software returns a probability at each data point as to whether that data point is part of a flare; the code can also characterize the flares identified.

[ascl:2010.006] LaSSI: Large-Scale Structure Information

LaSSI produces forecasts for the LSST 3x2 point functions analysis, or the LSSTxCMB S4 and LSSTxSO 6x2 point functions analyses using a Fisher matrix. It computes the auto and cross correlations of galaxy number density, galaxy shear and CMB lensing convergence. The software includes the effect of Gaussian and outlier photo-z errors, shear multiplicative bias, linear galaxy bias, and extensions to ΛCDM.

[ascl:2010.005] GRAPUS: GRAvitational instability PopUlation Synthesis

GRAPUS (GRAvitational instability PopUlation Synthesis) executes population synthesis modeling of self-gravitating disc fragmentation and tidal downsizing in protostellar discs. It reads in pre-run 1D viscous disc models of self-gravitating discs and computes where fragmentation will occur and the initial fragment mass. GRAPUS then allows these fragment embryos to evolve under various forces, including quasistatic collapse of the embryo, growth and sedimentation of the dust inside the embryo, and the formation of solid cores. The software also evolves migration due to embryo-disc interactions and tidal disruption of the embryo, and can optionally determine gravitational interactions with neighboring embryos.

[ascl:2010.004] TACHE: TensoriAl Classification of Hydrodynamic Elements

TACHE (TensoriAl Classification of Hydrodynamic Elements) performs classification of the eigenvalues of either the tidal tensor or the velocity shear tensor at the point of a smoothed particle. This provides local information as to how matter is collapsing or flowing, respectively, in particular what stable manifold is being produced. The code reads in smoothed particle hydrodynamics (SPH) snapshot files in sphNG format and computes neighbor lists for SPH data and either the (symmetric) velocity shear tensor or tidal tensor and their eigenvalues/eigenvectors. It classifies fluid elements by number of "positive" eigenvalues and permits decomposition of snapshots into classified components; it also includes several Python plotting scripts.

[ascl:2010.003] stsynphot: synphot for HST and JWST

An extension to synphot (ascl:1811.001), stsynphot implements synthetic photometry package for HST and JWST support. The software constructs spectra from various grids of model atmosphere spectra, parameterized spectrum models, and atlases of stellar spectrophotometry. It also simulates observations specific to HST and JWST, computes photometric calibration parameters for any supported instrument mode, and plots instrument-specific sensitivity curves and calibration target spectra.

[ascl:2010.002] GSpec: Gamma-ray Burst Monitor analyzer

GSpec analyzes the Fermi mission's Gamma-ray Burst Monitor (GBM) data via a user-interactive GUI. The software provides a seamless interface to XSPEC (ascl:9910.005). It allows users to create their own Python scripts using the included libraries, and to define additional data reduction techniques, such as background fitting/estimation and data binning, as Python-based plugins. It is part of a larger effort to produce a set of GBM data tools to allow the broader community to analyze all aspects of GBM data, including the continuous data that GBM produces. GSpec is similar to RMfit (ascl:1409.011), a GUI-based spectral analysis code that specializes in the analysis of GBM trigger data, and is intended to eventually replace that IDL package.

[ascl:2010.001] MBF: MOLSCAT 2020, BOUND, and FIELD for atomic and molecular collisions

MOLSCAT, which supercedes MOLSCAT version 14 (ascl:1206.004), performs non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them).

The package also includes BOUND, which performs calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods, and FIELD, a development of BOUND that locates values of external fields at which a bound state exists with a specified energy. Though the three programs have different applications, they use closely related methods, share many subroutines, and are released with a single code base.

[ascl:2009.025] Binary-Speckle: Binary or triple star parameters

Binary-Speckle reduces Speckle or AO data from the raw data to deconvolved images (in Fourier space), to determine the parameters of a binary or triple, and to find limits for undetected companion stars.

[ascl:2009.024] MSL: Mining for Substructure Lenses

MSL applies simulation-based inference techniques to the problem of substructure inference in galaxy-galaxy strong lenses. It leverages additional information extracted from the simulator, then trains neural networks to estimate likelihood ratios associated with population-level parameters characterizing dark matter substructure. The package including five high-level scripts which run the simulation and create samples, combing multiple simulation runs into a single file to use for training, then train the neural networks. After training, the estimated likelihood ratio is tested, and calibrated network predictions are made based on histograms of the network output.

[ascl:2009.023] DASTCOM5: JPL small-body data browser

DASTCOM5 is a portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, and the software to access it. Available data include orbital elements, orbit diagrams, physical parameters, and discovery circumstances. A JPL implementation of the software is available at http://ssd.jpl.nasa.gov/sbdb.cgi.

[ascl:2009.022] Harmonia: Hybrid-basis inference for large-scale galaxy clustering

Harmonia combines clustering statistics decomposed in spherical and Cartesian Fourier bases for large-scale galaxy clustering likelihood analysis. Optimal weighting schemes for spherical Fourier analysis can also be readily implemented using the code.

[ascl:2009.021] Chrono: Multi-physics simulation engine

Chrono is a physics-based modelling and simulation infrastructure implemented in C++. It can handle multibody dynamics, collision detection, and granular flows, among many other physical processes. Though the applications for which Chrono has been used most often are vehicle dynamics, robotics, and machine design, it has been used to simulate asteroid aggregation and granular systems for astrophysics research. Chrono is written in C++; a Python version, PyChrono, is also available.

[ascl:2009.020] cosmoFns: Functions for observational cosmology

cosmoFns computes distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Written in R and coded for a flat universe, it contains functions for rest-frame line and luminosities, cosmic lookback time given z and cosmological parameters, and differential comoving volume. cosmoFns also computes comoving, luminosity, and angular diameter distances and molecular mass, among other quantities.

[ascl:2009.019] FLEET: Finding Luminous and Exotic Extragalactic Transients

FLEET (Finding Luminous and Exotic Extragalactic Transients) is a machine-learning pipeline that predicts the probability of a transient to be a superluminous supernova. With light curve and contextual host galaxy information, it uses a random forest algorithm to rapidly identify SLSN-I without the need for redshift information.

[ascl:2009.018] CRAC: Cosmology R Analysis Code

CRAC (Cosmology R Analysis Code) provides R functions for cosmology. Its main functions are similar to the Python library CosmoloPy (ascl:2009.017); for example, it implements functions to compute spherical geometric quantities for cosmological research.

[ascl:2009.017] CosmoloPy: Cosmology package for Python

CosmoloPy is a suite of cosmology routines built on NumPy/SciPy. Its capabilities include various cosmological densities, distance measures, and galaxy luminosity functions (Schecter functions). It also offers pre-defined sets of cosmological parameters (e.g., from WMAP), conversion in and out of the AB magnitude system, and the reionization of the IGM. Functions take cosmological parameters (which can be numpy arrays) as keywords and ignore any extra keywords, making it possible to build a dictionary of cosmological parameters and pass it to any function.

[ascl:2009.016] halomod: Flexible interface for the halo model of dark matter halos

halomod calculates cosmological halo model and HOD quantities. It is built on HMF (ascl:1412.006); it retains that code's features and provides extended components for the halo model, including numerous halo bias models, including scale-dependent bias, basic concentration-mass-redshift relations, and several plug-and-play halo-exclusion models. halomod includes built-in HOD parameterizations and halo profiles, support for WDM models, and all basic quantities such as 3D correlations and power spectra, and also several derived quantities such as effective bias and satellite fraction. In addition, it offers a simple routine for populating a halo catalog with galaxies via a HOD. halomod is flexible and modular, making it easily extendable.

[ascl:2009.015] rcosmo: Cosmic Microwave Background data analysis

rcosmo provides information processing, visualization, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data stored in or converted to HEALPix coordinates. The package has more than 100 different functions, and can perform spherical geometry, manipulate CMB and other spherical data, and visualize HEALPix data. rcosmo can also perform statistical analysis of CMB and spherical data, and transforme spherical data in cartesian and geographic coordinates into HEALPix format.

[ascl:2009.014] pySpectrum: Power spectrum and bispectrum calculator

pySpectrum calculates the power spectrum and bispectrum for galaxies, halos, and dark matter.

[ascl:2009.013] AstroVaDEr: Unsupervised clustering and synthetic image generation

AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.

[ascl:2009.012] minot: Modeling framework for diffuse components in galaxy clusters

minot (Modeling of the ICM (Non-)thermal content and Observables prediction Tools) provides a self-consistent modeling framework for the thermal and non-thermal diffuse components in galaxy clusters and predictions multi-wavelength observables. The framework sets or modifies the cluster object according to set parameters and defines the physical and observational properties, which can include thermal gas and CR physics, tSZ, inverse Compton, and radio synchotron. minot then generates outputs, including model parameters, plots, and relationships between models.

[ascl:2009.011] PyWST: WST and RWST for astrophysics

PyWST performs statistical analyses of two-dimensional data with the Wavelet Scattering Transform (WST) and the Reduced Wavelet Scattering Transform (RWST). The WST/RWST provides convenient sets of coefficients for describing non-Gaussian data in a comprehensive way.

[ascl:2009.010] MLG: Microlensing with Gaia

MLG simulates Gaia measurements for predicted astrometric microlensing events. It fits the motion of the lens and source simultaneously and reconstructs the 11 parameters of the lensing event. For lenses passing by multiple background sources, it also fits the motion of all background sources and the lens simultaneously. A Monte-Carlo simulation is used to determine the achievable precision of the mass determination.

[ascl:2009.009] MADHAT: Gamma-ray emission analyzer

MADHAT (Model-Agnostic Dark Halo Analysis Tool) analyzes gamma-ray emission from dwarf satellite galaxies and dwarf galaxy candidates due to dark matter annihilation, dark matter decay, or other nonstandard or unknown astrophysics. The tool is data-driven and model-independent, and provides statistical upper bounds on the number of observed photons in excess of the number expected using a stacked analysis of any selected set of dwarf targets. MADHAT also calculates the resulting bounds on the properties of dark matter under any assumptions the user makes regarding dark sector particle physics or astrophysics.

[ascl:2009.008] Paramo: PArticle and RAdiation MOnitor

Paramo (PArticle and RAdiation MOnitor) numerically solves the Fokker-Planck kinetic equation, which is used to model the dynamics of a particle distribution function, using a robust implicit method, for the proper modeling of the acceleration processes, and accounts for accurate cooling coefficient (e.g., radiative cooling with Klein-Nishina corrections). The numerical solution at every time step is used to calculate radiations processes, namely synchrotron and IC, with sophisticated numerical techniques, obtaining the multi-wavelength spectral evolution of the system.

[ascl:2009.007] J plots: Tool for characterizing 2D and 3D structures in the interstellar medium

J plots classifies and quantifies a pixelated structure, based on its principal moments of inertia, thus enabling automatic detection and objective comparisons of centrally concentrated structures (cores), elongated structures (filaments) and hollow circular structures (bubbles) from the main population of slightly irregular blobs that make up most astronomical images. Examples of how to analyze 2D or 3D datasets, enabling an unbiased analysis and comparison of simulated and observed structures are provided along with the Python code.

[ascl:2009.006] SPInS: Stellar Parameters INferred Systematically

SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.

[ascl:2009.005] CASI-3D: Convolutional Approach to Structure Identification-3D

CASI-3D identifies signatures of stellar feedback in molecular line spectra, such as 12CO and 13CO, using deep learning. The code is developed from CASI-2D (ascl:1905.023) and exploits the full 3D spectral information.

[ascl:2009.004] ISPy3: Integrated-light Spectroscopy for Python3

The ISPy3 suite of Python routines models and analyzes integrated-light spectra of stars and stellar populations. The actual spectral modeling and related tasks such as setting up model atmospheres is done via external codes. Currently, the Kurucz codes (ATLAS/SYNTHE) and MARCS/TurboSpectrum are supported, though implementing other similar codes should be relatively straight forward.

[ascl:2009.003] oxkat: Semi-automated imaging of MeerKAT observations

oxkat semi-automatically performs calibration and imaging of data from the MeerKAT radio telescope. Taking as input raw visibilities in Measurement Set format, the entire processing workflow is covered, from flagging and reference calibration, to imaging and self-calibration, and (optionally) direction-dependent calibration. The oxkat scripts use Python, and draw on numerous existing radio astronomy packages, including CASA (ascl:1107.013), WSClean (ascl:1408.023), and CubiCal (ascl:1805.031), among others, that are containerized using Singularity. Submission scripts for slurm and PBS job schedulers are automatically generated where necessary, catering for HPC facilities that are commonly used for processing MeerKAT data.

[ascl:2009.002] vlt-sphere: Automatic VLT/SPHERE data reduction and analysis

The high-contrast imager SPHERE at the Very Large Telescope combines extreme adaptive optics and coronagraphy to directly image exoplanets in the near-infrared. The vlt-sphere package enables easy reduction of the data coming from IRDIS and IFS, the two near-infrared subsystems of SPHERE. The package relies on the official ESO pipeline (ascl:1402.010), which must be installed separately.

[ascl:2009.001] JetSeT: Numerical modeling and SED fitting tool for relativistic jets

JetSeT reproduces radiative and accelerative processes acting in relativistic jets and fits the numerical models to observed data. This C/Python framework re-bins observed data, can define data sets, and binds to astropy tables and quantities. It can use Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB when defining complex numerical radiative scenarios. JetSeT can constrain the model in the pre-fitting stage based on accurate and already published phenomenological trends starting from parameters such as spectral indices, peak fluxes and frequencies, and spectral curvatures. The package fits multiwavelength SEDs using both frequentist approach and Bayesian MCMC sampling, and also provides self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes for both first order and second order (stochastic acceleration) processes.

[ascl:2008.027] HorizonGRound: Relativistic effects in ultra-large-scale clustering

HorizonGRound forward models general relativistic effects from the tracer luminosity function. It also compares relativistic corrections with the local primordial non-Gaussianity signature in ultra-large-scale clustering statistics. The package includes several recipes along with the data required to run them.

[ascl:2008.026] TDEmass: Tidal Disruption Event interpretor

TDEmass interprets Tidal Disruption Event (TDE) observations. In TDEs, a supermassive black hole at the center of a galaxy tears apart an ordinary star; the debris is placed on highly eccentric orbits and ultimately produces a very bright flare. Using this TDEmass, one can infer the mass of the black hole (mbh) and the mass of the star (mstar) involved in a TDE.

[ascl:2008.025] TRISTAN: TRIdimensional STANford code

TRISTAN (TRIdimensional STANford) is a fully electromagnetic code with full relativistic particle dynamics. The code simulates large-scale space plasma phenomena such as the formation of systems of galaxies. TRISTAN particles which hit the boundaries are arrested there and redistributed more uniformly by having the boundaries slightly conducting, thus allowing electrons to recombine with ions and provides a realistic way of eliminating escaping particles from the code. Fresh particle fluxes can then be introduced independently across the boundaries. Written in 1993, this code has largely been superceded by TRISTAN-MP (ascl:1908.008).

[ascl:2008.024] MUSIC2-monofonIC: 3LPT initial condition generator

The original MUSIC code (ascl:1311.011) was designed to provide initial conditions for zoom initial conditions and is limited for applications to large-scale cosmological simulations. MUSIC2-monofonIC generates high order LPT/PPT cosmological initial conditions for single resolution cosmological simulations, and can be used for rapid predictions of large-scale structure. MUSIC2-monofonIC offers support for up to 3rd order Lagrangian perturbation theory, PPT (Semiclassical PT for Eulerian grids) up to 2nd order, and for mixed CDM+baryon sims. It direct interfaces with CLASS and can use file input from CAMB; it offers multiple output modules for RAMSES (ascl:1011.007), Arepo (ascl:1909.010), Gadget-2/3 (ascl:0003.001), and HACC via plugins, and new modules/plugins can be easily added.

[ascl:2008.023] DUCC: Distinctly Useful Code Collection

DUCC (Distinctly Useful Code Collection) provides basic programming tools for numerical computation, including Fast Fourier Transforms, Spherical Harmonic Transforms, non-equispaced Fourier transforms, as well as some concrete applications like 4pi convolution on the sphere and gridding/degridding of radio interferometry data. The code is written in C++17 and provides a simple and comprehensive Python
interface.

[ascl:2008.022] healpy: Python wrapper for HEALPix

healpy handles pixelated data on the sphere. It is based on the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme and bundles the HEALPix (ascl:1107.018) C++ library. healpy provides utilities to convert between sky coordinates and pixel indices in HEALPix nested and ring schemes and find pixels within a disk, a polygon or a strip in the sky. It can apply coordinate transformations between Galactic, Ecliptic and Equatorial reference frames, apply custom rotations either to vectors or full maps, and read and write HEALPix maps to disk in FITS format. healpy also includes utilities to upgrade and downgrade the resolution of existing HEALPix maps and transform maps to Spherical Harmonics space and back using multi-threaded C++ routines, among other utilities.

[ascl:2008.021] ramses2hsim: RAMSES output to 3D data cube for HSIM

The ramses2hsim pipeline converts a simulated galaxy in a RAMSES (ascl:1011.007) output into an 3D input data cube for HSIM (ascl:1912.006). The code incorporates gas kinematics (both bulk and turbulence), line emission and line width for Hα, and accounts for dust extinction.

[ascl:2008.020] Eclaire: CUDA-based Library for Astronomical Image REduction

Eclaire is a GPU-accelerated image-reduction pipeline; it uses CuPy, a Python package for general-purpose computing on graphics processing units (GPGPU), to perform image processing, including bias subtraction, dark subtraction, flat fielding, bad pixel masking, alignment, and co-adding. It has been used for real-time image reduction of MITSuME observational data, and can be used with data from other observatories.

[ascl:2008.019] iFIT: 1D surface photometry code

iFIT determines the Sérsic law model for galaxies with imperfect Sérsic law profiles by searching for the best match between the observationally determined and theoretically expected radial variation of the mean surface brightness and light growth curve. The technique ensures quick convergence to a unique solution for both perfect and imperfect Sérsic profiles, even shallow and resolution-degraded SBPs. iFIT allows for correction of PSF convolution effects, offering the user the option of choosing between a Moffat, Gaussian, or user-supplied PSF, and is an efficient tool for the non-supervised structural characterization of large galaxy samples, such as those expected to become available with Euclid and LSST.

[ascl:2008.018] maxsmooth: Derivative constrained function fitting

maxsmooth fits derivative constrained functions (DCF) such as Maximally Smooth Functions (MSFs) to data sets. MSFs are functions for which there are no zero crossings in derivatives of order m >= 2 within the domain of interest. They are designed to prevent the loss of signals when fitting out dominant smooth foregrounds or large magnitude signals that mask signals of interest. Here "smooth" means that the foregrounds follow power law structures and do not feature turning points in the band of interest. maxsmooth uses quadratic programming implemented with CVXOPT (ascl:2008.017) to fit data subject to a fixed linear constraint, Ga <= 0, where the product Ga is a matrix of derivatives. The code tests the <= 0 constraint multiplied by a positive or negative sign and can test every available sign combination but by default, it implements a sign navigating algorithm.

[ascl:2008.017] CVXOPT: Convex Optimization

CVXOPT makes the development of software for convex optimization applications straightforward by building on Python’s extensive standard library and on the strengths of Python as a high-level programming language. It offers efficient Python classes for dense and sparse matrices (real and complex) with Python indexing and slicing and overloaded operations for matrix arithmetic, an interface to the fast Fourier transform routines from FFTW, and an interface to most of the double-precision real and complex BLAS. It contains routines for linear, second-order cone, and semidefinite programming problems, and for nonlinear convex optimization. CVXOPT also provides an interface to LAPACK routines for solving linear equations and least-squares problems, matrix factorizations (LU, Cholesky, LDLT and QR), symmetric eigenvalue and singular value decomposition, and Schur factorization, and a modeling tool for specifying convex piecewise-linear optimization problems.

[ascl:2008.016] ParaMonte: Parallel Monte Carlo library

ParaMonte contains serial and parallel Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions. It is used for posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference and unifies the automation of Monte Carlo simulations. ParaMonte is user friendly and accessible from multiple programming environments, including C, C++, Fortran, MATLAB, and Python, and offers high performance at runtime and scalability across many parallel processors.

[ascl:2008.015] CMEchaser: Coronal Mass Ejection line-of-sight occultation detector

CMEchaser looks for the occultation of background astronomical sources by CMEs to enable measurement of effects such as variations in the ionized content and the associated Faraday rotation of polarized signals along the line of sight to the background source. The code transforms a given Galactic coordinate to its concordant point in the Helioprojective, Sun-centered plane and estimates the point at which the line of sight from the source to the Earth passes through it. It then searches a user selected database to detect if any CMEs which launched before the observation date would have crossed the line of sight at the epoch of observation, and produces a number of useful plots. CMEchaser can run as a flat script orcan be installed as a package.

[ascl:2008.014] SuperRAENN: Supernova photometric classification pipeline

SuperRAENN performs photometric classification of supernovae in the following categories: Type I superluminos supernovae, Type II, Type IIn, Type Ia and Type Ib/c. Though the code is optimized for use with complete (rather than realtime) light curves from the Pan-STARRS Medium Deep Survey, the classifier can be trained on other data. SuperRAENN can be used on a dataset containing both spectroscopically labelled and unlabelled SNe; all events will be used to train the RAENN, while labelled events will be used to train the random forest.

[ascl:2008.013] SEDBYS: Spectral Energy Distribution Builder for Young Stars

SEDBYS (Spectral Energy Distribution Builder for Young Stars) provides command-line tools and uses existing functions from standard packages such as Astropy (ascl:1304.002) to collate archival photometric and spectroscopic data. It also builds and inspects SEDS, and automatically collates the necessary software references.

[ascl:2008.012] Ujti: Geodesics in general relativity

Ujti calculates geodesics, gravitational lenses and gravitational redshift in principle, for any metric. Special attention has been given to compact objects, so the current implementation considers only metrics in spherical coordinates.

[ascl:2008.011] Magnetizer: Computing magnetic fields of evolving galaxies

Magnetizer computes time and radial dependent magnetic fields for a sample of galaxies in the output of a semi-analytic model of galaxy formation. The magnetic field is obtained by numerically solving the galactic dynamo equations throughout history of each galaxy. Stokes parameters and Faraday rotation measure can also be computed along a random line-of-sight for each galaxy.

[ascl:2008.010] zeus: Lightning Fast MCMC

Zeus is a pure-Python implementation of the Ensemble Slice Sampling method. Ensemble Slice Sampling improves upon Slice Sampling by bypassing some of that method's difficulties; it also exploits an ensemble of parallel walkers, thus making it immune to linear correlations. Zeus offers fast and robust Bayesian inference and efficient Markov Chain Monte Carlo without hand-tuning. The code provides excellent performance in terms of autocorrelation time and convergence rate, can scale to multiple CPUs without any extra effort, and includes convergence diagnostics.

[ascl:2008.009] SuperNNova: Photometric classification

SuperNNova performs photometric classification by leveraging recent advances in deep neural networks. It can train either a recurrent neural network or random forest to classify light-curves using only photometric information. It also allows additional information, such as host-galaxy redshift, to be incorporated to improve performance.

[ascl:2008.008] Barry: Modular BAO fitting code

Barry compares different BAO models. It removes as many barriers and complications to BAO model fitting as possible and allows each component of the process to remain independent, allowing for detailed comparisons of individual parts. It contains datasets, model fitting tools, and model implementations incorporating different descriptions of non-linear physics and algorithms for isolating the BAO (Baryon Acoustic Oscillation) feature.

[ascl:2008.007] sslf: A simple spectral-line finder

sslf is a simple, effective and useful spectral line finder for 1D data. It utilizes the continuous wavelet transform from SciPy, which is a productive way to find even weak spectral lines.

[ascl:2008.006] Umbrella: Asteroid detection, validation, and identification

Umbrella detects, validates, and identifies asteroids. The core of this software suite, Umbrella2, includes algorithms and interfaces for all steps of the processing pipeline, including a novel detection algorithm for faint trails. A detection pipeline accessible as a desktop program (ViaNearby) builds on the library to provide near real-time data reduction of asteroid surveys on the Wide Field Camera of the Isaac Newton Telescope. Umbrella can read and write MPC optical reports, supports SkyBoT and VizieR querying, and can be extended by user image processing functions to take advantage of the algorithms framework as a multi-threaded CPU scheduler for easy algorithm parallelization.

[ascl:2008.005] PySAP: Python Sparse data Analysis Package

PySAP (Python Sparse data Analysis Package) provides a common API for astronomical and neuroimaging datasets and access to iSAP's (ascl:1303.029) Sparse2D executables with both wrappers and bindings. It also offers a graphical user interface for exploring the provided functions and access to application specific plugins.

[ascl:2008.004] SOT: Spin-Orbit Tomography

Spin-Orbit Tomography (SOT) is a retrieval technique of a two-dimensional map of an Exo-Earth from time-series data of integrated reflection light. The software provides code for the Bayesian version of the static SOT and dynamic mapping (time-varying mapping) with full Bayesian modeling, and tutorials for L2 and Bayesian SOT are available in jupyter notebooks.

[ascl:2008.003] KLLR: Kernel Localized Linear Regression

KLLR (Kernel Localized Linear Regression) generates estimates of conditional statistics in terms of the local slope, normalization, and covariance. This method provides a more nuanced description of population statistics appropriate for very large samples with non-linear trends. The code uses a bootstrap re-sampling technique to estimate the uncertainties and also provides tools to seamlessly generate visualizations of the model parameters.

[ascl:2008.002] PhaseTracer: Cosmological phases mapping

PhaseTracer maps out cosmological phases, and potential transitions between them, for Standard Model extensions with any number of scalar fields. The code traces the minima of effective potential as the temperature changes, and then calculates the critical temperatures at which the minima are degenerate. PhaseTracer can use potentials provided by other packages and can be used to analyze cosmological phase transitions which played an important role in the early evolution of the Universe.

[ascl:2008.001] kinesis: Kinematic modeling of clusters

Kinesis fits the internal kinematics of a star cluster with astrometry and (incomplete) radial velocity data of its members. In the most general model, the stars can be a mixture of background (contamination) and the cluster, for which the (3,3) velocity dispersion matrix and velocity gradient (i.e., dv_x/dx and dv_y/dx) are included. There are also simpler versions of the most general model and utilities to generate mock clusters and mock observations.

[ascl:2007.024] CaTffs: Calcium triplet indexes

CaTffs predicts the strength of calcium triplet indices (CaT*, PaT and CaT) on the basis of empirical fitting functions and performs required interpolations between the different local functions. Together with the indices predictions, the program also computes the random errors associated to such predictions resulting from the covariance matrices of the fits (for the indices CaT* and PaT). This ensures a reliable error index estimation for any combination of input atmospheric parameters.

Would you like to view a random code?