[ascl:1803.012]
LWPC: Long Wavelength Propagation Capability

Long Wavelength Propagation Capability (LWPC), written as a collection of separate programs that perform unique actions, generates geographical maps of signal availability for coverage analysis. The program makes it easy to set up these displays by automating most of the required steps. The user specifies the transmitter location and frequency, the orientation of the transmitting and receiving antennae, and the boundaries of the operating area. The program automatically selects paths along geographic bearing angles to ensure that the operating area is fully covered. The diurnal conditions and other relevant geophysical parameters are then determined along each path. After the mode parameters along each path are determined, the signal strength along each path is computed. The signal strength along the paths is then interpolated onto a grid overlying the operating area. The final grid of signal strength values is used to display the signal-strength in a geographic display. The LWPC uses character strings to control programs and to specify options. The control strings have the same meaning and use among all the programs.

[ascl:1803.011]
ExtLaw_H18: Extinction law code

Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

ExtLaw_H18 generates the extinction law between 0.8 - 2.2 microns. The law is derived using the Westerlund 1 (Wd1) main sequence (A_Ks ~ 0.6 mag) and Arches cluster field Red Clump at the Galactic Center (A_Ks ~ 2.7 mag). To derive the law a Wd1 cluster age of 5 Myr is assumed, though changing the cluster age between 4 Myr -- 7 Myr has no effect on the law. This extinction law can be applied to highly reddened stellar populations that have similar foreground material as Wd1 and the Arches RC, namely dust from the spiral arms of the Milky Way in the Galactic Plane.

[ascl:1803.010]
3D-PDR: Three-dimensional photodissociation region code

3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.

[ascl:1803.009]
SETI-EC: SETI Encryption Code

The SETI Encryption code, written in Python, creates a message for use in testing the decryptability of a simulated incoming interstellar message. The code uses images in a portable bit map (PBM) format, then writes the corresponding bits into the message, and finally returns both a PBM image and a text (TXT) file of the entire message. The natural constants (c, G, h) and the wavelength of the message are defined in the first few lines of the code, followed by the reading of the input files and their conversion into 757 strings of 359 bits to give one page. Each header of a page, i.e. the little-endian binary code translation of the tempo-spatial yardstick, is calculated and written on-the-fly for each page.

[ascl:1803.008]
FAST: Fitting and Assessment of Synthetic Templates

Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis

FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.

[ascl:1803.007]
IMAGINE: Interstellar MAGnetic field INference Engine

IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

[ascl:1803.006]
MulensModel: Microlensing light curves modeling

MulensModel calculates light curves of microlensing events. Both single and binary lens events are modeled and various higher-order effects can be included: extended source (with limb-darkening), annual microlensing parallax, and satellite microlensing parallax. The code is object-oriented and written in Python3, and requires AstroPy (ascl:1304.002).

[ascl:1803.005]
Kadenza: Kepler/K2 Raw Cadence Data Reader

Kadenza enables time-critical data analyses to be carried out using NASA's Kepler Space Telescope. It enables users to convert Kepler's raw data files into user-friendly Target Pixel Files upon downlink from the spacecraft. The primary motivation for this tool is to enable the microlensing, supernova, and exoplanet communities to create quicklook lightcurves for transient events which require rapid follow-up.

[ascl:1803.004]
nanopipe: Calibration and data reduction pipeline for pulsar timing

nanopipe is a data reduction pipeline for calibration, RFI removal, and pulse time-of-arrival measurement from radio pulsar data. It was developed primarily for use by the NANOGrav project. nanopipe is written in Python, and depends on the PSRCHIVE (ascl:1105.014) library.

[ascl:1803.003]
scarlet: Source separation in multi-band images by Constrained Matrix Factorization

Melchior, Peter; Moolekamp, Fred; Jerdee, Maximilian; Armstrong, Robert; Sun, Ai-Lei; Bosch, James; Lupton, Robert

SCARLET performs source separation (aka "deblending") on multi-band images. It is geared towards optical astronomy, where scenes are composed of stars and galaxies, but it is straightforward to apply it to other imaging data. Separation is achieved through a constrained matrix factorization, which models each source with a Spectral Energy Distribution (SED) and a non-parametric morphology, or multiple such components per source. The code performs forced photometry (with PSF matching if needed) using an optimal weight function given by the signal-to-noise weighted morphology across bands. The approach works well if the sources in the scene have different colors and can be further strengthened by imposing various additional constraints/priors on each source. Because of its generic utility, this package provides a stand-alone implementation that contains the core components of the source separation algorithm. However, the development of this package is part of the LSST Science Pipeline; the meas_deblender package contains a wrapper to implement the algorithms here for the LSST stack.

[ascl:1803.002]
CIFOG: Cosmological Ionization Fields frOm Galaxies

CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

[ascl:1803.001]
DaMaSCUS-CRUST: Dark Matter Simulation Code for Underground Scatterings - Crust Edition

DaMaSCUS-CRUST determines the critical cross-section for strongly interacting DM for various direct detection experiments systematically and precisely using Monte Carlo simulations of DM trajectories inside the Earth's crust, atmosphere, or any kind of shielding. Above a critical dark matter-nucleus scattering cross section, any terrestrial direct detection experiment loses sensitivity to dark matter, since the Earth crust, atmosphere, and potential shielding layers start to block off the dark matter particles. This critical cross section is commonly determined by describing the average energy loss of the dark matter particles analytically. However, this treatment overestimates the stopping power of the Earth crust; therefore, the obtained bounds should be considered as conservative. DaMaSCUS-CRUST is a modified version of DaMaSCUS (ascl:1706.003) that accounts for shielding effects and returns a precise exclusion band.

[ascl:1802.016]
eqpair: Electron energy distribution calculator

eqpair computes the electron energy distribution resulting from a balance between heating and direct acceleration of particles, and cooling processes. Electron-positron pair balance, bremstrahlung, and Compton cooling, including external soft photon input, are among the processes considered, and the final electron distribution can be hybrid, thermal, or non-thermal.

[ascl:1802.015]
mrpy: Renormalized generalized gamma distribution for HMF and galaxy ensemble properties comparisons

mrpy calculates the MRP parameterization of the Halo Mass Function. It calculates basic statistics of the truncated generalized gamma distribution (TGGD) with the TGGD class, including mean, mode, variance, skewness, pdf, and cdf. It generates MRP quantities with the MRP class, such as differential number counts and cumulative number counts, and offers various methods for generating normalizations. It can generate the MRP-based halo mass function as a function of physical parameters via the mrp_b13 function, and fit MRP parameters to data in the form of arbitrary curves and in the form of a sample of variates with the SimFit class. mrpy also calculates analytic hessians and jacobians at any point, and allows the user to alternate parameterizations of the same form via the reparameterize module.

[ascl:1802.014]
collapse: Spherical-collapse model code

collapse calculates the spherical−collapse for standard cosmological models as well as for dark energy models when the dark energy can be taken to be spatially homogeneous. The calculation is valid on sub−horizon scales and takes a top−hat perturbation to exist in an otherwise featureless cosmos and follows its evolution into the non−linear regime where it reaches a maximum size and then recollapses. collapse provides the user with the linear−collapse threshold (delta_c) and the virial overdensity (Delta_v) for the collapsed halo over a range of cosmic scale factors.

[ascl:1802.013]
BHMcalc: Binary Habitability Mechanism Calculator

BHMcalc provides renditions of the instantaneous circumbinary habital zone (CHZ) and also calculates BHM properties of the system including those related to the rotational evolution of the stellar components and the combined XUV and SW fluxes as measured at different distances from the binary. Moreover, it provides numerical results that can be further manipulated and used to calculate other properties.

[ascl:1802.012]
PyOSE: Orbital sampling effect (OSE) simulator

PyOSE is a fully numerical orbital sampling effect (OSE) simulator that can model arbitrary inclinations of the transiting moon orbit. It can be used to search for exomoons in long-term stellar light curves such as those by Kepler and the upcoming PLATO mission.

[ascl:1802.011]
runDM: Running couplings of Dark Matter to the Standard Model

runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.

[ascl:1802.010]
Glimpse: Sparsity based weak lensing mass-mapping tool

Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

[ascl:1802.009]
astroplan: Observation planning package for astronomers

Morris, Brett M.; Tollerud, Erik; Sipocz, Brigitta; Deil, Christoph; Douglas, Stephanie T.; Berlanga Medina, Jazmin; Vyhmeister, Karl; Price-Whelan, Adrian M.; Jeschke, Eric

astroplan is a flexible toolbox for observation planning and scheduling. It is powered by Astropy (ascl:1304.002); it works for Python beginners and new observers, and is powerful enough for observatories preparing nightly and long-term schedules as well. It calculates rise/set/meridian transit times, alt/az positions for targets at observatories anywhere on Earth, and offers built-in plotting convenience functions for standard observation planning plots (airmass, parallactic angle, sky maps). It can also determine the observability of sets of targets given an arbitrary set of constraints (i.e., altitude, airmass, moon separation/illumination, etc.).

[ascl:1802.008]
AntiparticleDM: Discriminating between Majorana and Dirac Dark Matter

AntiparticleDM calculates the prospects of future direct detection experiments to discriminate between Majorana and Dirac Dark Matter (*i.e.*, to determine whether Dark Matter is its own antiparticle). Direct detection event rates and mock data generation are dealt with by a variation of the WIMpy code.

[ascl:1802.007]
HiGal_SED_Fitter: SED fitting tools for Herschel Hi-Gal data

HiGal SED Fitter fits modified blackbody SEDs to Herschel data, specifically targeted at Herschel Hi-Gal data.

[ascl:1802.006]
VISIBLE: VISIbility Based Line Extraction

Loomis, Ryan A.; Oberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

VISIBLE applies approximated matched filters to interferometric data, allowing line detection directly in visibility space. The filter can be created from a FITS image or RADMC3D output image, and the weak line data can be a CASA MS or uvfits file. The filter response spectrum can be output either to a .npy file or returned back to the user for scripting.

[ascl:1802.005]
Verne: Earth-stopping effect for heavy dark matter

Verne calculates the Earth-stopping effect for super-heavy Dark Matter (DM). The code allows you to calculate the speed distribution (and DM signal rate) at an arbitrary detector location on the Earth. The calculation takes into account the full anisotropic DM velocity distribution and the full velocity dependence of the DM-nucleus cross section. Results can be obtained for any DM mass and cross section, though the results are most reliable for very heavy DM particles.

[submitted]
Opik Collision Probability

The Opik method gives the mean probability of collision of a small body with a given planet. It is a statistical value valid for an orbit with given (a,e,i) and undefined argument of perihelion. In some cases, the planet can eject the small body from the solar system; in these cases, the program estimates the mean time for the ejection. The Opik method does not take into account other perturbers than the planet considered, so it only provides an idea of the timescales involved.

[ascl:1802.004]
ARTIP: Automated Radio Telescope Image Processing Pipeline

Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

[ascl:1802.003]
CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

[ascl:1802.002]
venice: Mask utility

venice reads a mask file (DS9 or fits type) and a catalogue of objects (ascii or fits type) to create a pixelized mask, find objects inside/outside a mask, or generate a random catalogue of objects inside/outside a mask. The program reads the mask file and checks if a point, giving its coordinates, is inside or outside the mask, *i.e.* inside or outside at least one polygon of the mask.

[ascl:1802.001]
FAC: Flexible Atomic Code

FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

[ascl:1801.012]
RadVel: General toolkit for modeling Radial Velocities

RadVel models Keplerian orbits in radial velocity (RV) time series. The code is written in Python with a fast Kepler's equation solver written in C. It provides a framework for fitting RVs using maximum a posteriori optimization and computing robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel can perform Bayesian model comparison and produces publication quality plots and LaTeX tables.

[ascl:1801.011]
GABE: Grid And Bubble Evolver

GABE (Grid And Bubble Evolver) evolves scalar fields (as well as other purposes) on an expanding background for non-canonical and non-linear classical field theory. GABE is based on the Runge-Kutta method.

[ascl:1801.010]
DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation

DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.

[ascl:1801.009]
Gnuastro: GNU Astronomy Utilities

Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

[ascl:1801.008]
BOND: Bayesian Oxygen and Nitrogen abundance Determinations

BOND determines oxygen and nitrogen abundances in giant H II regions by comparison with a large grid of photoionization models. The grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Unlike other statistical methods, BOND relies on the [Ar III]/[Ne III] emission line ratio to break the oxygen abundance bimodality. By doing so, it can measure oxygen and nitrogen abundances without assuming any a priori relation between N/O and O/H. BOND takes into account changes in the hardness of the ionizing radiation field, which can come about due to the ageing of H II regions or the stochastically sampling of the IMF. The emission line ratio He I/Hβ, in addition to commonly used strong lines, constrains the hardness of the ionizing radiation field. BOND relies on the emission line ratios [O III]/Hβ, [O II]/Hβ and [N II]/Hβ, [Ar III]/Hβ, [Ne III]/Hβ, He I/Hβ as its input parameters, while its output values are the measurements and uncertainties for O/H and N/O.

[ascl:1801.007]
cambmag: Magnetic Fields in CAMB

cambmag is a modification to CAMB (ascl:1102.026) that calculates the compensated magnetic mode in the scalar, vector and tensor case. Previously CAMB included code only for the vectors. It also corrects for tight-coupling issues and adds in the ability to include massive neutrinos when calculating vector modes.

[ascl:1801.006]
DecouplingModes: Passive modes amplitudes

DecouplingModes calculates the amplitude of the passive modes, which requires solving the Einstein equations on superhorizon scales sourced by the anisotropic stress from the magnetic fields (prior to neutrino decoupling), and the magnetic and neutrino stress (after decoupling). The code is available as a Mathematica notebook.

[ascl:1801.005]
InitialConditions: Initial series solutions for perturbations in our Universe

InitialConditions finds the initial series solutions for perturbations in our Universe. This includes all scalar (1 adiabatic, 4 isocurvature and 2 magnetic modes), vector (1 vorticity mode, 1 magnetic mode), and tensor (1 gravitational wave mode and 1 magnetic mode) perturbations including terms up to second order in the neutrino mass. It can handle the standard species (cdm, baryons, photons), and two neutrino mass eigenstates (1 light, 1 heavy).

[ascl:1801.004]
hh0: Hierarchical Hubble Constant Inference

hh0 is a Bayesian hierarchical model (BHM) that describes the full distance ladder, from nearby geometric-distance anchors through Cepheids to SNe in the Hubble flow. It does not rely on any of the underlying distributions being Gaussian, allowing outliers to be modeled and obviating the need for any arbitrary data cuts.

[ascl:1801.003]
Stan: Statistical inference

Stan facilitates statistical inference at the frontiers of applied statistics and provides both a modeling language for specifying complex statistical models and a library of statistical algorithms for computing inferences with those models. These components are exposed through interfaces in environments such as R, Python, and the command line.

[ascl:1801.002]
iWander: Dynamics of interstellar wanderers

iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small−body, interstellar spaceship and even stars).

[ascl:1801.001]
BANYAN_Sigma: Bayesian classifier for members of young stellar associations

Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René

BANYAN_Sigma calculates the membership probability that a given astrophysical object belongs to one of the currently known 27 young associations within 150 pc of the Sun, using Bayesian inference. This tool uses the sky position and proper motion measurements of an object, with optional radial velocity (RV) and distance (D) measurements, to derive a Bayesian membership probability. By default, the priors are adjusted such that a probability threshold of 90% will recover 50%, 68%, 82% or 90% of true association members depending on what observables are input (only sky position and proper motion, with RV, with D, with both RV and D, respectively). The algorithm is implemented in a Python package, in IDL, and is also implemented as an interactive web page.

[submitted]
A Neural Network for the Identification of Dangerous Planetesimals (Including scripts for data generation)

Two neural networks were designed to identify hazardous planetesimals that were trained on object trajectories calculated in a cloud computing environment. The first neural network was fully-connected and was trained on the orbital elements (OEs) of real/simulated planetesimals, while the second was a 1-dimensional convolutional neural network that was trained on the position Cartesian coordinates of real/simulated planetesimals. Ultimately, the network trained on OEs had a better performance by identifying one-third of known potentially hazardous objects including the 3 asteroids with the highest chance of impact with Earth (2009 FD, 1999 RQ36, 1950 DA) as established by NASA's Monte Carlo based Sentry system.

[submitted]
loci: Smooth Cubic Multivariate Local Interpolations

loci is a shared library for interpolations in up to 4 dimensions. It is written in C and can be used with C/C++, Python and others. In order to calculate the coefficients of the cubic polynom, only local values are used: The data itself and all combinations of first-order derivatives, i.e. in 2D f_x, f_y and f_xy. This is in contrast to splines, where the coefficients are not calculated using derivatives, but non-local data, which can lead to over-smoothing the result.

[ascl:1712.016]
LgrbWorldModel: Long-duration Gamma-Ray Burst World Model

LgrbWorldModel is written in Fortran 90 and attempts to model the population distribution of the Long-duration class of Gamma-Ray Bursts (LGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of LGRBs is well fit by a multivariate log-normal distribution. The best-fit parameters of the distribution are then found by maximizing the likelihood of the observed data by BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC) Sampler.

[ascl:1712.015]
SgrbWorldModel: Short-duration Gamma-Ray Burst World Model

SgrbWorldModel, written in Fortran 90, presents an attempt at modeling the population distribution of the Short-duration class of Gamma-Ray Bursts (SGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of SGRBs is well fit by a multivariate log-normal distribution, whose differential cosmological rate of occurrence follows the Star-Formation-Rate (SFR) convolved with a log-normal binary-merger delay-time distribution. The best-fit parameters of the model are then found by maximizing the likelihood of the observed data by the BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC)Sampler that is part of the code. A model for the detection algorithm of the BATSE detectors is also provided.

[ascl:1712.014]
QATS: Quasiperiodic Automated Transit Search

QATS detects transiting extrasolar planets in time-series photometry. It relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits.

[ascl:1712.013]
photodynam: Photodynamical code for fitting the light curves of multiple body systems

Photodynam facilitates so-called "photometric-dynamical" modeling. This model is quite simple and this is reflected in the code base. A N-body code provides coordinates and the photometric code produces light curves based on coordinates.

[ascl:1712.012]
MadDM: Computation of dark matter relic abundance

MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.

[ascl:1712.011]
FBEYE: Analyzing Kepler light curves and validating flares

FBEYE, the "Flares By-Eye" detection suite, is written in IDL and analyzes Kepler light curves and validates flares. It works on any 3-column light curve that contains time, flux, and error. The success of flare identification is highly dependent on the smoothing routine, which may not be suitable for all sources.

[ascl:1712.010]
Flux Tube: Solar model

Flux Tube is a nonlinear, two-dimensional, numerical simulation of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after horizontal and vertical oscillatory perturbations are applied to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized by a special boundary condition.

[ascl:1712.009]
RODRIGUES: RATT Online Deconvolved Radio Image Generation Using Esoteric Software

RODRIGUES (RATT Online Deconvolved Radio Image Generation Using Esoteric Software) is a web-based radio telescope simulation and reduction tool. From a technical perspective it is a web based parameterized docker container scheduler with a result set viewer.

[ascl:1712.008]
CosApps: Simulate gravitational lensing through ray tracing and shear calculation

Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

[ascl:1712.007]
SFoF: Friends-of-friends galaxy cluster detection algorithm

SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.

[ascl:1712.006]
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

[ascl:1712.005]
draco: Analysis and simulation of drift scan radio data

draco analyzes transit radio data with the m-mode formalism. It is telescope agnostic, and is used as part of the analysis and simulation pipeline for the CHIME (Canadian Hydrogen Intensity Mapping Experiment) telescope. It can simulate time stream data from maps of the sky (using the m-mode formalism) and add gain fluctuations and correctly correlated instrumental noise (i.e. Wishart distributed). Further, it can perform various cuts on the data and make maps of the sky from data using the m-mode formalism.

[ascl:1712.004]
Bitshuffle: Filter for improving compression of typed binary data

Bitshuffle rearranges typed, binary data for improving compression; the algorithm is implemented in a python/C package within the Numpy framework. The library can be used alongside HDF5 to compress and decompress datasets and is integrated through the dynamically loaded filters framework. Algorithmically, Bitshuffle is closely related to HDF5's Shuffle filter except it operates at the bit level instead of the byte level. Arranging a typed data array in to a matrix with the elements as the rows and the bits within the elements as the columns, Bitshuffle "transposes" the matrix, such that all the least-significant-bits are in a row, etc. This transposition is performed within blocks of data roughly 8kB long; this does not in itself compress data, but rearranges it for more efficient compression. A compression library is necessary to perform the actual compression. This scheme has been used for compression of radio data in high performance computing.

[ascl:1712.003]
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

[ascl:1712.002]
MPI_XSTAR: MPI-based parallelization of XSTAR program

MPI_XSTAR parallelizes execution of multiple XSTAR runs using Message Passing Interface (MPI). XSTAR (ascl:9910.008), part of the HEASARC's HEAsoft (ascl:1408.004) package, calculates the physical conditions and emission spectra of ionized gases. MPI_XSTAR invokes XSTINITABLE from HEASoft to generate a job list of XSTAR commands for given physical parameters. The job list is used to make directories in ascending order, where each individual XSTAR is spawned on each processor and outputs are saved. HEASoft's XSTAR2TABLE program is invoked upon the contents of each directory in order to produce table model FITS files for spectroscopy analysis tools.

[ascl:1712.001]
KDUtils: Kinematic Distance Utilities

The Kinematic Distance utilities (KDUtils) calculate kinematic distances and kinematic distance uncertainties. The package includes methods to calculate "traditional" kinematic distances as well as a Monte Carlo method to calculate kinematic distances and uncertainties.

[ascl:1711.024]
NOD3: Single dish reduction software

NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

[ascl:1711.023]
HBT+: Subhalo finder and merger tree builder

HBT+ is a hybrid subhalo finder and merger tree builder for cosmological simulations. It comes as an MPI edition that can be run on distributed clusters or shared memory machines and is MPI/OpenMP parallelized, and also as an OpenMP edition that can be run on shared memory machines and is only OpenMP parallelized. This version is more memory efficient than the MPI branch on shared memory machines, and is more suitable for analyzing zoomed-in simulations that are difficult to balance on distributed clusters. Both editions support hydro simulations with gas/stars.

[ascl:1711.022]
HBT: Hierarchical Bound-Tracing

HBT is a Hierarchical Bound-Tracing subhalo finder and merger tree builder, for numerical simulations in cosmology. It tracks haloes from birth and continues to track them after mergers, finding self-bound structures as subhaloes and recording their merger histories as merger trees.

[ascl:1711.021]
Bifrost: Stream processing framework for high-throughput applications

Bifrost is a stream processing framework that eases the development of high-throughput processing CPU/GPU pipelines. It is designed for digital signal processing (DSP) applications within radio astronomy. Bifrost uses a flexible ring buffer implementation that allows different signal processing blocks to be connected to form a pipeline. Each block may be assigned to a CPU core, and the ring buffers are used to transport data to and from blocks. Processing blocks may be run on either the CPU or GPU, and the ring buffer will take care of memory copies between the CPU and GPU spaces.

[ascl:1711.020]
MARXS: Multi-Architecture Raytrace Xray mission Simulator

MARXS (Multi-Architecture-Raytrace-Xraymission-Simulator) simulates X-ray observatories. Primarily designed to simulate X-ray instruments on astronomical X-ray satellites and sounding rocket payloads, it can also be used to ray-trace experiments in the laboratory. MARXS performs polarization Monte-Carlo ray-trace simulations from a source (astronomical or lab) through a collection of optical elements such as mirrors, baffles, and gratings to a detector.

[ascl:1711.019]
SPIDERMAN: Fast code to simulate secondary transits and phase curves

SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

[ascl:1711.018]
LExTeS: Link Extraction and Testing Suite

LExTeS (Link Extraction and Testing Suite) extracts hyperlinks from PDF documents, tests the extracted links to see which are broken, and tabulates the results. Though written to support a particular set of PDF documents, the dataset and scripts can be edited for use on other documents.

[ascl:1711.017]
FATS: Feature Analysis for Time Series

Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Zhu, Ming; Dave, Rahul; Castro, Nicolas; Pichara, Karim

FATS facilitates and standardizes feature extraction for time series data; it quickly and efficiently calculates a compilation of many existing light curve features. Users can characterize or analyze an astronomical photometric database, though this library is not necessarily restricted to the astronomical domain and can also be applied to any kind of time series data.

[ascl:1711.016]
Thindisk: Protoplanetary disk model

Thindisk computes the line emission from a geometrically thin protoplanetary disk. It creates a datacube in FITS format that can be processed with a data reduction package (such as GILDAS, ascl:1305.010) to produce synthetic images and visibilities. These synthetic data can be compared with observations to determine the properties (e.g. central mass or inclination) of an observed disk. The disk is assumed to be in Keplerian rotation at a radius lower than the centrifugal radius (which can be set to a large value, for a purely Keplerian disk), and in infall with rotation beyond the centrifugal radius.

[ascl:1711.015]
rac-2d: Thermo-chemical for modeling water vapor formation in protoplanetary disks

rec-2d models the distribution of water vapor in protoplanetary disks. Given a distribution of gas and dust, rac-2d first solves the dust temperature distribution with a Monte Carlo method and then solves the gas temperature distribution and chemical composition. Although the geometry is symmetric with respect to rotation around the central axis and reflection about the midplane, the photon propagation is done in full three dimensions. After establishing the dust temperature distribution, the disk chemistry is evolved for 1 Myr; the heating and cooling processes are coupled with chemistry, allowing the gas temperature to be evolved in tandem with chemistry based on the heating and cooling rates.

[ascl:1711.014]
Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1711.013]
HO-CHUNK: Radiation Transfer code

HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:1711.012]
megaman: Manifold Learning for Millions of Points

megaman is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. It is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

[ascl:1711.011]
galkin: Milky Way rotation curve data handler

galkin is a compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimized to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements collected from almost four decades of literature. The user-friendly software provided selects, treats and retrieves the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.

[ascl:1711.010]
galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1711.009]
Lightning: SED Fitting Package

Lightning is a spectral energy distribution (SED) fitting procedure that quickly and reliably recovers star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. The code consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters.

[ascl:1711.008]
clustep: Initial conditions for galaxy cluster halo simulations

clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

[ascl:1711.007]
galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1711.006]
RGW: Goodman-Weare Affine-Invariant Sampling

RGW is a lightweight R-language implementation of the affine-invariant Markov Chain Monte Carlo sampling method of Goodman & Weare (2010). The implementation is based on the description of the python package emcee (ascl:1303.002).

[ascl:1711.005]
correlcalc: Two-point correlation function from redshift surveys

correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

[ascl:1711.004]
BayesVP: Full Bayesian Voigt profile fitting

BayesVP offers a Bayesian approach for modeling Voigt profiles in absorption spectroscopy. The code fits the absorption line profiles within specified wavelength ranges and generates posterior distributions for the column density, Doppler parameter, and redshifts of the corresponding absorbers. The code uses publicly available efficient parallel sampling packages to sample posterior and thus can be run on parallel platforms. BayesVP supports simultaneous fitting for multiple absorption components in high-dimensional parameter space. The package includes additional utilities such as explicit specification of priors of model parameters, continuum model, Bayesian model comparison criteria, and posterior sampling convergence check.

[ascl:1711.003]
FTbg: Background removal using Fourier Transform

FTbg performs Fourier transforms on FITS images and separates low- and high-spatial frequency components by a user-specified cut. Both components are then inverse Fourier transformed back to image domain. FTbg can remove large-scale background/foreground emission in many astrophysical applications. FTbg has been designed to identify and remove Galactic background emission in Herschel/Hi-GAL continuum images, but it is applicable to any other (e.g., Planck) images when background/foreground emission is a concern.

[ascl:1711.002]
inhomog: Biscale kinematical backreaction analytical evolution

The inhomog library provides Raychaudhuri integration of cosmological domain-wise average scale factor evolution using an analytical formula for kinematical backreaction Q_D evolution. The inhomog main program illustrates biscale examples. The library routine lib/Omega_D_precalc.c is callable by RAMSES (ascl:1011.007) using the RAMSES extension ramses-scalav.

[ascl:1711.001]
SpcAudace: Spectroscopic processing and analysis package of Audela software

SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

[ascl:1710.024]
pred_loggs: Predicting individual galaxy G/S probability distributions

Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1710.023]
LIMEPY: Lowered Isothermal Model Explorer in PYthon

LIMEPY solves distribution function (DF) based lowered isothermal models. It solves Poisson's equation used on input parameters and offers fast solutions for isotropic/anisotropic, single/multi-mass models, normalized DF values, density and velocity moments, projected properties, and generates discrete samples.

[ascl:1710.022]
galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations

The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.

[ascl:1710.021]
OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline

Lyke, Jim; Do, Tuan; Boehle, Anna; Campbell, Randy; Chappell, Sam; Fitzgerald, Mike; Gasawy, Tom; Iserlohe, Christof; Krabbe, Alfred; Larkin, James; Lockhard, Kelly; Lu, Jessica; Mieda, Etsuko; McElwain, Mike; Perrin, Marshall; Rudy, Alex; Sitarski, Breann; Vayner, Andrey; Walth, Greg; Weiss, Jason; Wizanski, Tommer; Wright, Shelley

OSIRIS Toolbox reduces data for the Keck OSIRIS instrument, an integral field spectrograph that works with the Keck Adaptive Optics System. It offers real-time reduction of raw frames into cubes for display and basic analysis. In this real-time mode, it takes about one minute for a preliminary data cube to appear in the “quicklook” display package. The reduction system also includes a growing set of final reduction steps including correction of telluric absorption and mosaicing of multiple cubes.

[ascl:1710.020]
PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1710.019]
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1710.018]
FITSFH: Star Formation Histories

FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.

[ascl:1710.017]
ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:1710.016]
LGMCA: Local-Generalized Morphological Component Analysis

LGMCA (Local-Generalized Morphological Component Analysis) is an extension to GMCA (ascl:1710.015). Similarly to GMCA, it is a Blind Source Separation method which enforces sparsity. The novel aspect of LGMCA, however, is that the mixing matrix changes across pixels allowing LGMCA to deal with emissions sources which vary spatially. These IDL scripts compute the CMB map from WMAP and Planck data; running LGMCA on the WMAP9 temperature products requires the main script and a selection of mandatory files, algorithm parameters and map parameters.

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1710.014]
GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1710.013]
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

[ascl:1710.012]
FSFE: Fake Spectra Flux Extractor

The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

[ascl:1710.011]
mTransport: Two-point-correlation function calculator

mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

[ascl:1710.010]
PyTransport: Calculate inflationary correlation functions

PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.

[ascl:1710.009]
CppTransport: Two- and three-point function transport framework for inflationary cosmology

CppTransport solves the 2- and 3-point functions of the perturbations produced during an inflationary epoch in the very early universe. It is implemented for models with canonical kinetic terms, although the underlying method is quite general and could be scaled to handle models with a non-trivial field-space metric or an even more general non-canonical Lagrangian.

[ascl:1710.008]
Binary: Accretion disk evolution

Binary computes the evolution of an accretion disc interacting with a binary system. It has been developed and used to study the coupled evolution of supermassive BH binaries and gaseous accretion discs.

Would you like to view a random code?