[ascl:1109.006]
MultiNest: Efficient and Robust Bayesian Inference

We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla $Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC (ascl:1106.025). It will also be released as part of the SuperBayeS package (ascl:1109.007) for the analysis of supersymmetric theories of particle physics.

[ascl:1109.007]
SuperBayeS: Supersymmetry Parameters Extraction Routines for Bayesian Statistics

SuperBayeS is a package for fast and efficient sampling of supersymmetric theories. It uses Bayesian techniques to explore multidimensional SUSY parameter spaces and to compare SUSY predictions with observable quantities, including sparticle masses, collider observables, dark matter abundance, direct detection cross sections, indirect detection quantities etc. Scanning can be performed using Markov Chain Monte Carlo (MCMC) technology or even more efficiently by employing a new scanning technique called MultiNest (ascl:1109.006). which implements the nested sampling algorithm. Using MultiNest, a full 8-dimensional scan of the CMSSM takes about 12 hours on 10 2.4GHz CPUs. There is also an option for old-style fixed-grid scanning. A discussion forum for SuperBayeS is available.

The package combines SoftSusy, DarkSusy, FeynHiggs, Bdecay, MultiNest and MicrOMEGAs. Some of the routines and the plotting tools are based on CosmoMC.

SuperBayeS comes with SuperEGO, a MATLAB graphical user interface tool for interactive plotting of the results. SuperEGO has been developed by Rachid Lemrani and is based on CosmoloGUI by Sarah Bridle.

[ascl:1109.008]
Multipole Vectors: Decomposing Functions on a Sphere

We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order l is represented by l unit vectors pointing in directions on the sky and an overall magnitude. These "multipole vectors and scalars" transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors form an irreducible representation of the proper rotation group SO(3). However, they are related to the familiar spherical harmonic coefficients, alm, in a nonlinear way, and are therefore sensitive to different aspects of the CMB anisotropy. Nevertheless, it is straightforward to determine the multipole vectors for a given CMB map and we present an algorithm to compute them. Using the WMAP full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of planes defined by these vectors between multipole pairs 2<=l1!=l2<=8 is inconsistent with the isotropic Gaussian hypothesis at the 99.4% level for the ILC map and at 98.9% level for the cleaned map of Tegmark et al. A particular correlation is suggested between the l=3 and l=8 multipoles, as well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correlations not expected in Gaussian random skies that make them unusually likely. The result persists after accounting for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the definitive analysis of these results will require more work, we hope that multipole vectors will become a valuable tool for various cosmological tests, in particular those of cosmic isotropy.

[ascl:1109.009]
CMBquick: Spectrum and Bispectrum of Cosmic Microwave Background (CMB)

CMBquick is a package for Mathematica in which tools are provided to compute the spectrum and bispectrum of Cosmic Microwave Background (CMB). It is unavoidably slow, but the main goal is not to design a tool which can be used for systematic exploration of parameters in cosmology, but rather a toy CMB code which is transparent and easily modified. Considering this, the name chosen is nothing but a joke which refers to the widely spread and used softwares CMBFAST, CAMB or CMBeasy (ascl:1007.004), which should be used for serious and heavy first order CMB computations, and which are indeed very fast.

The package CMBquick is unavoidably slow when it comes to compute the multipoles Cls, and most of it is due to the access time for variables which in Mathematica is approximately ten times slower than in C or Fortran. CMBquick is thus approximately 10 times slower than CAMB and cannot be used for the same reasons. It uses the same method as CAMB for computing the CMB spectrum, which is based on the line of sight approach. However the integration is performed in a different gauge with different time steps and k-spacing. It benefits from the power of Mathematica on numerical resolution of stiff differential systems, and the transfer functions can be obtained with exquisite accuracy.

The purpose of CMBquick is thus twofold. First, CMBquick is a slow but precise and pedagogical, tool which can be used to explore and modify the physical content of the linear and non-linear dynamics. Second, it is a tool which can help developing templates for nonlinear computations, which could then be hard coded once their correctness is checked. The number of equations for non-linear dynamics is quite sizable and CMBquick makes it easy (but slow) to manipulate the non-linear equations, to solve them precisely, and to plot them.

[ascl:1109.010]
PyModelFit: Model-fitting Framework and GUI Tool

PyModelFit provides a pythonic, object-oriented framework that simplifies the task of designing numerical models to fit data. This is a very broad task, and hence the current functionality of PyModelFit focuses on the simpler tasks of 1D curve-fitting, including a GUI interface to simplify interactive work (using Enthought Traits). For more complicated modeling, PyModelFit also provides a wide range of classes and a framework to support more general model/data types (2D to Scalar, 3D to Scalar, 3D to 3D, and so on).

[ascl:1109.011]
GalactICS: Galaxy Model Building Package

GalactICS generates N-body realizations of axisymmetric galaxy models consisting of disk, bulge and halo. Some of the code is in Fortran 77, using lines longer than 72 characters in some cases. The -e flag in the makefile allow for this for a Solaris f77 compiler. Other programs are written in C. Again, the linking between these routines works on Solaris systems, but may need to be adjusted for other architectures. We have found that linking using f77 instead of ld will often automatically load the appropriate libraries.

The graphics output by some of the programs (dbh, plotforce, diskdf, plothalo) uses the PGPLOT library. Alternatively, remove all calls to routines with names starting with "PG", as well as the -lpgplot flag in the Makefile, and the programs should still run fine.

[ascl:1109.012]
EnBiD: Fast Multi-dimensional Density Estimation

We present a method to numerically estimate the densities of a discretely sampled data based on a binary space partitioning tree. We start with a root node containing all the particles and then recursively divide each node into two nodes each containing roughly equal number of particles, until each of the nodes contains only one particle. The volume of such a leaf node provides an estimate of the local density and its shape provides an estimate of the variance. We implement an entropy-based node splitting criterion that results in a significant improvement in the estimation of densities compared to earlier work. The method is completely metric free and can be applied to arbitrary number of dimensions. We use this method to determine the appropriate metric at each point in space and then use kernel-based methods for calculating the density. The kernel-smoothed estimates were found to be more accurate and have lower dispersion. We apply this method to determine the phase-space densities of dark matter haloes obtained from cosmological N-body simulations. We find that contrary to earlier studies, the volume distribution function v(f) of phase-space density f does not have a constant slope but rather a small hump at high phase-space densities. We demonstrate that a model in which a halo is made up by a superposition of Hernquist spheres is not capable in explaining the shape of v(f) versus f relation, whereas a model which takes into account the contribution of the main halo separately roughly reproduces the behaviour as seen in simulations. The use of the presented method is not limited to calculation of phase-space densities, but can be used as a general purpose data-mining tool and due to its speed and accuracy it is ideally suited for analysis of large multidimensional data sets.

[ascl:1109.013]
CULSP: Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units

I introduce a new code for fast calculation of the Lomb-Scargle periodogram, that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a high-end GPU it is faster by a factor approaching thirty. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities; and Monte-Carlo simulation of periodogram statistical properties.

[ascl:1109.014]
Supernova Flux-averaging Likelihood Code

Flux-averaging justifies the use of the distance-redshift relation for a smooth universe in the analysis of type Ia supernova (SN Ia) data. Flux-averaging of SN Ia data is required to yield cosmological parameter constraints that are free of the bias induced by weak gravitational lensing. SN Ia data are converted into flux. For a given cosmological model, the distance dependence of the data is removed, then the data are binned in redshift, and placed at the average redshift in each redshift bin. The likelihood of the given cosmological model is then computed using "flux statistics''. These Fortran codes compute the likelihood of an arbitrary cosmological model [with given H(z)/H_0] using flux-averaged Type Ia supernova data.

[ascl:1109.015]
WCSTools: Image Astrometry Toolkit

WCSTools is a package of programs and a library of utility subroutines for setting and using the world coordinate systems (WCS) in the headers of the most common astronomical image formats, FITS and IRAF .imh, to relate image pixels to sky coordinates. In addition to dealing with image WCS information, WCSTools has extensive catalog search, image header manipulation, and coordinate and time conversion tasks. This software is all written in very portable C, so it should compile and run on any computer with a C compiler.

[ascl:1109.016]
aXe: Spectral Extraction and Visualization Software

aXe is a spectroscopic data extraction software package that was designed to handle large format spectroscopic slitless images such as those from the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) on HST. aXe is a PyRAF/IRAF package that consists of several tasks and is distributed as part of the Space Telescope Data Analysis System (STSDAS). The various aXe tasks perform specific parts of the extraction and calibration process and are successively used to produce extracted spectra.

[ascl:1109.017]
IRDR: InfraRed Data Reduction

We describe the InfraRed Data Reduction (IRDR) software package, a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. We developed the software to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient). The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and coaddition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although we currently use the software to process data taken with CIRSI (a near-IR mosaic imager), the software is modular and concise and should be easy to adapt/reuse for other work.

[ascl:1109.018]
GIPSY: Groningen Image Processing System

GIPSY is an acronym of Groningen Image Processing SYstem. It is a highly interactive software system for the reduction and display of astronomical data. It supports multi-tasking using a versatile user interface, it has an advanced data structure, a powerful script language and good display facilities based on the X Window system.

GIPSY consists of a number of components which can be divided into a number of classes:

- The user interfaces. Currently two user interfaces are available; one for interactive work and one for batch processing.
- The data structure.
- The display utilities.
- The application programs. These are the majority of programs.

[ascl:1109.019]
SkyCat: Visualization and Catalog and Data Access Tool

ESO's Data Management; Very Large Telescope (VLT) Project Divisions; Canadian Astronomical Data Center (CADC)

SkyCat is a tool that combines visualization of images and access to catalogs and archive data for astronomy. The tool, developed in Tcl/Tk, was originally conceived as a demo of the capabilities of the class library that was developed for the VLT. The Skycat sources currently consist of five packages:

- Tclutil - Generic Tcl and C++ utilities
- Astrotcl - Astronomical Tcl and C++ utilities
- RTD - Real-time Display classes and widgets
- Catlib - Catalog library and widgets
- Skycat - Skycat application and library package

[ascl:1109.020]
CMFGEN: Probing the Universe through Spectroscopy

A radiative transfer code designed to solve the radiative transfer and statistical equilibrium equations in spherical geometry. It has been designed for application to W-R stars, O stars, and Luminous Blue-Variables. CMFGEN allows fundamental parameters such as effective temperatures, stellar radii and stellar luminosities to be determined. It can provide constraints on mass-loss rates, and allow abundance determinations for a wide range of atomic species. Further it can provide accurate energy distributions, and hence ionizing fluxes, which can be used as input for codes which model the spectra of HII regions and ring nebular.

[ascl:1109.021]
TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

[ascl:1109.022]
Synspec: General Spectrum Synthesis Program

Synspec is a user-oriented package written in FORTRAN for modeling stellar atmospheres and for stellar spectroscopic diagnostics. It assumes an existing model atmosphere, calculated previously with Tlusty or taken from the literature (for instance, from the Kurucz grid of models). The opacity sources (continua, atomic and molecular lines) are fully specified by the user. An arbitrary stellar rotation and instrumental profile can be applied to the synthetic spectrum.

[ascl:1109.023]
MOKA: A New Tool for Strong Lensing Studies

MOKA simulates the gravitational lensing signal from cluster-sized haloes. This algorithm implements recent results from numerical simulations to create realistic lenses with properties independent of numerical resolution and can be used for studies of the strong lensing cross section in dependence of halo structure.

[ascl:1109.024]
Jupiter: Multidimensional Astrophysical Hydrocode

Jupiter is a multidimensional astrophysical hydrocode. It is based on a Godunov method, and it is parallelized with MPI. The mesh geometry can either be cartesian, cylindrical or spherical. It allows mesh refinement and includes special features adapted to the description of planets embedded in disks and nearly steady states.

[ascl:1110.001]
analytic_infall: A Molecular Line Infall Fitting Program

This code contains several simple radiative transfer models used for fitting the blue-asymmetric spectral line signature often found in infalling molecular cloud cores. It attempts to provide a direct measure of several physical parameters of the infalling core, including infall velocity, excitation temperature, and line of site optical depth. The code includes 6 radiative transfer models, however the conclusion of the associated paper is that the 5 parameter "hill" model (hill5) is most likely the best match to the physical excitation conditions of real infalling Bonnor-Ebert type clouds.

[ascl:1110.002]
DarkSUSY: Supersymmetric Dark Matter Calculations

Gondolo, Paolo; Edsjö, Joakim; Bergström, Lars; Ullio, Piero; Schelke, Mia; Baltz, Ted; Bringmann, Torsten; Duda, Gintaras

DarkSUSY, written in Fortran, is a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun.

[ascl:1110.003]
iGalFit: An Interactive Tool for GalFit

We present a suite of IDL routines to interactively run GALFIT whereby the various surface brightness profiles (and their associated parameters) are represented by regions, which the User is expected to place. The regions may be saved and/or loaded from the ASCII format used by ds9 or in the Hierarchical Data Format (version 5). The software has been tested to run stably on Mac OS X and Linux with IDL 7.0.4. In addition to its primary purpose of modeling galaxy images with GALFIT, this package has several ancillary uses, including a flexible image display routines, several basic photometry functions, and qualitatively assessing Source Extractor. We distribute the package freely and without any implicit or explicit warranties, guarantees, or assurance of any kind. We kindly ask users to report any bugs, errors, or suggestions to us directly (as opposed to fixing them themselves) to ensure version control and uniformity.

[ascl:1110.004]
SHTOOLS: Tools for Working with Spherical Harmonics

SHTOOLS performs (among others) spherical harmonic transforms and reconstructions, rotations of spherical harmonic coefficients, and multitaper spectral analyses on the sphere. The package accommodates any standard normalization of the spherical harmonic functions ("geodesy" 4π normalized, Schmidt semi-normalized, orthonormalized, and unnormalized), and either real or complex spherical harmonics can be employed. Spherical harmonic transforms are calculated by exact quadrature rules using either (1) the sampling theorem of Driscoll and Healy (1994) where data are equally sampled (or spaced) in latitude and longitude, or (2) Gauss-Legendre quadrature. A least squares inversion routine for irregularly sampled data is included as well. The Condon-Shortley phase factor of (-1)m can be used or excluded with the associated Legendre functions. The spherical harmonic transforms are accurate to approximately degree 2800, corresponding to a spatial resolution of better than 4 arc minutes. Routines are included for performing localized multitaper spectral analyses and standard gravity calculations, such as computation of the geoid, and the determination of the potential associated with finite-amplitude topography. The routines are fast. Spherical harmonic transforms and reconstructions take on the order of 1 second for bandwidths less than 600 and about 3 minutes for bandwidths close to 2800.

[ascl:1110.005]
ZEBRA: Zurich Extragalactic Bayesian Redshift Analyzer

The current version of the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA) combines and extends several of the classical approaches to produce accurate photometric redshifts down to faint magnitudes. In particular, ZEBRA uses the template-fitting approach to produce Maximum Likelihood and Bayesian redshift estimates based on: (1.) An automatic iterative technique to correct the original set of galaxy templates to best represent the SEDs of real galaxies at different redshifts; (2.) A training set of spectroscopic redshifts for a small fraction of the photometric sample; and (3.) An iterative technique for Bayesian redshift estimates, which extracts the full two-dimensional redshift and template probability function for each galaxy.

[ascl:1110.006]
STIFF: Converting Scientific FITS Images to TIFF

STIFF converts scientific FITS images to the more popular TIFF format for illustration purposes. Most FITS readers and converters do not do a proper job at converting FITS image data to 8 bits. 8-bit images stored in JPEG, PNG or TIFF files have the intensities implicitly stored in a non-linear way. Most current FITS image viewers and converters provide the user an incorrect translation of the FITS image content by simply rescaling linearly input pixel values. A first consequence is that the people working on astronomical images usually have to apply narrow intensity cuts or square-root or logarithmic intensity transformations to actually see something on their deep-sky images. A less obvious consequence is that colors obtained by combining images processed this way are not consistent across such a large range of surface brightnesses. Though with other software the user is generally afforded a choice of nonlinear transformations to apply in order to make the faint stuff stand out more clearly in the images, with the limited selection of choices provides, colors will not be accurately rendered, and some manual tweaking will be necessary. The purpose of STIFF is to produce beautiful pictures in an automatic and consistent way.

[ascl:1110.007]
GammaLib: Toolbox for High-level Analysis of Astronomical Gamma-ray Data

The GammaLib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements instruments specific functionalities such as instrument response functions and data formats. Instrument specific functionalities share a common interface to allow for extension of the GammaLib to include new gamma-ray instruments. The GammaLib provides an abstract data analysis framework that enables simultaneous multi-mission analysis.

[ascl:1110.008]
Glnemo2: Interactive Visualization 3D Program

Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface.

Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

[ascl:1110.009]
AAOGlimpse: Three-dimensional Data Viewer

AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

[ascl:1110.010]
MOCASSIN: MOnte CArlo SimulationS of Ionized Nebulae

MOCASSIN is a fully 3D or 2D photoionisation and dust radiative transfer code which employs a Monte Carlo approach to the transfer of radiation through media of arbitrary geometry and density distribution. Written in Fortran, it was originally developed for the modelling of photoionised regions like HII regions and planetary nebulae and has since expanded and been applied to a variety of astrophysical problems, including modelling clumpy dusty supernova envelopes, star forming galaxies, protoplanetary disks and inner shell fluorence emission in the photospheres of stars and disk atmospheres. The code can deal with arbitrary Cartesian grids of variable resolution, it has successfully been used to model complex density fields from SPH calculations and can deal with ionising radiation extending from Lyman edge to the X-ray. The dust and gas microphysics is fully coupled both in the radiation transfer and in the thermal balance.

[ascl:1110.011]
Pacerman: Polarisation Angle CorrEcting Rotation Measure ANalysis

Pacerman, written in IDL, is a new method to calculate Faraday rotation measure maps from multi-frequency polarisation angle data. In order to solve the so called n-pi-ambiguity problem which arises from the observationally ambiguity of the polarisation angle which is only determined up to additions of n times pi, where n is an integer, we suggest using a global scheme. Instead of solving the n-pi-ambiguity for each data point independently, our algorithm, which we chose to call Pacerman solves the n-pi-ambiguity for a high signal-to-noise region "democratically" and uses this information to assist computations in adjacent low signal-to-noise areas.

[ascl:1110.012]
Starlink: Multi-purpose Astronomy Software

Starlink has many applications within it to meet a variety of needs; it includes:

- a general astronomical image viewer;
- data reduction tools, including programs for reducing CCD-like data;
- general-purpose data-analysis and visualisation tools;
- image processing, data visualisation, and manipulating NDF components;
- a flexible and powerful library for handling World Coordinate Systems (partly based on the SLALIB library);
- a library of routines intended to make accurate and reliable positional-astronomy applications easier to write; and
- and a Hierarchical Data System that is portable and flexible for storing and retrieving data.

[ascl:1110.013]
S2HAT: Scalable Spherical Harmonic Transform Library

Many problems in astronomy and astrophysics require a computation of the spherical harmonic transforms. This is in particular the case whenever data to be analyzed are distributed over the sphere or a set of corresponding mock data sets has to be generated. In many of those contexts, rapidly improving resolutions of both the data and simulations puts increasingly bigger emphasis on our ability to calculate the transforms quickly and reliably.

The scalable spherical harmonic transform library S2HAT consists of a set of flexible, massively parallel, and scalable routines for calculating diverse (scalar, spin-weighted, etc) spherical harmonic transforms for a class of isolatitude sky grids or pixelizations. The library routines implement the standard algorithm with the complexity of O(n^3/2), where n is a number of pixels/grid points on the sphere, however, owing to their efficient parallelization and advanced numerical implementation, they achieve very competitive performance and near perfect scalability. S2HAT is written in Fortran 90 with a C interface. This software is a derivative of the spherical harmonic transforms included in the HEALPix package and is based on both serial and MPI routines of its version 2.01, however, since version 2.5 this software is fully autonomous of HEALPix and can be compiled and run without the HEALPix library.

[ascl:1110.014]
pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other.

In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

[ascl:1110.015]
atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine'' physical effects of cosmological recombination simultaneously with using fudge factors.

[ascl:1110.016]
REBOUND: Multi-purpose N-body code for collisional dynamics

REBOUND is a multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond.

REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles.

[ascl:1110.017]
POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:1110.018]
MADmap: Fast Parallel Maximum Likelihood CMB Map Making Code

MADmap produces maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap has the ability to address problems typically encountered in the analysis of realistic CMB data sets. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analyzing the largest data sets now being collected on computing resources currently available.

[ascl:1110.019]
CosmoNest: Cosmological Nested Sampling

CosmoNest is an algorithm for cosmological model selection. Given a model, defined by a set of parameters to be varied and their prior ranges, and data, the algorithm computes the evidence (the marginalized likelihood of the model in light of the data). The Bayes factor, which is proportional to the relative evidence of two models, can then be used for model comparison, i.e. to decide whether a model is an adequate description of data, or whether the data require a more complex model.

For convenience, CosmoNest, programmed in Fortran, is presented here as an optional add-on to CosmoMC (ascl:1106.025), which is widely used by the cosmological community to perform parameter fitting within a model using a Markov-Chain Monte-Carlo (MCMC) engine. For this reason it can be run very easily by anyone who is able to compile and run CosmoMC. CosmoNest implements a different sampling strategy, geared for computing the evidence very accurately and efficiently. It also provides posteriors for parameter fitting as a by-product.

[ascl:1110.020]
CROSS_CMBFAST: ISW-correlation Code

This code is an extension of CMBFAST4.5.1 to compute the ISW-correlation power spectrum and the 2-point angular ISW-correlation function for a given galaxy window function. It includes dark energy models specified by a constant equation of state (w) or a linear parameterization in the scale factor (w0,wa) and a constant sound speed (c2de). The ISW computation is limited to flat geometry. Differently from the original CMBFAST4.5 version dark energy perturbations are implemented for a general dark energy fluid specified by w(z) and c2de in synchronous gauge. For time varying dark energy models it is suggested not to cross the w=-1 line, as Dr. Wenkman says: "never cross the streams", bad things can happen.

[ascl:1110.021]
Univiewer: Visualisation Program for HEALPix Maps

Univiewer is a visualisation program for HEALPix maps. It is written in C++ and uses OpenGL and the wxWidgets library for cross-platform portability. Using it you can:

- Rotate and zoom maps on the sphere in 3D;
- Create high-resolution views of square patches of the map;
- Change maximum and minimum values of the colourmap interactively;
- Calculate the power spectrum of the full-sky map or a patch;
- Display any column of a HEALPix map FITS file on the sphere.

In the 3D view, a HEALPix map is projected onto a ECP pixelation to create a texture which is wrapped around the sphere. In calculating the power spectrum, the spherical harmonic transforms are computed using the same ECP pixelation. This inevitably leads to some discrepancies at small scales due to repixelation effects, but they are reasonably small.

[ascl:1110.022]
simple_cosfitter: Supernova-centric Cosmological Fitter

This is an implementation of a fairly simple-minded luminosity distance fitter, intended for use with supernova data. The calculational technique is based on evaluating the $chi^2$ of the model fit on a grid and marginalization over various nuisance parameters. Of course, the nature of these things is that this code has gotten steadily more complex, so perhaps the simple moniker is no longer justified.

[ascl:1110.023]
SiFTO: An Empirical Method for Fitting SN Ia Light Curves

SiFTO is an empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. SiFTO has been compared to other published light-curve models by applying them to the same set of SN photometry, and it's been demonstrated that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. When SiFTO and SALT2 are trained on the same data set the cosmological results agree.

[ascl:1110.024]
CosmoMC SNLS: CosmoMC Plug-in to Analyze SNLS3 SN Data

This module is a plug-in for CosmoMC and requires that software. Though programmed to analyze SNLS3 SN data, it can also be used for other SN data provided the inputs are put in the right form. In fact, this is probably a good idea, since the default treatment that comes with CosmoMC is flawed. Note that this requires fitting two additional SN nuisance parameters (alpha and beta), but this is significantly faster than attempting to marginalize over them internally.

[ascl:1110.025]
MIS: A Miriad Interferometry Singledish Toolkit

MIS is a pipeline toolkit using the package MIRIAD to combine Interferometric and Single Dish data. This was prompted by our observations made with the Combined Array For Research in Millimeter-wave Astronomy (CARMA) interferometer of the star-forming region NGC 1333, a large survey highlighting the new 23-element and singledish observing modes. The project consists of 20 CARMA datasets each containing interferometric as well as simultaneously obtained single dish data, for 3 molecular spectral lines and continuum, in 527 different pointings, covering an area of about 8 by 11 arcminutes. A small group of collaborators then shared this toolkit and their parameters via CVS, and scripts were developed to ensure uniform data reduction across the group. The pipeline was run end-to-end each night that new observations were obtained, producing maps that contained all the data to date. This approach could serve as a model for repeated calibration and mapping of large mixed-mode correlation datasets from ALMA.

[ascl:1111.001]
HIPE: Herschel Interactive Processing Environment

The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity.

[ascl:1111.002]
CRBLASTER: A Parallel-Processing Computational Framework for Embarrassingly-Parallel Image-Analysis Algorithms

The development of parallel-processing image-analysis codes is generally a challenging task that requires complicated choreography of interprocessor communications. If, however, the image-analysis algorithm is embarrassingly parallel, then the development of a parallel-processing implementation of that algorithm can be a much easier task to accomplish because, by definition, there is little need for communication between the compute processes. I describe the design, implementation, and performance of a parallel-processing image-analysis application, called CRBLASTER, which does cosmic-ray rejection of CCD (charge-coupled device) images using the embarrassingly-parallel L.A.COSMIC algorithm. CRBLASTER is written in C using the high-performance computing industry standard Message Passing Interface (MPI) library. The code has been designed to be used by research scientists who are familiar with C as a parallel-processing computational framework that enables the easy development of parallel-processing image-analysis programs based on embarrassingly-parallel algorithms. The CRBLASTER source code is freely available at the official application website at the National Optical Astronomy Observatory. Removing cosmic rays from a single 800x800 pixel Hubble Space Telescope WFPC2 image takes 44 seconds with the IRAF script lacos_im.cl running on a single core of an Apple Mac Pro computer with two 2.8-GHz quad-core Intel Xeon processors. CRBLASTER is 7.4 times faster processing the same image on a single core on the same machine. Processing the same image with CRBLASTER simultaneously on all 8 cores of the same machine takes 0.875 seconds -- which is a speedup factor of 50.3 times faster than the IRAF script. A detailed analysis is presented of the performance of CRBLASTER using between 1 and 57 processors on a low-power Tilera 700-MHz 64-core TILE64 processor.

[ascl:1111.003]
Saada: A Generator of Astronomical Database

Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.

[ascl:1111.004]
CIGALE: Code Investigating GALaxy Emission

The CIGALE code has been developed to study the evolution of galaxies by comparing modelled galaxy spectral energy distributions (SEDs) to observed ones from the far ultraviolet to the far infrared. It extends the SED fitting algorithm written by Burgarella et al. (2005, MNRAS 360, 1411). While the previous code was designed to fit SEDs in the optical and near infrared, CIGALE is able to fit SEDs up to the far infrared using Dale & Helou (2002, ApJ 576, 159). CIGALE Bayesian and CIGALE Monte Carlo Markov Chain are available.

[ascl:1111.005]
SPECTCOL: Spectroscopic and Collisional Data Retrieval

Studies of astrophysical non-LTE media require the combination of atomic and molecular spectroscopic and collisional data often described differently in various databases. SPECTCOL is a tool that implements VAMDC standards, retrieve relevant information from different databases such as CDMS, HITRAN, BASECOL, and can upload local files. All transfer of data between the client and the databases use the VAMDC-XSAMS schema. The spectroscopic and collisional information is combined and useful outputs (ascii or xsams) are provided for the study of the interstellar medium.

[ascl:1111.006]
MOPEX: MOsaicker and Point source EXtractor

MOPEX (MOsaicker and Point source EXtractor) is a package for reducing and analyzing imaging data, as well as MIPS SED data. MOPEX includes the point source extraction package, APEX.

MOPEX is designed to allow the user to:

- perform sophisticated background matching of individual data frames
- mosaic the individual frames downloaded from the Spitzer archive
- perform both temporal and spatial outlier rejection during mosaicking
- apply offline pointing refinement for MIPS data (refinement is already applied to IRAC data)
- perform source detection on the mosaics using APEX
- compute aperture photometry or PRF-fitting photometry for point sources
- perform interpolation, coaddition, and spectrum extraction of MIPS SED images.

[ascl:1111.007]
CUBISM: CUbe Builder for IRS Spectra Maps

Sings Irs Team; Smith, J. D.; Armus, Lee; Bot, Caroline; Buckalew, Brent; Dale, Danny; Helou, George; Jarrett, Tom; Roussel, Helene; Sheth, Kartik

CUBISM, written in IDL, constructs spectral cubes, maps, and arbitrary aperture 1D spectral extractions from sets of mapping mode spectra taken with Spitzer's IRS spectrograph. CUBISM is optimized for non-sparse maps of extended objects, e.g. the nearby galaxy sample of SINGS, but can be used with data from any spectral mapping AOR (primarily validated for maps which are designed as suggested by the mapping HOWTO).

[ascl:1111.008]
SITools2: A Framework for Archival Systems

SITools2 is a CNES generic tool performed by a joint effort between CNES and scientific laboratories. SITools provides a self-manageable data access layer deployed on already existing scientific laboratory databases. This new version of SITools is a JAVA-based framework, under open source license, that provides a portable archive system, highly configurable, easy to use by laboratories, with a plugin mechanism so developers can add their own applications.

[ascl:1111.009]
MESS: Multi-purpose Exoplanet Simulation System

Bonavita, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Janson, M.; Beuzit, J. L.; Kasper, M.; Mordasini, C.

MESS is a Monte Carlo simulation IDL code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. It can be used to probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planets.

[ascl:1111.010]
Starbase Data Tables: An ASCII Relational Database for Unix

Database management is an increasingly important part of astronomical data analysis. Astronomers need easy and convenient ways of storing, editing, filtering, and retrieving data about data. Commercial databases do not provide good solutions for many of the everyday and informal types of database access astronomers need. The Starbase database system with simple data file formatting rules and command line data operators has been created to answer this need. The system includes a complete set of relational and set operators, fast search/index and sorting operators, and many formatting and I/O operators. Special features are included to enhance the usefulness of the database when manipulating astronomical data. The software runs under UNIX, MSDOS and IRAF.

[ascl:1111.011]
3DEX: Fast Fourier-Bessel Decomposition of Spherical 3D Surveys

High precision cosmology requires analysis of large scale surveys in 3D spherical coordinates, i.e. Fourier-Bessel decomposition. Current methods are insufficient for future data-sets from wide-field cosmology surveys. 3DEX (3D EXpansions) is a public code for fast Fourier-Bessel decomposition of 3D all-sky surveys which takes advantage of HEALPix for the calculation of tangential modes. For surveys with millions of galaxies, computation time is reduced by a factor 4-12 depending on the desired scales and accuracy. The formulation is also suitable for pre-calculations and external storage of the spherical harmonics, which allows for further speed improvements. The 3DEX code can accommodate data with masked regions of missing data. It can be applied not only to cosmological data, but also to 3D data in spherical coordinates in other scientific fields.

[ascl:1111.012]
VAPOR: Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers

VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers. VAPOR provides an interactive 3D visualization environment that runs on most UNIX and Windows systems equipped with modern 3D graphics cards. VAPOR provides:

- A visual data discovery environment tailored towards the specialized needs of the astro and geosciences CFD community
- A desktop solution capable of handling terascale size data sets
- Advanced interactive 3D visualization tightly coupled with quantitative data analysis
- Support for multi-variate, time-varying data
- Close coupling with RSI's powerful interpretive data language, IDL
- Support for 3D visualization of WRF-ARW datasets

[ascl:1111.013]
FIBRE-pac: FMOS Image-based Reduction Package

Iwamuro, F.; Moritani, Y.; Yabe, K.; Sumiyoshi, M.; Kawate, K.; Tamura, N.; Akiyama, M.; Kimura, M.; Takato, N.; Tait, P.; Ohta, K.; Totani, T.; Suzuki, Y.; Tonegawa, M.

The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.

[ascl:1111.014]
FITSH: Software Package for Image Processing

FITSH provides a standalone environment for analysis of data acquired by imaging astronomical detectors. The package provides utilities both for the full pipeline of subsequent related data processing steps (including image calibration, astrometry, source identification, photometry, differential analysis, low-level arithmetic operations, multiple image combinations, spatial transformations and interpolations, etc.) and for aiding the interpretation of the (mainly photometric and/or astrometric) results. The package also features a consistent implementation of photometry based on image subtraction, point spread function fitting and aperture photometry and provides easy-to-use interfaces for comparisons and for picking the most suitable method for a particular problem. The utilities in the package are built on the top of the commonly used UNIX/POSIX shells (hence the name of the package), therefore both frequently used and well-documented tools for such environments can be exploited and managing massive amount of data is rather convenient.

[ascl:1111.015]
TIPSY: Code for Display and Analysis of N-body Simulations

The development of TIPSY was motivated by the need to quickly display and analyze the results of N-body simulations. Most data visualization packages are designed for the display of gridded data, and hence are unsuitable for use with particle data. Therefore, a special package was built that could easily perform the following functions:

1.) Display particle positions (as points), and velocities (as line segments) from an arbitrary viewpoint;

2.) Zoom in to a chosen position. Due to their extremely clustered nature, structure of interest in an N-body simulation is often so small that it cannot be seen when looking at the simulation as a whole;

3.) Color particles to display scalar fields. Examples of such fields are potential energy, or for SPH particles, density and temperature;

4.) Selection of a subset of the particles for display and analysis. Regions of interest are generally small subsets of the simulation;

5.) Following selected particles from one timestep to another; and,

6.) Finding cumulative properties of a collection of particles. This usually involves just a sum over the particles.

The basic data structure is an array of particle structures. Since TIPSY was built for use with cosmological N-body simulations, there are actually three separate arrays for each of the types of particle used in such simulations: collisionless particles, SPH particles, and star particles. A single timestep is read into these arrays from a disk file. Display is done by finding the x and y coordinates of the particles in the rotated coordinate system, and storing them in arrays. Screen coordinates are calculated from these arrays according to the current zoom factor. Also, a software Z-buffer is maintained to save time if many particles project to the same screen pixel. There are several types of display. An "all plot" displays all particles colored according to their type. A "radial plot" will color particles according to the projection of the velocity along the line-of-sight. A "gas plot" will color gas according to SPH quantities such as density, temperature, neutral hydrogen fraction, etc. Subsets of particles are maintained using boxes." A box structure contains a bounding box, and an array of pointers to particles within the box. All display and analysis functions are performed on the "active box." By default all particles are loaded into box 0, which becomes the active box. If a new timestep is read from disk, all boxes are destroyed. A selection of particles can be followed between timesteps via a "mark" array. Marked particles are displayed in a different color, and the analysis functions can be told to only operate on the marked particles.

[ascl:1112.001]
Eclipse: ESO C Library for an Image Processing Software Environment

Written in ANSI C, eclipse is a library offering numerous services related to astronomical image processing: FITS data access, various image and cube loading methods, binary image handling and filtering (including convolution and morphological filters), 2-D cross-correlation, connected components, cube and image arithmetic, dead pixel detection and correction, object detection, data extraction, flat-fielding with robust fit, image generation, statistics, photometry, image-space resampling, image combination, and cube stacking. It also contains support for mathematical tools like random number generation, FFT, curve fitting, matrices, fast median computation, and point-pattern matching. The main feature of this library is its ability to handle large amounts of input data (up to 2GB in the current version) regardless of the amount of memory and swap available on the local machine. Another feature is the very high speed allowed by optimized C, making it an ideal base tool for programming efficient number-crunching applications, e.g., on parallel (Beowulf) systems.

[ascl:1112.002]
Funtools: FITS Users Need Tools

Funtools is a "minimal buy-in" FITS library and utility package developed at the the High Energy Astrophysics Division of SAO. The Funtools library provides simplified access to a wide array of file types: standard astronomical FITS images and binary tables, raw arrays and binary event lists, and even tables of ASCII column data. A sophisticated region filtering library (compatible with ds9) filters images and tables using boolean operations between geometric shapes, support world coordinates, etc. Funtools also supports advanced capabilities such as optimized data searching using index files.

Because Funtools consists of a library and a set of user programs, it is most appropriately built from source. Funtools has been ported to Solaris, Linux, LinuxPPC, SGI, Alpha OSF1, Mac OSX (darwin) and Windows 98/NT/2000/XP. Once the source code tar file is retrieved, Funtools can be built and installed easily using standard commands.

[ascl:1112.003]
THERMINATOR 2: THERMal heavy IoN generATOR 2

THERMINATOR is a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The increased functionality of the code contains the following features: The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1 dimensional profiles, in particular those generated externally with various hydrodynamic codes. The hypersufraces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region, where the baryon chemical potential becomes large. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au+Au data at sqrt(s_(NN)) = 200 GeV for various centralities, as well as those anticipated for the LHC Pb+Pb collisions at sqrt(s_(NN)) = 5.5 TeV. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations which are an important source of information concerning the size and expansion of the system. We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p_T-spectra, the elliptic flow coefficients, and the HBT correlation radii. We also investigate the problem of the back-flow of particles into the hydrodynamic region, as well as estimate the elastic rescattering in terms of trajectory crossings. The package is written in C++ and uses the CERN ROOT environment.

[ascl:1112.004]
PHOX: X-ray Photon Simulator

PHOX is a novel, virtual X-ray observatory designed to obtain synthetic observations from hydro-numerical simulations. The code is a photon simulator and can be apply to simulate galaxy clusters. In fact, X-ray observations of clusters of galaxies continue to provide us with an increasingly detailed picture of their structure and of the underlying physical phenomena governing the gaseous component, which dominates their baryonic content. Therefore, it is fundamental to find the most direct and faithful way to compare such observational data with hydrodynamical simulations of cluster-like objects, which can currently include various complex physical processes. Here, we present and analyse synthetic Suzaku observations of two cluster-size haloes obtained by processing with PHOX the hydrodynamical simulation of the large-scale, filament-like region in which they reside. Taking advantage of the simulated data, we test the results inferred from the X-ray analysis of the mock observations against the underlying, known solution. Remarkably, we are able to recover the theoretical temperature distribution of the two haloes by means of the multi-temperature fitting of the synthetic spectra. Moreover, the shapes of the reconstructed distributions allow us to trace the different thermal structure that distinguishes the dynamical state of the two haloes.

[ascl:1112.005]
GIDGET: Gravitational Instability-Dominated Galaxy Evolution Tool

Observations of disk galaxies at z~2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. GIDGET is a 1D simulation code, which we have made publicly available, that economically evolves these galaxies from z~2 to z~0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H$_2$ regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z~2 decreases along with the cosmological accretion rate, while at lower redshift, the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

[ascl:1112.006]
PhAst: Display and Analysis of FITS Images

PhAst (Photometry-Astrometry) is an IDL astronomical image viewer based on the existing application ATV which displays and analyzes FITS images. It can calibrate raw images, provide astrometric solutions, and do circular aperture photometry. PhAst allows the user to load, process, and blink any number of images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting.

[ascl:1112.007]
FLAGCAL: FLAGging and CALlibration Pipeline for GMRT Data

FLAGging and CALlibration (FLAGCAL) is a software pipeline developed for automatic flagging and calibration of the GMRT data. This pipeline can be used for preprocessing (before importing the data in AIPS) any other interferromteric data also (given that the data file is in FITS format and contains multiple channels & scans).There are also a few GUI based tools which can be used for quick visualization of the data.

[ascl:1112.008]
GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1112.009]
LISACode: A scientific simulator of LISA

LISACode is a simulator of the LISA mission. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. Its also a useful tool for generating realistic data including several kind of sources (Massive Black Hole binaries, EMRIs, cosmic string cusp, stochastic background, etc) and for preparing their analysis. It’s fully integrated to the Mock LISA Data Challenge. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator.

[ascl:1112.010]
MRS3D: 3D Spherical Wavelet Transform on the Sphere

Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

[ascl:1112.011]
CMBview: A Mac OS X program for viewing HEALPix-format sky map data on a sphere

CMBview is a viewer for FITS files containing HEALPix sky maps. Sky maps are projected onto a 3d sphere which can be rotated and zoomed interactively with the mouse. Features include:

- rendering of the field of Stokes vectors

- ray-tracing mode in which each screen pixel is projected onto the sphere for high quality rendering

- control over sphere lighting

- export an arbitrarily large rendered texture

- variety of preset colormaps

[ascl:1112.012]
CORA: Emission Line Fitting with Maximum Likelihood

CORA analyzes emission line spectra with low count numbers and fits them to a line using the maximum likelihood technique. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise, the software derives the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. CORA has been applied to an X-ray spectrum with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory.

[ascl:1112.013]
XEphem: Interactive Astronomical Ephemeris

XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. XEphem computes heliocentric, geocentric and topocentric information for all objects and has built-in support for all planets, the moons of Mars, Jupiter, Saturn, Uranus and Earth, central meridian longitude of Mars and Jupiter, Saturn's rings, and Jupiter's Great Red Spot. It allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites, provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC, displays data in configurable tabular formats in conjunction with several interactive graphical views, and displays a night-at-a-glance 24 hour graphic showing when any selected objects are up. It also displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories, quickly finds all close pairs of objects in the sky, and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

[ascl:1112.014]
PyEphem: Astronomical Ephemeris for Python

PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day.

The numerical routines that lie behind PyEphem are those from the wonderful XEphem astronomy application, whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.

[ascl:1112.015]
Dexter: Data Extractor for scanned graphs

The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

[ascl:1112.016]
PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

- the system console
- the command line
- a network socket
- the generation of audio speech

[ascl:1112.017]
ASpec: Astronomical Spectrum Analysis Package

ASpec is a spectrum and line analysis package developed at STScI. ASpec is designed as an add-on package for IRAF and incorporates a variety of analysis techniques for astronomical spectra. ASpec operates on spectra from a wide variety of ground-based and space-based instruments and allows simultaneous handling of spectra from different wavelength regimes. The package accommodates non-linear dispersion relations and provides a variety of functions, individually or in combination, with which to fit spectral features and the continuum. It also permits the masking of known bad data. ASpec provides a powerful, intuitive graphical user interface implemented using the IRAF Object Manager and customized to handle: data input/output (I/O); on-line help; selection of relevant features for analysis; plotting and graphical interaction; and data base management.

[ascl:1112.018]
SwiftVis: Data Analysis & Visualization For Planetary Science

SwiftVis is a tool originally developed as part of a rewrite of Swift to be used for analysis and plotting of simulations performed with Swift and Swifter. The extensibility built into the design has allowed us to make SwiftVis a general purpose analysis and plotting package customized to be usable by the planetary science community at large. SwiftVis is written in Java and has been tested on Windows, Linux, and Mac platforms. Its graphical interface allows users to do complex analysis and plotting without having to write custom code.

[ascl:1112.019]
Aladin: Interactive Sky Atlas

Aladin is an interactive software sky atlas allowing the user to visualize digitized astronomical images, superimpose entries from astronomical catalogues or databases, and interactively access related data and information from the Simbad database, the VizieR service and other archives for all known sources in the field.

Created in 1999, Aladin has become a widely-used VO tool capable of addressing challenges such as locating data of interest, accessing and exploring distributed datasets, visualizing multi-wavelength data. Compliance with existing or emerging VO standards, interconnection with other visualisation or analysis tools, ability to easily compare heterogeneous data are key topics allowing Aladin to be a powerful data exploration and integration tool as well as a science enabler.

[ascl:1201.001]
McScatter: Three-Body Scattering with Stellar Evolution

McScatter illustrates a method of combining stellar dynamics with stellar evolution. The method is intended for elaborate applications, especially the dynamical evolution of rich star clusters. The dynamics is based on binary scattering in a multi-mass field of stars with uniform density and velocity dispersion, using the scattering cross section of Giersz (MNRAS, 2001, 324, 218-30).

[ascl:1201.002]
Roche: Visualization and analysis tool for Roche-lobe geometry of evolving binaries

Roche is a visualization and analysis tool for drawing the Roche-lobe geometry of evolving binaries. Roche can be used as a standalone program reading data from the command line or from a file generated by SeBa (ascl:1201.003). Eventually Roche will be able to read data from any other binary evolution program. Roche requires Starlab (ascl:1010.076) version 4.1.1 or later and the pgplot (ascl:1103.002) libraries. Roche creates a series of images, based on the SeBa output file SeBa.data, displaying the evolutionary state of a binary.

[ascl:1201.003]
SeBa: Stellar and binary evolution

The stellar and binary evolution package SeBa is fully integrated into the kira integrator, although it can also be used as a stand-alone module for non-dynamical applications. Due to the interaction between stellar evolution and stellar dynamics, it is difficult to solve for the evolution of both systems in a completely self-consistent way. The trajectories of stars are computed using a block timestep scheme, as described earlier. Stellar and binary evolution is updated at fixed intervals (every 1/64 of a crossing time, typically a few thousand years). Any feedback between the two systems may thus experience a delay of at most one timestep. Internal evolution time steps may differ for each star and binary, and depend on binary period, perturbations due to neighbors, and the evolutionary state of the star. Time steps in this treatment vary from several milliseconds up to (at most) a million years.

[ascl:1201.004]
emGain: Determination of EM gain of CCD

The determination of the EM gain of the CCD is best done by fitting the histogram of many low-light frames. Typically, the dark+CIC noise of a 30ms frame itself is a sufficient amount of signal to determine accurately the EM gain with about 200 512x512 frames. The IDL code emGain takes as an input a cube of frames and fit the histogram of all the pixels with the EM stage output probability function. The function returns the EM gain of the frames as well as the read-out noise and the mean signal level of the frames.

[ascl:1201.005]
2LPTIC: 2nd-order Lagrangian Perturbation Theory Initial Conditions

Setting initial conditions in numerical simulations using the standard procedure based on the Zel'dovich approximation (ZA) generates incorrect second and higher-order growth and therefore excites long-lived transients in the evolution of the statistical properties of density and velocity fields. Using more accurate initial conditions based on second-order Lagrangian perturbation theory (2LPT) reduces transients significantly; initial conditions based on 2LPT are thus much more appropriate for numerical simulations devoted to precision cosmology. The 2LPTIC code provides initial conditions for running cosmological simulations based on second-order Lagrangian Perturbation Theory (2LPT), rather than first-order (Zel'dovich approximation).

[ascl:1201.006]
VIM: Visual Integration and Mining

VIM (Virtual Observatory Integration and Mining) is a data retrieval and exploration application that assumes an astronomer has a list of 'sources' (positions in the sky), and wants to explore archival catalogs, images, and spectra of the sources, in order to identify, select, and mine the list. VIM does this either through web forms, building a custom 'data matrix,' or locally through downloadable Python code. Any VO-registered catalog service can be used by VIM, as well as co-registered image cutouts from VO-image services, and spectra from VO-spectrum services. The user could, for example, show together: proper motions from GSC2, name and spectral type from NED, magnitudes and colors from 2MASS, and cutouts and spectra from SDSS. VIM can compute columns across surveys and sort on these (eg. 2MASS J magnitude minus SDSS g). For larger sets of sources, VIM utilizes the asynchronous Nesssi services from NVO, that can run thousands of cone and image services overnight.

[ascl:1201.007]
Fisher4Cast: Fisher Matrix Toolbox

The Fisher4Cast suite, which requires MatLab, provides a standard, tested tool set for general Fisher Information matrix prediction and forecasting for use in both research and education. The toolbox design is robust and modular, allowing for easy additions and adaptation while keeping the user interface intuitive and easy to use. Fisher4Cast is completely general but the default is coded for cosmology. It provides parameter error forecasts for cosmological surveys providing distance, Hubble expansion and growth measurements in a general, curved FLRW background.

[ascl:1201.008]
Mercury: A software package for orbital dynamics

Mercury is a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in "cometary" or "asteroidal" format, with different epochs of osculation for different objects. Output from an integration consists of osculating elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another.

During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modeled. The package supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations.

[ascl:1201.009]
ExoFit: Orbital parameters of extra-solar planets from radial velocity

ExoFit is a freely available software package for estimating orbital parameters of extra-solar planets. ExoFit can search for either one or two planets and employs a Bayesian Markov Chain Monte Carlo (MCMC) method to fit a Keplerian radial velocity curve onto the radial velocity data.

[ascl:1201.010]
HNBody: Hierarchical N-Body Symplectic Integration Package

HNBody is a new set of software utilities geared to the integration of hierarchical (nearly-Keplerian) N-body systems. Our focus is on symplectic methods, and we have included explicit support for three classes of particles (heavy, light, and massless), second and fourth order methods, post-Newtonian corrections, and the use of a symplectic corrector (among other things). For testing purposes, we also provide support for more general integration schemes (Bulirsch-Stoer & Runge-Kutta). Configuration files employing an intuitive syntax allow for easy problem setup, and many simple simulations can be done without the user compiling any code. Low-level interfaces are also available, enabling extensive customization.

[ascl:1201.011]
Duchamp: A 3D source finder for spectral-line data

Duchamp is software designed to find and describe sources in 3-dimensional, spectral-line data cubes. Duchamp has been developed with HI (neutral hydrogen) observations in mind, but is widely applicable to many types of astronomical images. It features efficient source detection and handling methods, noise suppression via smoothing or multi-resolution wavelet reconstruction, and a range of graphical and text-based outputs to allow the user to understand the detections.

[ascl:1201.012]
CLUMPY: A code for gamma-ray signals from dark matter structures

CLUMPY is a public code for semi-analytical calculation of the gamma-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, antiprotons) will be included in a second release.

[ascl:1201.013]
SPS: SPIRE Photometer Simulator

The SPS software simulates the operation of the Spectral and Photometric Imaging Receiver on-board the ESA’s Herschel Space Observatory. It is coded using the Interactive Data Language (IDL), and produces simulated data at the level-0 stage (non-calibrated data in digitised units). The primary uses for the simulator are to:

- optimize and characterize the photometer observing functions
- aid in the development, validation, and characterization of the SPIRE data pipeline
- provide a realistic example of SPIRE data, and thus to facilitate the development of specific analysis tools for specific science cases.

[ascl:1201.014]
Hammurabi: Simulating polarized Galactic synchrotron emission

The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

[ascl:1201.015]
FFTW: Fastest Fourier Transform in the West

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST).

Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification.

The FFTW library is required by other codes such as StarCrash and Hammurabi.

[ascl:1201.016]
LumFunc: Luminosity Function Modeling

LumFunc is a numerical code to model the Luminosity Function based on central galaxy luminosity-halo mass and total galaxy luminosity-halo mass relations. The code can handle rest b_J-band (2dFGRS), r'-band (SDSS), and K-band luminosities, and any redshift with redshift dependences specified by the user. It separates the luminosity function (LF) to conditional luminosity functions, LF as a function of halo mass, and also to galaxy types. By specifying a narrow mass range, the code will return the conditional luminosity functions. The code returns luminosity functions for galaxy types as well (broadly divided to early-type and late-type). The code also models the cluster luminosity function, either mass averaged or for individual clusters.

[ascl:1201.017]
Inflation: Monte-Carlo Code for Slow-Roll Inflation

Inflation is a numerical code to generate power spectra and other observables through numerical solutions to flow equations. The code generates tensor and scalar power spectra as a function of wavenumber and various other parameters at specific wavenumbers of interest (such as for CMB, scalar perturbations at smaller scales, gravitational wave detection at direct detection frequencies). The output can be easily ported to publicly available Markov Chain codes to constrain cosmological parameters with data.

[ascl:1202.001]
CISM_DX: Visualization and analysis tool

CISM_DX is a community-developed suite of integrated data, models, and data and model explorers, for research and education. The data and model explorers are based on code written for OpenDX and Octave; OpenDX provides the visualization infrastructures as well as the process for creating user interfaces to the model and data, and Octave allows for extensive data manipulation and reduction operations. The CISM-DX package extends the capabilities of the core software programs to meet the needs of space physics researchers.

[ascl:1202.002]
ZODIPIC: Zodiacal Cloud Image Synthesis

ZODIPIC synthesizes images of exozodiacal clouds. As a default, ZODIPIC creates an image of the solar zodiacal cloud as seen from 10 pc, but it contains many parameters that are tweakable from the command line, making it a handy general-purpose model for optically-thin debris disks that yields both accurate images and photometric information simultaneously. Written in IDL, ZODIPIC includes dust with real optical constants, user-specified dust maps and can compute images as seen through a linear polarizer.

[ascl:1202.003]
NOVAS: Naval Observatory Vector Astrometry Software

Kaplan, George; Bartlett, Jennifer Lynn; Monet, Alice; Bangert, John; Puatua, Wendy; Harris, William; Fredericks, Amy; Barron, Eric G.; Barrett, Paul

NOVAS is an integrated package of subroutines and functions for computing various commonly needed quantities in positional astronomy. The package can provide, in one or two subroutine or function calls, the instantaneous coordinates of any star or planet in a variety of coordinate systems. At a lower level, NOVAS also supplies astrometric utility transformations, such as those for precession, nutation, aberration, parallax, and the gravitational deflection of light. The computations are accurate to better than one milliarcsecond. The NOVAS package is an easy-to-use facility that can be incorporated into data reduction programs, telescope control systems, and simulations. The U.S. parts of The Astronomical Almanac are prepared using NOVAS. Three editions of NOVAS are available: Fortran, C, and Python.

[ascl:1202.004]
TALYS: Nuclear Reaction Simulator

TALYS simulates nuclear reactions which involve neutrons, gamma-rays, protons, deuterons, tritons, helions and alpha-particles, in the 1 keV-200MeV energy range. A suite of nuclear reaction models has been implemented into a single code system, enabling one to evaluate basically all nuclear reactions beyond the resonance range. In particular, TALYS estimates the Maxwellian-averaged reaction rates that are of astrophysical relevance. This enables reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. The TALYS code provides a tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability.

[ascl:1202.005]
Mangle: Angular Mask Software

Mangle deals accurately and efficiently with complex angular masks, such as occur typically in galaxy surveys. Mangle performs the following tasks: converts masks between many handy formats (including HEALPix); rapidly finds the polygons containing a given point on the sphere; rapidly decomposes a set of polygons into disjoint parts; expands masks in spherical harmonics; generates random points with weights given by the mask; and implements computations for correlation function analysis. To mangle, a mask is an arbitrary union of arbitrarily weighted angular regions bounded by arbitrary numbers of edges. The restrictions on the mask are only (1) that each edge must be part of some circle on the sphere (but not necessarily a great circle), and (2) that the weight within each subregion of the mask must be constant. Mangle is complementary to and integrated with the HEALPix package (ascl:1107.018); mangle works with vector graphics whereas HEALPix works with pixels.

Would you like to view a random code?