[ascl:1408.009]
IIPImage: Large-image visualization

IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.

[ascl:1408.010]
VisiOmatic: Celestial image viewer

VisiOmatic is a web client for IIPImage (ascl:1408.009) and is used to visualize and navigate through large science images from remote locations. It requires STIFF (ascl:1110.006), is based on the Leaflet Javascript library, and works on both touch-based and mouse-based devices.

[ascl:1408.011]
GALAPAGOS-C: Galaxy Analysis over Large Areas

GALAPAGOS-C is a C implementation of the IDL code GALAPAGOS (ascl:1203.002). It processes a complete set of survey images through automation of source detection via SExtractor (ascl:1010.064), postage stamp cutting, object mask preparation, sky background estimation and complex two-dimensional light profile Sérsic modelling via GALFIT (ascl:1104.010). GALAPAGOS-C uses MPI-parallelization, thus allowing quick processing of large data sets. The code can fit multiple Sérsic profiles to each galaxy, each representing distinct galaxy components (e.g. bulge, disc, bar), and optionally can fit asymmetric Fourier mode distortions.

[ascl:1408.012]
LightcurveMC: An extensible lightcurve simulation program

LightcurveMC is a versatile and easily extended simulation suite for testing the performance of time series analysis tools under controlled conditions. It is designed to be highly modular, allowing new lightcurve types or new analysis tools to be introduced without excessive development overhead. The statistical tools are completely agnostic to how the lightcurve data is generated, and the lightcurve generators are completely agnostic to how the data will be analyzed. The use of fixed random seeds throughout guarantees that the program generates consistent results from run to run.

LightcurveMC can generate periodic light curves having a variety of shapes and stochastic light curves having a variety of correlation properties. It features two error models (Gaussian measurement and signal injection using a randomized sample of base light curves), testing of C1 shape statistic, periodograms, ΔmΔt plots, autocorrelation function plots, peak-finding plots, and Gaussian process regression. The code is written in C++ and R.

[ascl:1408.013]
NumCosmo: Numerical Cosmology

NumCosmo is a free software C library whose main purposes are to test cosmological models using observational data and to provide a set of tools to perform cosmological calculations. The software implements three different probes: cosmic microwave background (CMB), supernovae type Ia (SNeIa) and large scale structure (LSS) information, such as baryonic acoustic oscillations (BAO) and galaxy cluster abundance. The code supports a joint analysis of these data and the parameter space can include cosmological and phenomenological parameters. NumCosmo matter power spectrum and CMB codes were written independent of other implementations such as CMBFAST (ascl:9909.004), CAMB (ascl:1102.026), etc.

The library structure simplifies the inclusion of non-standard cosmological models. Besides the functions related to cosmological quantities, this library also implements mathematical and statistical tools. The former were developed to enable the inclusion of other probes and/or theoretical models and to optimize the codes. The statistical framework comprises algorithms which define likelihood functions, minimization, Monte Carlo, Fisher Matrix and profile likelihood methods.

[ascl:1408.014]
pieflag: CASA task to efficiently flag bad data

pieflag compares bandpass-calibrated data to a clean reference channel and identifies and flags essentially all bad data. pieflag compares visibility amplitudes in each frequency channel to a 'reference' channel that is rfi-free (or manually ensured to be rfi-free). pieflag performs this comparison independently for each correlation on each baseline, but will flag all correlations if threshold conditions are met. To operate effectively, pieflag must be supplied with bandpass-calibrated data. pieflag has two core modes of operation (static and dynamic flagging) with an additional extend mode; the type of data largely determines which mode to choose. Instructions for pre-processing data and selecting the mode of operation are provided in the help file. Once pre-processing and selecting the mode of operation are done, pieflag should work well 'out of the box' with its default parameters.

[ascl:1408.015]
VPFIT: Voigt profile fitting program

The VPFIT program fits multiple Voigt profiles (convolved with the instrument profiles) to spectroscopic data that is in FITS or an ASCII file. It requires CFITSIO (ascl:1010.001) and PGPLOT (ascl:1103.002); the tarball includes RDGEN (ascl:1408.017), which can be used with VPFIT to set up the fits, fit the profiles, and examine the result in interactive mode for setting up initial guesses; vpguess (ascl:1408.016) can also be used to set up an initial file.

[ascl:1408.016]
vpguess: Fitting multiple Voigt profiles to spectroscopic data

vpguess facilitates the fitting of multiple Voigt profiles to spectroscopic data. It is a graphical interface to VPFIT (ascl:1408.015). Originally meant to simplify the process of setting up first guesses for a subsequent fit with VPFIT, it has developed into a full interface to VPFIT. It may also be used independently of VPFIT for displaying data, playing around with data and models, "chi-by-eye" fits, displaying the result of a proper fit, pretty plots, etc. vpguess is written in C, and the graphics are based on PGPLOT (ascl:1103.002).

[ascl:1408.017]
RDGEN: Routines for data handling, display, and adjusting

RDGEN is a collection of routines for data handling, display, and adjusting, with a facility which helps to set up files for using with VPFIT (ascl:1408.015); it is included in the VPFIT distribution file. It is useful for setting region boundaries and initial guesses for VPFIT, for displaying the accumulated results, for examining by eye particular redshift systems and fits to them, testing that the error array is a true reflection of the rms scatter in the data, comparing spectra and generally examining and even modifying the data.

[ascl:1408.018]
CosmoPhotoz: Photometric redshift estimation using generalized linear models

de Souza, Rafael S.; Elliott, Jonathan; Krone-Martins, Alberto; Ishida, Emille E. O.; Hilbe, Joseph; Cameron, Ewan

CosmoPhotoz determines photometric redshifts from galaxies utilizing their magnitudes. The method uses generalized linear models which reproduce the physical aspects of the output distribution. The code can adopt gamma or inverse gaussian families, either from a frequentist or a Bayesian perspective. A set of publicly available libraries and a web application are available. This software allows users to apply a set of GLMs to their own photometric catalogs and generates publication quality plots with no involvement from the user. The code additionally provides a Shiny application providing a simple user interface.

[ascl:1408.019]
O_{2}scl: Object-oriented scientific computing library

O_{2}scl is an object-oriented library for scientific computing in C++ useful for solving, minimizing, differentiating, integrating, interpolating, optimizing, approximating, analyzing, fitting, and more. Many classes operate on generic function and vector types; it includes classes based on GSL and CERNLIB. O_{2}scl also contains code for computing the basic thermodynamic integrals for fermions and bosons, for generating almost all of the most common equations of state of nuclear and neutron star matter, and for solving the TOV equations. O_{2}scl can be used on Linux, Mac and Windows (Cygwin) platforms and has extensive documentation.

[ascl:1408.020]
bamr: Bayesian analysis of mass and radius observations

bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O_{2}scl (ascl:1408.019) be installed before compilation.

[ascl:1408.021]
APS: Active Parameter Searching

APS finds Frequentist confidence limits on high-dimensional parameter spaces by using Gaussian Process interpolation to identify regions of parameter space for which chisquared is less than or equal to some specified limit. The code is written in C++, is robust against multi-modal chisquared functions and converges comparably fast to Monte Carlo methods. Code is also provided to draw Bayesian credible limits using the outputs of APS, though this code does not converge as well. APS requires the linear algebra libraries LAPACK, BLAS, and ARPACK (ascl:1311.010) to run.

[ascl:1408.022]
PhotoRApToR: PHOTOmetric Research APplication TO Redshifts

PhotoRApToR (PHOTOmetric Research APplication TO Redshifts) solves regression and classification problems and is specialized for photo-z estimation. PhotoRApToR offers data table manipulation capabilities and 2D and 3D graphics tools for data visualization; it also provides a statistical report for both classification and regression experiments. The code is written in Java; the machine learning model is in C++ to increase the core execution speed.

[ascl:1408.023]
WSClean: Widefield interferometric imager

Offringa, A. R.; McKinley, B.; Hurley-Walker, N.; Briggs, F. H.; Wayth, R. B.; Kaplan, D. L.; Bell, M. E.; Feng, L.; Neben, A. R.; Hughes, J. D.; Rhee, J.; Murphy, T.; Bhat, N. D. R.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Jacobs, D. C.; Kasper, J. C.; Kratzenberg, E.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Kudryavtseva, N.; Oberoi, D.; Ord, S. M.; Pindor, B.; Procopio, P.; Prabu, T.; Riding, J.; Roshi, D. A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

WSClean (w-stacking clean) is a fast generic widefield imager. It uses the w-stacking algorithm and can make use of the w-snapshot algorithm. It supports full-sky imaging and proper beam correction for homogeneous dipole arrays such as the MWA. WSClean allows Hogbom and Cotton-Schwab cleaning, and can clean polarizations joinedly. All operations are performed on the CPU; it is not specialized for GPUs.

[ascl:1409.001]
mixT: single-temperature fit for a multi-component thermal plasma

mixT accurately predicts T derived from a single-temperature fit for a multi-component thermal plasma. It can be applied in the deprojection analysis of objects with the temperature and metallicity gradients, for correction of the PSF effects, for consistent comparison of numerical simulations of galaxy clusters and groups with the X-ray observations, and for estimating how emission from undetected components can bias the global X-ray spectral analysis.

[ascl:1409.002]
Tsyganenko Geomagnetic Field Models

The Tsyganenko models are semi-empirical best-fit representations for the magnetic field, based on a large number of satellite observations (IMP, HEOS, ISEE, POLAR, Geotail, GOES, etc). The models include the contributions from major external magnetospheric sources: ring current, magnetotail current system, magnetopause currents, and large-scale system of field-aligned currents.

[ascl:1409.003]
LANL*: Radiation belt drift shell modeling

LANL* calculates the magnetic drift invariant L*, used for modeling radiation belt dynamics and other space weather applications, six orders of magnitude (~ one million times) faster than convectional approaches that require global numerical field lines tracing and integration. It is based on a modern machine learning technique (feed-forward artificial neural network) by supervising a large data pool obtained from the IRBEM library, which is the traditional source for numerically calculating the L* values. The pool consists of about 100,000 samples randomly distributed within the magnetosphere (r: [1.03, 11.5] Re) and within a whole solar cycle from 1/1/1994 to 1/1/2005. There are seven LANL* models, each corresponding to its underlying magnetic field configuration that is used to create the data sample pool. This model has applications to real-time radiation belt forecasting, analysis of data sets involving tens of satellite-years of observations, and other problems in space weather.

[ascl:1409.004]
IFSRED: Data Reduction for Integral Field Spectrographs

IFSRED is a general-purpose library for reducing data from integral field spectrographs (IFSs). For a general IFS data cube, it contains IDL routines to: (1) find and apply a zero-point shift in a wavelength solution on a spaxel-by-spaxel basis, using sky lines; (2) find the spatial coordinates of a flux peak; (3) empirically correct for differential atmospheric refraction; (4) mosaic dithered exposures; (5) (integer) rebin; and (6) apply a telluric correction. A sky-subtraction routine for data from the Gemini Multi-Object Spectrograph and Imager (GMOS) that can be easily modified for any instrument is also included. IFSRED also contains additional software specific to reducing data from GMOS and the Gemini Near-Infrared Integral Field Spectrograph (NIFS).

[ascl:1409.005]
IFSFIT: Spectral Fitting for Integral Field Spectrographs

IFSFIT is a general-purpose IDL library for fitting the continuum, emission lines, and absorption lines in integral field spectra. It uses PPXF (ascl:1210.002) to find the best fit stellar continuum (using a user-defined library of stellar templates and including additive polynomials), or optionally a user-defined method to find the best fit continuum. It uses MPFIT (ascl:1208.019) to simultaneously fit Gaussians to any number of emission lines and emission line velocity components. It will also fit the NaI D feature using analytic absorption and/or emission-line profiles.

[ascl:1409.006]
iSpec: Stellar atmospheric parameters and chemical abundances

iSpec is an integrated software framework written in Python for the treatment and analysis of stellar spectra and abundances. Spectra treatment functions include cosmic rays removal, continuum normalization, resolution degradation, and telluric lines identification. It can also perform radial velocity determination and correction and resampling. iSpec can also determine atmospheric parameters (i.e effective temperature, surface gravity, metallicity, micro/macroturbulence, rotation) and individual chemical abundances by using either the synthetic spectra fitting technique or equivalent widths method. The synthesis is performed with SPECTRUM (ascl:9910.002).

[ascl:1409.007]
ORBS: A reduction software for SITELLE and SpiOMM data

ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

[ascl:1409.008]
CHLOE: A tool for automatic detection of peculiar galaxies

CHLOE is an image analysis unsupervised learning algorithm that detects peculiar galaxies in datasets of galaxy images. The algorithm first computes a large set of numerical descriptors reflecting different aspects of the visual content, and then weighs them based on the standard deviation of the values computed from the galaxy images. The weighted Euclidean distance of each galaxy image from the median is measured, and the peculiarity of each galaxy is determined based on that distance.

[ascl:1409.009]
Nahoon: Time-dependent gas-phase chemical model

Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.

[ascl:1409.010]
Slim: Numerical data compression for scientific data sets

Slim performs lossless compression on binary data files. Written in C++, it operates very rapidly and achieves better compression on noisy physics data than general-purpose tools designed primarily for text.

[ascl:1409.011]
rmfit: Forward-folding spectral analysis software

Rmfit uses a forward-folding technique to obtain the best-fit parameters for a chosen model given user-selected source and background time intervals from data files containing observed count rates and a corresponding detector response matrix. rmfit displays lightcurves and spectra using a graphical interface that enables user-defined integrated or time-resolved spectral fits and binning in either time or energy. Originally developed for the analysis of BATSE Gamma-Ray Burst (GRB) spectroscopy, rmfit is a tool for the spectroscopy of transient sources; it accommodates the Fermi GBM and LAT data and Swift BAT.

[ascl:1409.012]
CosmoSIS: Cosmological parameter estimation

Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

CosmoSIS is a cosmological parameter estimation code. It structures cosmological parameter estimation to ease re-usability, debugging, verifiability, and code sharing in the form of calculation modules. Witten in python, CosmoSIS consolidates and connects existing code for predicting cosmic observables and maps out experimental likelihoods with a range of different techniques.

[ascl:1409.013]
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Im3shape forward-fits a galaxy model to each data image it is supplied with and reports the parameters of the best fitting model, including the ellipticity components. It uses the Discrete Fourier Transform (DFT) to render images of convolved galaxy profiles, calculates the maximum likelihood parameter values, and corrects for noise bias. IM3SHAPE is a modular C code with a significant amount of Python glue code to enable setting up new models and their options automatically.

[ascl:1410.001]
DIAMONDS: high-DImensional And multi-MOdal NesteD Sampling

DIAMONDS (high-DImensional And multi-MOdal NesteD Sampling) provides Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional and multi-modal problems; it can be used for any application involving Bayesian parameter estimation and/or model selection in general. Developed in C++11, DIAMONDS is structured in classes for flexibility and configurability. Any new model, likelihood and prior PDFs can be defined and implemented upon a basic template.

[ascl:1410.002]
MEPSA: Multiple Excess Peak Search Algorithm

MEPSA (Multiple Excess Peak Search Algorithm) identifies peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. MEPSA scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena whose activity is recorded through different surveys. MEPSA's high flexibility permits the mask of excess patterns it uses to be tailored and optimized without modifying the code.

[ascl:1410.003]
GIZMO: Multi-method magneto-hydrodynamics+gravity code

GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

[ascl:1410.004]
UVOTPY: Swift UVOT grism data reduction

The two Swift UVOT grisms provide uv (170.0-500.0 nm) and visible (285.0-660.0 nm) spectra with a resolution of R~100 and 75. To reduce the grism data, UVOTPY extracts a spectrum given source sky position, and outputs a flux calibrated spectrum. UVOTPY is a replacement for the UVOTIMGRISM FTOOL (ascl:9912.002) in the HEADAS Swift package. Its extraction uses a curved aperture for the uv spectra, accounts the coincidence losses in the detector, provides more accurate anchor positions for the wavelength scale, and is valid for the whole detector.

[ascl:1410.005]
RICH: Numerical simulation of compressible hydrodynamics on a moving Voronoi mesh

RICH (Racah Institute Computational Hydrodynamics) is a 2D hydrodynamic code based on Godunov's method. The code, largely based on AREPO, acts on an unstructured moving mesh. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Though not universally true, in many cases a moving mesh gives better results than a static mesh: where matter moves one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving), a static mesh gives better results than a moving mesh. RICH is designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes.

[ascl:1411.001]
pyGadgetReader: GADGET snapshot reader for python

pyGadgetReader is a universal GADGET snapshot reader for python that supports type-1, type-2, HDF5, and TIPSY (ascl:1111.015) binary formats. It additionally supports reading binary outputs from FoF_Special, P-StarGroupFinder, Rockstar (ascl:1210.008), and Rockstar-Galaxies.

[ascl:1411.002]
pysovo: A library for implementing alerts triggered by VOEvents

pysovo contains basic tools to work with VOEvents. Though written for specific needs, others interested in VOEvents may find it useful to examine.

[ascl:1411.003]
voevent-parse: Parse, manipulate, and generate VOEvent XML packets

voevent-parse, written in Python, parses, manipulates, and generates VOEvent XML packets; it is built atop lxml.objectify. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. However, working with XML and adhering to the sometimes lengthy VOEvent schema can be a tricky process. voevent-parse provides convenience routines for common tasks, while allowing the user to utilise the full power of the lxml library when required. An earlier version of voevent-parse was part of the pysovo (ascl:1411.002) library.

[ascl:1411.004]
OPERA: Open-source Pipeline for Espadons Reduction and Analysis

OPERA (Open-source Pipeline for Espadons Reduction and Analysis) is an open-source collaborative software reduction pipeline for ESPaDOnS data. ESPaDOnS is a bench-mounted high-resolution echelle spectrograph and spectro-polarimeter designed to obtain a complete optical spectrum (from 370 to 1,050 nm) in a single exposure with a mode-dependent resolving power between 68,000 and 81,000. OPERA is fully automated, calibrates on two-dimensional images and reduces data to produce one-dimensional intensity and polarimetric spectra. Spectra are extracted using an optimal extraction algorithm. Though designed for CFHT ESPaDOnS data, the pipeline is extensible to other echelle spectrographs.

[ascl:1411.005]
HOPE: Just-in-time Python compiler for astrophysical computations

HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

[ascl:1411.006]
RC3 mosaicking pipeline: Creating mosaics for the RC3 Catalogue

The RC3 mosaicking pipeline creates color composite images and scientifically-calibrated FITS mosaics in all SDSS imaging bands for all the RC3 galaxies that lie within the survey’s footprint and on photographic plates taken by the Digitized Palomar Observatory Sky Survey (DPOSS) for the B, R, IR bands. The pipeline uses SExtractor (ascl:1010.064) for extraction and STIFF (ascl:1110.006) to generating color images. The mosaicking program uses a recursive algorithm for positional update first to correct the positional inaccuracy inherent in the RC3 catalog, then conducts the mosaicking procedure using the Astropy (ascl:1304.002) wrapper to IPAC's Montage (ascl:1010.036) software. The program is generalized into a pipeline that can be easily extended to future survey data or other source catalogs; an online interface is available at

http://lcdm.astro.illinois.edu/data/rc3/search.html.

[ascl:1411.007]
segueSelect: SDSS/SEGUE selection function modelling

The Python package segueSelect automatically models the SDSS/SEGUE selection fraction -- the fraction of stars with good spectra -- as a continuous function of apparent magnitude for each plate. The selection function can be determined for any desired sample cuts in signal-to-noise ratio, u-g, r-i, and E(B-V). The package requires Pyfits (ascl:1207.009) and, for coordinate transformations, galpy (ascl:1411.008). It can calculate the KS probability that the spectropscopic sample was drawn from the underlying photometric sample with the model selection function, plot the cumulative distribution function in r-band apparent magnitude of the spectroscopic sample (red) and the photometric sample+selection-function-model for this plate, and, if galpy is installed, can transform velocities into the Galactic coordinate frame. The code can also determine the selection function for SEGUE K stars.

[ascl:1411.008]
galpy: Galactic dynamics package

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

[ascl:1411.009]
iDealCam: Interactive Data Reduction and Analysis for CanariCam

iDealCam is an IDL GUI toolkit for processing multi-extension FITS file produced by CanariCam, the facility mid-IR instrument of Gran Telescopio CANARIAS (GTC). iDealCam is optimized for CanariCam data, but is also compatible with data generated by other instruments using similar detectors and data format (e.g., Michelle and T-ReCS at Gemini). iDealCam provides essential capabilities to examine, reduce, and analyze data obtained in the standard imaging or polarimetric imaging mode of CanariCam.

[ascl:1411.010]
Raga: Monte Carlo simulations of gravitational dynamics of non-spherical stellar systems

Raga (Relaxation in Any Geometry) is a Monte Carlo simulation method for gravitational dynamics of non-spherical stellar systems. It is based on the SMILE software (ascl:1308.001) for orbit analysis. It can simulate stellar systems with a much smaller number of particles N than the number of stars in the actual system, represent an arbitrary non-spherical potential with a basis-set or spline spherical-harmonic expansion with the coefficients of expansion computed from particle trajectories, and compute particle trajectories independently and in parallel using a high-accuracy adaptive-timestep integrator. Raga can also model two-body relaxation by local (position-dependent) velocity diffusion coefficients (as in Spitzer's Monte Carlo formulation) and adjust the magnitude of relaxation to the actual number of stars in the target system, and model the effect of a central massive black hole.

[ascl:1411.011]
PyMGC3: Finding stellar streams in the Galactic Halo using a family of Great Circle Cell counts methods

PyMGC3 is a Python toolkit to apply the Modified Great Circle Cell Counts (mGC3) method to search for tidal streams in the Galactic Halo. The code computes pole count maps using the full mGC3/nGC3/GC3 family of methods. The original GC3 method (Johnston *et al.*, 1996) uses positional information to search for 'great-circle-cell structures'; mGC3 makes use of full 6D data and nGC3 uses positional and proper motion data.

[ascl:1411.012]
util_2comp: Planck-based two-component dust model utilities

The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

[ascl:1411.013]
NEAT: Nebular Empirical Analysis Tool

NEAT is a fully automated code which carries out a complete analysis of lists of emission lines to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEAT uses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances.

[ascl:1411.014]
NAFE: Noise Adaptive Fuzzy Equalization

NAFE (Noise Adaptive Fuzzy Equalization) is an image processing method allowing for visualization of fine structures in SDO AIA high dynamic range images. It produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform.

[ascl:1411.015]
SPOTROD: Semi-analytic model for transits of spotted stars

SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.

[ascl:1411.016]
Flicker: Mean stellar densities from flicker

Flicker calculates the mean stellar density of a star by inputting the flicker observed in a photometric time series. Written in Fortran90, its output may be used as an informative prior on stellar density when fitting transit light curves.

[ascl:1411.017]
ECCSAMPLES: Bayesian Priors for Orbital Eccentricity

ECCSAMPLES solves the inverse cumulative density function (CDF) of a Beta distribution, sometimes called the IDF or inverse transform sampling. This allows one to sample from the relevant priors directly. ECCSAMPLES actually provides joint samples for both the eccentricity and the argument of periastron, since for transiting systems they display non-zero covariance.

[ascl:1411.018]
GPI Pipeline: Gemini Planet Imager Data Pipeline

The GPI data pipeline allows users to reduce and calibrate raw GPI data into spectral and polarimetric datacubes, and to apply various PSF subtraction methods to those data. Written in IDL and available in a compiled version, the software includes an integrated calibration database to manage reference files and an interactive data viewer customized for high contrast imaging that allows exploration and manipulation of data.

[ascl:1411.019]
Anmap: Image and data analysis

Anmap analyses and processes images and spectral data. Originally written for use in radio astronomy, much of its functionality is applicable to other disciplines; additional algorithms and analysis procedures allow direct use in, for example, NMR imaging and spectroscopy. Anmap emphasizes the analysis of data to extract quantitative results for comparison with theoretical models and/or other experimental data. To achieve this, Anmap provides a wide range of tools for analysis, fitting and modelling (including standard image and data processing algorithms). It also provides a powerful environment for users to develop their own analysis/processing tools either by combining existing algorithms and facilities with the very powerful command (scripting) language or by writing new routines in FORTRAN that integrate seamlessly with the rest of Anmap.

[ascl:1411.020]
JCMT COADD: UKT14 continuum and photometry data reduction

COADD was used to reduce photometry and continuum data from the UKT14 instrument on the James Clerk Maxwell Telescope in the 1990s. The software can co-add multiple observations and perform sigma clipping and Kolmogorov-Smirnov statistical analysis. Additional information on the software is available in the JCMT Spring 1993 newsletter (large PDF).

[ascl:1411.021]
POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:1411.022]
Starlink Figaro: Starlink version of the Figaro data reduction software package

Shortridge, Keith; Meyerdierks, Horst; Currie, Malcolm J.; Davenhall, Clive; Jenness, Tim; Clayton, Martin

Starlink Figaro is an independently-maintained fork of Figaro (ascl:1203.013) that runs in the Starlink software environment (ascl:1110.012). It is a general-purpose data reduction package targeted mainly at optical/IR spectroscopy. It uses the NDF data format and the ADAM libraries for parameters and messaging.

[ascl:1411.023]
NDF: Extensible N-dimensional Data Format Library

The Extensible N-Dimensional Data Format (NDF) stores bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. The NDF library is used to read and write files in the NDF format. It is distributed with the Starlink software (ascl:1110.012).

[ascl:1411.024]
CGS3DR: UKIRT CGS3 data reduction software

CGS3DR is data reduction software for the UKIRT CGS3 mid-infrared grating spectrometer instrument. It includes a command-line interface and a GUI. The software, originally on VMS, was ported to Unix. It uses Starlink (ascl:1110.012) infrastructure libraries.

[ascl:1411.025]
SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.

[ascl:1411.026]
sic: Sparse Inpainting Code

Feeney, Stephen M.; Marinucci, Domenico; McEwen, Jason D.; Peiris, Hiranya V.; Wandelt, Benjamin D.; Cammarota, Valentina

sic (Sparse Inpainting Code) generates Gaussian, isotropic CMB realizations, masks them, and recovers the large-scale masked data using sparse inpainting; it is written in Fortran90.

[ascl:1411.027]
BKGE: Fermi-LAT Background Estimator

The Fermi-LAT Background Estimator (BKGE) is a publicly available open-source tool that can estimate the expected background of the Fermi-LAT for any observational conguration and duration. It produces results in the form of text files, ROOT files, gtlike source-model files (for LAT maximum likelihood analyses), and PHA I/II FITS files (for RMFit/XSpec spectral fitting analyses). Its core is written in C++ and its user interface in Python.

[ascl:1412.001]
SoFiA: Source Finding Application

Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel; Staveley-Smith, Lister; Courtois, Hélène

SoFiA is a flexible source finding pipeline designed to detect and parameterise sources in 3D spectral-line data cubes. SoFiA combines several powerful source finding and parameterisation algorithms, including wavelet denoising, spatial and spectral smoothing, source mask optimisation, spectral profile fitting, and calculation of the reliability of detections. In addition to source catalogues in different formats, SoFiA can also generate a range of output data cubes and images, including source masks, moment maps, sub-cubes, position-velocity diagrams, and integrated spectra. The pipeline is controlled by simple parameter files and can either be invoked on the command line or interactively through a modern graphical user interface.

[ascl:1412.002]
Cheetah: Starspot modeling code

Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

[ascl:1412.003]
UTM: Universal Transit Modeller

The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

[ascl:1412.004]
DAMIT: Database of Asteroid Models from Inversion Techniques

DAMIT (Database of Asteroid Models from Inversion Techniques) is a database of three-dimensional models of asteroids computed using inversion techniques; it provides access to reliable and up-to-date physical models of asteroids, *i.e.*, their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects as well as for statistical studies of the whole set. The source codes for lightcurve inversion routines together with brief manuals, sample lightcurves, and the code for the direct problem are available for download.

[ascl:1412.005]
BRUCE/KYLIE: Pulsating star spectra synthesizer

BRUCE and KYLIE, written in Fortran 77, synthesize the spectra of pulsating stars. BRUCE constructs a point-sampled model for the surface of a rotating, gravity-darkened star, and then subjects this model to perturbations arising from one or more non-radial pulsation modes. Departures from adiabaticity can be taken into account, as can the Coriolis force through adoption of the so-called traditional approximation. BRUCE writes out a time-sequence of perturbed surface models. This sequence is read in by KYLIE, which synthesizes disk-integrated spectra for the models by co-adding the specific intensity emanating from each visible point toward the observer. The specific intensity is calculated by interpolation in a large temperature-gravity-wavelength-angle grid of pre-calculated intensity spectra.

[ascl:1412.006]
HMF: Halo Mass Function calculator

HMF calculates the Halo Mass Function (HMF) given any set of cosmological parameters and fitting function and serves as the backend for the web application HMFcalc. Written in Python, it allows for dynamic accurate calculation of the transfer function with CAMB (ascl:1102.026) and efficient and self-consistent parameter updates. HMF offers exploration of the effects of cosmological parameters, redshift and fitting function on the predicted HMF.

[ascl:1412.007]
PIAO: Python spherIcAl Overdensity code

PIAO is an efficient memory-controlled Python code that uses the standard spherical overdensity (SO) algorithm to identify halos. PIAO employs two additional parameters besides the overdensity Δc. The first is the mesh-box size, which splits the whole simulation box into smaller ones then analyzes them one-by-one, thereby overcoming a possible memory limitation problem that can occur when dealing with high-resolution, large-volume simulations. The second is the smoothed particle hydrodynamics (SPH) neighbors number, which is used for the SPH density calculation.

[ascl:1412.008]
Hrothgar: MCMC model fitting toolkit

Hrothgar is a parallel minimizer and Markov Chain Monte Carlo generator. It has been used to solve optimization problems in astrophysics (galaxy cluster mass profiles) as well as in experimental particle physics (hadronic tau decays).

[ascl:1412.009]
URCHIN: Reverse ray tracer

URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.

[ascl:1412.010]
MMAS: Make Me A Star

Make Me A Star (MMAS) quickly generates stellar collision remnants and can be used in combination with realistic dynamical simulations of star clusters that include stellar collisions. The code approximates the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These simple models agree very well with those from SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of these models also matches closely that of the more accurate hydrodynamic models.

[ascl:1412.011]
TraP: Transients discovery pipeline for image-plane surveys

The TraP is a pipeline for detecting and responding to transient and variable sources in a stream of astronomical images. Images are initially processed using a pure-Python source-extraction package, PySE (ascl:1805.026), which is bundled with the TraP. Source positions and fluxes are then loaded into a SQL database for association and variability detection. The database structure allows for estimation of past upper limits on newly detected sources, and for forced fitting of previously detected sources which have since dropped below the blind-extraction threshold. Developed with LOFAR data in mind, the TraP has been used with data from other radio observatories.

[ascl:1412.012]
GeoTOA: Geocentric TOA tools

GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, FSSC Science Tools, and Tempo2 (ascl:1210.015).

[ascl:1412.013]
CRPropa: Numerical tool for the propagation of UHE cosmic rays, gamma-rays and neutrinos

CRPropa computes the observable properties of UHECRs and their secondaries in a variety of models for the sources and propagation of these particles. CRPropa takes into account interactions and deflections of primary UHECRs as well as propagation of secondary electromagnetic cascades and neutrinos. CRPropa makes use of the public code SOPHIA (ascl:1412.014), and the TinyXML, CFITSIO (ascl:1010.001), and CLHEP libraries. A major advantage of CRPropa is its modularity, which allows users to implement their own modules adapted to specific UHECR propagation models.

[ascl:1412.014]
SOPHIA: Simulations Of Photo Hadronic Interactions in Astrophysics

SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.

[ascl:1501.001]
PynPoint: Exoplanet image data analysis

PynPoint uses principal component analysis to detect and estimate the flux of exoplanets in two-dimensional imaging data. It processes many, typically several thousands, of frames to remove the light from the star so as to reveal the companion planet.

The code has been significantly rewritten and expanded; please see ascl:1812.010.

[ascl:1501.002]
NIGO: Numerical Integrator of Galactic Orbits

NIGO (Numerical Integrator of Galactic Orbits) predicts the orbital evolution of test particles moving within a fully-analytical gravitational potential generated by a multi-component galaxy. The code can simulate the orbits of stars in elliptical and disc galaxies, including non-axisymmetric components represented by a spiral pattern and/or rotating bar(s).

[ascl:1501.003]
python-qucs: Python package for automating QUCS simulations

Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Python-qucs automates the process of preparing input data, running simulations and exporting results of QUCS (Quasi Universal Circuit Simulator) simulations.

[ascl:1501.004]
dst: Polarimeter data destriper

Dst is a fully parallel Python destriping code for polarimeter data; destriping is a well-established technique for removing low-frequency correlated noise from Cosmic Microwave Background (CMB) survey data. The software destripes correctly formatted HDF5 datasets and outputs hitmaps, binned maps, destriped maps and baseline arrays.

[ascl:1501.005]
DECA: Decomposition of images of galaxies

DECA performs photometric analysis of images of disk and elliptical galaxies having a regular structure. It is written in Python and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention.

[ascl:1501.006]
PsrPopPy: Pulsar Population Modelling Programs in Python

PsrPopPy is a Python implementation of the Galactic population and evolution of radio pulsars modelling code PSRPOP.

[ascl:1501.007]
LP-VIcode: La Plata Variational Indicators Code

LP-VIcode computes variational chaos indicators (CIs) quickly and easily. The following CIs are included:

- Lyapunov Indicators, also known as Lyapunov Characteristic Exponents, Lyapunov Characteristic Numbers or Finite Time Lyapunov Characteristic Numbers (LIs)

- Mean Exponential Growth factor of Nearby Orbits (MEGNO)

- Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE)

- Smaller ALignment Index (SALI)

- Generalized ALignment Index (GALI)

- Fast Lyapunov Indicator (FLI)

- Orthogonal Fast Lyapunov Indicator (OFLI)

- Spectral Distance (SD)

- dynamical Spectra of Stretching Numbers (SSNs)

- Relative Lyapunov Indicator (RLI)

[ascl:1501.008]
Enrico: Python package to simplify Fermi-LAT analysis

Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.

[ascl:1501.009]
BIANCHI: Bianchi VIIh Simulations

BIANCHI provides functionality to support the simulation of Bianchi Type VIIh induced temperature fluctuations in CMB maps of a universe with shear and rotation. The implementation is based on the solutions to the Bianchi models derived by Barrow et al. (1985), which do not incorporate any dark energy component. Functionality is provided to compute the induced fluctuations on the sphere directly in either real or harmonic space.

[ascl:1501.010]
PythonPhot: Simple DAOPHOT-type photometry in Python

PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.

[ascl:1501.011]
transfer: The Sloan Digital Sky Survey Data Transfer Infrastructure

The Sloan Digital Sky Survey (SDSS) produces large amounts of data daily. transfer, written in Python, provides the effective automation needed for daily data transfer operations and management and operates essentially free of human intervention. This package has been tested and used successfully for several years.

[ascl:1501.012]
Exorings: Exoring modelling software

Exorings, written in Python, contains tools for displaying and fitting giant extrasolar planet ring systems; it uses FITS formatted data for input.

[ascl:1501.013]
Molecfit: Telluric absorption correction tool

Smette, A.; Kausch, W; Sana, H; Noll, S.; Horst, H.; Kimeswenger, S.; Barden, M; Szyszka, C.; Jones, A. M.; Gallene, A.; Vinther, J.; Ballester, P.; Kerber, F.

Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.

[ascl:1501.014]
GalPaK 3D: Galaxy parameters and kinematics extraction from 3D data

GalPaK 3D extracts the intrinsic (i.e. deconvolved) galaxy parameters and kinematics from any 3-dimensional data. The algorithm uses a disk parametric model with 10 free parameters (which can also be fixed independently) and a MCMC approach with non-traditional sampling laws in order to efficiently probe the parameter space. More importantly, it uses the knowledge of the 3-dimensional spread-function to return the intrinsic galaxy properties and the intrinsic data-cube. The 3D spread-function class is flexible enough to handle any instrument.

GalPaK 3D can simultaneously constrain the kinematics and morphological parameters of (non-merging, i.e. regular) galaxies observed in non-optimal seeing conditions and can also be used on AO data or on high-quality, high-SNR data to look for non-axisymmetric structures in the residuals.

[ascl:1501.015]
Exoplanet: Trans-dimensional MCMC method for exoplanet discovery

Exoplanet determines the posterior distribution of exoplanets by use of a trans-dimensional Markov Chain Monte Carlo method within Nested Sampling. This method finds the posterior distribution in a single run rather than requiring multiple runs with trial values.

[ascl:1501.016]
Colossus: COsmology, haLO, and large-Scale StrUcture toolS

Colossus is a collection of Python modules for cosmology and dark matter halos calculations. It performs cosmological calculations with an emphasis on structure formation applications, implements general and specific density profiles, and provides a large range of models for the concentration-mass relation, including a conversion to arbitrary mass definitions.

[ascl:1502.001]
RH 1.5D: Polarized multi-level radiative transfer with partial frequency distribution

RH 1.5D performs Zeeman multi-level non-local thermodynamical equilibrium calculations with partial frequency redistribution for an arbitrary amount of chemical species. Derived from the RH code and written in C, it calculates spectra from 3D, 2D or 1D atmospheric models on a column-by-column basis (or 1.5D). It includes optimization features to speed up or improve convergence, which are particularly useful in dynamic models of chromospheres. While one should be aware of its limitations, the calculation of spectra using the 1.5D or column-by-column is a good approximation in many cases, and generally allows for faster convergence and more flexible methods of improving convergence. RH 1.5D scales well to at least tens of thousands of CPU cores.

[ascl:1502.002]
OpenOrb: Open-source asteroid orbit computation software

OpenOrb (OOrb) contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. It uses the least-squares method and also contains both Monte-Carlo (MC) and Markov-Chain MC versions of the statistical ranging method. Ranging obtains sampled, non-Gaussian orbital-element probability-density functions and is optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval.

[ascl:1502.003]
N-GenIC: Cosmological structure initial conditions

N-GenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET or AREPO.

[ascl:1502.004]
ADAM: All-Data Asteroid Modeling

ADAM (All-Data Asteroid Modeling) models asteroid shape reconstruction from observations. Developed in MATLAB with core routines in C, its features include general nonconvex and non-starlike parametric 3D shape supports and reconstruction of asteroid shape from any combination of lightcurves, adaptive optics images, HST/FGS data, disk-resolved thermal images, interferometry, and range-Doppler radar images. ADAM does not require boundary contour extraction for reconstruction and can be run in parallel.

[ascl:1502.005]
PARSEC: PARametrized Simulation Engine for Cosmic rays

PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

[ascl:1502.006]
Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single *X ^{2}* value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

[ascl:1502.007]
PyBDSF: Python Blob Detection and Source Finder

PyBDSF (Python Blob Detector and Source Finder, formerly PyBDSM) decomposes radio interferometry images into sources and makes their properties available for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA (ascl:1107.013); PyBDSF may also be used in Python scripts.

[ascl:1502.008]
KAPPA: Optically thin spectra synthesis for non-Maxwellian kappa-distributions

Based on the freely available CHIANTI (ascl:9911.004) database and software, KAPPA synthesizes line and continuum spectra from the optically thin spectra that arise from collisionally dominated astrophysical plasmas that are the result of non-Maxwellian κ-distributions detected in the solar transition region and flares. Ionization and recombination rates together with the ionization equilibria are provided for a range of κ values. Distribution-averaged collision strengths for excitation are obtained by an approximate method for all transitions in all ions available within CHIANTI; KAPPA also offers tools for calculating synthetic line and continuum intensities.

[ascl:1502.009]
HDS: Hierarchical Data System

Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).

HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

[ascl:1502.010]
nbody6tt: Tidal tensors in N-body simulations

nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.

Would you like to view a random code?