Results 1501-1600 of 2487 (2445 ASCL, 42 submitted)

[ascl:1707.006]
Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1707.007]
swot: Super W Of Theta

SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

[ascl:1708.001]
ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

[ascl:1708.002]
CINE: Comet INfrared Excitation

CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

[ascl:1708.003]
CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline

CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable modules (DLMs).

[ascl:1708.004]
Astroquery: Access to online data resources

Ginsburg, Adam; Parikh, Madhura; Woillez, Julien; Groener, Austen; Liedtke, Simon; Sipocz, Brigitta; Robitaille, Thomas; Deil, Christoph; Svoboda, Brian; Tollerud, Erik; Persson, Magnus Vilhelm; Séguin-Charbonneau, Loïc; Armstrong, Caden; Mirocha, Jordan; Droettboom, Michael; Allen, James; Moolekamp, Fred; Egeland, Ricky; Singer, Leo; Barbary, Kyle; Grollier, Frédéric; Shiga, David; Moritz Günther, Hans; Parejko, John; Booker, Joseph; Rol, Evert; Edward; Miller, Adam; Willett, Kyle

Astroquery allows users to access online astronomical data from a wide range of sources; it is an Astropy-affiliated package. Each web service has its own sub-package for interfacing with a particular data source.

[ascl:1708.005]
STools: IDL Tools for Spectroscopic Analysis

STools contains a variety of simple tools for spectroscopy, such as reading an IRAF-formatted (multispec) echelle spectrum in FITS, measuring the wavelength of the center of a line, Gaussian convolution, deriving synthetic photometry from an input spectrum, and extracting and interpolating a MARCS model atmosphere (standard composition).

[ascl:1708.006]
DISORT: DIScrete Ordinate Radiative Transfer

DISORT (DIScrete Ordinate Radiative Transfer) solves the problem of 1D scalar radiative transfer in a single optical medium, such as a planetary atmosphere. The code correctly accounts for multiple scattering by an isotropic or plane-parallel beam source, internal Planck sources, and reflection from a lower boundary. Provided that polarization effects can be neglected, DISORT efficiently calculates accurate fluxes and intensities at any user-specified angle and location within the user-specified medium.

[ascl:1708.007]
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, *i.e.* in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

[ascl:1708.008]
ALCHEMIC: Advanced time-dependent chemical kinetics

ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

[ascl:1708.009]
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)

FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.

[ascl:1708.010]
BAGEMASS: Bayesian age and mass estimates for transiting planet host stars

BAGEMASS calculates the posterior probability distribution for the mass and age of a star from its observed mean density and other observable quantities using a grid of stellar models that densely samples the relevant parameter space. It is written in Fortran and requires FITSIO (ascl:1010.001).

[ascl:1708.011]
RM-CLEAN: RM spectra cleaner

RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

[ascl:1708.012]
GANDALF: Gas AND Absorption Line Fitting

Sarzi, Marc; Falcón-Barroso, Jesús; Davies, Roger L.; Bacon, Roland; Bureau, Martin; Cappellari, Michele; de Zeeuw, P. Tim; Emsellem, Eric; Fathi, Kambiz; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1708.013]
GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:1708.014]
PACSman: IDL Suite for Herschel/PACS spectrometer data

PACSman provides an alternative for several reduction and analysis steps performed in HIPE (ascl:1111.001) on PACS spectroscopic data; it is written in IDL. Among the operations possible with it are transient correction, line fitting, map projection, and map analysis, and unchopped scan, chop/nod, and the decommissioned wavelength switching observation modes are supported.

[ascl:1708.015]
TWO-POP-PY: Two-population dust evolution model

TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

[ascl:1708.021]
KERTAP: Strong lensing effects of Kerr black holes

KERTAP computes the strong lensing effects of Kerr black holes, including the effects on polarization. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles.

[ascl:1708.016]
pyLCSIM: X-ray lightcurves simulator

pyLCSIM simulates X-ray lightcurves from coherent signals and power spectrum models. Coherent signals can be specified as a sum of one or more sinusoids, each with its frequency, pulsed fraction and phase shift; or as a series of harmonics of a fundamental frequency (each with its pulsed fraction and phase shift). Power spectra can be simulated from a model of the power spectrum density (PSD) using as a template one or more of the built-in library functions. The user can also define his/her custom models. Models are additive.

[ascl:1708.017]
LCC: Light Curves Classifier

Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio).

Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

[ascl:1708.018]
CUTEX: CUrvature Thresholding EXtractor

CuTEx analyzes images in the infrared bands and extracts sources from complex backgrounds, particularly star-forming regions that offer the challenges of crowding, having a highly spatially variable background, and having no-psf profiles such as protostars in their accreting phase. The code is composed of two main algorithms, the first an algorithm for source detection, and the second for flux extraction. The code is originally written in IDL language and it was exported in the license free GDL language. CuTEx could be used in other bands or in scientific cases different from the native case.

This software is also available as an on-line tool from the Multi-Mission Interactive Archive web pages dedicated to the Herschel Observatory.

[ascl:1708.019]
SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

[ascl:1708.020]
4DAO: DAOSPEC interface

4DAO launches DAOSPEC (ascl:1011.002) for a large sample of spectra. Written in Fortran, the software allows one to easily manage the input and output files of DAOSPEC, optimize the main DAOSPEC parameters, and mask specific spectral regions. It also provides suitable graphical tools to evaluate the quality of the solution and provides final, normalized, zero radial velocity spectra.

[ascl:1708.022]
Naima: Derivation of non-thermal particle distributions through MCMC spectral fitting

Naima computes non-thermal radiation from relativistic particle populations. It includes tools to perform MCMC fitting of radiative models to X-ray, GeV, and TeV spectra using emcee (ascl:1303.002), an affine-invariant ensemble sampler for Markov Chain Monte Carlo. Naima is an Astropy (ascl:1304.002) affiliated package.

[ascl:1708.023]
ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox

ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.

[ascl:1708.024]
ComEst: Completeness Estimator

ComEst calculates the completeness of CCD images conducted in astronomical observations saved in the FITS format. It estimates the completeness of the source finder SExtractor (ascl:1010.064) on the optical and near-infrared (NIR) imaging of point sources or galaxies as a function of flux (or magnitude) directly from the image itself. It uses PyFITS (ascl:1207.009) and GalSim (ascl:1402.009) to perform the end-to-end estimation of the completeness and can also estimate the purity of the source detection.

[ascl:1708.025]
extinction-distances: Estimating distances to dark clouds

Extinction-distances uses the number of foreground stars and a Galactic model of the stellar distribution to estimate the distance to dark clouds. It exploits the relatively narrow range of intrinsic near-infrared colors of stars to separate foreground from background stars. An advantage of this method is that the distribution of stellar colors in the Galactic model need not be precisely correct, only the number density as a function of distance from the Sun.

[ascl:1708.026]
XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

[ascl:1708.027]
empiriciSN: Supernova parameter generator

empiriciSN generates realistic supernova parameters given photometric observations of a potential host galaxy, based entirely on empirical correlations measured from supernova datasets. It is intended to be used to improve supernova simulation for DES and LSST. It is extendable such that additional datasets may be added in the future to improve the fitting algorithm or so that additional light curve parameters or supernova types may be fit.

[ascl:1708.028]
ANA: Astrophysical Neutrino Anisotropy

ANA calculates the likelihood function for a model comprised of two components to the astrophysical neutrino flux detected by IceCube. The first component is extragalactic. Since point sources have not been found and there is increasing evidence that one source catalog cannot describe the entire data set, ANA models the extragalactic flux as isotropic. The second component is galactic. A variety of catalogs of interest are also provided. ANA takes the galactic contribution to be proportional to the matter density of the universe. The likelihood function has one free parameter fgal that is the fraction of the astrophysical flux that is galactic. ANA finds the best fit value of fgal and scans over 0<f_{gal}<1.

[ascl:1708.029]
iSEDfit: Bayesian spectral energy distribution modeling of galaxies

iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone.

After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

[ascl:1708.030]
GAMBIT: Global And Modular BSM Inference Tool

GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1709.001]
SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

[ascl:1709.002]
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

[ascl:1709.003]
MeshLab: 3D triangular meshes processing and editing

MeshLab processes and edits 3D triangular meshes. It includes tools for editing, cleaning, healing, inspecting, rendering, texturing and converting meshes, and offers features for processing raw data produced by 3D digitization tools and devices and for preparing models for 3D printing.

[ascl:1709.004]
DOOp: DAOSPEC Output Optimizer pipeline

Cantat-Gaudin, Tristan; Donati, Paolo; Pancino, Elena; Bragaglia, Angela; Vallenari, Antonella; Friel, Eileen D.; Sordo, Rosanna; Jacobson, Heather R.; Magrini, Laura

The DAOSPEC Output Optimizer pipeline (DOOp) runs efficient and convenient equivalent widths measurements in batches of hundreds of spectra. It uses a series of BASH scripts to work as a wrapper for the FORTRAN code DAOSPEC (ascl:1011.002) and uses IRAF (ascl:9911.002) to automatically fix some of the parameters that are usually set by hand when using DAOSPEC. This allows batch-processing of quantities of spectra that would be impossible to deal with by hand. DOOp was originally built for the large quantity of UVES and GIRAFFE spectra produced by the Gaia-ESO Survey, but just like DAOSPEC, it can be used on any high resolution and high signal-to-noise ratio spectrum binned on a linear wavelength scale.

[ascl:1709.005]
DanIDL: IDL solutions for science and astronomy

DanIDL provides IDL functions and routines for many standard astronomy needs, such as searching for matching points between two coordinate lists of two-dimensional points where each list corresponds to a different coordinate space, estimating the full-width half-maximum (FWHM) and ellipticity of the PSF of an image, calculating pixel variances for a set of calibrated image data, and fitting a 3-parameter plane model to image data. The library also supplies astrometry, general image processing, and general scientific applications.

[ascl:1709.006]
DCMDN: Deep Convolutional Mixture Density Network

Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

[ascl:1709.007]
MSSC: Multi-Source Self-Calibration

Multi-Source Self-Calibration (MSSC) provides direction-dependent calibration to standard phase referencing. The code combines multiple faint sources detected within the primary beam to derive phase corrections. Each source has its CLEAN model divided into the visibilities which results in multiple point sources that are stacked in the uv plane to increase the S/N, thus permitting self-calibration. This process applies only to wide-field VLBI data sets that detect and image multiple sources within one epoch.

[ascl:1709.008]
celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia

celerite provides fast and scalable Gaussian Process (GP) Regression in one dimension and is implemented in C++, Python, and Julia. The celerite API is designed to be familiar to users of george and, like george, celerite is designed to efficiently evaluate the marginalized likelihood of a dataset under a GP model. This is then be used alongside a non-linear optimization or posterior inference library for the best results.

[ascl:1709.009]
bmcmc: MCMC package for Bayesian data analysis

bmcmc is a general purpose Markov Chain Monte Carlo package for Bayesian data analysis. It uses an adaptive scheme for automatic tuning of proposal distributions. It can also handle Bayesian hierarchical models by making use of the Metropolis-Within-Gibbs scheme.

[ascl:1709.010]
MagIC: Fluid dynamics in a spherical shell simulator

MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

[ascl:1709.011]
FLaapLUC: Fermi-LAT automatic aperture photometry light curve

Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.

[ascl:1710.001]
vysmaw: Fast visibility stream muncher

The vysmaw client library facilitates the development of code for processes to tap into the fast visibility stream on the National Radio Astronomy Observatory's Very Large Array correlator back-end InfiniBand network. This uses the vys protocol to allow loose coupling to clients that need to remotely access memory over an Infiniband network.

[ascl:1710.002]
rfpipe: Radio interferometric transient search pipeline

rfpipe supports Python-based analysis of radio interferometric data (especially from the Very Large Array) and searches for fast radio transients. This extends on the rtpipe library (ascl:1706.002) with new approaches to parallelization, acceleration, and more portable data products. rfpipe can run in standalone mode or be in a cluster environment.

[ascl:1710.003]
EXOFASTv2: Generalized publication-quality exoplanet modeling code

EXOFASTv2 improves upon EXOFAST (ascl:1207.001) for exoplanet modeling. It uses a differential evolution Markov Chain Monte Carlo code to fit an arbitrary number of transits (each with their own error scaling, normalization, TTV, and/or detrending parameters), an arbitrary number of RV sources (each with their own zero point and jitter), and an arbitrary number of planets, changing nothing but command line arguments and configuration files. The global model includes integrated isochrone and SED models to constrain the stellar properties and can accept priors on any fitted or derived quantities (e.g., parallax from Gaia). It is easily extensible to add additional effects or parameters.

[ascl:1710.004]
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

[ascl:1710.005]
SkyNet: Modular nuclear reaction network library

The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

[ascl:1710.006]
MOSFiT: Modular Open-Source Fitter for Transients

Guillochon, James; Nicholl, Matt; Villar, V. Ashley; Mockler, Brenna; Narayan, Gautham; Mandel, Kaisey S.; Berger, Edo; Williams, Peter K. G.

MOSFiT (Modular Open-Source Fitter for Transients) downloads transient datasets from open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-analytical light curve fits to those datasets and their associated Bayesian parameter posteriors, and optionally delivers the fitting results back to those same catalogs to make them available to the rest of the community. MOSFiT helps bridge the gap between observations and theory in time-domain astronomy; in addition to making the application of existing models and creation of new models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics, with a standard output format that includes all the setup information necessary to reproduce a given result.

[ascl:1710.007]
FLAG: Exact Fourier-Laguerre transform on the ball

FLAG is a fast implementation of the Fourier-Laguerre Transform, a novel 3D transform exploiting an exact quadrature rule of the ball to construct an exact harmonic transform in 3D spherical coordinates. The angular part of the Fourier-Laguerre transform uses the MW sampling theorem and the exact spherical harmonic transform implemented in the SSHT code. The radial sampling scheme arises from an exact quadrature of the radial half-line using damped Laguerre polynomials. The radial transform can in fact be used to compute the spherical Bessel transform exactly, and the Fourier-Laguerre transform is thus closely related to the Fourier-Bessel transform.

[ascl:1710.008]
Binary: Accretion disk evolution

Binary computes the evolution of an accretion disc interacting with a binary system. It has been developed and used to study the coupled evolution of supermassive BH binaries and gaseous accretion discs.

[ascl:1710.009]
CppTransport: Two- and three-point function transport framework for inflationary cosmology

CppTransport solves the 2- and 3-point functions of the perturbations produced during an inflationary epoch in the very early universe. It is implemented for models with canonical kinetic terms, although the underlying method is quite general and could be scaled to handle models with a non-trivial field-space metric or an even more general non-canonical Lagrangian.

[ascl:1710.010]
PyTransport: Calculate inflationary correlation functions

PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.

[ascl:1710.011]
mTransport: Two-point-correlation function calculator

mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

[ascl:1710.012]
FSFE: Fake Spectra Flux Extractor

The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO (ascl:1909.010).

[ascl:1710.013]
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

[ascl:1710.014]
GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1710.016]
LGMCA: Local-Generalized Morphological Component Analysis

LGMCA (Local-Generalized Morphological Component Analysis) is an extension to GMCA (ascl:1710.015). Similarly to GMCA, it is a Blind Source Separation method which enforces sparsity. The novel aspect of LGMCA, however, is that the mixing matrix changes across pixels allowing LGMCA to deal with emissions sources which vary spatially. These IDL scripts compute the CMB map from WMAP and Planck data; running LGMCA on the WMAP9 temperature products requires the main script and a selection of mandatory files, algorithm parameters and map parameters.

[ascl:1710.017]
ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:1710.018]
FITSFH: Star Formation Histories

FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.

[ascl:1710.019]
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1710.020]
PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1710.021]
OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline

Lyke, Jim; Do, Tuan; Boehle, Anna; Campbell, Randy; Chappell, Sam; Fitzgerald, Mike; Gasawy, Tom; Iserlohe, Christof; Krabbe, Alfred; Larkin, James; Lockhart, Kelly; Lu, Jessica; Mieda, Etsuko; McElwain, Mike; Perrin, Marshall; Rudy, Alex; Sitarski, Breann; Vayner, Andrey; Walth, Greg; Weiss, Jason; Wizanski, Tommer; Wright, Shelley

OSIRIS Toolbox reduces data for the Keck OSIRIS instrument, an integral field spectrograph that works with the Keck Adaptive Optics System. It offers real-time reduction of raw frames into cubes for display and basic analysis. In this real-time mode, it takes about one minute for a preliminary data cube to appear in the “quicklook” display package. The reduction system also includes a growing set of final reduction steps including correction of telluric absorption and mosaicing of multiple cubes.

[ascl:1710.022]
galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations

The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.

[ascl:1710.023]
LIMEPY: Lowered Isothermal Model Explorer in PYthon

LIMEPY solves distribution function (DF) based lowered isothermal models. It solves Poisson's equation used on input parameters and offers fast solutions for isotropic/anisotropic, single/multi-mass models, normalized DF values, density and velocity moments, projected properties, and generates discrete samples.

[ascl:1710.024]
pred_loggs: Predicting individual galaxy G/S probability distributions

Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1711.001]
SpcAudace: Spectroscopic processing and analysis package of Audela software

SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

[ascl:1711.002]
inhomog: Biscale kinematical backreaction analytical evolution

The inhomog library provides Raychaudhuri integration of cosmological domain-wise average scale factor evolution using an analytical formula for kinematical backreaction Q_D evolution. The inhomog main program illustrates biscale examples. The library routine lib/Omega_D_precalc.c is callable by RAMSES (ascl:1011.007) using the RAMSES extension ramses-scalav.

[ascl:1711.003]
FTbg: Background removal using Fourier Transform

FTbg performs Fourier transforms on FITS images and separates low- and high-spatial frequency components by a user-specified cut. Both components are then inverse Fourier transformed back to image domain. FTbg can remove large-scale background/foreground emission in many astrophysical applications. FTbg has been designed to identify and remove Galactic background emission in Herschel/Hi-GAL continuum images, but it is applicable to any other (e.g., Planck) images when background/foreground emission is a concern.

[ascl:1711.004]
BayesVP: Full Bayesian Voigt profile fitting

BayesVP offers a Bayesian approach for modeling Voigt profiles in absorption spectroscopy. The code fits the absorption line profiles within specified wavelength ranges and generates posterior distributions for the column density, Doppler parameter, and redshifts of the corresponding absorbers. The code uses publicly available efficient parallel sampling packages to sample posterior and thus can be run on parallel platforms. BayesVP supports simultaneous fitting for multiple absorption components in high-dimensional parameter space. The package includes additional utilities such as explicit specification of priors of model parameters, continuum model, Bayesian model comparison criteria, and posterior sampling convergence check.

[ascl:1711.005]
correlcalc: Two-point correlation function from redshift surveys

correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

[ascl:1711.006]
RGW: Goodman-Weare Affine-Invariant Sampling

RGW is a lightweight R-language implementation of the affine-invariant Markov Chain Monte Carlo sampling method of Goodman & Weare (2010). The implementation is based on the description of the python package emcee (ascl:1303.002).

[ascl:1711.007]
galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1711.008]
clustep: Initial conditions for galaxy cluster halo simulations

clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

[ascl:1711.009]
Lightning: SED Fitting Package

Lightning is a spectral energy distribution (SED) fitting procedure that quickly and reliably recovers star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. The code consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters.

[ascl:1711.010]
galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1711.011]
galkin: Milky Way rotation curve data handler

galkin is a compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimized to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements collected from almost four decades of literature. The user-friendly software provided selects, treats and retrieves the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.

[ascl:1711.012]
megaman: Manifold Learning for Millions of Points

megaman is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. It is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

[ascl:1711.013]
HO-CHUNK: Radiation Transfer code

HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:1711.014]
Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1711.015]
rac-2d: Thermo-chemical for modeling water vapor formation in protoplanetary disks

rec-2d models the distribution of water vapor in protoplanetary disks. Given a distribution of gas and dust, rac-2d first solves the dust temperature distribution with a Monte Carlo method and then solves the gas temperature distribution and chemical composition. Although the geometry is symmetric with respect to rotation around the central axis and reflection about the midplane, the photon propagation is done in full three dimensions. After establishing the dust temperature distribution, the disk chemistry is evolved for 1 Myr; the heating and cooling processes are coupled with chemistry, allowing the gas temperature to be evolved in tandem with chemistry based on the heating and cooling rates.

[ascl:1711.016]
Thindisk: Protoplanetary disk model

Thindisk computes the line emission from a geometrically thin protoplanetary disk. It creates a datacube in FITS format that can be processed with a data reduction package (such as GILDAS, ascl:1305.010) to produce synthetic images and visibilities. These synthetic data can be compared with observations to determine the properties (e.g. central mass or inclination) of an observed disk. The disk is assumed to be in Keplerian rotation at a radius lower than the centrifugal radius (which can be set to a large value, for a purely Keplerian disk), and in infall with rotation beyond the centrifugal radius.

[ascl:1711.017]
FATS: Feature Analysis for Time Series

Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Zhu, Ming; Dave, Rahul; Castro, Nicolas; Pichara, Karim

FATS facilitates and standardizes feature extraction for time series data; it quickly and efficiently calculates a compilation of many existing light curve features. Users can characterize or analyze an astronomical photometric database, though this library is not necessarily restricted to the astronomical domain and can also be applied to any kind of time series data.

[ascl:1711.018]
LExTeS: Link Extraction and Testing Suite

LExTeS (Link Extraction and Testing Suite) extracts hyperlinks from PDF documents, tests the extracted links to see which are broken, and tabulates the results. Though written to support a particular set of PDF documents, the dataset and scripts can be edited for use on other documents.

[ascl:1711.019]
SPIDERMAN: Fast code to simulate secondary transits and phase curves

SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

[ascl:1711.020]
MARXS: Multi-Architecture Raytrace Xray mission Simulator

MARXS (Multi-Architecture-Raytrace-Xraymission-Simulator) simulates X-ray observatories. Primarily designed to simulate X-ray instruments on astronomical X-ray satellites and sounding rocket payloads, it can also be used to ray-trace experiments in the laboratory. MARXS performs polarization Monte-Carlo ray-trace simulations from a source (astronomical or lab) through a collection of optical elements such as mirrors, baffles, and gratings to a detector.

[ascl:1711.021]
Bifrost: Stream processing framework for high-throughput applications

Bifrost is a stream processing framework that eases the development of high-throughput processing CPU/GPU pipelines. It is designed for digital signal processing (DSP) applications within radio astronomy. Bifrost uses a flexible ring buffer implementation that allows different signal processing blocks to be connected to form a pipeline. Each block may be assigned to a CPU core, and the ring buffers are used to transport data to and from blocks. Processing blocks may be run on either the CPU or GPU, and the ring buffer will take care of memory copies between the CPU and GPU spaces.

[ascl:1711.022]
HBT: Hierarchical Bound-Tracing

HBT is a Hierarchical Bound-Tracing subhalo finder and merger tree builder, for numerical simulations in cosmology. It tracks haloes from birth and continues to track them after mergers, finding self-bound structures as subhaloes and recording their merger histories as merger trees.

[ascl:1711.023]
HBT+: Subhalo finder and merger tree builder

HBT+ is a hybrid subhalo finder and merger tree builder for cosmological simulations. It comes as an MPI edition that can be run on distributed clusters or shared memory machines and is MPI/OpenMP parallelized, and also as an OpenMP edition that can be run on shared memory machines and is only OpenMP parallelized. This version is more memory efficient than the MPI branch on shared memory machines, and is more suitable for analyzing zoomed-in simulations that are difficult to balance on distributed clusters. Both editions support hydro simulations with gas/stars.

[ascl:1711.024]
NOD3: Single dish reduction software

NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

[ascl:1712.001]
KDUtils: Kinematic Distance Utilities

The Kinematic Distance utilities (KDUtils) calculate kinematic distances and kinematic distance uncertainties. The package includes methods to calculate "traditional" kinematic distances as well as a Monte Carlo method to calculate kinematic distances and uncertainties.

[ascl:1712.002]
MPI_XSTAR: MPI-based parallelization of XSTAR program

MPI_XSTAR parallelizes execution of multiple XSTAR runs using Message Passing Interface (MPI). XSTAR (ascl:9910.008), part of the HEASARC's HEAsoft (ascl:1408.004) package, calculates the physical conditions and emission spectra of ionized gases. MPI_XSTAR invokes XSTINITABLE from HEASoft to generate a job list of XSTAR commands for given physical parameters. The job list is used to make directories in ascending order, where each individual XSTAR is spawned on each processor and outputs are saved. HEASoft's XSTAR2TABLE program is invoked upon the contents of each directory in order to produce table model FITS files for spectroscopy analysis tools.

[ascl:1712.003]
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

[ascl:1712.004]
Bitshuffle: Filter for improving compression of typed binary data

Bitshuffle rearranges typed, binary data for improving compression; the algorithm is implemented in a python/C package within the Numpy framework. The library can be used alongside HDF5 to compress and decompress datasets and is integrated through the dynamically loaded filters framework. Algorithmically, Bitshuffle is closely related to HDF5's Shuffle filter except it operates at the bit level instead of the byte level. Arranging a typed data array in to a matrix with the elements as the rows and the bits within the elements as the columns, Bitshuffle "transposes" the matrix, such that all the least-significant-bits are in a row, etc. This transposition is performed within blocks of data roughly 8kB long; this does not in itself compress data, but rearranges it for more efficient compression. A compression library is necessary to perform the actual compression. This scheme has been used for compression of radio data in high performance computing.

[ascl:1712.005]
draco: Analysis and simulation of drift scan radio data

draco analyzes transit radio data with the m-mode formalism. It is telescope agnostic, and is used as part of the analysis and simulation pipeline for the CHIME (Canadian Hydrogen Intensity Mapping Experiment) telescope. It can simulate time stream data from maps of the sky (using the m-mode formalism) and add gain fluctuations and correctly correlated instrumental noise (i.e. Wishart distributed). Further, it can perform various cuts on the data and make maps of the sky from data using the m-mode formalism.

[ascl:1712.006]
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

[ascl:1712.007]
SFoF: Friends-of-friends galaxy cluster detection algorithm

SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.

[ascl:1712.008]
CosApps: Simulate gravitational lensing through ray tracing and shear calculation

Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

[ascl:1712.009]
RODRIGUES: RATT Online Deconvolved Radio Image Generation Using Esoteric Software

RODRIGUES (RATT Online Deconvolved Radio Image Generation Using Esoteric Software) is a web-based radio telescope simulation and reduction tool. From a technical perspective it is a web based parameterized docker container scheduler with a result set viewer.

Would you like to view a random code?