Results 1-50 of 2032 (2002 ASCL, 30 submitted)

[submitted]
Gramsci: Graph Made Statistics for Cosmological Information

We present an algorithm for the fast computation of the general N-point spatial correlation functions of any discrete point set embedded within an Euclidean space of ℝ^n. Utilizing the concepts of kd-trees and graph databases, we describe how to count all possible N-tuples in binned configurations within a given length scale, e.g. all pairs of points or all triplets of points with side lengths

[submitted]
actsnclass - Active Learning for Supernova Photometric Classification

Performs active learning in the SuperNova Photometric Classification Challenge (SNPCC) dataset from Kessler et al., 2010.

Uses a parametric feature extraction method, Random Forest classifier and 2 learning strategies (uncertainty sampling and random sampling).

[submitted]
Molsoft: Molonglo Telescope Observing Software

Molsoft operates, monitors and schedules observations, both through predetermined schedule files and fully dynamically, at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST). It was developed as part of the UTMOST upgrade of the facility.

[ascl:1907.032]
Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python

Astro-SCRAPPY detects cosmic rays in images (numpy arrays), based on Pieter van Dokkum's L.A.Cosmic algorithm and originally adapted from cosmics.py written by Malte Tewes. This implementation is optimized for speed, resulting in slight difference from the original code, such as automatic recognition of saturated stars (rather than treating such stars as large cosmic rays, and use of a separable median filter instead of the true median filter. Astro-SCRAPPY is an AstroPy (ascl:1304.002) affiliated package.

[ascl:1907.031]
MGB: Interactive spectral classification code

MGB (Marxist Ghost Buster) attacks spectral classification by using an interactive comparison with spectral libraries. It allows the user to move along the two traditional dimensions of spectral classification (spectral subtype and luminosity classification) plus the two additional ones of rotation index and spectral peculiarities. Double-lined spectroscopic binaries can also be fitted using a combination of two standards. The code includes OB2500 v2.0, a standard grid of blue-violet *R* ~ 2500 spectra of O stars from the Galactic O-Star Spectroscopic Survey, but other grids can be added to MGB.

[ascl:1907.030]
Wōtan: Stellar detrending methods

Wōtan provides free and open source algorithms to remove trends from time-series data automatically as an aid to to search efficiently for transits in stellar light curves from surveys. The toolkit helps determine empirically the best tool for a given job, serving as a one-stop solution for various smoothing tasks.

[ascl:1907.029]
XDF-GAN: Mock astronomical survey generator

XDF-GAN generates mock galaxy surveys with a Spatial Generative Adversarial Network (SGAN)-like architecture. Mock galaxy surveys are generated from data that is preprocessed as little as possible (preprocessing is only a 99.99th percentile clipping). The outputs can also be tessellated together to create a very large survey, limited in size only by the RAM of the generation machine.

[ascl:1907.028]
ROHSA: Separation of diffuse sources in hyper-spectral data

ROHSA (Regularized Optimization for Hyper-Spectral Analysis) reveals the statistical properties of interstellar gas through atomic and molecular lines. It uses a Gaussian decomposition algorithm based on a multi-resolution process from coarse to fine grid to decompose any kind of hyper-spectral observations into a sum of coherent Gaussian. Optimization is performed on the whole data cube at once to obtain a solution with spatially smooth parameters.

[ascl:1907.027]
intensitypower: Spectrum multipoles modeler

intensitypower measures and models the auto- and cross-power spectrum multipoles of galaxy catalogs and radio intensity maps presented in spherical coordinates. It can also convert the multipoles to power spectrum wedges P(k,mu) and 2D power spectra P(k_perp,k_par). The code assumes the galaxy catalog is a set of discrete points and the radio intensity map is a pixelized continuous field which includes angular pixelization using healpix, binning in redshift channels, smoothing by a Gaussian telescope beam, and the addition of a Gaussian noise in each cell. The galaxy catalog and radio intensity map are transferred onto an FFT grid, and power spectrum multipoles are measured including curved-sky effects. Both maps include redshift-space distortions.

[ascl:1907.026]
MCRGNet: Morphological Classification of Radio Galaxy Network

MCRGNet (Morphological Classification of Radio Galaxy Network) classifies radio galaxies of different morphologies. It is based on the Convolutional Neural Network (CNN), which is trained and applied under a three-step framework: 1.) pretraining the network unsupervisedly with unlabeled samples, 2.) fine-tuning the pretrained network parameters supervisedly with labeled samples, and 3.) classifying a new radio galaxy by the trained network. The code uses a dichotomous tree classifier composed of cascaded CNN based subclassifiers.

[ascl:1907.025]
GIST: Galaxy IFU Spectroscopy Tool

Bittner, A.; Falcón-Barroso, J.; Nedelchev, B.; Dorta, A.; Gadotti, D. A.; Sarzi, M.; Molaeinezhad, A.; Iodice, E.; Rosado-Belza, D.; de Lorenzo-Cáceres, A.; Fragkoudi, F.; Galán-de Anta, P. M.; Husemann, B.; Méndez-Abreu, J.; Neumann, J.; Pinna, F.; Querejeta, M.; Sánchez-Blázquez, P.; Seidel, M. K.

GIST (Galaxy IFU Spectroscopy Tool) provides a convenient all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data, conducting all the steps from the preparation of input data to the scientific analysis and to the production of publication-quality plots. In its basic set-up, the GIST pipeline extracts stellar kinematics, performs an emission-line analysis, and derives stellar population properties from full spectral fitting and via the measurement of absorption line-strength indices by exploiting pPXF (ascl:1210.002)and GandALF routines. The pipeline is not specific to any instrument or analysis technique, and includes a dedicated visualization routine with a sophisticated graphical user interface for fully interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models.

[ascl:1907.024]
Skyfield: High precision research-grade positions for planets and Earth satellites generator

Skyfield computes positions for the stars, planets, and satellites in orbit around the Earth. Its results should agree with the positions generated by the United States Naval Observatory and their Astronomical Almanac to within 0.0005 arcseconds (which equals half a “mas” or milliarcsecond). It computes geocentric coordinates or topocentric coordinates specific to your location on the Earth’s surface. Skyfield accepts AstroPy (ascl:1304.002) time objects as input and can return results in native AstroPy units but is not dependend on AstroPy nor its compiled libraries.

[ascl:1907.023]
REVOLVER: REal-space VOid Locations from suVEy Reconstruction

REVOLVER reconstructs real space positions from redshift-space tracer data by subtracting RSD through FFT-based reconstruction (optional) and applies void-finding algorithms to create a catalogue of voids in these tracers. The tracers are normally galaxies from a redshift survey but could also be halos or dark matter particles from a simulation box. Two void-finding routines are provided. The first is based on ZOBOV (ascl:1304.005) and uses Voronoi tessellation of the tracer field to estimate the local density, followed by a watershed void-finding step. The second is a voxel-based method, which uses a particle-mesh interpolation to estimate the tracer density, and then uses a similar watershed algorithm. Input data files can be in FITS format, or ASCII- or NPY-formatted data arrays.

[ascl:1907.022]
CMDPT: Color Magnitude Diagrams Plot Tool

CMD Plot Tool calculates and plots Color Magnitude Diagrams (CMDs) from astronomical photometric data, *e.g.* of a star cluster observed in two filter bandpasses. It handles multiple file formats (plain text, DAOPHOT .mag files, ACS Survey of Galactic Globular Clusters .zpt files) to generate professional and customized plots without a steep learning curve. It works “out of the box” and does not require any installation of development environments, additional libraries, or resetting of system paths. The tool is available as a single application/executable file with the source code. Sample data is also bundled for demonstration. CMD Plot Tool can also convert DAOPHOT magnitude files to CSV format.

[ascl:1907.021]
PRISM: Probabilistic Regression Instrument for Simulating Models

PRISM analyzes scientific models using the Bayes linear approach, the emulation technique, and history matching to construct an approximation ('emulator') of any given model. The software facilitates and enhances existing MCMC methods by restricting plausible regions and exploring parameter space efficiently and can be used as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific models. PRISM stores results in HDF5-files and can be executed in serial or MPI on any number of processes. It accepts any type of model and comparison data and can reduce relevant parameter space by factors over 100,000 using only a few thousand model evaluations.

[ascl:1907.020]
GaussPy+: Gaussian decomposition package for emission line spectra

Riener, Manuel; Kainulainen, Jouni; Henshaw, Jonathan D.; Orkisz, Jan H.; Murray, Claire E.; Beuther, Henrik

GaussPy+ is a fully automated Gaussian decomposition package for emission line spectra. It is based on GaussPy (ascl:1907.019) and offers several improvements, including automating preparatory steps and providing an accurate noise estimation, improving the fitting routine, and providing a routine to refit spectra based on neighboring fit solutions. GaussPy+ handles complex emission and low to moderate signal-to-noise values.

[ascl:1907.019]
GaussPy: Python implementation of the Autonomous Gaussian Decomposition algorithm

GaussPy implements the Autonomous Gaussian Decomposition (AGD) algorithm, which uses computer vision and machine learning techniques to provide optimized initial guesses for the parameters of a multi-component Gaussian model automatically and efficiently. The speed and adaptability of AGD allow it to interpret large volumes of spectral data efficiently. Although it was initially designed for applications in radio astrophysics, AGD can be used to search for one-dimensional Gaussian (or any other single-peaked spectral profile)-shaped components in any data set. To determine how many Gaussian functions to include in a model and what their parameters are, AGD uses a technique called derivative spectroscopy. The derivatives of a spectrum can efficiently identify shapes within that spectrum corresponding to the underlying model, including gradients, curvature and edges.

[ascl:1907.018]
StePar: Inferring stellar atmospheric parameters using the EW method

StePar computes the stellar atmospheric parameters T_{eff}, log g, [Fe/H], and ξ of FGK-type stars using the Equivalent Width (*EW*) method. The code implements a grid of MARCS model atmospheres and uses the MOOG radiative transfer code (ascl:1202.009) and TAME (ascl:1503.003). StePar uses a Downhill Simplex minimization algorithm, running it twice for any given star, to compute the stellar atmospheric parameters.

[ascl:1907.017]
ZChecker: Zwicky Transient Facility moving target checker for short object lists

Kelley, Michael S.P.; Bodewits, Dennis; Ye, Qaunzhi; Laher, Russ R.; Masci, Frank J.; Monkewitz, Serge; Riddle, Reed; Rusholme, Ben; Shupe, David L; Soumagnac, Maayane T.

ZChecker finds, measures, and visualizes known comets in the Zwicky Transient Facility time-domain survey. Images of targets are identified using on-line ephemeris generation and survey metadata. The photometry of the targets are measured and the images are processed with temporal filtering to highlight morphological variations in time.

[submitted]
DM phase: A novel algorithm for correcting dispersion of radio signals

Radio waves propagating in space are subject to frequency-dependent delay due to interactions with cold free electrons, which gives coherent radio emissions a unique structure known as dispersion. The study of impulsive radio signals from astronomical sources, such as those emitted by pulsars and fast radio bursts (FRBs), requires proper corrections for this effect. Moreover, the ionized medium itself can be characterized by sensitive measurements of this dispersion.

Signal dispersion is proportional to the integrated column density of free electrons along the line of sight, a quantity known as dispersion measure (DM), and inversely proportional to the observing frequency squared. Traditional methods search for the best DM value of a source by maximizing the signal-to-noise ratio (S/N) of the detected signal. While sensitive and efficient algorithms have been designed for this purpose, they are affected by two limitations. Firstly, they implicitly assume a broadband emission across the entire observing frequency bandwidth. While this is normally true for pulsars, some FRBs have been observed to have complex spectra which returned incorrect DM values. Secondly, these traditional algorithms are highly sensitive to large-amplitude events such as large noise spikes and radio interference. In order to overcome these limitations, we developed a new algorithm to maximize the coherent power of the signal instead of its intensity. Since the structure of the signal is coherent at different frequencies, this method is relatively insensitive to complex spectro-temporal shapes of the pulses. In addition, this method is more robust to noise and interference because these normally have incoherent structures and the amplitude information in each frequency channel is discarded.

[ascl:1907.016]
astrodendro: Astronomical data dendrogram creator

Astrodendro, written in Python, creates dendrograms for exploring and displaying hierarchical structures in observed or simulated astronomical data. It handles noisy data by allowing specification of the minimum height of a structure and the minimum number of pixels needed for an independent structure. Astrodendro allows interactive viewing of computed dendrograms and can also produce publication-quality plots with the non-interactive plotting interface.

[ascl:1907.015]
TurbuStat: Turbulence statistics in spectral-line data cubes

Koch, Eric W.; Rosolowsky, Erik W.; Boyden, Ryan D.; Burkhart, Blakesley; Ginsburg, Adam; Loeppky, Jason L.; Offner, Stella S. R.

TurbuStat implements a variety of turbulence-based statistics described in the astronomical literature and defines distance metrics for each statistic to quantitatively compare spectral-line data cubes, as well as column density, integrated intensity, or other moment maps. The software can simulate observations of fractional Brownian Motion fields, including 2-D images and optically thin H I data cubes. TurbuStat also offers multicore fast-Fourier-transform support and provides a segmented linear model for fitting lines with a break point.

[ascl:1907.014]
sbpy: Small-body planetary astronomy

Mommert, Michael; Kelley, Michael S. P.; de Val-Borro, Miguel; Li, Jian-Yang; Guzman, Giannina; Sipőcz, Brigitta; Ďurech, Josef; Granvik, Mikael; Grundy, Will; Moskovitz, Nick; Penttilä, Antti; Samarasinha, Nalin

sbpy, an Astropy affiliated package, supplements functionality provided by Astropy (ascl:1304.002) with functions and methods that are frequently used for planetary astronomy with a clear focus on asteroids and comets. It offers access tools for various databases for orbital and physical data, spectroscopy analysis tools and models, photometry models for resolved and unresolved observations, ephemerides services, and other tools useful for small-body planetary astronomy.

[ascl:1907.013]
RVSpecFit: Radial velocity and stellar atmospheric parameter fitting

RVSpecFit determines radial velocities and stellar atmospheric parameters from spectra by direct pixel fitting by interpolated stellar templates. The code doesn't require spectrum normalization and can deal with non-flux calibrated spectra. RVSpecFit is able to fit multiple spectra simultaneously.

[ascl:1907.012]
molly: 1D astronomical spectra analyzer

molly analyzes 1D astronomical spectra. Its prime purpose is for handling large numbers of similar spectra (*e.g.,* time series spectroscopy), but it contains many of the standard operations used for normal spectrum analysis as well. It overlaps with the various similar programs such as dipso (ascl:1405.016) and has strengths (particularly for time series spectra) and weaknesses compared to them.

[ascl:1907.011]
beamconv: Cosmic microwave background detector data simulator

beamconv simulates the scanning of the CMB sky while incorporating realistic beams and scan strategies. It uses (spin-)spherical harmonic representations of the (polarized) beam response and sky to generate simulated CMB detector signal timelines. Beams can be arbitrarily shaped. Pointing timelines can be read in or calculated on the fly; optionally, the results can be binned on the sphere.

[ascl:1907.010]
OMNICAL: Redundant calibration code for low frequency radio interferometers

OMNICAL calibrates antennas in the redundant subset of the array. The code consists of two algorithms, a logarithmic method (logcal) and a linearized method (lincal). OMNICAL makes visibilities from physically redundant baselines agree with each other and also explicitly minimizes the variance within redundant visibilities.

[ascl:1907.009]
Plonk: Smoothed particle hydrodynamics data analysis and visualization

Plonk analyzes and visualizes smoothed particle hydrodynamics simulation data. It is built on the scientific Python ecosystem, including NumPy, Matplotlib, Cython, h5py, SymPy, and pandas. Plock's visualization module uses Splash (ascl:1103.004) to produce images using smoothed particle hydrodynamics interpolation. The code is modular and extendible, and can be scripted or used interactively.

[submitted]
Accretion Disk Radial Structure Models

A collection of radial structure models of various accretion disk solutions. Each model implements a common interface that gives the radial dependence of selected geometrical, physical and thermodynamic quantities of the accretion flow.

[ascl:1907.008]
Dewarp: Distortion removal and on-sky orientation solution for LBTI detectors

Dewarp constructs pipelines to remove distortion from a detector and find the orientation with true North. It was originally written for the LBTI LMIRcam detector, but is generalizable to any project with reference sources and/or an astrometric field paired with a machine-readable file of astrometric target locations.

[ascl:1907.007]
SPAM: Hu-Sawicki f(R) gravity imprints search

SPAM searches for imprints of Hu-Sawicki f(R) gravity on the rotation curves of the SPARC (Spitzer Photometry and Accurate Rotation Curves) sample using the MCMC sampler emcee (ascl:1303.002). The code provides attributes for inspecting the MCMC chains and translating names of parameters to indices. The SPAM package also contains plotting scripts.

[ascl:1907.006]
POCS: PANOPTES Observatory Control System

PANOPTES (Panoptic Astronomical Networked Observatories for a Public Transiting Exoplanets Survey) is a citizen science project for low cost, robotic detection of transiting exoplanets. POCS (PANOPTES Observatory Control System) is the main software driver for the PANOPTES telescope system, responsible for high-level control of the unit. POCS defines an Observatory class that automatically controls a commercially available equatorial mount, including image analysis and corresponding mount adjustment to obtain a percent-level photometric precision.

[ascl:1907.005]
SARA-PPD: Preconditioned primal-dual algorithm for radio-interferometric imaging

SARA-PPD is a proof of concept MATLAB implementation of an acceleration strategy for a recently proposed primal-dual distributed algorithm. The algorithm optimizes resolution by accounting for the correct noise statistics, leverages natural weighting in the definition of the minimization problem for image reconstruction, and optimizes sensitivity by enabling accelerated convergence through a preconditioning strategy incorporating sampling density information. This algorithm offers efficient processing of large-scale data sets that will be acquired by next generation radio-interferometers such as the Square Kilometer Array.

[ascl:1907.004]
pyGTC: Parameter covariance plots

pyGTC creates giant triangle confusogram (GTC) plots. Triangle plots display the results of a Monte-Carlo Markov Chain (MCMC) sampling or similar analysis. The recovered parameter constraints are displayed on a grid in which the diagonal shows the one-dimensional posteriors (and, optionally, priors) and the lower-left triangle shows the pairwise projections. Such plots are useful for seeing the parameter covariances along with the priors when fitting a model to data.

[ascl:1907.003]
pyuvdata: Pythonic interface to interferometric data sets

pyuvdata defines a pythonic interface to interferometric data sets; it supports the development of and interchange of data between calibration and foreground subtraction pipelines. It can read and write MIRIAD (ascl:1106.007), uvfits, and uvh5 files and reads CASA (ascl:1107.013) measurement sets and FHD (Fast Holographic Deconvolution) visibility save files. Particular focus has been paid to supporting drift and phased array modes.

[ascl:1907.002]
healvis: Radio interferometric visibility simulator based on HEALpix maps

Healvis simulates radio interferometric visibility off of HEALPix shells. It generates a flat-spectrum and a GSM model and computes visibilities, and can simulates visibilities given an Observation Parameter YAML file. Healvis can perform partial frequency simulations in serial to minimize instantaneous memory loads.

[ascl:1907.001]
schwimmbad: Parallel processing pools interface

schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib). The utilities provided by schwimmbad require that tasks or data be “chunked” and that code can be “mapped” onto the chunked tasks.

[ascl:1906.022]
pyLIMA: Microlensing modeling package

pyLIMA (python Lightcurve Identification and Microlensing Analysis) fits microlensing lightcurves and derives the physical quantities of lens systems. The package provides microlensing modeling, and the magnification estimation for high cadence lightcurves has been optimized. pyLIMA is designed to make microlensing modeling and event simulation widely available to the community.

[ascl:1906.021]
centerRadon: Center determination code in stellar images

centerRadon finds the center of stars based on Radon Transform to sub-pixel precision. For a coronagraphic image of a star, it starts from a given location, then for each sub-pixel position, it interpolates the image and sums the pixels along different angles, creating a cost function. The center of the star is expected to correspond with where the cost function maximizes. The default values are set for the STIS coronagraphic images of the Hubble Space Telescope by summing over the diagonals (i.e., 45° and 135°), but it can be generally applied to other high-contrast imaging instruments with or without Adaptive Optics systems such as HST-NICMOS, P1640, or GPI.

[ascl:1906.020]
LIZARD: Particle initial conditions for cosmological simulations

LIZARD (Lagrangian Initialization of Zeldovich Amplitudes for Resimulations of Displacements) creates particle initial conditions for cosmological simulations using the Zel'dovich approximation for the matter and velocity power spectrum.

[ascl:1906.019]
PlasmaPy: Core Python package for plasma physics

PlasmaPy Community; Murphy, Nicholas A.; Stańczak, Dominik; Kozlowski, Pawel M.; Langendorf, Samuel J.; Leonard, Andrew J.; Beckers, Jasper P.; Haggerty, Colby C.; Mumford, Stuart J.; Malhotra, Ritiek; Bessi, Ludovico; Carroll, Sean; Choubey, Apoorv; Díaz Pérez, Roberto; Einhorn, Leah; Fan, Thomas; Goudeau, Graham; Guidoni, Silvina; Hillairet, Julien; How, Poh Zi; Huang, Yi-Min; Humphrey, Nabil; Isupova, Maria; Kulshrestha, Siddharth; Kuszaj, Piotr; Munn, Joshua; Parashar, Tulasi; Patel, Neil; Raj, Raajit; Sherpa, Dawa Nurbu; Stansby, David; Tavant, Antoine; Xu, Sixue

PlasmaPy provides core functionality and a common framework for data visualization and analysis for plasma physics. It has modules for basic plasma physics calculations, running desktop-scale simulations to test preliminary ideas such as one-dimensional MHD/PIC or test particles, or comparing data from two different sources, such as simulations and spacecraft.

[ascl:1906.018]
MEGAlib: Medium Energy Gamma-ray Astronomy library

The Medium Energy Gamma-ray Astronomy library (MEGAlib) simulates, calibrates, and analyzes data of hard X-ray and gamma-ray detectors, with a specialization on Compton telescopes. The library comprises all necessary data analysis steps for these telescopes, from simulation/measurements via calibration, event reconstruction to image reconstruction.

MEGAlib contains a geometry and detector description tool for the detailed modeling of different detector types and characteristics, and provides an easy to use simulation program based on Geant4 (ascl:1010.079). For different Compton telescope detector types (electron tracking, multiple Compton or time of flight based), specialized Compton event reconstruction algorithms are implemented in different approaches (Chi-square and Bayesian). The high level data analysis tools calculate response matrices, perform image deconvolution (specialized in list-mode-likelihood-based Compton image reconstruction), determine detector resolutions and sensitivities, retrieve spectra, and determine polarization modulations.

[ascl:1906.017]
mcfit: Multiplicatively Convolutional Fast Integral Transforms

mcfit computes integral transforms, inverse transforms without analytic inversion, and integral kernels as derivatives. It can also transform input array along any axis, output the matrix form, an is easily extensible for other kernels.

[ascl:1906.016]
PandExo: Instrument simulations for exoplanet observation planning

Batalha, Natasha E.; Mandell, Avi; Pontoppidan, Klaus; Stevenson, Kevin B.; Lewis, Nikole K.; Kalirai, Jason; Earl, Nick; Greene, Thomas; Albert, Loïc; Nielsen, Louise D.

PandExo generates instrument simulations of JWST’s NIRSpec, NIRCam, NIRISS and NIRCam and HST WFC3 for planning exoplanet observations. It uses throughput calculations from STScI’s Exposure Time Calculator, Pandeia, and offers both an online tool and a python package.

[ascl:1906.015]
OIT: Nonconvex optimization approach to optical-interferometric imaging

In the context of optical interferometry, only undersampled power spectrum and bispectrum data are accessible, creating an ill-posed inverse problem for image recovery. Recently, a tri-linear model was proposed for monochromatic imaging, leading to an alternated minimization problem; in that work, only a positivity constraint was considered, and the problem was solved by an approximated Gauss–Seidel method.

The Optical-Interferometry-Trilinear code improves the approach on three fundamental aspects. First, the estimated image is defined as a solution of a regularized minimization problem, promoting sparsity in a fixed dictionary using either an l1 or a (re)weighted-l1 regularization term. Second, the resultant non-convex minimization problem is solved using a block-coordinate forward–backward algorithm. This algorithm is able to deal both with smooth and non-smooth functions, and benefits from convergence guarantees even in a non-convex context. Finally, the model and algorithm are generalized to the hyperspectral case, promoting a joint sparsity prior through an l2,1 regularization term.

[ascl:1906.014]
GPUVMEM: Maximum Entropy Method (MEM) GPU algorithm for radio astronomical image synthesis

Cárcamo, Miguel; Muñoz, Nicolás; Rannou, Fernando; Román, Pablo; Casassus, Simón; Osses, Axel; Moral, Victor

The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. GPUVMEM presents a high performance GPU version of non-gridding MEM.

[ascl:1906.013]
MORPHEUS: A 3D Eulerian Godunov MPI-OpenMP hydrodynamics code with multiple grid geometries

MORPHEUS (Manchester Omni-geometRical Program for Hydrodynamical EUlerian Simulations) is a 3D hydrodynamical code used to simulate astrophysical fluid flows. It has three different grid geometries (cartesian, spherical, and cylindrical) and uses a second-order Godunov method to solve the equations of hydrodynamics. Physical modules also include radiative cooling and gravity, and a hybrid MPI-OpenMP parallelization allows computations to be run on large-scale architectures. MORPHEUS is written in Fortran90 and does not require any libraries (apart from MPI) to run.

[ascl:1906.012]
Morpheus: Library to generate morphological semantic segmentation maps of astronomical images

Morpheus generates pixel level morphological classifications of astronomical sources by leveraging advances in deep learning to perform source detection, source segmentation, and morphological classification pixel-by-pixel via a semantic segmentation algorithm adopted from the field of computer vision. By utilizing morphological information about the flux of real astronomical sources during object detection, Morpheus shows resiliency to false positive identifications of sources.

[ascl:1906.011]
Lizard: An extensible Cyclomatic Complexity Analyzer

Lizard is an extensible Cyclomatic Complexity Analyzer for imperative programming languages including C/C++/C#, Python, Java, and Javascript. It counts the nloc (lines of code without comments) and CCN (cyclomatic complexity number), and takes a token count of functions and a parameter count of functions. It also does copy-paste detection (code clone detection/code duplicate detection) and many other forms of static code analysis. Lizard is often used in software-related research and calculates how complex the code looks rather than how complex the code really is; thought it's often very hard to get all the included folders and files right when they are complicated, that accuracy is not needed to determine cyclomatic complexity, which can be useful for measuring the maintainability of a software package.

[ascl:1906.010]
PyA: Python astronomy-related packages

Czesla, Stefan; Schröter, Sebastian; Schneider, Christian P.; Huber, Klaus F.; Pfeifer, Fabian; Andreasen, Daniel T.; Zechmeister, Mathias

The PyA (PyAstronomy) suite of astronomy-related packages includes a convenient fitting package that provides support for minimization and MCMC sampling, a set of astrophysical models (*e.g.*, transit light-curve modeling), and algorithms for timing analysis such as the Lomb-Scargle and the Generalized Lomb-Scargle periodograms.

Would you like to view a random code?