Results 1751-1800 of 2122 (2090 ASCL, 32 submitted)

[ascl:1112.007]
FLAGCAL: FLAGging and CALlibration Pipeline for GMRT Data

FLAGging and CALlibration (FLAGCAL) is a software pipeline developed for automatic flagging and calibration of the GMRT data. This pipeline can be used for preprocessing (before importing the data in AIPS) any other interferromteric data also (given that the data file is in FITS format and contains multiple channels & scans).There are also a few GUI based tools which can be used for quick visualization of the data.

[ascl:1112.008]
GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1112.009]
LISACode: A scientific simulator of LISA

LISACode is a simulator of the LISA mission. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. Its also a useful tool for generating realistic data including several kind of sources (Massive Black Hole binaries, EMRIs, cosmic string cusp, stochastic background, etc) and for preparing their analysis. It’s fully integrated to the Mock LISA Data Challenge. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator.

[ascl:1112.010]
MRS3D: 3D Spherical Wavelet Transform on the Sphere

Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

[ascl:1112.011]
CMBview: A Mac OS X program for viewing HEALPix-format sky map data on a sphere

CMBview is a viewer for FITS files containing HEALPix sky maps. Sky maps are projected onto a 3d sphere which can be rotated and zoomed interactively with the mouse. Features include:

- rendering of the field of Stokes vectors

- ray-tracing mode in which each screen pixel is projected onto the sphere for high quality rendering

- control over sphere lighting

- export an arbitrarily large rendered texture

- variety of preset colormaps

[ascl:1112.012]
CORA: Emission Line Fitting with Maximum Likelihood

CORA analyzes emission line spectra with low count numbers and fits them to a line using the maximum likelihood technique. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise, the software derives the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. CORA has been applied to an X-ray spectrum with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory.

[ascl:1112.013]
XEphem: Interactive Astronomical Ephemeris

XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. XEphem computes heliocentric, geocentric and topocentric information for all objects and has built-in support for all planets, the moons of Mars, Jupiter, Saturn, Uranus and Earth, central meridian longitude of Mars and Jupiter, Saturn's rings, and Jupiter's Great Red Spot. It allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites, provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC, displays data in configurable tabular formats in conjunction with several interactive graphical views, and displays a night-at-a-glance 24 hour graphic showing when any selected objects are up. It also displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories, quickly finds all close pairs of objects in the sky, and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

[ascl:1112.014]
PyEphem: Astronomical Ephemeris for Python

PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day.

The numerical routines that lie behind PyEphem are those from the wonderful XEphem astronomy application, whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.

[ascl:1112.015]
Dexter: Data Extractor for scanned graphs

The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

[ascl:1112.016]
PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

- the system console
- the command line
- a network socket
- the generation of audio speech

[ascl:1112.017]
ASpec: Astronomical Spectrum Analysis Package

ASpec is a spectrum and line analysis package developed at STScI. ASpec is designed as an add-on package for IRAF and incorporates a variety of analysis techniques for astronomical spectra. ASpec operates on spectra from a wide variety of ground-based and space-based instruments and allows simultaneous handling of spectra from different wavelength regimes. The package accommodates non-linear dispersion relations and provides a variety of functions, individually or in combination, with which to fit spectral features and the continuum. It also permits the masking of known bad data. ASpec provides a powerful, intuitive graphical user interface implemented using the IRAF Object Manager and customized to handle: data input/output (I/O); on-line help; selection of relevant features for analysis; plotting and graphical interaction; and data base management.

[ascl:1112.018]
SwiftVis: Data Analysis & Visualization For Planetary Science

SwiftVis is a tool originally developed as part of a rewrite of Swift to be used for analysis and plotting of simulations performed with Swift and Swifter. The extensibility built into the design has allowed us to make SwiftVis a general purpose analysis and plotting package customized to be usable by the planetary science community at large. SwiftVis is written in Java and has been tested on Windows, Linux, and Mac platforms. Its graphical interface allows users to do complex analysis and plotting without having to write custom code.

[ascl:1112.019]
Aladin: Interactive Sky Atlas

Aladin is an interactive software sky atlas allowing the user to visualize digitized astronomical images, superimpose entries from astronomical catalogues or databases, and interactively access related data and information from the Simbad database, the VizieR service and other archives for all known sources in the field.

Created in 1999, Aladin has become a widely-used VO tool capable of addressing challenges such as locating data of interest, accessing and exploring distributed datasets, visualizing multi-wavelength data. Compliance with existing or emerging VO standards, interconnection with other visualisation or analysis tools, ability to easily compare heterogeneous data are key topics allowing Aladin to be a powerful data exploration and integration tool as well as a science enabler.

[ascl:1111.001]
HIPE: Herschel Interactive Processing Environment

The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity.

[ascl:1111.002]
CRBLASTER: A Parallel-Processing Computational Framework for Embarrassingly-Parallel Image-Analysis Algorithms

The development of parallel-processing image-analysis codes is generally a challenging task that requires complicated choreography of interprocessor communications. If, however, the image-analysis algorithm is embarrassingly parallel, then the development of a parallel-processing implementation of that algorithm can be a much easier task to accomplish because, by definition, there is little need for communication between the compute processes. I describe the design, implementation, and performance of a parallel-processing image-analysis application, called CRBLASTER, which does cosmic-ray rejection of CCD (charge-coupled device) images using the embarrassingly-parallel L.A.COSMIC algorithm. CRBLASTER is written in C using the high-performance computing industry standard Message Passing Interface (MPI) library. The code has been designed to be used by research scientists who are familiar with C as a parallel-processing computational framework that enables the easy development of parallel-processing image-analysis programs based on embarrassingly-parallel algorithms. The CRBLASTER source code is freely available at the official application website at the National Optical Astronomy Observatory. Removing cosmic rays from a single 800x800 pixel Hubble Space Telescope WFPC2 image takes 44 seconds with the IRAF script lacos_im.cl running on a single core of an Apple Mac Pro computer with two 2.8-GHz quad-core Intel Xeon processors. CRBLASTER is 7.4 times faster processing the same image on a single core on the same machine. Processing the same image with CRBLASTER simultaneously on all 8 cores of the same machine takes 0.875 seconds -- which is a speedup factor of 50.3 times faster than the IRAF script. A detailed analysis is presented of the performance of CRBLASTER using between 1 and 57 processors on a low-power Tilera 700-MHz 64-core TILE64 processor.

[ascl:1111.003]
Saada: A Generator of Astronomical Database

Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.

[ascl:1111.004]
CIGALE: Code Investigating GALaxy Emission

The CIGALE code has been developed to study the evolution of galaxies by comparing modelled galaxy spectral energy distributions (SEDs) to observed ones from the far ultraviolet to the far infrared. It extends the SED fitting algorithm written by Burgarella et al. (2005, MNRAS 360, 1411). While the previous code was designed to fit SEDs in the optical and near infrared, CIGALE is able to fit SEDs up to the far infrared using Dale & Helou (2002, ApJ 576, 159). CIGALE Bayesian and CIGALE Monte Carlo Markov Chain are available.

[ascl:1111.005]
SPECTCOL: Spectroscopic and Collisional Data Retrieval

Studies of astrophysical non-LTE media require the combination of atomic and molecular spectroscopic and collisional data often described differently in various databases. SPECTCOL is a tool that implements VAMDC standards, retrieve relevant information from different databases such as CDMS, HITRAN, BASECOL, and can upload local files. All transfer of data between the client and the databases use the VAMDC-XSAMS schema. The spectroscopic and collisional information is combined and useful outputs (ascii or xsams) are provided for the study of the interstellar medium.

[ascl:1111.006]
MOPEX: MOsaicker and Point source EXtractor

MOPEX (MOsaicker and Point source EXtractor) is a package for reducing and analyzing imaging data, as well as MIPS SED data. MOPEX includes the point source extraction package, APEX.

MOPEX is designed to allow the user to:

- perform sophisticated background matching of individual data frames
- mosaic the individual frames downloaded from the Spitzer archive
- perform both temporal and spatial outlier rejection during mosaicking
- apply offline pointing refinement for MIPS data (refinement is already applied to IRAC data)
- perform source detection on the mosaics using APEX
- compute aperture photometry or PRF-fitting photometry for point sources
- perform interpolation, coaddition, and spectrum extraction of MIPS SED images.

[ascl:1111.007]
CUBISM: CUbe Builder for IRS Spectra Maps

Sings Irs Team; Smith, J. D.; Armus, Lee; Bot, Caroline; Buckalew, Brent; Dale, Danny; Helou, George; Jarrett, Tom; Roussel, Helene; Sheth, Kartik

CUBISM, written in IDL, constructs spectral cubes, maps, and arbitrary aperture 1D spectral extractions from sets of mapping mode spectra taken with Spitzer's IRS spectrograph. CUBISM is optimized for non-sparse maps of extended objects, e.g. the nearby galaxy sample of SINGS, but can be used with data from any spectral mapping AOR (primarily validated for maps which are designed as suggested by the mapping HOWTO).

[ascl:1111.008]
SITools2: A Framework for Archival Systems

SITools2 is a CNES generic tool performed by a joint effort between CNES and scientific laboratories. SITools provides a self-manageable data access layer deployed on already existing scientific laboratory databases. This new version of SITools is a JAVA-based framework, under open source license, that provides a portable archive system, highly configurable, easy to use by laboratories, with a plugin mechanism so developers can add their own applications.

[ascl:1111.009]
MESS: Multi-purpose Exoplanet Simulation System

Bonavita, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Janson, M.; Beuzit, J. L.; Kasper, M.; Mordasini, C.

MESS is a Monte Carlo simulation IDL code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. It can be used to probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planets.

[ascl:1111.010]
Starbase Data Tables: An ASCII Relational Database for Unix

Database management is an increasingly important part of astronomical data analysis. Astronomers need easy and convenient ways of storing, editing, filtering, and retrieving data about data. Commercial databases do not provide good solutions for many of the everyday and informal types of database access astronomers need. The Starbase database system with simple data file formatting rules and command line data operators has been created to answer this need. The system includes a complete set of relational and set operators, fast search/index and sorting operators, and many formatting and I/O operators. Special features are included to enhance the usefulness of the database when manipulating astronomical data. The software runs under UNIX, MSDOS and IRAF.

[ascl:1111.011]
3DEX: Fast Fourier-Bessel Decomposition of Spherical 3D Surveys

High precision cosmology requires analysis of large scale surveys in 3D spherical coordinates, i.e. Fourier-Bessel decomposition. Current methods are insufficient for future data-sets from wide-field cosmology surveys. 3DEX (3D EXpansions) is a public code for fast Fourier-Bessel decomposition of 3D all-sky surveys which takes advantage of HEALPix for the calculation of tangential modes. For surveys with millions of galaxies, computation time is reduced by a factor 4-12 depending on the desired scales and accuracy. The formulation is also suitable for pre-calculations and external storage of the spherical harmonics, which allows for further speed improvements. The 3DEX code can accommodate data with masked regions of missing data. It can be applied not only to cosmological data, but also to 3D data in spherical coordinates in other scientific fields.

[ascl:1111.012]
VAPOR: Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers

VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers. VAPOR provides an interactive 3D visualization environment that runs on most UNIX and Windows systems equipped with modern 3D graphics cards. VAPOR provides:

- A visual data discovery environment tailored towards the specialized needs of the astro and geosciences CFD community
- A desktop solution capable of handling terascale size data sets
- Advanced interactive 3D visualization tightly coupled with quantitative data analysis
- Support for multi-variate, time-varying data
- Close coupling with RSI's powerful interpretive data language, IDL
- Support for 3D visualization of WRF-ARW datasets

[ascl:1111.013]
FIBRE-pac: FMOS Image-based Reduction Package

Iwamuro, F.; Moritani, Y.; Yabe, K.; Sumiyoshi, M.; Kawate, K.; Tamura, N.; Akiyama, M.; Kimura, M.; Takato, N.; Tait, P.; Ohta, K.; Totani, T.; Suzuki, Y.; Tonegawa, M.

The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.

[ascl:1111.014]
FITSH: Software Package for Image Processing

FITSH provides a standalone environment for analysis of data acquired by imaging astronomical detectors. The package provides utilities both for the full pipeline of subsequent related data processing steps (including image calibration, astrometry, source identification, photometry, differential analysis, low-level arithmetic operations, multiple image combinations, spatial transformations and interpolations, etc.) and for aiding the interpretation of the (mainly photometric and/or astrometric) results. The package also features a consistent implementation of photometry based on image subtraction, point spread function fitting and aperture photometry and provides easy-to-use interfaces for comparisons and for picking the most suitable method for a particular problem. The utilities in the package are built on the top of the commonly used UNIX/POSIX shells (hence the name of the package), therefore both frequently used and well-documented tools for such environments can be exploited and managing massive amount of data is rather convenient.

[ascl:1111.015]
TIPSY: Code for Display and Analysis of N-body Simulations

The development of TIPSY was motivated by the need to quickly display and analyze the results of N-body simulations. Most data visualization packages are designed for the display of gridded data, and hence are unsuitable for use with particle data. Therefore, a special package was built that could easily perform the following functions:

1.) Display particle positions (as points), and velocities (as line segments) from an arbitrary viewpoint;

2.) Zoom in to a chosen position. Due to their extremely clustered nature, structure of interest in an N-body simulation is often so small that it cannot be seen when looking at the simulation as a whole;

3.) Color particles to display scalar fields. Examples of such fields are potential energy, or for SPH particles, density and temperature;

4.) Selection of a subset of the particles for display and analysis. Regions of interest are generally small subsets of the simulation;

5.) Following selected particles from one timestep to another; and,

6.) Finding cumulative properties of a collection of particles. This usually involves just a sum over the particles.

The basic data structure is an array of particle structures. Since TIPSY was built for use with cosmological N-body simulations, there are actually three separate arrays for each of the types of particle used in such simulations: collisionless particles, SPH particles, and star particles. A single timestep is read into these arrays from a disk file. Display is done by finding the x and y coordinates of the particles in the rotated coordinate system, and storing them in arrays. Screen coordinates are calculated from these arrays according to the current zoom factor. Also, a software Z-buffer is maintained to save time if many particles project to the same screen pixel. There are several types of display. An "all plot" displays all particles colored according to their type. A "radial plot" will color particles according to the projection of the velocity along the line-of-sight. A "gas plot" will color gas according to SPH quantities such as density, temperature, neutral hydrogen fraction, etc. Subsets of particles are maintained using boxes." A box structure contains a bounding box, and an array of pointers to particles within the box. All display and analysis functions are performed on the "active box." By default all particles are loaded into box 0, which becomes the active box. If a new timestep is read from disk, all boxes are destroyed. A selection of particles can be followed between timesteps via a "mark" array. Marked particles are displayed in a different color, and the analysis functions can be told to only operate on the marked particles.

[ascl:1110.001]
analytic_infall: A Molecular Line Infall Fitting Program

This code contains several simple radiative transfer models used for fitting the blue-asymmetric spectral line signature often found in infalling molecular cloud cores. It attempts to provide a direct measure of several physical parameters of the infalling core, including infall velocity, excitation temperature, and line of site optical depth. The code includes 6 radiative transfer models, however the conclusion of the associated paper is that the 5 parameter "hill" model (hill5) is most likely the best match to the physical excitation conditions of real infalling Bonnor-Ebert type clouds.

[ascl:1110.002]
DarkSUSY: Supersymmetric Dark Matter Calculations

Gondolo, Paolo; Edsjö, Joakim; Bergström, Lars; Ullio, Piero; Schelke, Mia; Baltz, Ted; Bringmann, Torsten; Duda, Gintaras

DarkSUSY, written in Fortran, is a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun.

[ascl:1110.003]
iGalFit: An Interactive Tool for GalFit

We present a suite of IDL routines to interactively run GALFIT whereby the various surface brightness profiles (and their associated parameters) are represented by regions, which the User is expected to place. The regions may be saved and/or loaded from the ASCII format used by ds9 or in the Hierarchical Data Format (version 5). The software has been tested to run stably on Mac OS X and Linux with IDL 7.0.4. In addition to its primary purpose of modeling galaxy images with GALFIT, this package has several ancillary uses, including a flexible image display routines, several basic photometry functions, and qualitatively assessing Source Extractor. We distribute the package freely and without any implicit or explicit warranties, guarantees, or assurance of any kind. We kindly ask users to report any bugs, errors, or suggestions to us directly (as opposed to fixing them themselves) to ensure version control and uniformity.

[ascl:1110.004]
SHTOOLS: Tools for Working with Spherical Harmonics

SHTOOLS is an archive of fortran 95 based software that can be used to perform (among others) spherical harmonic transforms and reconstructions, rotations of spherical harmonic coefficients, and multitaper spectral analyses on the sphere. The package accommodates any standard normalization of the spherical harmonic functions ("geodesy" 4π normalized, Schmidt semi-normalized, orthonormalized, and unnormalized), and either real or complex spherical harmonics can be employed. Spherical harmonic transforms are calculated by exact quadrature rules using either (1) the sampling theorem of Driscoll and Healy (1994) where data are equally sampled (or spaced) in latitude and longitude, or (2) Gauss-Legendre quadrature. A least squares inversion routine for irregularly sampled data is included as well. The Condon-Shortley phase factor of (-1)m can be used or excluded with the associated Legendre functions. The spherical harmonic transforms are accurate to approximately degree 2800, corresponding to a spatial resolution of better than 4 arc minutes. Routines are included for performing localized multitaper spectral analyses and standard gravity calculations, such as computation of the geoid, and the determination of the potential associated with finite-amplitude topography. The routines are fast. Spherical harmonic transforms and reconstructions take on the order of 1 second for bandwidths less than 600 and about 3 minutes for bandwidths close to 2800.

[ascl:1110.005]
ZEBRA: Zurich Extragalactic Bayesian Redshift Analyzer

The current version of the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA) combines and extends several of the classical approaches to produce accurate photometric redshifts down to faint magnitudes. In particular, ZEBRA uses the template-fitting approach to produce Maximum Likelihood and Bayesian redshift estimates based on: (1.) An automatic iterative technique to correct the original set of galaxy templates to best represent the SEDs of real galaxies at different redshifts; (2.) A training set of spectroscopic redshifts for a small fraction of the photometric sample; and (3.) An iterative technique for Bayesian redshift estimates, which extracts the full two-dimensional redshift and template probability function for each galaxy.

[ascl:1110.006]
STIFF: Converting Scientific FITS Images to TIFF

STIFF is a program that converts scientific FITS1 images to the more popular TIFF2 format for illustration purposes. Most FITS readers and converters do not do a proper job at converting FITS image data to 8 bits. 8-bit images stored in JPEG, PNG or TIFF files have the intensities implicitely stored in a non-linear way. Most current FITS image viewers and converters provide the user an incorrect translation of the FITS image content by simply rescaling linearly input pixel values. A first consequence is that the people working on astronomical images usually have to apply narrow intensity cuts or square-root or logarithmic intensity transformations to actually see something on their deep-sky images. A less obvious consequence is that colors obtained by combining images processed this way are not consistent across such a large range of surface brightnesses. Though with other software the user is generally afforded a choice of nonlinear transformations to apply in order to make the faint stuff stand out more clearly in the images, with the limited selection of choices provides, colors will not be accurately rendered, and some manual tweaking will be necessary. The purpose of STIFF is to produce beautiful pictures in an automatic and consistent way.

[ascl:1110.007]
GammaLib: Toolbox for High-level Analysis of Astronomical Gamma-ray Data

The GammaLib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements instruments specific functionalities such as instrument response functions and data formats. Instrument specific functionalities share a common interface to allow for extension of the GammaLib to include new gamma-ray instruments. The GammaLib provides an abstract data analysis framework that enables simultaneous multi-mission analysis.

[ascl:1110.008]
Glnemo2: Interactive Visualization 3D Program

Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface.

Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

[ascl:1110.009]
AAOGlimpse: Three-dimensional Data Viewer

AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

[ascl:1110.010]
MOCASSIN: MOnte CArlo SimulationS of Ionized Nebulae

MOCASSIN is a fully 3D or 2D photoionisation and dust radiative transfer code which employs a Monte Carlo approach to the transfer of radiation through media of arbitrary geometry and density distribution. Written in Fortran, it was originally developed for the modelling of photoionised regions like HII regions and planetary nebulae and has since expanded and been applied to a variety of astrophysical problems, including modelling clumpy dusty supernova envelopes, star forming galaxies, protoplanetary disks and inner shell fluorence emission in the photospheres of stars and disk atmospheres. The code can deal with arbitrary Cartesian grids of variable resolution, it has successfully been used to model complex density fields from SPH calculations and can deal with ionising radiation extending from Lyman edge to the X-ray. The dust and gas microphysics is fully coupled both in the radiation transfer and in the thermal balance.

[ascl:1110.011]
Pacerman: Polarisation Angle CorrEcting Rotation Measure ANalysis

Pacerman, written in IDL, is a new method to calculate Faraday rotation measure maps from multi-frequency polarisation angle data. In order to solve the so called n-pi-ambiguity problem which arises from the observationally ambiguity of the polarisation angle which is only determined up to additions of n times pi, where n is an integer, we suggest using a global scheme. Instead of solving the n-pi-ambiguity for each data point independently, our algorithm, which we chose to call Pacerman solves the n-pi-ambiguity for a high signal-to-noise region "democratically" and uses this information to assist computations in adjacent low signal-to-noise areas.

[ascl:1110.012]
Starlink: Multi-purpose Astronomy Software

Starlink has many applications within it to meet a variety of needs; it includes:

- a general astronomical image viewer;
- data reduction tools, including programs for reducing CCD-like data;
- general-purpose data-analysis and visualisation tools;
- image processing, data visualisation, and manipulating NDF components;
- a flexible and powerful library for handling World Coordinate Systems (partly based on the SLALIB library);
- a library of routines intended to make accurate and reliable positional-astronomy applications easier to write; and
- and a Hierarchical Data System that is portable and flexible for storing and retrieving data.

[ascl:1110.013]
S2HAT: Scalable Spherical Harmonic Transform Library

Many problems in astronomy and astrophysics require a computation of the spherical harmonic transforms. This is in particular the case whenever data to be analyzed are distributed over the sphere or a set of corresponding mock data sets has to be generated. In many of those contexts, rapidly improving resolutions of both the data and simulations puts increasingly bigger emphasis on our ability to calculate the transforms quickly and reliably.

The scalable spherical harmonic transform library S2HAT consists of a set of flexible, massively parallel, and scalable routines for calculating diverse (scalar, spin-weighted, etc) spherical harmonic transforms for a class of isolatitude sky grids or pixelizations. The library routines implement the standard algorithm with the complexity of O(n^3/2), where n is a number of pixels/grid points on the sphere, however, owing to their efficient parallelization and advanced numerical implementation, they achieve very competitive performance and near perfect scalability. S2HAT is written in Fortran 90 with a C interface. This software is a derivative of the spherical harmonic transforms included in the HEALPix package and is based on both serial and MPI routines of its version 2.01, however, since version 2.5 this software is fully autonomous of HEALPix and can be compiled and run without the HEALPix library.

[ascl:1110.014]
pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other.

In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

[ascl:1110.015]
atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine'' physical effects of cosmological recombination simultaneously with using fudge factors.

[ascl:1110.016]
REBOUND: Multi-purpose N-body code for collisional dynamics

REBOUND is a multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond.

REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles.

[ascl:1110.017]
POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:1110.018]
MADmap: Fast Parallel Maximum Likelihood CMB Map Making Code

MADmap produces maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap has the ability to address problems typically encountered in the analysis of realistic CMB data sets. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analyzing the largest data sets now being collected on computing resources currently available.

[ascl:1110.019]
CosmoNest: Cosmological Nested Sampling

CosmoNest is an algorithm for cosmological model selection. Given a model, defined by a set of parameters to be varied and their prior ranges, and data, the algorithm computes the evidence (the marginalized likelihood of the model in light of the data). The Bayes factor, which is proportional to the relative evidence of two models, can then be used for model comparison, i.e. to decide whether a model is an adequate description of data, or whether the data require a more complex model.

For convenience, CosmoNest, programmed in Fortran, is presented here as an optional add-on to CosmoMC (ascl:1106.025), which is widely used by the cosmological community to perform parameter fitting within a model using a Markov-Chain Monte-Carlo (MCMC) engine. For this reason it can be run very easily by anyone who is able to compile and run CosmoMC. CosmoNest implements a different sampling strategy, geared for computing the evidence very accurately and efficiently. It also provides posteriors for parameter fitting as a by-product.

[ascl:1110.020]
CROSS_CMBFAST: ISW-correlation Code

This code is an extension of CMBFAST4.5.1 to compute the ISW-correlation power spectrum and the 2-point angular ISW-correlation function for a given galaxy window function. It includes dark energy models specified by a constant equation of state (w) or a linear parameterization in the scale factor (w0,wa) and a constant sound speed (c2de). The ISW computation is limited to flat geometry. Differently from the original CMBFAST4.5 version dark energy perturbations are implemented for a general dark energy fluid specified by w(z) and c2de in synchronous gauge. For time varying dark energy models it is suggested not to cross the w=-1 line, as Dr. Wenkman says: "never cross the streams", bad things can happen.

[ascl:1110.021]
Univiewer: Visualisation Program for HEALPix Maps

Univiewer is a visualisation program for HEALPix maps. It is written in C++ and uses OpenGL and the wxWidgets library for cross-platform portability. Using it you can:

- Rotate and zoom maps on the sphere in 3D;
- Create high-resolution views of square patches of the map;
- Change maximum and minimum values of the colourmap interactively;
- Calculate the power spectrum of the full-sky map or a patch;
- Display any column of a HEALPix map FITS file on the sphere.

In the 3D view, a HEALPix map is projected onto a ECP pixelation to create a texture which is wrapped around the sphere. In calculating the power spectrum, the spherical harmonic transforms are computed using the same ECP pixelation. This inevitably leads to some discrepancies at small scales due to repixelation effects, but they are reasonably small.

[ascl:1110.022]
simple_cosfitter: Supernova-centric Cosmological Fitter

This is an implementation of a fairly simple-minded luminosity distance fitter, intended for use with supernova data. The calculational technique is based on evaluating the $chi^2$ of the model fit on a grid and marginalization over various nuisance parameters. Of course, the nature of these things is that this code has gotten steadily more complex, so perhaps the simple moniker is no longer justified.

Would you like to view a random code?