Results 1701-1750 of 1954 (1927 ASCL, 27 submitted)

[ascl:1106.004]
E3D: The Euro3D Visualization Tool

E3D is a package of tools for the analysis and visualization of IFS data. It is capable of reading, writing, and visualizing reduced data from 3D spectrographs of any kind.

[ascl:1106.005]
R3D: Reduction Package for Integral Field Spectroscopy

R3D was developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk.

R3D unifies the reduction techniques for the different IFS instruments to a single one, in order to allow the general public to reduce different instruments data in an homogeneus, consistent and simple way. Although still in its prototyping phase, it has been proved to be useful to reduce PMAS (both in the Larr and the PPAK modes), VIMOS and INTEGRAL data. The current version has been coded in Perl, using PDL, in order to speed-up the algorithm testing phase. Most of the time critical algorithms have been translated to C[float=][/float], and it is our intention to translate all of them. However, even in this phase R3D is fast enough to produce valuable science frames in reasonable time.

[ascl:1106.006]
MECI: A Method for Eclipsing Component Identification

We describe an automated method for assigning the most probable physical parameters to the components of an eclipsing binary, using only its photometric light curve and combined colors. With traditional methods, one attempts to optimize a multi-parameter model over many iterations, so as to minimize the chi-squared value. We suggest an alternative method, where one selects pairs of coeval stars from a set of theoretical stellar models, and compares their simulated light curves and combined colors with the observations. This approach greatly reduces the parameter space over which one needs to search, and allows one to estimate the components' masses, radii and absolute magnitudes, without spectroscopic data. We have implemented this method in an automated program using published theoretical isochrones and limb-darkening coefficients. Since it is easy to automate, this method lends itself to systematic analyses of datasets consisting of photometric time series of large numbers of stars, such as those produced by OGLE, MACHO, TrES, HAT, and many others surveys.

[ascl:1106.007]
MIRIAD: Multi-channel Image Reconstruction, Image Analysis, and Display

MIRIAD is a radio interferometry data-reduction package, designed for taking raw visibility data through calibration to the image analysis stage. It has been designed to handle any interferometric array, with working examples for BIMA, CARMA, SMA, WSRT, and ATCA. A separate version for ATCA is available, which differs in a few minor ways from the CARMA version.

[ascl:1106.008]
GRAFIC-2: Multiscale Gaussian Random Fields for Cosmological Simulations

This paper describes the generation of initial conditions for numerical simulations in cosmology with multiple levels of resolution, or multiscale simulations. We present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementation and testing of a computer code package performing this refinement called GRAFIC-2.

[ascl:1106.009]
PARAMESH V4.1: Parallel Adaptive Mesh Refinement

PARAMESH is a package of Fortran 90 subroutines designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity.

The package builds a hierarchy of sub-grids to cover the computational domain, with spatial resolution varying to satisfy the demands of the application. These sub-grid blocks form the nodes of a tree data-structure (quad-tree in 2D or oct-tree in 3D). Each grid block has a logically cartesian mesh. The package supports 1, 2 and 3D models. PARAMESH is released under the NASA-wide Open-Source software license.

[ascl:1106.010]
MAGPHYS: Multi-wavelength Analysis of Galaxy Physical Properties

MAGPHYS is a self-contained, user-friendly model package to interpret observed spectral energy distributions of galaxies in terms of galaxy-wide physical parameters pertaining to the stars and the interstellar medium. MAGPHYS is optimized to derive statistical constraints of fundamental parameters related to star formation activity and dust content (e.g. star formation rate, stellar mass, dust attenuation, dust temperatures) of large samples of galaxies using a wide range of multi-wavelength observations. A Bayesian approach is used to interpret the SEDs all the way from the ultraviolet/optical to the far-infrared.

[ascl:1106.011]
DRAGON: Galactic Cosmic Ray Diffusion Code

DRAGON adopts a second-order Cranck-Nicholson scheme with Operator Splitting and time overrelaxation to solve the diffusion equation. This provides a fast solution that is accurate enough for the average user. Occasionally, users may want to have very accurate solutions to their problem. To enable this feature, users may get close to the accurate solution by using the fast method, and then switch to a more accurate solution scheme featuring the Alternating-Direction-Implicit (ADI) Cranck-Nicholson scheme.

[ascl:1106.012]
SLUG: Stochastically Lighting Up Galaxies

The effects of stochasticity on the luminosities of stellar populations are an often neglected but crucial element for understanding populations in the low mass or low star formation rate regime. To address this issue, we present SLUG, a new code to "Stochastically Light Up Galaxies". SLUG synthesizes stellar populations using a Monte Carlo technique that treats stochastic sampling properly including the effects of clustering, the stellar initial mass function, star formation history, stellar evolution, and cluster disruption. This code produces many useful outputs, including i) catalogs of star clusters and their properties, such as their stellar initial mass distributions and their photometric properties in a variety of filters, ii) two dimensional histograms of color-magnitude diagrams of every star in the simulation, iii) and the photometric properties of field stars and the integrated photometry of the entire simulated galaxy. After presenting the SLUG algorithm in detail, we validate the code through comparisons with starburst99 in the well-sampled regime, and with observed photometry of Milky Way clusters. Finally, we demonstrate the SLUG's capabilities by presenting outputs in the stochastic regime.

[ascl:1106.013]
MGCAMB: Modification of Growth with CAMB

CAMB is a public Fortran 90 code written by Antony Lewis and Anthony Challinor for evaluating cosmological observables. MGCAMB is a modified version of CAMB in which the linearized Einstein equations of General Relativity (GR) are modified. MGCAMB can also be used in CosmoMC to fit different modified-gravity (MG) models to data.

[ascl:1106.014]
Transit Analysis Package (TAP and autoKep): IDL Graphical User Interfaces for Extrasolar Planet Transit Photometry

We present an IDL graphical user interface-driven software package designed for the analysis of extrasolar planet transit light curves. The Transit Analysis Package (TAP) software uses Markov Chain Monte Carlo (MCMC) techniques to fit light curves using the analytic model of Mandel and Agol (2002). The package incorporates a wavelet based likelihood function developed by Carter and Winn (2009) which allows the MCMC to assess parameter uncertainties more robustly than classic chi-squared methods by parameterizing uncorrelated "white" and correlated "red" noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc). The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user's specific data set and has been thoroughly tested on ground-based and Kepler photometry. AutoKep provides a similar GUI for the preparation of Kepler MAST archive data for analysis by TAP or any other analysis software. This paper describes the software release and provides instructions for its use.

[ascl:1106.015]
OrbFit: Software to Determine Orbits of Asteroids

OrbFit is a software system allowing one to compute the orbits of asteroids starting from the observations, to propagate these orbits, and to compute predictions on the future (and past) position on the celestial sphere. It is a tool to be used to find a well known asteroid, to recover a lost one, to attribute a small group of observations, to identify two orbits with each other, to study the future (and/or past) close approaches to Earth, thus to assess the risk of an impact, and more.

[ascl:1106.016]
Nightfall: Animated Views of Eclipsing Binary Stars

Nightfall is an astronomy application for fun, education, and science. It can produce animated views of eclipsing binary stars, calculate synthetic lightcurves and radial velocity curves, and eventually determine the best-fit model for a given set of observational data of an eclipsing binary star system.

Nightfall comes with a user guide and a set of observational data for several eclipsing binary star systems.

[ascl:1106.017]
CAOS: Code for Adaptive Optics Systems

The CAOS "system" (where CAOS stands for Code for Adaptive Optics Systems) is properly said a Problem Solving Environment (PSE). It is essentially composed of a graphical programming interface (the CAOS Application Builder) which can load different packages (set of modules). Current publicly distributed packages are the Software Package CAOS (the original adaptive optics package), the Software Package AIRY (an image-reconstruction-oriented package - AIRY stands for Astronomical Image Restoration with interferometrY), the Software Package PAOLAC (a simple CAOS interface for the analytic IDL code PAOLA developed by Laurent Jolissaint - PAOLAC stands for PAOLA within Caos), and a couple of private packages (not publicly distributed but restricted to the corresponding consortia): SPHERE (especially developed for the VLT planet finder SPHERE), and AIRY-LN (a specialized version of AIRY for the LBT instrument LINC-NIRVANA). Another package is also being developed: MAOS (that stands for Multiconjugate Adaptive Optics Simulations), developed for multi-reference multiconjugate AO studies purpose but still in a beta-version form.

[ascl:1106.018]
CMB B-modes from Faraday Rotation

This code is a quick and exact calculator of B-mode angular spectrum due to Faraday rotation by stochastic magnetic fields. Faraday rotation induced B-modes can provide a distinctive signature of primordial magnetic fields because of their characteristic frequency dependence and because they are only weakly damped on small scales, allowing them to dominate B-modes from other sources. By numerically solving the full CMB radiative transport equations, we study the B-mode power spectrum induced by stochastic magnetic fields that have significant power on scales smaller than the thickness of the last scattering surface. Constraints on the magnetic field energy density and inertial scale are derived from WMAP 7-year data, and are stronger than the big bang nucleosynthesis (BBN) bound for a range of parameters. Observations of the CMB polarization at smaller angular scales are crucial to provide tighter constraints or a detection.

[ascl:1106.019]
Application of Compressive Sampling to Radio Astronomy I: Deconvolution

Compressive sampling is a new paradigm for sampling, based on sparseness of signals or signal representations. It is much less restrictive than Nyquist-Shannon sampling theory and thus explains and systematises the widespread experience that methods such as the Högbom CLEAN can violate the Nyquist-Shannon sampling requirements. In this paper, a CS-based deconvolution method for extended sources is introduced. This method can reconstruct both point sources and extended sources (using the isotropic undecimated wavelet transform as a basis function for the reconstruction step). We compare this CS-based deconvolution method with two CLEAN-based deconvolution methods: the Högbom CLEAN and the multiscale CLEAN. This new method shows the best performance in deconvolving extended sources for both uniform and natural weighting of the sampled visibilities. Both visual and numerical results of the comparison are provided.

[ascl:1106.020]
CLASS: Cosmic Linear Anisotropy Solving System

Boltzmann codes are used extensively by several groups for constraining cosmological parameters with Cosmic Microwave Background and Large Scale Structure data. This activity is computationally expensive, since a typical project requires from 10'000 to 100'000 Boltzmann code executions. The code CLASS (Cosmic Linear Anisotropy Solving System) incorporates improved approximation schemes leading to a simultaneous gain in speed and precision. We describe here the three approximations used by CLASS for basic LambdaCDM models, namely: a baryon-photon tight-coupling approximation which can be set to first order, second order or to a compromise between the two; an ultra-relativistic fluid approximation which had not been implemented in public distributions before; and finally a radiation streaming approximation taking reionisation into account.

[ascl:1106.021]
StringFast: Fast Code to Compute CMB Power Spectra induced by Cosmic Strings

StringFast implements a method for efficient computation of the C_l spectra induced by a network of strings, which is fast enough to be used in Markov Chain Monte Carlo analyses of future data. This code allows the user to calculate TT, EE, and BB power spectra (scalar [for TT and EE], vector, and tensor modes) for "wiggly" cosmic strings. StringFast uses the output of the public code CMBACT (ascl:1106.023). The properties of the strings are described by four parameters: Gμ—dimensionless string tension; v—rms transverse velocity (as fraction of c); α—"wiggliness"; ξ—comoving correlation length of the string network. It is written as a Fortran 90 module.

[ascl:1106.022]
MPI-Defrost: Extension of Defrost to MPI-based Cluster Environment

MPI-Defrost extends Frolov’s Defrost to an MPI-based cluster environment. This version has been restricted to a single field. Restoring two-field support should be straightforward, but will require some code changes. Some output options may also not be fully supported under MPI.

This code was produced to support our own work, and has been made available for the benefit of anyone interested in either oscillon simulations or an MPI capable version of Defrost, and it is provided on an "as-is" basis. Andrei Frolov is the primary developer of Defrost and we thank him for placing his work under the GPL (GNU Public License), and thus allowing us to distribute this modified version.

[ascl:1106.023]
CMBACT: CMB from ACTive sources

This code is based on the cosmic string model described in this paper by Pogosian and Vachaspati, as well as on the CMBFAST code created by Uros Seljak and Matias Zaldarriaga. It contains an integrator for the vector contribution to the CMB temperature and polarization. The code is reconfigured to make it easier to use with or without active sources. To produce inflationary CMB spectra one simply sets the string tension to zero (gmu=0.0d0). For a non-zero value of tension only the string contribution is calculated.

An option is added to randomize the directions of velocities of consolidated segments as they evolve in time. In the original segment model, which is still the default version (irandomv=0), each segment is given a random velocity initially, but then continues to move in a straight line for the rest of its life. The new option (irandomv=1) allows to additionally randomize velocities of each segment at roughly each Hubble time. However, the merits of this new option are still under investigation. The default version (irandomv=0) is strongly recommended, since it actually gives reasonable unequal time correlators. For each Fourier mode, k, the string stress-energy components are now evaluated on a time grid sufficiently fine for that k.

[ascl:1106.024]
ELMAG: Simulation of Electromagnetic Cascades

A Monte Carlo program for the simulation of electromagnetic cascades initiated by high-energy photons and electrons interacting with extragalactic background light (EBL) is presented. Pair production and inverse Compton scattering on EBL photons as well as synchrotron losses and deflections of the charged component in extragalactic magnetic fields (EGMF) are included in the simulation. Weighted sampling of the cascade development is applied to reduce the number of secondary particles and to speed up computations. As final result, the simulation procedure provides the energy, the observation angle, and the time delay of secondary cascade particles at the present epoch. Possible applications are the study of TeV blazars and the influence of the EGMF on their spectra or the calculation of the contribution from ultrahigh energy cosmic rays or dark matter to the diffuse extragalactic gamma-ray background. As an illustration, we present results for deflections and time-delays relevant for the derivation of limits on the EGMF.

[ascl:1106.025]
CosmoMC: Cosmological MonteCarlo

We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.

[ascl:1106.026]
RECFAST: Calculate the Recombination History of the Universe

RECFAST calculates the recombination of H, HeI, and HeII in the early Universe; this involves a line-by-line treatment of each atomic level. It differs in comparison to previous calculations in two major ways: firstly, the ionization fraction x_e is approximately 10% smaller for redshifts <~800, due to non-equilibrium processes in the excited states of H, and secondly, HeI recombination is much slower than previously thought, and is delayed until just before H recombines. RECFAST enables fast computation of the ionization history (and quantities such as the power spectrum of CMB anisotropies which depend on it) for arbitrary cosmologies.

[ascl:1105.001]
STILTS: Starlink Tables Infrastructure Library Tool Set

The STIL Tool Set is a set of command-line tools based on STIL, the Starlink Tables Infrastructure Library. It deals with the processing of tabular data; the package has been designed for, but is not restricted to, astronomical tables such as object catalogues. Some of the tools are generic and can work with multiple formats (including FITS, VOTable, CSV, SQL and ASCII), and others are specific to the VOTable format. In some ways, STILTS forms the command-line counterpart of the GUI table analysis tool TOPCAT. The package is robust, fully documented, and designed for efficiency, especially with very large datasets.

Facilities offered include:

- format conversion
- crossmatching
- plotting
- column calculation and rearrangement
- row selections
- data and metadata manipulation and display
- sorting
- statistical calculations
- histogram calculation
- data validation
- VO service access

[ascl:1105.002]
PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

[ascl:1105.003]
The DTFE public software: The Delaunay Tessellation Field Estimator code

We present the DTFE public software, a code for reconstructing fields from a discrete set of samples/measurements using the maximum of information contained in the point distribution. The code is written in C++ using the CGAL library and is parallelized using OpenMP. The software was designed for the analysis of cosmological data but can be used in other fields where one must interpolate quantities given at a discrete point set. The software comes with a wide suite of options to facilitate the analysis of 2- and 3-dimensional data and of both numerical simulations and galaxy redshift surveys. For comparison purposes, the code also implements the TSC and SPH grid interpolation methods. The code comes with an extensive user guide detailing the program options, examples and the inner workings of the code.

[ascl:1105.004]
SLiM: A Code for the Simulation of Wave Propagation through an Inhomogeneous, Magnetised Solar Atmosphere

The semi-spectral linear MHD (SLiM) code follows the interaction of linear waves through an inhomogeneous three-dimensional solar atmosphere. The background model allows almost arbitrary perturbations of density, temperature, sound speed as well as magnetic and velocity fields. The code is useful in understanding the helioseismic signatures of various solar features, including sunspots.

[ascl:1105.005]
ChaNGa: Charm N-body GrAvity solver

ChaNGa (Charm N-body GrAvity solver) performs collisionless N-body simulations. It can perform cosmological simulations with periodic boundary conditions in comoving coordinates or simulations of isolated stellar systems. It also can include hydrodynamics using the Smooth Particle Hydrodynamics (SPH) technique. It uses a Barnes-Hut tree to calculate gravity, with hexadecapole expansion of nodes and Ewald summation for periodic forces. Timestepping is done with a leapfrog integrator with individual timesteps for each particle.

[ascl:1105.006]
SPARC: Seismic Propagation through Active Regions and Convection

The Seismic Propagation through Active Regions and Convection (SPARC) code was developed by S. Hanasoge. The acoustic wavefield in SPARC is simulated by numerically solving the linearised 3-D Euler equations in Cartesian geometry (e.g., see Hanasoge, Duvall and Couvidat (2007)). Spatial derivatives are calculated using sixth-order compact finite differences (Lele,1992) and time evolution is achieved through the repeated application of an optimized second-order five-stage Runge-Kutta scheme (Hu, 1996). Periodic horizontal boundaries are used.

[ascl:1105.007]
Sunspot Models

This IDL code creates a thick magneto-static structure with parameters of a typical sunspot in a solar like photosphere - chromosphere. The variable parameters are field strength on the axis, radius, and Wilson depression (displacement of the atmosphere on the axis with respect to the field-free atmosphere). Output are magnetic field vector, pressure and density distributions with radius and height. The structure has azimuthal symmetry. The codes are relatively self explanatory and the download packages contain README files.

[ascl:1105.008]
Flux Tube Model

This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

[ascl:1105.009]
Ray Tracing Codes: run_tau, run_raypath, and ray_kernel

Time-distance helioseismology aims to measure and interpret the travel times of waves propagating between two points located on the solar surface. The travel times are then inverted to infer sub-surface properties that are encoded in the measurements. The trajectory of the waves generally follows that of the infinite-frequency ray path, although they are sensitive to perturbations off of this path. Finite-frequency sensitivity kernels are thus needed to give more accurate inversion results.

Ray tracing codes calculate travel time kernels for a ray. There are three main codes which calculate the group time as a function of distance, the ray paths as well as the phase and group times along the path, and the ray kernels for the sound speed squared.

[ascl:1105.010]
CASTRO: Multi-dimensional Eulerian AMR Radiation-hydrodynamics Code

Almgren, A. S.; Beckner, V. E.; Bell, J. B.; Day, M. S.; Howell, L. H.; Katz, M; Lijewski, M. J.; Malone, C.; Nonaka, A.; Singer, M.; Zhang, W; Zingale, M.

CASTRO is a multi-dimensional Eulerian AMR radiation-hydrodynamics code that includes stellar equations of state, nuclear reaction networks, and self-gravity. Initial target applications for CASTRO include Type Ia and Type II supernovae. CASTRO supports calculations in 1-d, 2-d and 3-d Cartesian coordinates, as well as 1-d spherical and 2-d cylindrical (r-z) coordinate systems. Time integration of the hydrodynamics equations is based on an unsplit version of the the piecewise parabolic method (PPM) with new limiters that avoid reducing the accuracy of the scheme at smooth extrema. CASTRO can follow an arbitrary number of isotopes or elements. The atomic weights and amounts of these elements are used to calculate the mean molecular weight of the gas required by the equation of state. CASTRO supports several different approaches to solving for self-gravity. The most general is a full Poisson solve for the gravitational potential. CASTRO also supports a monopole approximation for gravity, and a constant gravity option is also available. The CASTRO software is written in C++ and Fortran, and is based on the BoxLib software framework developed by CCSE.

[ascl:1105.011]
Ganalyzer: A tool for automatic galaxy image analysis

Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

[ascl:1105.012]
Stagger: MHD Method for Modeling Star Formation

Stagger is an astrophysical MHD code actively used to model star formation. It is equipped with a multi-frequency radiative transfer module and a comprehensive equation of state module that includes a large number of atomic and molecular species, to be able to compute realistic 3-D models of the near-surface layers of stars. The current version of the code allows a discretization that explicitly conserves mass, momentum, energy, and magnetic flux. The tensor formulation of the viscosity ensures that the viscous force is insensitive to the coordinate system orientation, thereby avoiding artificial grid-alignment.

[ascl:1105.013]
CAMB Sources: Number Counts, Lensing & Dark-age 21cm Power Spectra

We relate the observable number of sources per solid angle and redshift to the underlying proper source density and velocity, background evolution and line-of-sight potentials. We give an exact result in the case of linearized perturbations assuming general relativity. This consistently includes contributions of the source density perturbations and redshift distortions, magnification, radial displacement, and various additional linear terms that are small on sub-horizon scales. In addition we calculate the effect on observed luminosities, and hence the result for sources observed as a function of flux, including magnification bias and radial-displacement effects. We give the corresponding linear result for a magnitude-limited survey at low redshift, and discuss the angular power spectrum of the total count distribution. We also calculate the cross-correlation with the CMB polarization and temperature including Doppler source terms, magnification, redshift distortions and other velocity effects for the sources, and discuss why the contribution of redshift distortions is generally small. Finally we relate the result for source number counts to that for the brightness of line radiation, for example 21-cm radiation, from the sources.

[ascl:1105.014]
PSRCHIVE: Development Library for the Analysis of Pulsar Astronomical Data

PSRCHIVE is an Open Source C++ development library for the analysis of pulsar astronomical data. It implements an extensive range of algorithms for use in pulsar timing, polarimetric calibration, single-pulse analyses, RFI mitigation, scintillation studies, etc. These tools are utilized by a powerful suite of user-end programs that come with the library.

[ascl:1104.001]
TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

TomograPy is an open-source software freely available on the Python Package Index that can perform fast tomographic inversions that scale linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors.

[ascl:1104.002]
AstroBEAR: Adaptive Mesh Refinement Code for Ideal Hydrodynamics & Magnetohydrodynamics

AstroBEAR is a modular hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications. It uses the BEARCLAW package, a multidimensional, Eulerian computational code used to solve hyperbolic systems of equations. AstroBEAR allows adaptive-mesh-refinment (AMR) simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates. Parallel applications are supported through the MPI architecture. AstroBEAR is written in Fortran 90/95 using standard libraries.

AstroBEAR supports hydrodynamic (HD) and magnetohydrodynamic (MHD) applications using a variety of spatial and temporal methods. MHD simulations are kept divergence-free via the constrained transport (CT) methods of Balsara & Spicer. Three different equation of state environments are available: ideal gas, gas with differing isentropic γ, and the analytic Thomas-Fermi formulation of A.R. Bell.

[ascl:1104.003]
Starburst99: Synthesis Models for Galaxies with Active Star Formation

Leitherer, Claus; Schaerer, Daniel; Goldader, Jeff; Gonzalez-Delgado, Rosa; Robert, Carmelle; Foo Kune, Denis; de Mello, Duilia; Devost, Daniel; Heckman, Timothy M.; Aloisi, Alessandra; Martins, Lucimara; Vazquez, Gerardo

Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 10^6 to 10^9 yr. Spectral energy distributions are used to compute colors and other quantities.

[ascl:1104.004]
MASSCLEAN: MASSive CLuster Evolution and ANalysis Package

MASSCLEAN is a sophisticated and robust stellar cluster image and photometry simulation package. This package is able to create color-magnitude diagrams and standard FITS images in any of the traditional optical and near-infrared bands based on cluster characteristics input by the user, including but not limited to distance, age, mass, radius and extinction. At the limit of very distant, unresolved clusters, we have checked the integrated colors created in MASSCLEAN against those from other simple stellar population (SSP) models with consistent results. Because the algorithm populates the cluster with a discrete number of tenable stars, it can be used as part of a Monte Carlo Method to derive the probabilistic range of characteristics (integrated colors, for example) consistent with a given cluster mass and age.

[ascl:1104.005]
GALAXEV: Evolutionary Stellar Population Synthesis Models

GALAXEV is a library of evolutionary stellar population synthesis models computed using the new isochrone synthesis code of Bruzual & Charlot (2003). This code allows one to computes the spectral evolution of stellar populations in wide ranges of ages and metallicities at a resolution of 3 Å across the whole wavelength range from 3200 Å to 9500 Å, and at lower resolution outside this range.

[ascl:1104.006]
LECTOR: Line-strengths in One-dimensional ASCII Spectra

LECTOR is a Fortran 77 code that measures line-strengths in one dimensional ascii spectra. The code returns the values of the Lick indices as well as those of Vazdekis & Arimoto 1999, Vazdekis et al. 2001, Rose 1994, Jones & Worthey 1995 and Cenarro et al. 2001. The code measures as many indices as you wish if the limits of two pseudocontinua (at each side of the feature) and the feature itself (i.e. Lick-style index definition) are provided. The Lick-style indices could be either expressed in pseudo-equivalent widths or in magnitudes. If requested the program provides index error estimates on the basis of photon statistics.

[ascl:1104.007]
ULySS: A Full Spectrum Fitting Package

ULySS (University of Lyon Spectroscopic Analysis Software) is an open-source software package written in the GDL/IDL language to analyze astronomical data. ULySS fits a spectrum with a linear combination of non-linear components convolved with a line-of-sight velocity distribution (LOSVD) and multiplied by a polynomial continuum. ULySS is used to study stellar populations of galaxies and star clusters and atmospheric parameters of stars.

[ascl:1104.008]
Rmodel: Determining Stellar Population Parameters

This program determines stellar population parameters (e.g. age, metallicity, IMF slope,...), using as input a pair of line-strength indices, through the interpolation in SSP model predictions. Both linear and bivariate fits are computed to perform the interpolation.

[ascl:1104.009]
r-Java: An r-process Code and Graphical User Interface for Heavy-Element Nucleosynthesis

r-Java performs r-process nucleosynthesis calculations. It has a simple graphical user interface and is carries out nuclear statistical equilibrium (NSE) as well as static and dynamic r-process calculations for a wide range of input parameters. r-Java generates an abundance pattern based on a general entropy expression that can be applied to degenerate as well as non-degenerate matter, which allows tracking of the rapid density and temperature evolution of the ejecta during the initial stages of ejecta expansion.

[ascl:1104.010]
GALFIT: Detailed Structural Decomposition of Galaxy Images

GALFIT is a two-dimensional (2-D) fitting algorithm designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. The algorithm improves on previous techniques in two areas: 1.) by being able to simultaneously fit a galaxy with an arbitrary number of components, and 2.) with optimization in computation speed, suited for working on large galaxy images. 2-D models such as the "Nuker'' law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions are used. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, even simple-looking galaxies generally require at least three components to be modeled accurately rather than the one or two components more often employed. This is illustrated by way of seven case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies.

[ascl:1104.011]
DAOPHOT: Crowded-field Stellar Photometry Package

The DAOPHOT program exploits the capability of photometrically linear image detectors to perform stellar photometry in crowded fields. Raw CCD images are prepared prior to analysis, and following the obtaining of an initial star list with the FIND program, synthetic aperture photometry is performed on the detected objects with the PHOT routine. A local sky brightness and a magnitude are computed for each star in each of the specified stellar apertures, and for crowded fields, the empirical point-spread function must then be obtained for each data frame. The GROUP routine divides the star list for a given frame into optimum subgroups, and then the NSTAR routine is used to obtain photometry for all the stars in the frame by means of least-squares profile fits.

[ascl:1104.012]
CHIWEI: A Code of Goodness of Fit Tests for Weighted and Unweighed Histograms

A self-contained Fortran-77 program for goodness of fit tests for histograms with weighted entries as well as with unweighted entries is presented. The code calculates test statistic for case of histogram with normalized weights of events and for case of unnormalized weights of events.

[ascl:1104.013]
BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package

The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.

Would you like to view a random code?