ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 701-750 of 1805 (1776 ASCL, 29 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1507.016] Least Asymmetry: Centering Method

Least Asymmetry finds the center of a distribution of light in an image using the least asymmetry method; the code also contains center of light and fitting a Gaussian routines. All functions in Least Asymmetry are designed to take optional weights.

[ascl:1507.015] DALI: Derivative Approximation for LIkelihoods

DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.

[ascl:1507.014] getsources: Multi-scale, multi-wavelength source extraction

getsources is a powerful multi-scale, multi-wavelength source extraction algorithm. It analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands, cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. getsources offers several advantages over other existing methods of source extraction, including the filtering out of irrelevant spatial scales to improve detectability, especially in the crowded regions and for extended sources, the ability to combine data over all wavebands, and the full automation of the extraction process.

[ascl:1507.013] K-Inpainting: Inpainting for Kepler

Inpainting is a technique for dealing with gaps in time series data, as frequently occurs in asteroseismology data, that may generate spurious peaks in the power spectrum, thus limiting the analysis of the data. The inpainting method, based on a sparsity prior, judiciously fills in gaps in the data, preserving the asteroseismic signal as far as possible. This method can be applied both on ground and space-based data. The inpainting technique improves the oscillation modes detection and estimation, the impact of the observational window function is reduced, and the interpretation of the power spectrum is simplified. K-Inpainting can be used to study very long time series of many stars because its computation is very fast.

[ascl:1507.012] DRAMA: Instrumentation software environment

DRAMA is a fast, distributed environment for writing instrumentation control systems. It allows low level instrumentation software to be controlled from user interfaces running on UNIX, MS Windows or VMS machines in a consistent manner. Such instrumentation tasks can run either on these machines or on real time systems such as VxWorks. DRAMA uses techniques developed by the AAO while using the Starlink-ADAM environment, but is optimized for the requirements of instrumentation control, portability, embedded systems and speed. A special program is provided which allows seamless communication between ADAM and DRAMA tasks.

[ascl:1507.011] FAT: Fully Automated TiRiFiC

FAT (Fully Automated TiRiFiC) is an automated procedure that fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC, ascl:1208.008). FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20°-90° without the need for priors such as disc inclination. FAT's performance allows us to model the gas kinematics of many thousands of well-resolved galaxies, which is essential for future HI surveys, with the Square Kilometre Array and its pathfinders.

[ascl:1507.010] Astrochem: Abundances of chemical species in the interstellar medium

Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

[ascl:1507.009] PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:1507.008] HLINOP: Hydrogen LINe OPacity in stellar atmospheres

HLINOP is a collection of codes for computing hydrogen line profiles and opacities in the conditions typical of stellar atmospheres. It includes HLINOP for approximate quick calculation of any line of neutral hydrogen (suitable for model atmosphere calculations), based on the Fortran code of Kurucz and Peterson found in ATLAS9. It also includes HLINPROF, for detailed, accurate calculation of lower Balmer line profiles (suitable for detailed analysis of Balmer lines) and HBOP, to implement the occupation probability formalism of Daeppen, Anderson and Milhalas (1987) and thus account for the merging of bound-bound and bound-free opacity (used often as a wrapper to HLINOP for model atmosphere calculations).

[ascl:1507.007] abo-cross: Hydrogen broadening cross-section calculator

Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O’Mara (1995), Barklem & O’Mara (1997) and Barklem, O’Mara & Ross (1998) for s–p, p–s, p–d, d–p, d–f and f–d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

[ascl:1507.006] Toyz: Large datasets and astronomical images analysis framework

Toyz is a python web framework that allows scientists to interact with large images and data sets stored on a remote server. A web application is run on the server containing the data and clients are run from web browsers on the user's computer. Toyz displays large FITS images also also renders any image format supported by Pillow (a fork of the Python Imaging Library), contains a GUI to interact with linked plots, and offers a customizable framework that allows students and researchers to create their own work spaces inside a Toyz environment. Astro-Toyz extends the features of the Toyz image viewer, allowing users to view world coordinates and align images based on their WCS.

[ascl:1507.005] slimplectic: Discrete non-conservative numerical integrator

slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.

[ascl:1507.004] L-PICOLA: Fast dark matter simulation code

L-PICOLA generates and evolves a set of initial conditions into a dark matter field and can include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. It is a fast, distributed-memory, planar-parallel code. L-PICOLA is extremely useful for both current and next generation large-scale structure surveys.

[ascl:1507.003] Pelican: Pipeline for Extensible, Lightweight Imaging and CAlibratioN

Pelican is an efficient, lightweight C++ library for quasi-real time data processing. The library provides a framework to separate the acquisition and processing of data, allowing the scalability and flexibility to fit a number of scenarios. Though its origin was in radio astronomy, processing data as it arrives from a telescope, the framework is sufficiently generic to be useful to any application that requires the efficient processing of incoming data streams.

[ascl:1507.002] SUPERBOX: Particle-multi-mesh code to simulate galaxies

SUPERBOX is a particle-mesh code that uses moving sub-grids to track and resolve high-density peaks in the particle distribution and a nearest grid point force-calculation scheme based on the second derivatives of the potential. The code implements a fast low-storage FFT-algorithm and allows a highly resolved treatment of interactions in clusters of galaxies, such as high-velocity encounters between elliptical galaxies and the tidal disruption of dwarf galaxies, as sub-grids follow the trajectories of individual galaxies. SUPERBOX is efficient in that the computational overhead is kept as slim as possible and is also memory efficient since it uses only one set of grids to treat galaxies in succession.

[ascl:1507.001] 3D-Barolo: 3D fitting tool for the kinematics of galaxies

3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and estimates the intrinsic velocity dispersion even in barely resolved galaxies (about 2 resolution elements) if the signal to noise of the data is larger than 2-3. It has source-detection and first-estimate modules, making it suitable for analyzing large 3D datasets automatically, and is a useful tool for deriving reliable kinematics for both local and high-redshift galaxies.

[ascl:1506.010] VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

[ascl:1506.009] HEATCVB: Coronal heating rate approximations

HEATCVB is a stand-alone Fortran 77 subroutine that estimates the local volumetric coronal heating rate with four required inputs: the radial distance r, the wind speed u, the mass density ρ, and the magnetic field strength |B0|. The primary output is the heating rate Qturb at the location defined by the input parameters. HEATCVB also computes the local turbulent dissipation rate of the waves, γ = Qturb/(2UA).

[ascl:1506.008] SPRITE: Sparsity-based super-resolution algorithm

SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.

[ascl:1506.007] REALMAF: Magnetic power spectra from Faraday rotation maps

REALMAF is a maximum-a-posteriori code to measure magnetic power spectra from Faraday rotation data. It uses a sophisticated model for the magnetic autocorrelation in real space, thus alleviating the need for simplifying assumptions in the processing. REALMAF treats the divergence relation of the magnetic field with a multiplicative factor in Fourier space, which allows modeling the magnetic autocorrelation as a spherically symmetric function.

[ascl:1506.006] fsclean: Faraday Synthesis CLEAN imager

Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

[ascl:1506.005] PyMC: Bayesian Stochastic Modelling in Python

PyMC is a python module that implements Bayesian statistical models and fitting algorithms, including Markov chain Monte Carlo. Its flexibility and extensibility make it applicable to a large suite of problems. Along with core sampling functionality, PyMC includes methods for summarizing output, plotting, goodness-of-fit and convergence diagnostics.

[ascl:1506.004] multiband_LS: Multiband Lomb-Scargle Periodograms

The multiband periodogram is a general extension of the well-known Lomb-Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb-Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands.

[ascl:1506.003] PLATO Simulator: Realistic simulations of expected observations

PLATO Simulator is an end-to-end simulation software tool designed for the performance of realistic simulations of the expected observations of the PLATO mission but easily adaptable to similar types of missions. It models and simulates photometric time-series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources.

[ascl:1506.002] dmdd: Dark matter direct detection

The dmdd package enables simple simulation and Bayesian posterior analysis of recoil-event data from dark-matter direct-detection experiments under a wide variety of scattering theories. It enables calculation of the nuclear-recoil rates for a wide range of non-relativistic and relativistic scattering operators, including non-standard momentum-, velocity-, and spin-dependent rates. It also accounts for the correct nuclear response functions for each scattering operator and takes into account the natural abundances of isotopes for a variety of experimental target elements.

[ascl:1506.001] pyKLIP: PSF Subtraction for Exoplanets and Disks

pyKLIP subtracts out the stellar PSF to search for directly-imaged exoplanets and disks using a Python implementation of the Karhunen-Loève Image Projection (KLIP) algorithm. pyKLIP supports ADI, SDI, and ADI+SDI to model the stellar PSF and offers a large array of PSF subtraction parameters to optimize the reduction. pyKLIP relies on a minimal amount of dependencies (numpy, scipy, and astropy) and parallelizes the KLIP algorithm to speed up the reduction. pyKLIP supports GPI and P1640 data and can interface with other data sources with the addition of new modules. It also can inject simulated planets and disks as well as automatically search for point sources in PSF-subtracted data.

[ascl:1505.034] dStar: Neutron star thermal evolution code

dStar is a collection of modules for computing neutron star structure and evolution, and uses the numerical, utility, and equation of state libraries of MESA (ascl:1010.083).

[ascl:1505.033] SNEC: SuperNova Explosion Code

SNEC (SuperNova Explosion Code) is a spherically-symmetric Lagrangian radiation-hydrodynamics code that follows supernova explosions through the envelope of their progenitor star, produces bolometric (and approximate multi-color) light curve predictions, and provides input to spectral synthesis codes for spectral modeling. SNEC's features include 1D (spherical) Lagrangian Newtonian hydrodynamics with artificial viscosity, stellar equation of state with a Saha solver ionization/recombination, equilibrium flux-limited photon diffusion with OPAL opacities and low-temperature opacities, and prediction of bolometric light curves and multi-color lightcurves (in the blackbody approximation).

[ascl:1505.032] Planck Level-S: Planck Simulation Package

The Planck simulation package takes a cosmological model specified by the user and calculates a potential CMB sky consistent with this model, including astrophysical foregrounds, and then performs a simulated observation of this sky. This Simulation embraces many instrumental effects such as beam convolution and noise. Alternatively, the package can simulate the observation of a provided sky model, generated by another program such as the Planck Sky Model software. The Planck simulation package does not only provide Planck-like data, it can also be easily adopted to mimic the properties of other existing and upcoming CMB experiments.

[ascl:1505.031] TEA: Thermal Equilibrium Abundances

TEA (Thermal Equilibrium Abundances) calculates gaseous molecular abundances under thermochemical equilibrium conditions. Given a single T,P point or a list of T,P pairs (the thermal profile of an atmosphere) and elemental abundances, TEA calculates mole fractions of the desired molecular species. TEA uses 84 elemental species and thermodynamical data for more then 600 gaseous molecular species, and can adopt any initial elemental abundances.

[ascl:1505.030] CANDID: Companion Analysis and Non-Detection in Interferometric Data

CANDID finds faint companion around star in interferometric data in the OIFITS format. It allows systematically searching for faint companions in OIFITS data, and if not found, estimates the detection limit. The tool is based on model fitting and Chi2 minimization, with a grid for the starting points of the companion position. It ensures all positions are explored by estimating a-posteriori if the grid is dense enough, and provides an estimate of the optimum grid density.

[ascl:1505.029] fits2hdf: FITS to HDFITS conversion

fits2hdf ports FITS files to Hierarchical Data Format (HDF5) files in the HDFITS format. HDFITS allows faster reading of data, higher compression ratios, and higher throughput. HDFITS formatted data can be presented transparently as an in-memory FITS equivalent by changing the import lines in Python-based FITS utilities. fits2hdf includes a utility to port MeasurementSets (MS) to HDF5 files.

[ascl:1505.028] RESOLVE: Bayesian algorithm for aperture synthesis imaging in radio astronomy

RESOLVE is a Bayesian inference algorithm for image reconstruction in radio interferometry. It is optimized for extended and diffuse sources. Features include parameter-free Bayesian reconstruction of radio continuum data with a focus on extended and weak diffuse sources, reconstruction with uncertainty propagation dependent on measurement noise, and estimation of the spatial correlation structure of the radio astronomical source. RESOLVE provides full support for measurement sets and includes a simulation tool (if uv-coverage is provided).

[ascl:1505.027] BAYES-X: Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

The great majority of X-ray measurements of cluster masses in the literature assume parametrized functional forms for the radial distribution of two independent cluster thermodynamic properties, such as electron density and temperature, to model the X-ray surface brightness. These radial profiles (e.g. β-model) have an amplitude normalization parameter and two or more shape parameters. BAYES-X uses a cluster model to parametrize the radial X-ray surface brightness profile and explore the constraints on both model parameters and physical parameters. Bayes-X is programmed in Fortran and uses MultiNest (ascl:1109.006) as the Bayesian inference engine.

[ascl:1505.026] Lensed: Forward parametric modelling of strong lenses

Lensed performs forward parametric modelling of strong lenses. Using a provided model, Lensed renders the expected image of the lensing event for a large number of parameter settings, thereby exploring the space of possible realizations of the observation. It compares the expectation to the observed image by calculating the likelihood that the observation was indeed produced by the assumed model, thus reconstructing the probability distribution over the parameter space of the model. Written in C, the code uses a massively parallel ray-tracing kernel to perform the necessary calculations on a graphics processing unit (GPU), making the precise rendering of the background lensed sources fast and allowing the simultaneous optimization of tens of parameters for the selected model.

[ascl:1505.025] pyMCZ: Oxygen abundances calculations and uncertainties from strong-line flux measurements

pyMCZ calculates metallicity according to a number of strong line metallicity diagnostics from spectroscopy line measurements and obtain uncertainties from the line flux errors in a Monte Carlo framework. Given line flux measurements and their uncertainties, pyMCZ produces synthetic distributions for the oxygen abundance in up to 13 metallicity scales simultaneously, as well as for E(B-V), and estimates their median values and their 68% confidence regions. The code can output the full MC distributions and their kernel density estimates.

[ascl:1505.024] PyTransit: Transit light curve modeling

PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

[ascl:1505.023] SNooPy: TypeIa supernovae analysis tools

The SNooPy package (also known as SNpy), written in Python, contains tools for the analysis of TypeIa supernovae. It offers interactive plotting of light-curve data and models (and spectra), computation of reddening laws and K-corrections, LM non-linear least-squares fitting of light-curve data, and various types of spline fitting, including Diercx and tension. The package also includes a SNIa lightcurve template generator in the CSP passbands, estimates of Milky-Way Extinction, and a module for dealing with filters and spectra.

[ascl:1505.022] Snoopy: General purpose spectral solver

Snoopy is a spectral 3D code that solves the MHD and Boussinesq equations, such as compressibility, particles, and Braginskii viscosity, and several other physical effects. It's useful for turbulence study involving shear and rotation. Snoopy requires the FFTW library (ascl:1201.015), and can run on parallel machine using MPI OpenMP or both at the same time.

[ascl:1505.021] relline: Relativistic line profiles calculation

relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

[ascl:1505.020] rvfit: Radial velocity curves fitting for binary stars or exoplanets

rvfit, developed in IDL 7.0, fits non-precessing keplerian radial velocity (RV) curves for double-line and single-line binary stars or exoplanets. It fits a simple keplerian model to the observed RV and computes the seven parameters (six for a single-line system) from the model. Some parameters can be fixed beforehand if they are known, for instance, if photometric observations are available. The fit is done using an Adaptive Simulated Annealing algorithm optimized for this specific task. Simulated Annealing methods are powerful heuristic algorithms to minimize functions in multiparametric spaces.

[ascl:1505.019] TFIT: Mixed-resolution data set photometry package

TFIT measures galaxy photometry using prior knowledge of sources in a deep, high‐resolution image (HRI) to improve photometric measurements of objects in a corresponding low‐resolution image (LRI) of the same field, usually at a different wavelength. For background‐limited data, this technique produces optimally weighted photometry that maximizes signal‐to‐noise ratio (S/N). For objects not significantly detected in the low‐resolution image, it provides useful and quantitative information for setting upper limits.

This code is no longer updated and has been superseded by T-PHOT (ascl:1609.001).

[ascl:1505.018] POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1505.017] HALOGEN: Approximate synthetic halo catalog generator

HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

[ascl:1505.016] CUTE: Correlation Utilities and Two-point Estimation

CUTE (Correlation Utilities and Two-point Estimation) extracts any two-point statistic from enormous datasets with hundreds of millions of objects, such as large galaxy surveys. The computational time grows with the square of the number of objects to be correlated; technology provides multiple means to massively parallelize this problem and CUTE is specifically designed for these kind of calculations. Two implementations are provided: one for execution on shared-memory machines using OpenMP and one that runs on graphical processing units (GPUs) using CUDA.

[ascl:1505.015] 2dfdr: Data reduction software

2dfdr is an automatic data reduction pipeline dedicated to reducing multi-fibre spectroscopy data, with current implementations for AAOmega (fed by the 2dF, KOALA-IFU, SAMI Multi-IFU or older SPIRAL front-ends), HERMES, 2dF (spectrograph), 6dF, and FMOS. A graphical user interface is provided to control data reduction and allow inspection of the reduced spectra.

[ascl:1505.014] FCLC: Featureless Classification of Light Curves

FCLC (Featureless Classification of Light Curves) software describes the static behavior of a light curve in a probabilistic way. Individual data points are converted to densities and consequently probability density are compared instead of features. This gives rise to an independent classification which can corroborate the usefulness of the selected features.

[ascl:1505.013] cosmoabc: Likelihood-free inference for cosmology

Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.

[ascl:1505.012] LSSGALPY: Visualization of the large-scale environment around galaxies on the 3D space

LSSGALPY provides visualization tools to compare the 3D positions of a sample (or samples) of isolated systems with respect to the locations of the large-scale structures galaxies in their local and/or large scale environments. The interactive tools use different projections in the 3D space (right ascension, declination, and redshift) to study the relation of the galaxies with the LSS. The tools permit visualization of the locations of the galaxies for different values of redshifts and redshift ranges; the relationship of isolated galaxies, isolated pairs, and isolated triplets to the galaxies in the LSS can be visualized for different values of the declinations and declination ranges.

[ascl:1505.011] missForest: Nonparametric missing value imputation using random forest

missForest imputes missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation and can be run in parallel to save computation time. missForest has been used to, among other things, impute variable star colors in an All-Sky Automated Survey (ASAS) dataset of variable stars with no NOMAD match.

Would you like to view a random code?