Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1551-1600 of 1954 (1927 ASCL, 27 submitted)

Title Date
Abstract Compact
Per Page
[ascl:1202.007] CRUNCH3D: Three-dimensional compressible MHD code

CRUNCH3D is a massively parallel, viscoresistive, three-dimensional compressible MHD code. The code employs a Fourier collocation spatial discretization, and uses a second-order Runge-Kutta temporal discretization. CRUNCH3D can be applied to MHD turbulence and magnetic fluxtube reconnection research.

[ascl:1202.008] Chombo: Adaptive Solutions of Partial Differential Equations

Chombo provides a set of tools for implementing finite difference methods for the solution of partial differential equations on block-structured adaptively refined rectangular grids. Both elliptic and time-dependent modules are included. Chombo supports calculations in complex geometries with both embedded boundaries and mapped grids, and also supports particle methods. Most parallel platforms are supported, and cross-platform self-describing file formats are included.

The Chombo package is a product of the community of Collaborators working with the Applied Numerical Algorithms Group (ANAG), part of the Computational Research Division at LBNL.

[ascl:1202.009] MOOG: LTE line analysis and spectrum synthesis

MOOG performs a variety of LTE line analysis and spectrum synthesis tasks. The typical use of MOOG is to assist in the determination of the chemical composition of a star. The basic equations of LTE stellar line analysis are followed. The coding is in various subroutines that are called from a few driver routines; these routines are written in standard FORTRAN. The standard MOOG version has been developed on unix, linux and macintosh computers.

One of the chief assets of MOOG is its ability to do on-line graphics. The plotting commands are given within the FORTRAN code. MOOG uses the graphics package SM, chosen for its ease of implementation in FORTRAN codes. Plotting calls are concentrated in just a few routines, and it should be possible for users of other graphics packages to substitute other appropriate FORTRAN commands.

[ascl:1202.010] SPECTRE: Manipulation of single-order spectra

SPECTRE's chief purpose is the manipulation of single-order spectra, and it performs many of the tasks contained in such IRAF routines as "splot" and "rv". It is not meant to replace the much more general capabilities of IRAF, but does some functions in a manner that some might find useful. A brief list of SPECTRE tasks are: spectrum smoothing; equivalent width calculation; continuum rectification; noise spike excision; and spectrum comparison. SPECTRE was written to manipulate coude spectra, and thus is probably most useful for working on high dispersion spectra. Echelle spectra can be gathered from various observatories, reduced to singly-dimensioned spectra using IRAF, then written out as FITS files, thus becoming accessible to SPECTRE. Three different spectra may be manipulated and displayed simultaneously. SPECTRE, written in standard FORTRAN77, can be used only with the SM graphics package.

[ascl:1202.011] Lattimer-Swesty Equation of State Code

The Lattimer-Swesty Equation of State code is rapid enough to use directly in hydrodynamical simulations such as stellar collapse calculations. It contains an adjustable nuclear force that accurately models both potential and mean-field interactions and allows for the input of various nuclear parameters, including the bulk incompressibility parameter, the bulk and surface symmetry energies, the symmetric matter surface tension, and the nucleon effective masses. This permits parametric studies of the equation of state in astrophysical situations. The equation of state is modeled after the Lattimer, Lamb, Pethick, and Ravenhall (LLPR) compressible liquid drop model for nuclei, and includes the effects of interactions and degeneracy of the nucleon outside nuclei.

[ascl:1202.012] CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

[ascl:1202.013] SME: Spectroscopy Made Easy

Spectroscopy Made Easy (SME) is IDL software and a compiled external library that fits an observed high-resolution stellar spectrum with a synthetic spectrum to determine stellar parameters. The SME external library is available for Mac, Linux, and Windows systems. Atomic and molecular line data formatted for SME may be obtained from VALD. SME can solve for empirical log(gf) and damping parameters, using an observed spectrum of a star (usually the Sun) as a constraint.

[ascl:1202.014] FISA: Fast Integrated Spectra Analyzer

FISA (Fast Integrated Spectra Analyzer) permits fast and reasonably accurate age and reddening determinations for small angular diameter open clusters by using their integrated spectra in the (3600-7400) AA range and currently available template spectrum libraries. This algorithm and its implementation help to achieve astrophysical results in shorter times than from other methods. FISA has successfully been applied to integrated spectroscopy of open clusters, both in the Galaxy and in the Magellanic Clouds, to determine ages and reddenings.

[ascl:1202.015] RADMC-3D: A multi-purpose radiative transfer tool

RADMC-3D is a software package for astrophysical radiative transfer calculations in arbitrary 1-D, 2-D or 3-D geometries. It is mainly written for continuum radiative transfer in dusty media, but also includes modules for gas line transfer and gas continuum transfer. RADMC-3D is a new incarnation of the older software package RADMC (ascl:1108.016).

[ascl:1201.001] McScatter: Three-Body Scattering with Stellar Evolution

McScatter illustrates a method of combining stellar dynamics with stellar evolution. The method is intended for elaborate applications, especially the dynamical evolution of rich star clusters. The dynamics is based on binary scattering in a multi-mass field of stars with uniform density and velocity dispersion, using the scattering cross section of Giersz (MNRAS, 2001, 324, 218-30).

[ascl:1201.002] Roche: Visualization and analysis tool for Roche-lobe geometry of evolving binaries

Roche is a visualization and analysis tool for drawing the Roche-lobe geometry of evolving binaries. Roche can be used as a standalone program reading data from the command line or from a file generated by SeBa (ascl:1201.003). Eventually Roche will be able to read data from any other binary evolution program. Roche requires Starlab (ascl:1010.076) version 4.1.1 or later and the pgplot (ascl:1103.002) libraries. Roche creates a series of images, based on the SeBa output file, displaying the evolutionary state of a binary.

[ascl:1201.003] SeBa: Stellar and binary evolution

The stellar and binary evolution package SeBa is fully integrated into the kira integrator, although it can also be used as a stand-alone module for non-dynamical applications. Due to the interaction between stellar evolution and stellar dynamics, it is difficult to solve for the evolution of both systems in a completely self-consistent way. The trajectories of stars are computed using a block timestep scheme, as described earlier. Stellar and binary evolution is updated at fixed intervals (every 1/64 of a crossing time, typically a few thousand years). Any feedback between the two systems may thus experience a delay of at most one timestep. Internal evolution time steps may differ for each star and binary, and depend on binary period, perturbations due to neighbors, and the evolutionary state of the star. Time steps in this treatment vary from several milliseconds up to (at most) a million years.

[ascl:1201.004] emGain: Determination of EM gain of CCD

The determination of the EM gain of the CCD is best done by fitting the histogram of many low-light frames. Typically, the dark+CIC noise of a 30ms frame itself is a sufficient amount of signal to determine accurately the EM gain with about 200 512x512 frames. The IDL code emGain takes as an input a cube of frames and fit the histogram of all the pixels with the EM stage output probability function. The function returns the EM gain of the frames as well as the read-out noise and the mean signal level of the frames.

[ascl:1201.005] 2LPTIC: 2nd-order Lagrangian Perturbation Theory Initial Conditions

Setting initial conditions in numerical simulations using the standard procedure based on the Zel'dovich approximation (ZA) generates incorrect second and higher-order growth and therefore excites long-lived transients in the evolution of the statistical properties of density and velocity fields. Using more accurate initial conditions based on second-order Lagrangian perturbation theory (2LPT) reduces transients significantly; initial conditions based on 2LPT are thus much more appropriate for numerical simulations devoted to precision cosmology. The 2LPTIC code provides initial conditions for running cosmological simulations based on second-order Lagrangian Perturbation Theory (2LPT), rather than first-order (Zel'dovich approximation).

[ascl:1201.006] VIM: Visual Integration and Mining

VIM (Virtual Observatory Integration and Mining) is a data retrieval and exploration application that assumes an astronomer has a list of 'sources' (positions in the sky), and wants to explore archival catalogs, images, and spectra of the sources, in order to identify, select, and mine the list. VIM does this either through web forms, building a custom 'data matrix,' or locally through downloadable Python code. Any VO-registered catalog service can be used by VIM, as well as co-registered image cutouts from VO-image services, and spectra from VO-spectrum services. The user could, for example, show together: proper motions from GSC2, name and spectral type from NED, magnitudes and colors from 2MASS, and cutouts and spectra from SDSS. VIM can compute columns across surveys and sort on these (eg. 2MASS J magnitude minus SDSS g). For larger sets of sources, VIM utilizes the asynchronous Nesssi services from NVO, that can run thousands of cone and image services overnight.

[ascl:1201.007] Fisher4Cast: Fisher Matrix Toolbox

The Fisher4Cast suite, which requires MatLab, provides a standard, tested tool set for general Fisher Information matrix prediction and forecasting for use in both research and education. The toolbox design is robust and modular, allowing for easy additions and adaptation while keeping the user interface intuitive and easy to use. Fisher4Cast is completely general but the default is coded for cosmology. It provides parameter error forecasts for cosmological surveys providing distance, Hubble expansion and growth measurements in a general, curved FLRW background.

[ascl:1201.008] Mercury: A software package for orbital dynamics

Mercury is a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in "cometary" or "asteroidal" format, with different epochs of osculation for different objects. Output from an integration consists of osculating elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another.

During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modeled. The package supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations.

[ascl:1201.009] ExoFit: Orbital parameters of extra-solar planets from radial velocity

ExoFit is a freely available software package for estimating orbital parameters of extra-solar planets. ExoFit can search for either one or two planets and employs a Bayesian Markov Chain Monte Carlo (MCMC) method to fit a Keplerian radial velocity curve onto the radial velocity data.

[ascl:1201.010] HNBody: Hierarchical N-Body Symplectic Integration Package

HNBody is a new set of software utilities geared to the integration of hierarchical (nearly-Keplerian) N-body systems. Our focus is on symplectic methods, and we have included explicit support for three classes of particles (heavy, light, and massless), second and fourth order methods, post-Newtonian corrections, and the use of a symplectic corrector (among other things). For testing purposes, we also provide support for more general integration schemes (Bulirsch-Stoer & Runge-Kutta). Configuration files employing an intuitive syntax allow for easy problem setup, and many simple simulations can be done without the user compiling any code. Low-level interfaces are also available, enabling extensive customization.

[ascl:1201.011] Duchamp: A 3D source finder for spectral-line data

Duchamp is software designed to find and describe sources in 3-dimensional, spectral-line data cubes. Duchamp has been developed with HI (neutral hydrogen) observations in mind, but is widely applicable to many types of astronomical images. It features efficient source detection and handling methods, noise suppression via smoothing or multi-resolution wavelet reconstruction, and a range of graphical and text-based outputs to allow the user to understand the detections.

[ascl:1201.012] CLUMPY: A code for gamma-ray signals from dark matter structures

CLUMPY is a public code for semi-analytical calculation of the gamma-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, antiprotons) will be included in a second release.

[ascl:1201.013] SPS: SPIRE Photometer Simulator

The SPS software simulates the operation of the Spectral and Photometric Imaging Receiver on-board the ESA’s Herschel Space Observatory. It is coded using the Interactive Data Language (IDL), and produces simulated data at the level-0 stage (non-calibrated data in digitised units). The primary uses for the simulator are to:

  • optimize and characterize the photometer observing functions
  • aid in the development, validation, and characterization of the SPIRE data pipeline
  • provide a realistic example of SPIRE data, and thus to facilitate the development of specific analysis tools for specific science cases.
It should be noted that the SPS is not an officially supported product of the SPIRE ICC, and was originally developed for ICC use only. Consequently the SPS can be supported only on a "best efforts" basis.

[ascl:1201.014] Hammurabi: Simulating polarized Galactic synchrotron emission

The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

[ascl:1201.015] FFTW: Fastest Fourier Transform in the West

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST).

Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification.

The FFTW library is required by other codes such as StarCrash and Hammurabi.

[ascl:1201.016] LumFunc: Luminosity Function Modeling

LumFunc is a numerical code to model the Luminosity Function based on central galaxy luminosity-halo mass and total galaxy luminosity-halo mass relations. The code can handle rest b_J-band (2dFGRS), r'-band (SDSS), and K-band luminosities, and any redshift with redshift dependences specified by the user. It separates the luminosity function (LF) to conditional luminosity functions, LF as a function of halo mass, and also to galaxy types. By specifying a narrow mass range, the code will return the conditional luminosity functions. The code returns luminosity functions for galaxy types as well (broadly divided to early-type and late-type). The code also models the cluster luminosity function, either mass averaged or for individual clusters.

[ascl:1201.017] Inflation: Monte-Carlo Code for Slow-Roll Inflation

Inflation is a numerical code to generate power spectra and other observables through numerical solutions to flow equations. The code generates tensor and scalar power spectra as a function of wavenumber and various other parameters at specific wavenumbers of interest (such as for CMB, scalar perturbations at smaller scales, gravitational wave detection at direct detection frequencies). The output can be easily ported to publicly available Markov Chain codes to constrain cosmological parameters with data.

[ascl:1112.001] Eclipse: ESO C Library for an Image Processing Software Environment

Written in ANSI C, eclipse is a library offering numerous services related to astronomical image processing: FITS data access, various image and cube loading methods, binary image handling and filtering (including convolution and morphological filters), 2-D cross-correlation, connected components, cube and image arithmetic, dead pixel detection and correction, object detection, data extraction, flat-fielding with robust fit, image generation, statistics, photometry, image-space resampling, image combination, and cube stacking. It also contains support for mathematical tools like random number generation, FFT, curve fitting, matrices, fast median computation, and point-pattern matching. The main feature of this library is its ability to handle large amounts of input data (up to 2GB in the current version) regardless of the amount of memory and swap available on the local machine. Another feature is the very high speed allowed by optimized C, making it an ideal base tool for programming efficient number-crunching applications, e.g., on parallel (Beowulf) systems.

[ascl:1112.002] Funtools: FITS Users Need Tools

Funtools is a "minimal buy-in" FITS library and utility package developed at the the High Energy Astrophysics Division of SAO. The Funtools library provides simplified access to a wide array of file types: standard astronomical FITS images and binary tables, raw arrays and binary event lists, and even tables of ASCII column data. A sophisticated region filtering library (compatible with ds9) filters images and tables using boolean operations between geometric shapes, support world coordinates, etc. Funtools also supports advanced capabilities such as optimized data searching using index files.

Because Funtools consists of a library and a set of user programs, it is most appropriately built from source. Funtools has been ported to Solaris, Linux, LinuxPPC, SGI, Alpha OSF1, Mac OSX (darwin) and Windows 98/NT/2000/XP. Once the source code tar file is retrieved, Funtools can be built and installed easily using standard commands.

[ascl:1112.003] THERMINATOR 2: THERMal heavy IoN generATOR 2

THERMINATOR is a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The increased functionality of the code contains the following features: The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1 dimensional profiles, in particular those generated externally with various hydrodynamic codes. The hypersufraces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region, where the baryon chemical potential becomes large. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au+Au data at sqrt(s_(NN)) = 200 GeV for various centralities, as well as those anticipated for the LHC Pb+Pb collisions at sqrt(s_(NN)) = 5.5 TeV. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations which are an important source of information concerning the size and expansion of the system. We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p_T-spectra, the elliptic flow coefficients, and the HBT correlation radii. We also investigate the problem of the back-flow of particles into the hydrodynamic region, as well as estimate the elastic rescattering in terms of trajectory crossings. The package is written in C++ and uses the CERN ROOT environment.

[ascl:1112.004] PHOX: X-ray Photon Simulator

PHOX is a novel, virtual X-ray observatory designed to obtain synthetic observations from hydro-numerical simulations. The code is a photon simulator and can be apply to simulate galaxy clusters. In fact, X-ray observations of clusters of galaxies continue to provide us with an increasingly detailed picture of their structure and of the underlying physical phenomena governing the gaseous component, which dominates their baryonic content. Therefore, it is fundamental to find the most direct and faithful way to compare such observational data with hydrodynamical simulations of cluster-like objects, which can currently include various complex physical processes. Here, we present and analyse synthetic Suzaku observations of two cluster-size haloes obtained by processing with PHOX the hydrodynamical simulation of the large-scale, filament-like region in which they reside. Taking advantage of the simulated data, we test the results inferred from the X-ray analysis of the mock observations against the underlying, known solution. Remarkably, we are able to recover the theoretical temperature distribution of the two haloes by means of the multi-temperature fitting of the synthetic spectra. Moreover, the shapes of the reconstructed distributions allow us to trace the different thermal structure that distinguishes the dynamical state of the two haloes.

[ascl:1112.005] GIDGET: Gravitational Instability-Dominated Galaxy Evolution Tool

Observations of disk galaxies at z~2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. GIDGET is a 1D simulation code, which we have made publicly available, that economically evolves these galaxies from z~2 to z~0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H$_2$ regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z~2 decreases along with the cosmological accretion rate, while at lower redshift, the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

[ascl:1112.006] PhAst: Display and Analysis of FITS Images

PhAst (Photometry-Astrometry) is an IDL astronomical image viewer based on the existing application ATV which displays and analyzes FITS images. It can calibrate raw images, provide astrometric solutions, and do circular aperture photometry. PhAst allows the user to load, process, and blink any number of images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting.

[ascl:1112.007] FLAGCAL: FLAGging and CALlibration Pipeline for GMRT Data

FLAGging and CALlibration (FLAGCAL) is a software pipeline developed for automatic flagging and calibration of the GMRT data. This pipeline can be used for preprocessing (before importing the data in AIPS) any other interferromteric data also (given that the data file is in FITS format and contains multiple channels & scans).There are also a few GUI based tools which can be used for quick visualization of the data.

[ascl:1112.008] GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1112.009] LISACode: A scientific simulator of LISA

LISACode is a simulator of the LISA mission. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. Its also a useful tool for generating realistic data including several kind of sources (Massive Black Hole binaries, EMRIs, cosmic string cusp, stochastic background, etc) and for preparing their analysis. It’s fully integrated to the Mock LISA Data Challenge. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator.

[ascl:1112.010] MRS3D: 3D Spherical Wavelet Transform on the Sphere

Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

[ascl:1112.011] CMBview: A Mac OS X program for viewing HEALPix-format sky map data on a sphere

CMBview is a viewer for FITS files containing HEALPix sky maps. Sky maps are projected onto a 3d sphere which can be rotated and zoomed interactively with the mouse. Features include:

  • rendering of the field of Stokes vectors
  • ray-tracing mode in which each screen pixel is projected onto the sphere for high quality rendering
  • control over sphere lighting
  • export an arbitrarily large rendered texture
  • variety of preset colormaps

[ascl:1112.012] CORA: Emission Line Fitting with Maximum Likelihood

CORA analyzes emission line spectra with low count numbers and fits them to a line using the maximum likelihood technique. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise, the software derives the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. CORA has been applied to an X-ray spectrum with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory.

[ascl:1112.013] XEphem: Interactive Astronomical Ephemeris

XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. XEphem computes heliocentric, geocentric and topocentric information for all objects and has built-in support for all planets, the moons of Mars, Jupiter, Saturn, Uranus and Earth, central meridian longitude of Mars and Jupiter, Saturn's rings, and Jupiter's Great Red Spot. It allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites, provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC, displays data in configurable tabular formats in conjunction with several interactive graphical views, and displays a night-at-a-glance 24 hour graphic showing when any selected objects are up. It also displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories, quickly finds all close pairs of objects in the sky, and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

[ascl:1112.014] PyEphem: Astronomical Ephemeris for Python

PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day.

The numerical routines that lie behind PyEphem are those from the wonderful XEphem astronomy application, whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.

[ascl:1112.015] Dexter: Data Extractor for scanned graphs

The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

[ascl:1112.016] PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

  • the system console
  • the command line
  • a network socket
  • the generation of audio speech
Data such as a spacecraft's sub-satellite point, azimuth and elevation headings, Doppler shift, path loss, slant range, orbital altitude, orbital velocity, footprint diameter, orbital phase (mean anomaly), squint angle, eclipse depth, the time and date of the next AOS (or LOS of the current pass), orbit number, and sunlight and visibility information are provided on a real-time basis. PREDICT can also track (or predict the position of) the Sun and Moon. PREDICT has the ability to control AZ/EL antenna rotators to maintain accurate orientation in the direction of communication satellites. As an aid in locating and tracking satellites through optical means, PREDICT can articulate tracking coordinates and visibility information as plain speech.

[ascl:1112.017] ASpec: Astronomical Spectrum Analysis Package

ASpec is a spectrum and line analysis package developed at STScI. ASpec is designed as an add-on package for IRAF and incorporates a variety of analysis techniques for astronomical spectra. ASpec operates on spectra from a wide variety of ground-based and space-based instruments and allows simultaneous handling of spectra from different wavelength regimes. The package accommodates non-linear dispersion relations and provides a variety of functions, individually or in combination, with which to fit spectral features and the continuum. It also permits the masking of known bad data. ASpec provides a powerful, intuitive graphical user interface implemented using the IRAF Object Manager and customized to handle: data input/output (I/O); on-line help; selection of relevant features for analysis; plotting and graphical interaction; and data base management.

[ascl:1112.018] SwiftVis: Data Analysis & Visualization For Planetary Science

SwiftVis is a tool originally developed as part of a rewrite of Swift to be used for analysis and plotting of simulations performed with Swift and Swifter. The extensibility built into the design has allowed us to make SwiftVis a general purpose analysis and plotting package customized to be usable by the planetary science community at large. SwiftVis is written in Java and has been tested on Windows, Linux, and Mac platforms. Its graphical interface allows users to do complex analysis and plotting without having to write custom code.

[ascl:1112.019] Aladin: Interactive Sky Atlas

Aladin is an interactive software sky atlas allowing the user to visualize digitized astronomical images, superimpose entries from astronomical catalogues or databases, and interactively access related data and information from the Simbad database, the VizieR service and other archives for all known sources in the field.

Created in 1999, Aladin has become a widely-used VO tool capable of addressing challenges such as locating data of interest, accessing and exploring distributed datasets, visualizing multi-wavelength data. Compliance with existing or emerging VO standards, interconnection with other visualisation or analysis tools, ability to easily compare heterogeneous data are key topics allowing Aladin to be a powerful data exploration and integration tool as well as a science enabler.

[ascl:1111.001] HIPE: Herschel Interactive Processing Environment

The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity.

[ascl:1111.002] CRBLASTER: A Parallel-Processing Computational Framework for Embarrassingly-Parallel Image-Analysis Algorithms

The development of parallel-processing image-analysis codes is generally a challenging task that requires complicated choreography of interprocessor communications. If, however, the image-analysis algorithm is embarrassingly parallel, then the development of a parallel-processing implementation of that algorithm can be a much easier task to accomplish because, by definition, there is little need for communication between the compute processes. I describe the design, implementation, and performance of a parallel-processing image-analysis application, called CRBLASTER, which does cosmic-ray rejection of CCD (charge-coupled device) images using the embarrassingly-parallel L.A.COSMIC algorithm. CRBLASTER is written in C using the high-performance computing industry standard Message Passing Interface (MPI) library. The code has been designed to be used by research scientists who are familiar with C as a parallel-processing computational framework that enables the easy development of parallel-processing image-analysis programs based on embarrassingly-parallel algorithms. The CRBLASTER source code is freely available at the official application website at the National Optical Astronomy Observatory. Removing cosmic rays from a single 800x800 pixel Hubble Space Telescope WFPC2 image takes 44 seconds with the IRAF script running on a single core of an Apple Mac Pro computer with two 2.8-GHz quad-core Intel Xeon processors. CRBLASTER is 7.4 times faster processing the same image on a single core on the same machine. Processing the same image with CRBLASTER simultaneously on all 8 cores of the same machine takes 0.875 seconds -- which is a speedup factor of 50.3 times faster than the IRAF script. A detailed analysis is presented of the performance of CRBLASTER using between 1 and 57 processors on a low-power Tilera 700-MHz 64-core TILE64 processor.

[ascl:1111.003] Saada: A Generator of Astronomical Database

Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.

[ascl:1111.004] CIGALE: Code Investigating GALaxy Emission

The CIGALE code has been developed to study the evolution of galaxies by comparing modelled galaxy spectral energy distributions (SEDs) to observed ones from the far ultraviolet to the far infrared. It extends the SED fitting algorithm written by Burgarella et al. (2005, MNRAS 360, 1411). While the previous code was designed to fit SEDs in the optical and near infrared, CIGALE is able to fit SEDs up to the far infrared using Dale & Helou (2002, ApJ 576, 159). CIGALE Bayesian and CIGALE Monte Carlo Markov Chain are available.

[ascl:1111.005] SPECTCOL: Spectroscopic and Collisional Data Retrieval

Studies of astrophysical non-LTE media require the combination of atomic and molecular spectroscopic and collisional data often described differently in various databases. SPECTCOL is a tool that implements VAMDC standards, retrieve relevant information from different databases such as CDMS, HITRAN, BASECOL, and can upload local files. All transfer of data between the client and the databases use the VAMDC-XSAMS schema. The spectroscopic and collisional information is combined and useful outputs (ascii or xsams) are provided for the study of the interstellar medium.

Would you like to view a random code?