ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 551-600 of 1928 (1899 ASCL, 29 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1611.009] RHOCUBE: 3D density distributions modeling code

RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

[ascl:1611.008] Transit Clairvoyance: Predicting multiple-planet systems for TESS

Transit Clairvoyance uses Artificial Neural Networks (ANNs) to predict the most likely short period transiters to have additional transiters, which may double the discovery yield of the TESS (Transiting Exoplanet Survey Satellite). Clairvoyance is a simple 2-D interpolant that takes in the number of planets in a system with period less than 13.7 days, as well as the maximum radius amongst them (in Earth radii) and orbital period of the planet with maximum radius (in Earth days) in order to predict the probability of additional transiters in this system with period greater than 13.7 days.

[ascl:1611.007] GRASP2K: Relativistic Atomic Structure Package

GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from jj- to LSJ-coupling, and coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in LSJLSJ intermediate coupling.

[ascl:1611.006] GalPot: Galaxy potential code

GalPot finds the gravitational potential associated with axisymmetric density profiles. The package includes code that performs transformations between commonly used coordinate systems for both positions and velocities (the class OmniCoords), and that integrates orbits in the potentials. GalPot is a stand-alone version of Walter Dehnen's GalaxyPotential C++ code taken from the falcON code in the NEMO Stellar Dynamics Toolbox (ascl:1010.051).

[ascl:1611.005] Exo-Transmit: Radiative transfer code for calculating exoplanet transmission spectra

Exo-Transmit calculates the transmission spectrum of an exoplanet atmosphere given specified input information about the planetary and stellar radii, the planet's surface gravity, the atmospheric temperature-pressure (T-P) profile, the location (in terms of pressure) of any cloud layers, the composition of the atmosphere, and opacity data for the atoms and molecules that make up the atmosphere. The code solves the equation of radiative transfer for absorption of starlight passing through the planet's atmosphere as it transits, accounting for the oblique path of light through the planetary atmosphere along an Earth-bound observer's line of sight. The fraction of light absorbed (or blocked) by the planet plus its atmosphere is calculated as a function of wavelength to produce the wavelength-dependent transmission spectrum. Functionality is provided to simulate the presence of atmospheric aerosols in two ways: an optically thick (gray) cloud deck can be generated at a user-specified height in the atmosphere, and the nominal Rayleigh scattering can be increased by a specified factor.

[ascl:1611.004] PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:1611.003] MPDAF: MUSE Python Data Analysis Framework

MPDAF, the MUSE Python Data Analysis Framework, provides tools to work with MUSE-specific data (for example, raw data and pixel tables), and with more general data such as spectra, images, and data cubes. Originally written to work with MUSE data, it can also be used for other data, such as that from the Hubble Space Telescope. MPDAF also provides MUSELET, a SExtractor-based tool to detect emission lines in a data cube, and a format to gather all the information on a source in one FITS file. MPDAF was developed and is maintained by CRAL (Centre de Recherche Astrophysique de Lyon).

[ascl:1611.002] tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

[ascl:1611.001] UltraNest: Pythonic Nested Sampling Development Framework and UltraNest

This three-component package provides a Pythonic implementation of the Nested Sampling integration algorithm for Bayesian model comparison and parameter estimation. It offers multiple implementations for constrained drawing functions and a test suite to evaluate the correctness, accuracy and efficiency of various implementations. The three components are:

  • a modular framework for nested sampling algorithms (nested_sampling) and their development;
  • a test framework to evaluate the performance and accuracy of algorithms (testsuite); and
  • UltraNest, a fast C implementation of a mixed RadFriends/MCMC nested sampling algorithm.

[ascl:1610.016] PyMC3: Python probabilistic programming framework

PyMC3 performs Bayesian statistical modeling and model fitting focused on advanced Markov chain Monte Carlo and variational fitting algorithms. It offers powerful sampling algorithms, such as the No U-Turn Sampler, allowing complex models with thousands of parameters with little specialized knowledge of fitting algorithms, intuitive model specification syntax, and optimization for finding the maximum a posteriori (MAP) point. PyMC3 uses Theano to compute gradients via automatic differentiation as well as compile probabilistic programs on-the-fly to C for increased speed.

[ascl:1610.015] NuPyCEE: NuGrid Python Chemical Evolution Environment

The NuGrid Python Chemical Evolution Environment (NuPyCEE) simulates the chemical enrichment and stellar feedback of stellar populations. It contains three modules. The Stellar Yields for Galactic Modeling Applications module (SYGMA) models the enrichment and feedback of simple stellar populations which can be included in hydrodynamic simulations and semi-analytic models of galaxies. It is the basic building block of the One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) module which models the chemical evolution of galaxies such as the Milky Way and its dwarf satellites. The STELLAB (STELLar ABundances) module provides a library of observed stellar abundances useful for comparing predictions of SYGMA and OMEGA.

[ascl:1610.014] Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

[ascl:1610.013] MC3: Multi-core Markov-chain Monte Carlo code

MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

[ascl:1610.012] Fourierdimredn: Fourier dimensionality reduction model for interferometric imaging

Fourierdimredn (Fourier dimensionality reduction) implements Fourier-based dimensionality reduction of interferometric data. Written in Matlab, it derives the theoretically optimal dimensionality reduction operator from a singular value decomposition perspective of the measurement operator. Fourierdimredn ensures a fast implementation of the full measurement operator and also preserves the i.i.d. Gaussian properties of the original measurement noise.

[ascl:1610.011] BXA: Bayesian X-ray Analysis

BXA connects the nested sampling algorithm MultiNest (ascl:1109.006) to the X-ray spectral analysis environments Xspec/Sherpa for Bayesian parameter estimation and model comparison. It provides parameter estimation in arbitrary dimensions and plotting of spectral model vs. the data for best fit, posterior samples, or each component. BXA allows for model selection; it computes the evidence for the considered model, ready for use in computing Bayes factors and is not limited to nested models. It also visualizes deviations between model and data with Quantile-Quantile (QQ) plots, which do not require binning and are more comprehensive than residuals.

[ascl:1610.010] BurnMan: Lower mantle mineral physics toolkit

BurnMan determines seismic velocities for the lower mantle. Written in Python, BurnMan calculates the isotropic thermoelastic moduli by solving the equations-of-state for a mixture of minerals defined by the user. The user may select from a list of minerals applicable to the lower mantle included or can define one. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme and the results can be visually or quantitatively compared to observed seismic models.

[ascl:1610.009] velbin: radial velocity corrected for binary orbital motions

Velbin convolves the radial velocity offsets due to binary orbital motions with a Gaussian to model an observed velocity distribution. This can be used to measure the mean velocity and velocity dispersion from an observed radial velocity distribution, corrected for binary orbital motions. Velbin fits single- or multi-epoch data with any arbitrary binary orbital parameter distribution (as long as it can be sampled properly), however it always assumes that the intrinsic velocity distribution (i.e. corrected for binary orbital motions) is a Gaussian. Velbin samples (and edits) a binary orbital parameter distribution, fits an observed radial velocity distribution, and creates a mock radial velocity distribution that can be used to provide the fitted radial velocities in the single_epoch or multi_epoch methods.

[ascl:1610.008] cluster-in-a-box: Statistical model of sub-millimeter emission from embedded protostellar clusters

Cluster-in-a-box provides a statistical model of sub-millimeter emission from embedded protostellar clusters and consists of three modules grouped in two scripts. The first (cluster_distribution) generates the cluster based on the number of stars, input initial mass function, spatial distribution and age distribution. The second (cluster_emission) takes an input file of observations, determines the mass-intensity correlation and generates outflow emission for all low-mass Class 0 and I sources. The output is stored as a FITS image where the flux density is determined by the desired resolution, pixel scale and cluster distance.

[ascl:1610.007] gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:1610.006] C3: Command-line Catalogue Crossmatch for modern astronomical surveys

The Command-line Catalogue Cross-matching (C3) software efficiently performs the positional cross-match between massive catalogues from modern astronomical surveys, whose size have rapidly increased in the current data-driven science era. Based on a multi-core parallel processing paradigm, it is executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline. C3 provides its users with flexibility in portability, parameter configuration, catalogue formats, angular resolution, region shapes, coordinate units and cross-matching types.

[ascl:1610.005] GSGS: In-Focus Phase Retrieval Using Non-Redundant Mask Data

GSGS does phase retrieval on images given an estimate of the pupil phase (from a non-redundant mask or other interferometric approach), the pupil geometry, and the in-focus image. The code uses a modified Gerchberg-Saxton algorithm that iterates between pupil plane and image plane to measure the pupil phase.

[ascl:1610.004] MUSE-DRP: MUSE Data Reduction Pipeline

The MUSE pipeline turns the complex raw data of the MUSE integral field spectrograph into a ready-to-use datacube for scientific analysis.

[submitted] centerRadon: Center Determination Code in Stellar Images

centerRadon finds the center of stars based on Radon Transform (Pueyo et al., 2015) to sub-pixel precision. For a coronagraphic image of a star, it starts from a given location, then for each sub-pixel position, it interpolates the image and sums the pixels along different angles, creating a cost function. The center of the star is expected to correspond with where the cost function maximizes. The default values are set for the STIS coronagraphic images of the Hubble Space Telescope by summing over the diagonals (i.e., 45° and 135°), but it can be generally applied to other high-contrast imaging instruments with or without Adaptive Optics systems such as HST-NICMOS, P1640, or GPI.

[ascl:1610.003] DSDEPROJ: Direct Spectral Deprojection

Deprojection of X-ray data by methods such as PROJCT, which are model dependent, can produce large and unphysical oscillating temperature profiles. Direct Spectral Deprojection (DSDEPROJ) solves some of the issues inherent to model-dependent deprojection routines. DSDEPROJ is a model-independent approach, assuming only spherical symmetry, which subtracts projected spectra from each successive annulus to produce a set of deprojected spectra.

[ascl:1610.002] CERES: Collection of Extraction Routines for Echelle Spectra

The Collection of Extraction Routines for Echelle Spectra (CERES) constructs automated pipelines for the reduction, extraction, and analysis of echelle spectrograph data. This modular code includes tools for handling the different steps of the processing: CCD reductions, tracing of the echelle orders, optimal and simple extraction, computation of the wave-length solution, estimation of radial velocities, and rough and fast estimation of the atmospheric parameters. The standard output of pipelines constructed with CERES is a FITS cube with the optimally extracted, wavelength calibrated and instrumental drift-corrected spectrum for each of the science images. Additionally, CERES includes routines for the computation of precise radial velocities and bisector spans via the cross-correlation method, and an automated algorithm to obtain an estimate of the atmospheric parameters of the observed star.

[ascl:1610.001] Piccard: Pulsar timing data analysis package

Piccard is a Bayesian-inference pipeline for Pulsar Timing Array (PTA) data and interacts with Tempo2 (ascl:1210.015) through libstempo. The code is used mainly for single-pulsar analysis and gravitational-wave detection purposes of full Pulsar Timing Array datasets. Modeling of the data can include correlated signals per frequency or modeled spectrum, with uniform, dipolar, quadrupolar, or anisotropic correlations; multiple error bars and EFACs per pulsar; and white and red noise. Timing models can be numerically included, either by using the design matrix (linear timing model), or by calling libstempo for the full non-linear timing model. Many types of samplers are included. For common-mode mitigation, the signals can be reconstructed mitigating arbitrary signals simultaneously.

[ascl:1609.025] PYESSENCE: Generalized Coupled Quintessence Linear Perturbation Python Code

PYESSENCE evolves linearly perturbed coupled quintessence models with multiple (cold dark matter) CDM fluid species and multiple DE (dark energy) scalar fields, and can be used to generate quantities such as the growth factor of large scale structure for any coupled quintessence model with an arbitrary number of fields and fluids and arbitrary couplings.

[ascl:1609.024] AdaptiveBin: Adaptive Binning

AdaptiveBin takes one or more images and adaptively bins them. If one image is supplied, then the pixels are binned by fractional error on the intensity. If two or more images are supplied, then the pixels are fractional binned by error on the combined color.

[ascl:1609.023] contbin: Contour binning and accumulative smoothing

Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

[ascl:1609.022] PyPHER: Python-based PSF Homogenization kERnels

PyPHER (Python-based PSF Homogenization kERnels) computes an homogenization kernel between two PSFs; the code is well-suited for PSF matching applications in both an astronomical or microscopy context. It can warp (rotation + resampling) the PSF images (if necessary), filter images in Fourier space using a regularized Wiener filter, and produce a homogenization kernel. PyPHER requires the pixel scale information to be present in the FITS files, which can if necessary be added by using the provided ADDPIXSCL method.

[ascl:1609.021] TIDEV: Tidal Evolution package

TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.

[ascl:1609.020] Askaryan Module: Askaryan electric fields predictor

The Askaryan Module is a C++ class that predicts the electric fields that Askaryan-based detectors detect; it is computationally efficient and accurate, performing fully analytic calculations requiring no a priori MC analysis to compute the entire field, for any frequencies, times, or viewing angles chosen by the user.

[ascl:1609.019] SuperBoL: Module for calculating the bolometric luminosities of supernovae

SuperBoL calculates the bolometric lightcurves of Type II supernovae using observed photometry; it includes three different methods for calculating the bolometric luminosity: quasi-bolometric, direct, and bolometric correction. SuperBoL propagates uncertainties in the input data through the calculations made by the code, allowing for error bars to be included in plots of the lightcurve.

[ascl:1609.018] SIP: Systematics-Insensitive Periodograms

SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.

[ascl:1609.017] spectral-cube: Read and analyze astrophysical spectral data cubes

Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

[ascl:1609.016] PKDGRAV3: Parallel gravity code

Pkdgrav3 is an 𝒪(N) gravity calculation method; it uses a binary tree algorithm with fifth order fast multipole expansion of the gravitational potential, using cell-cell interactions. Periodic boundaries conditions require very little data movement and allow a high degree of parallelism; the code includes GPU acceleration for all force calculations, leading to a significant speed-up with respect to previous versions (ascl:1305.005). Pkdgrav3 also has a sophisticated time-stepping criterion based on an estimation of the local dynamical time.

[ascl:1609.015] FIT3D: Fitting optical spectra

FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

[ascl:1609.014] Sky3D: Time-dependent Hartree-Fock equation solver

Written in Fortran 90, Sky3D solves the static or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic boundary conditions and no further symmetry assumptions. Pairing can be included in the BCS approximation for the static case. The code can be easily modified to include additional physics or special analysis of the results and requires LAPACK and FFTW3.

[ascl:1609.013] 21cmSense: Calculating the sensitivity of 21cm experiments to the EoR power spectrum

21cmSense calculates the expected sensitivities of 21cm experiments to the Epoch of Reionization power spectrum. Written in Python, it requires NumPy, SciPy, and AIPY (ascl:1609.012).

[ascl:1609.012] AIPY: Astronomical Interferometry in PYthon

AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

[ascl:1609.011] Photutils: Photometry tools

Photutils provides tools for detecting and performing photometry of astronomical sources. It can estimate the background and background rms in astronomical images, detect sources in astronomical images, estimate morphological parameters of those sources (e.g., centroid and shape parameters), and perform aperture and PSF photometry. Written in Python, it is an affiliated package of Astropy (ascl:1304.002).

[ascl:1609.010] CuBANz: Photometric redshift estimator

CuBANz is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBANz considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

[ascl:1609.009] NSCool: Neutron star cooling code

NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

[ascl:1609.008] GRASP: General-purpose Relativistic Atomic Structure Package

GRASP (General-purpose Relativistic Atomic Structure Package) calculates atomic structure, including energy levels, radiative rates (A-values) and lifetimes; it is a fully relativistic code based on the jj coupling scheme. This code has been superseded by GRASP2K (ascl:1611.007).

[ascl:1609.007] Weighted EMPCA: Weighted Expectation Maximization Principal Component Analysis

Weighted EMPCA performs principal component analysis (PCA) on noisy datasets with missing values. Estimates of the measurement error are used to weight the input data such that the resulting eigenvectors, when compared to classic PCA, are more sensitive to the true underlying signal variations rather than being pulled by heteroskedastic measurement noise. Missing data are simply limiting cases of weight = 0. The underlying algorithm is a noise weighted expectation maximization (EM) PCA, which has additional benefits of implementation speed and flexibility for smoothing eigenvectors to reduce the noise contribution.

[ascl:1609.006] SCIMES: Spectral Clustering for Interstellar Molecular Emission Segmentation

SCIMES identifies relevant molecular gas structures within dendrograms of emission using the spectral clustering paradigm. It is useful for decomposing objects in complex environments imaged at high resolution.

[ascl:1609.005] FISHPACK90: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

FISHPACK90 is a modernization of the original FISHPACK (ascl:1609.004), employing Fortran90 to slightly simplify and standardize the interface to some of the routines. This collection of Fortran programs and subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates. Test programs are provided for the 19 solvers. Each serves two purposes: as a template to guide you in writing your own codes utilizing the FISHPACK90 solvers, and as a demonstration on your computer that you can correctly produce FISHPACK90 executables.

[ascl:1609.004] FISHPACK: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

The FISHPACK collection of Fortran77 subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates.

[ascl:1609.003] Kranc: Cactus modules from Mathematica equations

Kranc turns a tensorial description of a time dependent partial differential equation into a module for the Cactus Computational Toolkit (ascl:1102.013). This Mathematica application takes a simple continuum description of a problem and generates highly efficient and portable code, and can be used both for rapid prototyping of evolution systems and for high performance supercomputing.

[submitted] pyLIMA: An Open Source Package for Microlensing Modeling

pyLIMA is an open source software for microlensing modeling. Based on Python, the goal is to offer to users an efficient and user friendly package to analyze their data. The code is written and tested with professional standards, such as PEP8 or unit testing.

Would you like to view a random code?