[ascl:1605.016]
zeldovich-PLT: Zel'dovich approximation initial conditions generator

zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.

[ascl:1512.016]
ZeldovichRecon: Halo correlation function using the Zeldovich approximation

ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants:

- zelrecon.cpp, which computes the various contributions to the correlation function;

- zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and

- a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.

[ascl:1102.027]
ZENO: N-body and SPH Simulation Codes

The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere.

Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include:

- Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.
- Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.
- Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.
- Simulation codes include both pure N-body and combined N-body/SPH programs:
- Pure N-body codes are available in both uniprocessor and parallel versions.
- SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models.

- Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.
- Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

[ascl:1306.014]
ZEUS-2D: Simulation of fluid dynamical flows

ZEUS-2D is a hydrodynamics code based on ZEUS which adds a covariant differencing formalism and algorithms for compressible hydrodynamics, MHD, and radiation hydrodynamics (using flux-limited diffusion) in Cartesian, cylindrical, or spherical polar coordinates.

[ascl:1102.028]
ZEUS-MP/2: Computational Fluid Dynamics Code

Hayes, John C.; Norman, Michael L.; Fiedler, Robert A.; Bordner, James O.; Li, Pak Shing; Clark, Stephen E.; Ud-Doula, Asif; Mac Low, Mordecai-Mark

ZEUS-MP is a multiphysics, massively parallel, message-passing implementation of the ZEUS code. ZEUS-MP offers an MHD algorithm that is better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the method of characteristics scheme first suggested by Hawley & Stone. This MHD module is shown to compare quite favorably to the TVD scheme described by Ryu et al. ZEUS-MP is the first publicly available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules can be used, singly or in concert, in one, two, or three space dimensions. In addition, so-called 1.5D and 2.5D grids, in which the "half-D'' denotes a symmetry axis along which a constant but nonzero value of velocity or magnetic field is evolved, are supported. Self-gravity can be included either through the assumption of a GM/r potential or through a solution of Poisson's equation using one of three linear solver packages (conjugate gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported.

Because ZEUS-MP is designed for large simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module in the code. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (2563 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.

[ascl:1511.022]
ZInCo: Zoomed Initial Conditions

ZInCo manipulates existing initial conditions (ICs) compatible with GADGET-2/3 (ascl:0003.001) ICs, allowing different flavors of zoom-in simulations rather then producing new ICs from scratch. The code can manipulate initial conditions with multiple types of particles, unlike the vast majority of zoom-in ICs codes available, preserving their properties and random field. This allows ZInCo to take advantage of other codes that produce ICs featuring a broad range of different cosmologies; it can be used also on existing ICs even in the unlikely case nothing is known about their properties. The code is written in C++ and parallelized using MPI.

[ascl:1202.002]
ZODIPIC: Zodiacal Cloud Image Synthesis

ZODIPIC synthesizes images of exozodiacal clouds. As a default, ZODIPIC creates an image of the solar zodiacal cloud as seen from 10 pc, but it contains many parameters that are tweakable from the command line, making it a handy general-purpose model for optically-thin debris disks that yields both accurate images and photometric information simultaneously. Written in IDL, ZODIPIC includes dust with real optical constants, user-specified dust maps and can compute images as seen through a linear polarizer.

[ascl:1011.003]
ZPEG: An Extension of the Galaxy Evolution Model PEGASE.2

Photometric redshifts are estimated on the basis of template scenarios with the help of the code ZPEG, an extension of the galaxy evolution model PEGASE.2 and available on the PEGASE web site. The spectral energy distribution (SED) templates are computed for nine spectral types including starburst, irregular, spiral and elliptical. Dust, extinction and metal effects are coherently taken into account, depending on evolution scenarios. The sensitivity of results to adding near-infrared colors and IGM absorption is analyzed. A comparison with results of other models without evolution measures the evolution factor which systematically increases the estimated photometric redshift values by $Delta z$ > 0.2 for z > 1.5. Moreover we systematically check that the evolution scenarios match observational standard templates of nearby galaxies, implying an age constraint of the stellar population at z=0 for each type. The respect of this constraint makes it possible to significantly improve the accuracy of photometric redshifts by decreasing the well-known degeneracy problem. The method is applied to the HDF-N sample. From fits on SED templates by a $chi^2$-minimization procedure, not only is the photometric redshift derived but also the corresponding spectral type and the formation redshift $z_for$ when stars first formed. Early epochs of galaxy formation z > 5 are found from this new method and results are compared to faint galaxy count interpretations.

Would you like to view a random code?