Results 501-600 of 2452 (2411 ASCL, 41 submitted)

[ascl:1709.006]
DCMDN: Deep Convolutional Mixture Density Network

Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

[ascl:1207.006]
dcr: Cosmic Ray Removal

This code provides a method for detecting cosmic rays in single images. The algorithm is based on a simple analysis of the histogram of the image data and does not use any modeling of the picture of the object. It does not require a good signal-to-noise ratio in the image data. Identification of multiple-pixel cosmic-ray hits is realized by running the procedure for detection and replacement iteratively. The method is very effective when applied to the images with spectroscopic data, and is also very fast in comparison with other single-image algorithms found in astronomical data-processing packages. Practical implementation and examples of application are presented in the code paper.

[ascl:2011.030]
DDCalc: Dark matter direct detection phenomenology package

Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

DDCalc performs various dark matter direct detection calculations, including signal rate predictions, constraints on light DM, and likelihoods for several experiments. It offers eighteen non-relativistic effective operators to describe velocity and momentum transfer, and elastic scattering of DM particles off nucleons, and has an extended detector interface.

[ascl:1212.012]
ddisk: Debris disk time-evolution

ddisk is an IDL script that calculates the time-evolution of a circumstellar debris disk. It calculates dust abundances over time for a debris-disk that is produced by a planetesimal disk that is grinding away due to collisional erosion.

[ascl:1810.020]
DDS: Debris Disk Radiative Transfer Simulator

DDS simulates scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/ heating radiative source can be arbitrarily defined. The code is optimized for studying circumstellar debris disks where large grains (*i.e.*, with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The approach to calculate dust temperatures and dust reemission spectra is only valid in the optically thin regime. The validity of this constraint is verified for each model during the runtime of the code. The relative abundances of different grains can be arbitrarily chosen, but must be constant outside the dust sublimation region., *i.e.*, the shape of the (arbitrary) radial dust density distribution outside the dust sublimation region is the same for all grain sizes and chemistries.

[ascl:0008.001]
DDSCAT: The discrete dipole approximation for scattering and absorption of light by irregular particles

DDSCAT is a freely available software package which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT allows accurate calculations of electromagnetic scattering from targets with "size parameters" 2 pi a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target generation capability to the package. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions. This User Guide explains how to use DDSCAT to carry out EM scattering calculations. CPU and memory requirements are described.

[ascl:1510.004]
DEBiL: Detached Eclipsing Binary Light curve fitter

DEBiL rapidly fits a large number of light curves to a simple model. It is the central component of a pipeline for systematically identifying and analyzing eclipsing binaries within a large dataset of light curves; the results of DEBiL can be used to flag light curves of interest for follow-up analysis.

[ascl:2001.008]
DebrisDiskFM: Debris Disk Forward Modeling

DebrisDiskFM provides forward modeling for circumstellar debris disks in scattered light using the MCFOST disk modeling software to generate disk model images using given input parameters and emcee (ascl:1303.002) to obtain the posterior distributions for these parameters.

[ascl:1501.005]
DECA: Decomposition of images of galaxies

DECA performs photometric analysis of images of disk and elliptical galaxies having a regular structure. It is written in Python and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention.

[ascl:1801.006]
DecouplingModes: Passive modes amplitudes

DecouplingModes calculates the amplitude of the passive modes, which requires solving the Einstein equations on superhorizon scales sourced by the anisotropic stress from the magnetic fields (prior to neutrino decoupling), and the magnetic and neutrino stress (after decoupling). The code is available as a Mathematica notebook.

[ascl:1603.015]
Dedalus: Flexible framework for spectrally solving differential equations

Dedalus solves differential equations using spectral methods. It implements flexible algorithms to solve initial-value, boundary-value, and eigenvalue problems with broad ranges of custom equations and spectral domains. Its primary features include symbolic equation entry, multidimensional parallelization, implicit-explicit timestepping, and flexible analysis with HDF5. The code is written primarily in Python and features an easy-to-use interface. The numerical algorithm produces highly sparse systems for many equations which are efficiently solved using compiled libraries and MPI.

[ascl:1805.029]
DeepMoon: Convolutional neural network trainer to identify moon craters

DeepMoon trains a convolutional neural net using data derived from a global digital elevation map (DEM) and catalog of craters to recognize craters on the Moon. The TensorFlow-based pipeline code is divided into three parts. The first generates a set images of the Moon randomly cropped from the DEM, with corresponding crater positions and radii. The second trains a convnet using this data, and the third validates the convnet's predictions.

[ascl:2011.026]
DeepShadows: Finding low-surface-brightness galaxies in survey images

DeepShadows uses a convolutional neural networks (CNNs) to separate low-surface-brightness galaxies (LSBGs) from artifacts (such as Galactic cirrus and star-forming regions) in survey images. The model is trained and tested on labeled LSBGs and artifacts from the Dark Energy Survey and demonstrates that CNNs offer a promising path in the quest to study the low-surface-brightness universe.

[ascl:2006.023]
deepSIP: deep learning of Supernova Ia Parameters

deepSIP (deep learning of Supernova Ia Parameters) measures the phase and light-curve shape of a Type Ia Supernova (SN Ia) from an optical spectrum. The package contains a set of three trained Convolutional Neural Networks (CNNs) for the aforementioned purposes, but tools for preprocessing spectra, modifying the neural architecture, training models, and sweeping through hyperparameters are also included.

[ascl:2006.008]
DeepSphere: Graph-based spherical convolutional neural network for cosmology

DeepSphere implements a generalization of Convolutional Neural Networks (CNNs) to the sphere. It models the discretized sphere as a graph of connected pixels. The resulting convolution is more efficient (especially when data doesn't span the whole sphere) and mostly equivariant to rotation (small distortions are due to the non-existence of a regular sampling of the sphere). The pooling strategy exploits a hierarchical pixelization of the sphere (HEALPix) to analyze the data at multiple scales. The graph neural network model is based on ChebNet and its TensorFlow implementation.

[ascl:1405.004]
Defringeflat: Fringe pattern removal

The IDL package Defringeflat identifies and removes fringe patterns from images such as spectrograph flat fields. It uses a wavelet transform to calculate the frequency spectrum in a region around each point of a one-dimensional array. The wavelet transform amplitude is reconstructed from (smoothed) parameters obtaining the fringe's wavelet transform, after which an inverse wavelet transform is performed to obtain the computed fringe pattern which is then removed from the flat.

[ascl:1011.012]
DEFROST: Simulating preheating after inflation

At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. DEFROST simulates preheating of the Universe after the end of the inflation. It is small, easy to modify, very fast, and fully instrumented for 3D visualizations.

[ascl:1602.012]
DELightcurveSimulation: Light curve simulation code

DELightcurveSimulation (also called DELCgen) simulates light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos *et al.* (2013). The simulated products have exactly the same variability and statistical properties as the observed light curves. The code is a Python implementation of the Mathematica code provided by Emmanoulopoulos *et al.*

[ascl:1705.003]
demc2: Differential evolution Markov chain Monte Carlo parameter estimator

demc2, also abbreviated as DE-MCMC, is a differential evolution Markov Chain parameter estimation library written in R for adaptive MCMC on real parameter spaces.

[ascl:1904.009]
deproject: Deprojection of two-dimensional annular X-ray spectra

Deproject extends Sherpa (ascl:1107.005) to facilitate deprojection of two-dimensional annular X-ray spectra to recover the three-dimensional source properties. For typical thermal models, this includes the radial temperature and density profiles. This basic method is used for X-ray cluster analysis and is the basis for the XSPEC (ascl:9910.005) model project. The deproject module is written in Python and is straightforward to use and understand. The basic physical assumption of deproject is that the extended source emissivity is constant and optically thin within spherical shells whose radii correspond to the annuli used to extract the specta. Given this assumption, one constructs a model for each annular spectrum that is a linear volume-weighted combination of shell models.

[ascl:1511.017]
DES exposure checker: Dark Energy Survey image quality control crowdsourcer

DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

[ascl:1804.011]
DESCQA: Synthetic Sky Catalog Validation Framework

Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph

The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at https://portal.nersc.gov/projecta/lsst/descqa/v2/.

[ascl:1304.007]
DESPOTIC: Derive the Energetics and SPectra of Optically Thick Interstellar Clouds

DESPOTIC (Derive the Energetics and SPectra of Optically Thick Interstellar Clouds), written in Python, represents optically thick interstellar clouds using a one-zone model and calculates line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. DESPOTIC calculates clouds' equilibrium gas and dust temperatures and their time-dependent thermal evolution. The code allows rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms, and prediction of their observable spectra across a wide range of interstellar environments.

[submitted]
Determination of Length of (Earth) Day [LOD] in the past geologic epochs

The protocol describes the algorithm of arriving at LOD in a given past geological Epoch. First the lunar orbital radius of the given geologic epoch has to be determined. For this the velocity of recession of Moon for the accelerated phase has to be determined. The spatial integral of the reciprocal of Velocity of recession gives the the transit time of Moon from desired orbit to the present orbit.Through several iterations the transit time is made to converge on the geologic epoch. Once we determine the desired orbital radius it has to be substituted in the LOD expression to determine the LOD in the given geologic epoch.

[ascl:1907.008]
Dewarp: Distortion removal and on-sky orientation solution for LBTI detectors

Dewarp constructs pipelines to remove distortion from a detector and find the orientation with true North. It was originally written for the LBTI LMIRcam detector, but is generalizable to any project with reference sources and/or an astrometric field paired with a machine-readable file of astrometric target locations.

[ascl:1402.022]
DexM: Semi-numerical simulations for very large scales

DexM (Deus ex Machina) efficiently generates density, halo, and ionization fields on very large scales and with a large dynamic range through seminumeric simulation. These properties are essential for reionization studies, especially those involving rare, massive QSOs, since one must be able to statistically capture the ionization field. DexM can also generate ionization fields directly from the evolved density field to account for the ionizing contribution of small halos. Semi-numerical simulations use more approximate physics than numerical simulations, but independently generate 3D cosmological realizations. DexM is portable and fast, and allows for explorations of wide swaths of astrophysical parameter space and an unprecedented dynamic range.

[ascl:1112.015]
Dexter: Data Extractor for scanned graphs

The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

[ascl:1904.017]
dfitspy: A dfits/fitsort implementation in Python

dfitspy searches and displays metadata contained in FITS files. Written in Python, it displays the results of a metadata search and is able to grep certain values of keywords inside large samples of files in the terminal. dfitspy can be used directly with the command line interface and can also be imported as a python module into other python code or the python interpreter.

[ascl:1805.002]
dftools: Distribution function fitting

dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.

[ascl:1410.001]
DIAMONDS: high-DImensional And multi-MOdal NesteD Sampling

DIAMONDS (high-DImensional And multi-MOdal NesteD Sampling) provides Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional and multi-modal problems; it can be used for any application involving Bayesian parameter estimation and/or model selection in general. Developed in C++11, DIAMONDS is structured in classes for flexibility and configurability. Any new model, likelihood and prior PDFs can be defined and implemented upon a basic template.

[ascl:1607.002]
DICE: Disk Initial Conditions Environment

DICE models initial conditions of idealized galaxies to study their secular evolution or their more complex interactions such as mergers or compact groups using N-Body/hydro codes. The code can set up a large number of components modeling distinct parts of the galaxy, and creates 3D distributions of particles using a N-try MCMC algorithm which does not require a prior knowledge of the distribution function. The gravitational potential is then computed on a multi-level Cartesian mesh by solving the Poisson equation in the Fourier space. Finally, the dynamical equilibrium of each component is computed by integrating the Jeans equations for each particles. Several galaxies can be generated in a row and be placed on Keplerian orbits to model interactions. DICE writes the initial conditions in the Gadget1 or Gadget2 (ascl:0003.001) format and is fully compatible with Ramses (ascl:1011.007).

[ascl:1801.010]
DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation

DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.

[ascl:1704.013]
Difference-smoothing: Measuring time delay from light curves

The Difference-smoothing MATLAB code measures the time delay from the light curves of images of a gravitationally lendsed quasar. It uses a smoothing timescale free parameter, generates more realistic synthetic light curves to estimate the time delay uncertainty, and uses *X*^{2} plot to assess the reliability of a time delay measurement as well as to identify instances of catastrophic failure of the time delay estimator. A systematic bias in the measurement of time delays for some light curves can be eliminated by applying a correction to each measured time delay.

[ascl:1512.012]
DiffuseModel: Modeling the diffuse ultraviolet background

DiffuseModel calculates the scattered radiation from dust scattering in the Milky Way based on stars from the Hipparcos catalog. It uses Monte Carlo to implement multiple scattering and assumes a user-supplied grid for the dust distribution. The output is a FITS file with the diffuse light over the Galaxy. It is intended for use in the UV (900 - 3000 A) but may be modified for use in other wavelengths and galaxies.

[ascl:1304.008]
Diffusion.f: Diffusion of elements in stars

Diffusion.f is an exportable subroutine to calculate the diffusion of elements in stars. The routine solves exactly the Burgers equations and can include any number of elements as variables. The code has been used successfully by a number of different groups; applications include diffusion in the sun and diffusion in globular cluster stars. There are many other possible applications to main sequence and to evolved stars. The associated README file explains how to use the subroutine.

[ascl:1103.001]
Difmap: Synthesis Imaging of Visibility Data

Difmap is a program developed for synthesis imaging of visibility data from interferometer arrays of radio telescopes world-wide. Its prime advantages over traditional packages are its emphasis on interactive processing, speed, and the use of Difference mapping techniques.

[ascl:1102.024]
DiFX2: A more flexible, efficient, robust and powerful software correlator

Deller, A. T.; Brisken, W. F.; Phillips, C. J.; Morgan, J.; Alef, W.; Cappallo, R.; Middelberg, E.; Romney, J.; Rottmann, H.; Tingay, S. J.; Wayth, R.

Software correlation, where a correlation algorithm written in a high-level language such as C++ is run on commodity computer hardware, has become increasingly attractive for small to medium sized and/or bandwidth constrained radio interferometers. In particular, many long baseline arrays (which typically have fewer than 20 elements and are restricted in observing bandwidth by costly recording hardware and media) have utilized software correlators for rapid, cost-effective correlator upgrades to allow compatibility with new, wider bandwidth recording systems and improve correlator flexibility. The DiFX correlator, made publicly available in 2007, has been a popular choice in such upgrades and is now used for production correlation by a number of observatories and research groups worldwide. Here we describe the evolution in the capabilities of the DiFX correlator over the past three years, including a number of new capabilities, substantial performance improvements, and a large amount of supporting infrastructure to ease use of the code. New capabilities include the ability to correlate a large number of phase centers in a single correlation pass, the extraction of phase calibration tones, correlation of disparate but overlapping sub-bands, the production of rapidly sampled filterbank and kurtosis data at minimal cost, and many more. The latest version of the code is at least 15% faster than the original, and in certain situations many times this value. Finally, we also present detailed test results validating the correctness of the new code.

[ascl:1904.023]
digest2: NEO binary classifier

Keys, Sonia; Vereš, Peter; Payne, Matthew J.; Holman, Matthew J.; Jedicke, Robert; Williams, Gareth V.; Spahr, Tim; Asher, David J.; Hergenrother, Carl

digest2 classifies Near-Earth Object (NEO) candidates by providing a score, *D _{2}*, that represents a pseudo-probability that a tracklet belongs to a given solar system orbit type. The code accurately and precisely distinguishes NEOs from non-NEOs, thus helping to identify those to be prioritized for follow-up observation. This fast, short-arc orbit classifier for small solar system bodies code is built upon the Pangloss code developed by Robert McNaught and further developed by Carl Hergenrother and Tim Spahr and Robert Jedicke's 223.f code.

[ascl:1010.031]
DimReduce: Nonlinear Dimensionality Reduction of Very Large Datasets with Locally Linear Embedding (LLE) and its Variants

DimReduce is a C++ package for performing nonlinear dimensionality reduction of very large datasets with Locally Linear Embedding (LLE) and its variants. DimReduce is built for speed, using the optimized linear algebra packages BLAS, LAPACK, and ARPACK. Because of the need for storing very large matrices (1000 by 10000, for our SDSS LLE work), DimReduce is designed to use binary FITS files as inputs and outputs. This means that using the code is a bit more cumbersome. For smaller-scale LLE, where speed of computation is not as much of an issue, the Modular Data Processing toolkit may be a better choice. It is a python toolkit with some LLE functionality, which VanderPlas contributed.

This code has been rewritten and included in scikit-learn and an improved version is included in http://mmp2.github.io/megaman/

[ascl:1908.005]
dips: Detrending periodic signals in timeseries

dips detrends timeseries of strictly periodic signals. It does not assume any functional form for the signal or the background or the noise; it disentangles the strictly periodic component from everything else. It has been used for detrending Kepler, K2 and TESS timeseries of periodic variable stars, eclipsing binary stars, and exoplanets.

[ascl:1405.016]
DIPSO: Spectrum analysis code

DIPSO plots spectroscopic data rapidly and combines analysis and high-quality graphical output in a simple command-line driven interactive environment. It can be used, for example, to fit emission lines, measure equivalent widths and fluxes, do Fourier analysis, and fit models to spectra. A macro facility allows convenient execution of regularly used sequences of commands, and a simple Fortran interface permits "personal" software to be integrated with the program. DIPSO is part of the Starlink software collection (ascl:1110.012).

[ascl:1806.015]
DirectDM-mma: Dark matter direct detection

The Mathematica code DirectDM takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Python implementation of DirectDM is also available (ascl:1806.016).

[ascl:1806.016]
DirectDM-py: Dark matter direct detection

DirectDM, written in Python, takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Mathematica implementation of DirectDM is also available (ascl:1806.015).

[ascl:1102.021]
DIRT: Dust InfraRed Toolbox

DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can select and display over 500,000 pre-run model spectral energy distributions (SEDs), find the best-fit model to your data set, and account for beam size in model fitting. DIRT also allows you to manipulate data and models with an interactive viewer, display gas and dust density and temperature profiles, and display model intensity profiles at various wavelengths.

[ascl:1403.020]
disc2vel: Tangential and radial velocity components derivation

Disc2vel derives tangential and radial velocity components in the equatorial plane of a barred stellar disc from the observed line-of-sight velocity, assuming geometry of a thin disc. The code is written in IDL, and the method assumes that the bar is close to steady state (i.e. does not evolve fast) and that both morphology and kinematics are symmetrical with respect to the major axis of the bar.

[ascl:1605.011]
DISCO: 3-D moving-mesh magnetohydrodynamics package

DISCO evolves orbital fluid motion in two and three dimensions, especially at high Mach number, for studying astrophysical disks. The software uses a moving-mesh approach with a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas, thus removing diffusive advection errors and permitting longer timesteps than a static grid. DISCO uses an HLLD Riemann solver and a constrained transport scheme compatible with the mesh motion to implement magnetohydrodynamics.

[ascl:1209.011]
DiskFit: Modeling Asymmetries in Disk Galaxies

Kuzio de Naray, Rache; Arsenault, Cameron A.; Spekkens, Kristine; Sellwood, J. A.; McDonald, Michael; Simon, Joshua D.; Teuben, Peter

DiskFit implements procedures for fitting non-axisymmetries in either kinematic or photometric data. DiskFit can analyze H-alpha and CO velocity field data as well as HI kinematics to search for non-circular motions in the disk galaxies. DiskFit can also be used to constrain photometric models of the disc, bar and bulge. It deprecates an earlier version, by a subset of these authors, called velfit.

[ascl:1603.011]
DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

[ascl:2002.022]
DISKMODs: Accretion Disk Radial Structure Models

DISKMODs provides radial structure models of accretion disk solutions. The following models are included: Novikov-Thorne thin disk model and Sadowski polytropic slim disk model. Each model implements a common interface that gives the radial dependence of selected geometrical, physical and thermodynamic quantities of the accretion flow. The model interpolates through a set of tabulated numerical solutions. These solutions are computed for a reference mass M=10 M_{sun}. The model can rescale the disk structure to any mass, with masses in the range of 5-20 M_{sun} giving reasonably good results.

[ascl:1811.013]
DiskSim: Modeling Accretion Disk Dynamics with SPH

DiskSim is a source-code distribution of the SPH accretion disk modeling code previously released in a Windows executable form as FITDisk (ascl:1305.011). The code released now is the full research code in Fortran and can be modified as needed by the user.

[ascl:1108.015]
DISKSTRUCT: A Simple 1+1-D Disk Structure Code

DISKSTRUCT is a simple 1+1-D code for modeling protoplanetary disks. It is not based on multidimensional radiative transfer! Instead, a flaring-angle recipe is used to compute the irradiation of the disk, while the disk vertical structure at each cylindrical radius is computed in a 1-D fashion; the models computed with this code are therefore approximate. Moreover, this model cannot deal with the dust inner rim.

In spite of these simplifications and drawbacks, the code can still be very useful for disk studies, for the following reasons:

- It allows the disk structure to be studied in a 1-D vertical fashion (one radial cylinder at a time). For understanding the structure of disks, and also for using it as a basis of other models, this can be a great advantage.
- For very optically thick disks this code is likely to be much faster than the RADMC full disk model.
- Viscous internal heating of the disk is implemented and converges quickly, whereas the RADMC code is still having difficulty to deal with high optical depth combined with viscously generated internal heat.

[ascl:1708.006]
DISORT: DIScrete Ordinate Radiative Transfer

DISORT (DIScrete Ordinate Radiative Transfer) solves the problem of 1D scalar radiative transfer in a single optical medium, such as a planetary atmosphere. The code correctly accounts for multiple scattering by an isotropic or plane-parallel beam source, internal Planck sources, and reflection from a lower boundary. Provided that polarization effects can be neglected, DISORT efficiently calculates accurate fluxes and intensities at any user-specified angle and location within the user-specified medium.

[ascl:1302.015]
DisPerSE: Discrete Persistent Structures Extractor

DisPerSE is open source software for the identification of persistent topological features such as peaks, voids, walls and in particular filamentary structures within noisy sampled distributions in 2D, 3D. Using DisPerSE, structure identification can be achieved through the computation of the discrete Morse-Smale complex. The software can deal directly with noisy datasets via the concept of persistence (a measure of the robustness of topological features). Although developed for the study of the properties of filamentary structures in the cosmic web of galaxy distribution over large scales in the Universe, the present version is quite versatile and should be useful for any application where a robust structure identification is required, such as for segmentation or for studying the topology of sampled functions (for example, computing persistent Betti numbers). Currently, it can be applied can work indifferently on many kinds of cell complex (such as structured and unstructured grids, 2D manifolds embedded within a 3D space, discrete point samples using delaunay tesselation, and Healpix tesselations of the sphere). The only constraint is that the distribution must be defined over a manifold, possibly with boundaries.

[ascl:1812.012]
distlink: Minimum orbital intersection distance (MOID) computation library

distlink computes the minimum orbital intersection distance (MOID), or global minimum of the distance between the points lying on two Keplerian ellipses by finding all stationary points of the distance function, based on solving an algebraic polynomial equation of 16th degree. The program tracks numerical errors and carefully treats nearly degenerate cases, including practical cases with almost circular and almost coplanar orbits. Benchmarks confirm its high numeric reliability and accuracy, and even with its error-controlling overheads, this algorithm is a fast MOID computation method that may be useful in processing large catalogs. Written in C++, the library also includes auxiliary functions.

[ascl:1910.004]
DM_phase: Algorithm for correcting dispersion of radio signals

DM_phase maximizes the coherent power of a radio signal instead of its intensity to calculate the best dispersion measure (DM) for a burst such as those emitted by pulsars and fast radio bursts (FRBs). It is robust to complex burst structures and interference, thus mitigating the limitations of traditional methods that search for the best DM value of a source by maximizing the signal-to-noise ratio (S/N) of the detected signal.

[ascl:1705.002]
DMATIS: Dark Matter ATtenuation Importance Sampling

DMATIS (Dark Matter ATtenuation Importance Sampling) calculates the trajectories of DM particles that propagate in the Earth's crust and the lead shield to reach the DAMIC detector using an importance sampling Monte-Carlo simulation. A detailed Monte-Carlo simulation avoids the deficiencies of the SGED/KS method that uses a mean energy loss description to calculate the lower bound on the DM-proton cross section. The code implementing the importance sampling technique makes the brute-force Monte-Carlo simulation of moderately strongly interacting DM with nucleons computationally feasible. DMATIS is written in Python 3 and MATHEMATICA.

[ascl:1506.002]
dmdd: Dark matter direct detection

The dmdd package enables simple simulation and Bayesian posterior analysis of recoil-event data from dark-matter direct-detection experiments under a wide variety of scattering theories. It enables calculation of the nuclear-recoil rates for a wide range of non-relativistic and relativistic scattering operators, including non-standard momentum-, velocity-, and spin-dependent rates. It also accounts for the correct nuclear response functions for each scattering operator and takes into account the natural abundances of isotopes for a variety of experimental target elements.

[ascl:2002.012]
DMRadon: Radon Transform calculation tools

DMRadon calculates the Radon Transform for use in the analysis of Directional Dark Matter Direct Detection. The code can calculate speed distributions, velocity distribution, velocity integral (eta) and Radon Transforms or a standard Maxwell-Boltzmann distribution. DMRadon also calculates the velocity distribution averaged over different angular bins.

[ascl:1010.029]
DNEST: Diffusive Nested Sampling

This code is a general Monte Carlo method based on Nested Sampling (NS) for sampling complex probability distributions and estimating the normalising constant. The method uses one or more particles, which explore a mixture of nested probability distributions, each successive distribution occupying ~e^-1 times the enclosed prior mass of the previous distribution. While NS technically requires independent generation of particles, Markov Chain Monte Carlo (MCMC) exploration fits naturally into this technique. This method can achieve four times the accuracy of classic MCMC-based Nested Sampling, for the same computational effort; equivalent to a factor of 16 speedup. An additional benefit is that more samples and a more accurate evidence value can be obtained simply by continuing the run for longer, as in standard MCMC.

[ascl:1604.007]
DNest3: Diffusive Nested Sampling

DNest3 is a C++ implementation of Diffusive Nested Sampling (ascl:1010.029), a Markov Chain Monte Carlo (MCMC) algorithm for Bayesian Inference and Statistical Mechanics. Relative to older DNest versions, DNest3 has improved performance (in terms of the sampling overhead, likelihood evaluations still dominate in general) and is cleaner code: implementing new models should be easier than it was before. In addition, DNest3 is multi-threaded, so one can run multiple MCMC walkers at the same time, and the results will be combined together.

[ascl:2012.014]
dolphin: Automated pipeline for lens modeling

Dolphin uniformly models large lens samples. It is a wrapper for Lenstronomy (ascl:1804.012), and features semi-automated modeling of a large sample of quasar and galaxy-galaxy lenses. Dolphin, written in Python, provides easy portability between local and MPI environments.

[ascl:1608.013]
DOLPHOT: Stellar photometry

DOLPHOT is a stellar photometry package that was adapted from HSTphot for general use. It supports two modes; the first is a generic PSF-fitting package, which uses analytic PSF models and can be used for any camera. The second mode uses ACS PSFs and calibrations, and is effectively an ACS adaptation of HSTphot. A number of utility programs are also included with the DOLPHOT distribution, including basic image reduction routines.

[ascl:1709.004]
DOOp: DAOSPEC Output Optimizer pipeline

Cantat-Gaudin, Tristan; Donati, Paolo; Pancino, Elena; Bragaglia, Angela; Vallenari, Antonella; Friel, Eileen D.; Sordo, Rosanna; Jacobson, Heather R.; Magrini, Laura

The DAOSPEC Output Optimizer pipeline (DOOp) runs efficient and convenient equivalent widths measurements in batches of hundreds of spectra. It uses a series of BASH scripts to work as a wrapper for the FORTRAN code DAOSPEC (ascl:1011.002) and uses IRAF (ascl:9911.002) to automatically fix some of the parameters that are usually set by hand when using DAOSPEC. This allows batch-processing of quantities of spectra that would be impossible to deal with by hand. DOOp was originally built for the large quantity of UVES and GIRAFFE spectra produced by the Gaia-ESO Survey, but just like DAOSPEC, it can be used on any high resolution and high signal-to-noise ratio spectrum binned on a linear wavelength scale.

[ascl:1206.011]
Double Eclipsing Binary Fitting

The parameters of the mutual orbit of eclipsing binaries that are physically connected can be obtained by precision timing of minima over time through light travel time effect, apsidal motion or orbital precession. This, however, requires joint analysis of data from different sources obtained through various techniques and with insufficiently quantified uncertainties. In particular, photometric uncertainties are often underestimated, which yields too small uncertainties in minima timings if determined through analysis of a χ2 surface. The task is even more difficult for double eclipsing binaries, especially those with periods close to a resonance such as CzeV344, where minima get often blended with each other.

This code solves the double binary parameters simultaneously and then uses these parameters to determine minima timings (or more specifically O-C values) for individual datasets. In both cases, the uncertainties (or more precisely confidence intervals) are determined through bootstrap resampling of the original data. This procedure to a large extent alleviates the common problem with underestimated photometric uncertainties and provides a check on possible degeneracies in the parameters and the stability of the results. While there are shortcomings to this method as well when compared to Markov Chain Monte Carlo methods, the ease of the implementation of bootstrapping is a significant advantage.

[ascl:1504.012]
DPI: Symplectic mapping for binary star systems for the Mercury software package

DPI is a FORTRAN77 library that supplies the symplectic mapping method for binary star systems for the Mercury N-Body software package (ascl:1201.008). The binary symplectic mapping is implemented as a hybrid symplectic method that allows close encounters and collisions between massive bodies and is therefore suitable for planetary accretion simulations.

[ascl:1804.003]
DPPP: Default Pre-Processing Pipeline

DPPP (Default Pre-Processing Pipeline, also referred to as NDPPP) reads and writes radio-interferometric data in the form of Measurement Sets, mainly those that are created by the LOFAR telescope. It goes through visibilities in time order and contains standard operations like averaging, phase-shifting and flagging bad stations. Between the steps in a pipeline, the data is not written to disk, making this tool suitable for operations where I/O dominates. More advanced procedures such as gain calibration are also included. Other computing steps can be provided by loading a shared library; currently supported external steps are the AOFlagger (ascl:1010.017) and a bridge that enables loading python steps.

[ascl:1303.025]
DPUSER: Interactive language for image analysis

DPUSER is an interactive language capable of handling numbers (both real and complex), strings, and matrices. Its main aim is to do astronomical image analysis, for which it provides a comprehensive set of functions, but it can also be used for many other applications.

[ascl:1712.005]
draco: Analysis and simulation of drift scan radio data

draco analyzes transit radio data with the m-mode formalism. It is telescope agnostic, and is used as part of the analysis and simulation pipeline for the CHIME (Canadian Hydrogen Intensity Mapping Experiment) telescope. It can simulate time stream data from maps of the sky (using the m-mode formalism) and add gain fluctuations and correctly correlated instrumental noise (i.e. Wishart distributed). Further, it can perform various cuts on the data and make maps of the sky from data using the m-mode formalism.

[ascl:1512.009]
DRACULA: Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy

Aguena, Michel; Busti, Vinicius C.; Camacho, Hugo; Sasdelli, Michele; Ishida, Emille E. O.; Vilalta, Ricardo; Trindade, Arlindo M. M.; Gieseke, Fabien; de Souza, Rafael S.; Fantaye, Yabebal T.; Mazzali, Paolo A.

DRACULA classifies objects using dimensionality reduction and clustering. The code has an easy interface and can be applied to separate several types of objects. It is based on tools developed in scikit-learn, with some usage requiring also the H2O package.

[ascl:1106.011]
DRAGON: Galactic Cosmic Ray Diffusion Code

DRAGON adopts a second-order Cranck-Nicholson scheme with Operator Splitting and time overrelaxation to solve the diffusion equation. This provides a fast solution that is accurate enough for the average user. Occasionally, users may want to have very accurate solutions to their problem. To enable this feature, users may get close to the accurate solution by using the fast method, and then switch to a more accurate solution scheme featuring the Alternating-Direction-Implicit (ADI) Cranck-Nicholson scheme.

[ascl:1011.009]
DRAGON: Monte Carlo Generator of Particle Production from a Fragmented Fireball in Ultrarelativistic Nuclear Collisions

A Monte Carlo generator of the final state of hadrons emitted from an ultrarelativistic nuclear collision is introduced. An important feature of the generator is a possible fragmentation of the fireball and emission of the hadrons from fragments. Phase space distribution of the fragments is based on the blast wave model extended to azimuthally non-symmetric fireballs. Parameters of the model can be tuned and this allows to generate final states from various kinds of fireballs. A facultative output in the OSCAR1999A format allows for a comprehensive analysis of phase-space distributions and/or use as an input for an afterburner. DRAGON's purpose is to produce artificial data sets which resemble those coming from real nuclear collisions provided fragmentation occurs at hadronisation and hadrons are emitted from fragments without any further scattering. Its name, DRAGON, stands for DRoplet and hAdron GeneratOr for Nuclear collisions. In a way, the model is similar to THERMINATOR, with the crucial difference that emission from fragments is included.

[ascl:1811.002]
DRAGONS: Gemini Observatory data reduction platform

DRAGONS (Data Reduction for Astronomy from Gemini Observatory North and South) is Gemini's Python-based data reduction platform. DRAGONS offers an automation system that allows for hands-off pipeline reduction of Gemini data, or of any other astronomical data once configured. The platform also allows researchers to control input parameters and in some cases will offer to interactively optimize some data reduction steps, e.g. change the order of fit and visualize the new solution.

[ascl:2012.024]
DRAGraces: Reduction pipeline for GRACES spectra

DRAGraces (Data Reduction and Analysis for GRACES) reduces GRACES spectra taken with the Gemini North high-resolution spectrograph. It finds GRACES frames in a given directory, determines the list of bias, flat, arc and science frames, and performs the reduction and extraction. Written in IDL, DRAGraces is straightforward and easy to use.

[ascl:1507.012]
DRAMA: Instrumentation software environment

DRAMA is a fast, distributed environment for writing instrumentation control systems. It allows low level instrumentation software to be controlled from user interfaces running on UNIX, MS Windows or VMS machines in a consistent manner. Such instrumentation tasks can run either on these machines or on real time systems such as VxWorks. DRAMA uses techniques developed by the AAO while using the Starlink-ADAM environment, but is optimized for the requirements of instrumentation control, portability, embedded systems and speed. A special program is provided which allows seamless communication between ADAM and DRAMA tasks.

[ascl:1504.006]
drive-casa: Python interface for CASA scripting

drive-casa provides a Python interface for scripting of CASA (ascl:1107.013) subroutines from a separate Python process, allowing for utilization alongside other Python packages which may not easily be installed into the CASA environment. This is particularly useful for embedding use of CASA subroutines within a larger pipeline. drive-casa runs plain-text casapy scripts directly; alternatively, the package includes a set of convenience routines which try to adhere to a consistent style and make it easy to chain together successive CASA reduction commands to generate a command-script programmatically.

[ascl:1212.011]
DrizzlePac: HST image software

DrizzlePac allows users to easily and accurately align and combine HST images taken at multiple epochs, and even with different instruments. It is a suite of supporting tasks for AstroDrizzle which includes:

- astrodrizzle to align and combine images

- tweakreg and tweakback for aligning images in different visits

- pixtopix transforms an X,Y pixel position to its pixel position after distortion corrections

- skytopix transforms sky coordinates to X,Y pixel positions. A reverse transformation can be done using the task pixtosky.

[ascl:1610.003]
DSDEPROJ: Direct Spectral Deprojection

Deprojection of X-ray data by methods such as PROJCT, which are model dependent, can produce large and unphysical oscillating temperature profiles. Direct Spectral Deprojection (DSDEPROJ) solves some of the issues inherent to model-dependent deprojection routines. DSDEPROJ is a model-independent approach, assuming only spherical symmetry, which subtracts projected spectra from each successive annulus to produce a set of deprojected spectra.

[ascl:1010.006]
DSPSR: Digital Signal Processing Software for Pulsar Astronomy

DSPSR, written primarily in C++, is an open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. The library implements an extensive range of modular algorithms for use in coherent dedispersion, filterbank formation, pulse folding, and other tasks. The software is installed and compiled using the standard GNU configure and make system, and is able to read astronomical data in 18 different file formats, including FITS, S2, CPSR, CPSR2, PuMa, PuMa2, WAPP, ASP, and Mark5.

[ascl:1501.004]
dst: Polarimeter data destriper

Dst is a fully parallel Python destriping code for polarimeter data; destriping is a well-established technique for removing low-frequency correlated noise from Cosmic Microwave Background (CMB) survey data. The software destripes correctly formatted HDF5 datasets and outputs hitmaps, binned maps, destriped maps and baseline arrays.

[ascl:1505.034]
dStar: Neutron star thermal evolution code

dStar is a collection of modules for computing neutron star structure and evolution, and uses the numerical, utility, and equation of state libraries of MESA (ascl:1010.083).

[ascl:2008.023]
DUCC: Distinctly Useful Code Collection

DUCC (Distinctly Useful Code Collection) provides basic programming tools for numerical computation, including Fast Fourier Transforms, Spherical Harmonic Transforms, non-equispaced Fourier transforms, as well as some concrete applications like 4pi convolution on the sphere and gridding/degridding of radio interferometry data. The code is written in C++17 and provides a simple and comprehensive Python

interface.

[ascl:1201.011]
Duchamp: A 3D source finder for spectral-line data

Duchamp is software designed to find and describe sources in 3-dimensional, spectral-line data cubes. Duchamp has been developed with HI (neutral hydrogen) observations in mind, but is widely applicable to many types of astronomical images. It features efficient source detection and handling methods, noise suppression via smoothing or multi-resolution wavelet reconstruction, and a range of graphical and text-based outputs to allow the user to understand the detections.

[ascl:1605.014]
DUO: Spectra of diatomic molecules

Duo computes rotational, rovibrational and rovibronic spectra of diatomic molecules. The software, written in Fortran 2003, solves the Schrödinger equation for the motion of the nuclei for the simple case of uncoupled, isolated electronic states and also for the general case of an arbitrary number and type of couplings between electronic states. Possible couplings include spin–orbit, angular momenta, spin-rotational and spin–spin. Introducing the relevant couplings using so-called Born–Oppenheimer breakdown curves can correct non-adiabatic effects.

[ascl:1503.005]
dust: Dust scattering and extinction in the X-ray

Written in Python, dust calculates X-ray dust scattering and extinction in the intergalactic and local interstellar media.

[ascl:1908.016]
DustCharge: Charge distribution for a dust grain

Ibáñez-Mejía, Juan C.; Walch, Stefanie; Ivlev, Alexei V.; Clarke, Seamus; Caselli, Paola; Joshi, Prabesh R.

DustCharge calculates the equilibrium charge distribution for a dust grain of a given size and composition, depending on the local interstellar medium conditions, such as density, temperature, ionization fraction, local radiation field strength, and cosmic ray ionization fraction.

[ascl:1307.001]
DustEM: Dust extinction and emission modelling

Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

[ascl:9911.001]
DUSTY: Radiation transport in a dusty environment

DUSTY solves the problem of radiation transport in a dusty environment. The code can handle both spherical and planar geometries. The user specifies the properties of the radiation source and dusty region, and the code calculates the dust temperature distribution and the radiation field in it. The solution method is based on a self-consistent equation for the radiative energy density, including dust scattering, absorption and emission, and does not introduce any approximations. The solution is exact to within the specified numerical accuracy. DUSTY has built in optical properties for the most common types of astronomical dust and comes with a library for many other grains. It supports various analytical forms for the density distribution, and can perform a full dynamical calculation for radiatively driven winds around AGB stars. The spectral energy distribution of the source can be specified analytically as either Planckian or broken power-law. In addition, arbitrary dust optical properties, density distributions and external radiation can be entered in user supplied files. Furthermore, the wavelength grid can be modified to accommodate spectral features. A single DUSTY run can process an unlimited number of models, with each input set producing a run of optical depths, as specified. The user controls the detail level of the output, which can include both spectral and imaging properties as well as other quantities of interest.

[ascl:1602.004]
DUSTYWAVE: Linear waves in gas and dust

Written in Fortran, DUSTYWAVE computes the exact solution for linear waves in a two-fluid mixture of gas and dust. The solutions are general with respect to both the dust-to-gas ratio and the amplitude of the drag coefficient.

[ascl:2011.007]
DYNAMITE: DYnamics, Age and Metallicity Indicators Tracing Evolution

DYNAMITE (DYnamics, Age and Metallicity Indicators Tracing Evolution) is a triaxial dynamical modeling code for stellar systems and is based on existing codes for Schwarzschild modeling in triaxial systems. DYNAMITE provides an easy-to-use object oriented Python wrapper that extends the scope of pre-existing triaxial Schwarzschild codes with a number of new features, including discrete kinematics, more flexible descriptions of line-of-sight velocity distributions, and modeling of stellar population information. It also offers more efficient steps through parameter space, and can use GPU acceleration.

[ascl:1809.013]
dynesty: Dynamic Nested Sampling package

dynesty is a Dynamic Nested Sampling package for estimating Bayesian posteriors and evidences. dynesty samples from a given distribution when provided with a loglikelihood function, a prior_transform function (that transforms samples from the unit cube to the target prior), and the dimensionality of the parameter space.

[ascl:1902.010]
dyPolyChord: Super fast dynamic nested sampling with PolyChord

dyPolyChord implements dynamic nested sampling using the efficient PolyChord (ascl:1502.011) sampler to provide state-of-the-art nested sampling performance. Any likelihoods and priors which work with PolyChord can be used (Python, C++ or Fortran), and the output files produced are in the PolyChord format.

[ascl:1407.017]
e-MERLIN data reduction pipeline

Written in Python and utilizing ParselTongue (ascl:1208.020) to interface with AIPS (ascl:9911.003), the e-MERLIN data reduction pipeline processes, calibrates and images data from the UK's radio interferometric array (Multi-Element Remote-Linked Interferometer Network). Driven by a plain text input file, the pipeline is modular and can be run in stages. The software includes options to load raw data, average in time and/or frequency, flag known sources of interference, flag more comprehensively with SERPent (ascl:1312.001), carry out some or all of the calibration procedures (including self-calibration), and image in either normal or wide-field mode. It also optionally produces a number of useful diagnostic plots at various stages so data quality can be assessed.

[ascl:1910.013]
E0102-VR: Virtual Reality application to visualize the optical ejecta in SNR 1E 0102.2-7219

E0102-VR facilitates the characterization of the 3D structure of the oxygen-rich optical ejecta in the young supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud. This room-scale Virtual Reality application written for the HTC Vive contributes to the exploration of the scientific potential of this technology for the field of observational astrophysics.

[ascl:1106.004]
E3D: The Euro3D Visualization Tool

E3D is a package of tools for the analysis and visualization of IFS data. It is capable of reading, writing, and visualizing reduced data from 3D spectrographs of any kind.

[ascl:1805.004]
EARL: Exoplanet Analytic Reflected Lightcurves package

EARL (Exoplanet Analytic Reflected Lightcurves) computes the analytic form of a reflected lightcurve, given a spherical harmonic decomposition of the planet albedo map and the viewing and orbital geometries. The EARL Mathematica notebook allows rapid computation of reflected lightcurves, thus making lightcurve numerical experiments accessible.

[ascl:1611.012]
EarthShadow: Calculator for dark matter particle velocity distribution after Earth-scattering

EarthShadow calculates the impact of Earth-scattering on the distribution of Dark Matter (DM) particles. The code calculates the speed and velocity distributions of DM at various positions on the Earth and also helps with the calculation of the average scattering probabilities. Tabulated data for DM-nuclear scattering cross sections and various numerical results, plots and animations are also included in the code package.

[ascl:1612.010]
Earthshine simulator: Idealized images of the Moon

Terrestrial albedo can be determined from observations of the relative intensity of earthshine. Images of the Moon at different lunar phases can be analyzed to derive the semi-hemispheric mean albedo of the Earth, and an important tool for doing this is simulations of the appearance of the Moon for any time. This software produces idealized images of the Moon for arbitrary times. It takes into account the libration of the Moon and the distances between Sun, Moon and the Earth, as well as the relevant geometry. The images of the Moon are produced as FITS files. User input includes setting the Julian Day of the simulation. Defaults for image size and field of view are set to produce approximately 1x1 degree images with the Moon in the middle from an observatory on Earth, currently set to Mauna Loa.

[ascl:1812.008]
easyaccess: SQL command line interpreter for astronomical surveys

easyaccess facilitates access to astronomical catalogs stored in SQL Databases. It is an enhanced command line interpreter and provides a custom interface with custom commands and was specifically designed to access data from the Dark Energy Survey Oracle database, including autocompletion of tables, columns, users and commands, simple ways to upload and download tables using csv, fits and HDF5 formats, iterators, search and description of tables among others. It can easily be extended to other surveys or SQL databases. The package is written in Python and supports customized addition of commands and functionalities.

[ascl:1011.013]
EasyLTB: Code for Testing LTB Models against CosmologyConfronting Lemaitre-Tolman-Bondi Models with Observational Cosmology

The possibility that we live in a special place in the universe, close to the centre of a large void, seems an appealing alternative to the prevailing interpretation of the acceleration of the universe in terms of a LCDM model with a dominant dark energy component. In this paper we confront the asymptotically flat Lemaitre-Tolman-Bondi (LTB) models with a series of observations, from Type Ia Supernovae to Cosmic Microwave Background and Baryon Acoustic Oscillations data. We propose two concrete LTB models describing a local void in which the only arbitrary functions are the radial dependence of the matter density Omega_M and the Hubble expansion rate H. We find that all observations can be accommodated within 1 sigma, for our models with 4 or 5 independent parameters. The best fit models have a chi^2 very close to that of the LCDM model. We perform a simple Bayesian analysis and show that one cannot exclude the hypothesis that we live within a large local void of an otherwise Einstein-de Sitter model.

[ascl:1010.052]
EAZY: A Fast, Public Photometric Redshift Code

EAZY, Easy and Accurate Zphot from Yale, determines photometric redshifts. The program is optimized for cases where spectroscopic redshifts are not available, or only available for a biased subset of the galaxies. The code combines features from various existing codes: it can fit linear combinations of templates, it includes optional flux- and redshift-based priors, and its user interface is modeled on the popular HYPERZ (ascl:1108.010) code. The default template set, as well as the default functional forms of the priors, are not based on (usually highly biased) spectroscopic samples, but on semi-analytical models. Furthermore, template mismatch is addressed by a novel rest-frame template error function. This function gives different wavelength regions different weights, and ensures that the formal redshift uncertainties are realistic. A redshift quality parameter, Q_z, provides a robust estimate of the reliability of the photometric redshift estimate.

Would you like to view a random code?