[ascl:1112.008]
GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1107.002]
GIBIS: Gaia Instrument and Basic Image Simulator

GIBIS is a pixel-level simulator of the Gaia mission. It is intended to simulate how the Gaia instruments will observe the sky, using realistic simulations of the astronomical sources and of the instrumental properties. It is a branch of the global Gaia Simulator under development within the Gaia DPAC CU2 Group (Data Simulations). Access is currently restricted to Gaia DPAC teams.

[ascl:1112.005]
GIDGET: Gravitational Instability-Dominated Galaxy Evolution Tool

Observations of disk galaxies at z~2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. GIDGET is a 1D simulation code, which we have made publicly available, that economically evolves these galaxies from z~2 to z~0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H$_2$ regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z~2 decreases along with the cosmological accretion rate, while at lower redshift, the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

[ascl:1305.010]
GILDAS: Grenoble Image and Line Data Analysis Software

GILDAS is a collection of software oriented toward (sub-)millimeter radioastronomical applications (either single-dish or interferometer). It has been adopted as the IRAM standard data reduction package and is jointly maintained by IRAM & CNRS. GILDAS contains many facilities, most of which are oriented towards spectral line mapping and many kinds of 3-dimensional data. The code, written in Fortran-90 with a few parts in C/C++ (mainly keyboard interaction, plotting, widgets), is easily extensible.

[ascl:1004.001]
GIM2D: Galaxy IMage 2D

GIM2D (Galaxy IMage 2D) is an IRAF/SPP package written to perform detailed bulge/disk decompositions of low signal-to-noise images of distant galaxies in a fully automated way. GIM2D takes an input image from HST or ground-based telescopes and outputs a galaxy-subtracted image as well as a catalog of structural parameters.

[ascl:1303.020]
Ginga: Flexible FITS viewer

Ginga is a viewer for astronomical data FITS (Flexible Image Transport System) files; the viewer centers around a FITS display widget which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, the FITS viewer provides a flexible plugin framework for extending the viewer with many different features. A fairly complete set of "standard" plugins are provided for expected features of a modern viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, and others. This viewer was written by software engineers at Subaru Telescope, National Astronomical Observatory of Japan, and is in use at that facility.

[ascl:1109.018]
GIPSY: Groningen Image Processing System

GIPSY is an acronym of Groningen Image Processing SYstem. It is a highly interactive software system for the reduction and display of astronomical data. It supports multi-tasking using a versatile user interface, it has an advanced data structure, a powerful script language and good display facilities based on the X Window system.

GIPSY consists of a number of components which can be divided into a number of classes:

- The user interfaces. Currently two user interfaces are available; one for interactive work and one for batch processing.
- The data structure.
- The display utilities.
- The application programs. These are the majority of programs.

[ascl:1810.012]
GiRaFFE: General relativistic force-free electrodynamics code

GiRaFFE leverages the Einstein Toolkit's (ascl:1102.014) highly-scalable infrastructure to create large-scale simulations of magnetized plasmas in strong, dynamical spacetimes on adaptive-mesh refinement (AMR) grids. It is based on IllinoisGRMHD, a user-friendly, open-source, dynamical-spacetime GRMHD code, and is highly scalable, to tens of thousands of cores.

[ascl:1410.003]
GIZMO: Multi-method magneto-hydrodynamics+gravity code

GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

[ascl:1805.025]
GLACiAR: GaLAxy survey Completeness AlgoRithm

GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

[ascl:1812.002]
GLADIS: GLobal Accretion Disk Instability Simulation

GLADIS (GLobal Accretion Disk Instability Simulation) computes the time-dependent evolution of a black hole accretion disk, in one-dimensional, axisymmetric, vertically integrated scheme. The code solves two partial-differential equations of hydrodynamics for surface density and temperature evolution, *i.e.*, given by viscous diffusion and energy conservation. Accretion disks can be subject to radiation-pressure instability if the stress tensor is proportional to the total (gas plus radiation) pressure. In the gas-pressure dominated case there is no instability. An intermediate case is provided in the code by the square root of the gas and total pressures. GLADIS is parallelized with MPI, and sample .ini and run command files are provided with the code.

[ascl:1010.012]
glafic: Software Package for Analyzing Gravitational Lensing

glafic is a public software package for analyzing gravitational lensing. It offers many features including computations of various lens properties for many mass models, solving the lens equation using an adaptive grid algorithm, simulations of lensed extended images with PSF convolved, and efficient modeling of observed strong lens systems.

[ascl:1806.009]
GLASS: Parallel, free-form gravitational lens modeling tool and framework

GLASS models strong gravitational lenses. It produces an ensemble of possible models that fit the observed input data and conform to certain constraints specified by the user. GLASS makes heavy use of the numerical routines provided by the numpy and scipy packages as well as the linear programming package GLPK. This latter package, and its Python interface, is provided with GLASS and installs automatically in the GLASS build directory.

[ascl:1103.006]
GLESP 2.0: Gauss-Legendre Sky Pixelization for CMB Analysis

Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

GLESP is a pixelization scheme for the cosmic microwave background (CMB) radiation maps. This scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map.

[ascl:1802.010]
Glimpse: Sparsity based weak lensing mass-mapping tool

Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

[ascl:1110.008]
Glnemo2: Interactive Visualization 3D Program

Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface.

Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

[ascl:1011.010]
Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available in the archive file at the link below.

[ascl:1807.019]
GLS: Generalized Lomb-Scargle periodogram

The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. GLS is a solution for the generalization to a full sine wave fit, including an offset and weights (χ2 fitting). Compared to the Lomb-Scargle periodogram, GLS is superior as it provides more accurate frequencies, is less susceptible to aliasing, and gives a much better determination of the spectral intensity.

[ascl:1402.002]
Glue: Linked data visualizations across multiple files

Glue, written in Python, links visualizations of scientific datasets across many files, allowing for interactive, linked statistical graphics of multiple files. It supports many file formats including common image formats (jpg, tiff, png), ASCII tables, astronomical image and table formats (FITS, VOT, IPAC), and HDF5. Custom data loaders can also be easily added. Glue is highly scriptable and extendable.

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1708.013]
GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:1801.009]
Gnuastro: GNU Astronomy Utilities

Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

[ascl:1210.003]
GOSSIP: SED fitting code

GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.

[ascl:1210.001]
GP2PCF: Brute-force computation of 2-point correlation functions

The two-point correlation function is a simple statistic that quantifies the clustering of a given distribution of objects. In studies of the large scale structure of the Universe, it is an important tool containing information about the matter clustering and the evolution of the Universe at different cosmological epochs. A classical application of this statistic is the galaxy-galaxy correlation function to find constraints on the parameter Omega_m or the location of the baryonic acoustic oscillation peak. This calculation, however, is very expensive in terms of computer power and Graphics Processing Units provide one solution for efficient analysis of the increasingly larger galaxy surveys that are currently taking place.

GP2PCF is a public code in CUDA for performing this computation; with a single GPU board it is possible to achieve 120-fold speedups with respect to a standard implementation in C running on a single CPU. With respect to other solutions such as k-trees the improvement is of a factor of a few retaining full precision. The speedup is comparable to running in parallel in a cluster of O(100) cores.

[ascl:1512.006]
GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

[ascl:1603.004]
gPhoton: Time-tagged GALEX photon events analysis tools

Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

[ascl:1411.018]
GPI Pipeline: Gemini Planet Imager Data Pipeline

The GPI data pipeline allows users to reduce and calibrate raw GPI data into spectral and polarimetric datacubes, and to apply various PSF subtraction methods to those data. Written in IDL and available in a compiled version, the software includes an integrated calibration database to manage reference files and an interactive data viewer customized for high contrast imaging that allows exploration and manipulation of data.

[ascl:1403.001]
GPU-D: Generating cosmological microlensing magnification maps

GPU-D is a GPU-accelerated implementation of the inverse ray-shooting technique used to generate cosmological microlensing magnification maps. These maps approximate the source plane magnification patterns created by an ensemble of stellar-mass compact objects within a foreground macrolens galaxy. Unlike other implementations, GPU-D solves the gravitational lens equation without any approximation. Due to the high computational intensity and high degree of parallelization inherent in the algorithm, it is ideal for brute-force implementation on GPUs. GPU-D uses CUDA for GPU acceleration and require NVIDIA devices to run.

[ascl:1010.022]
GR1D: Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes

GR1D is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D.

[ascl:1612.020]
Grackle: Chemistry and radiative cooling library for astrophysical simulations

Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh

The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

[ascl:1010.080]
GRACOS: Scalable and Load Balanced P3M Cosmological N-body Code

The GRACOS (GRAvitational COSmology) code, a parallel implementation of the particle-particle/particle-mesh (P3M) algorithm for distributed memory clusters, uses a hybrid method for both computation and domain decomposition. Long-range forces are computed using a Fourier transform gravity solver on a regular mesh; the mesh is distributed across parallel processes using a static one-dimensional slab domain decomposition. Short-range forces are computed by direct summation of close pairs; particles are distributed using a dynamic domain decomposition based on a space-filling Hilbert curve. A nearly-optimal method was devised to dynamically repartition the particle distribution so as to maintain load balance even for extremely inhomogeneous mass distributions. Tests using $800^3$ simulations on a 40-processor beowulf cluster showed good load balance and scalability up to 80 processes. There are limits on scalability imposed by communication and extreme clustering which may be removed by extending the algorithm to include adaptive mesh refinement.

[ascl:1106.008]
GRAFIC-2: Multiscale Gaussian Random Fields for Cosmological Simulations

This paper describes the generation of initial conditions for numerical simulations in cosmology with multiple levels of resolution, or multiscale simulations. We present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementation and testing of a computer code package performing this refinement called GRAFIC-2.

[ascl:1011.021]
GRALE: A genetic algorithm for the non-parametric inversion of strong lensing systems

We present a non-parametric technique to infer the projected-mass distribution of a gravitational lens system with multiple strong-lensed images. The technique involves a dynamic grid in the lens plane on which the mass distribution of the lens is approximated by a sum of basis functions, one per grid cell. We used the projected mass densities of Plummer spheres as basis functions. A genetic algorithm then determines the mass distribution of the lens by forcing images of a single source, projected back onto the source plane, to coincide as well as possible. Averaging several tens of solutions removes the random fluctuations that are introduced by the reproduction process of genomes in the genetic algorithm and highlights those features common to all solutions. Given the positions of the images and the redshifts of the sources and the lens, we show that the mass of a gravitational lens can be retrieved with an accuracy of a few percent and that, if the sources sufficiently cover the caustics, the mass distribution of the gravitational lens can also be reliably retrieved. A major advantage of the algorithm is that it makes full use of the information contained in the radial images, unlike methods that minimise the residuals of the lens equation, and is thus able to accurately reconstruct also the inner parts of the lens.

[ascl:1812.011]
GRAND-HOD: GeneRalized ANd Differentiable Halo Occupation Distribution

GRAND-HOD (GeneRalized ANd Differentiable Halo Occupation Distribution) takes a generalized Halo Occupation Distribution (HOD) prescription as input and outputs the corresponding mock galaxy catalogs in binary files. The code is differentiable and incorporates various generalizations to the standard HOD. It is written for the Abacus simulations, but the main functionalities can be easily adapted for other halo catalogs with the appropriate properties.

[ascl:1204.006]
GRASIL: Spectral evolution of stellar systems with dust

GRASIL (which stands for GRAphite and SILicate) computes the spectral evolution of stellar systems taking into account the effects of dust, which absorbs and scatters optical and UV photons and emits in the IR-submm region. It may be used as well to do “standard” no-dust stellar spectral synthesis. The code is very well calibrated and applied to interpret galaxies at different redshifts. GRASIL can be downloaded or run online using the GALSYNTH WEB interface.

[ascl:1609.008]
GRASP: General-purpose Relativistic Atomic Structure Package

GRASP (General-purpose Relativistic Atomic Structure Package) calculates atomic structure, including energy levels, radiative rates (A-values) and lifetimes; it is a fully relativistic code based on the *jj* coupling scheme. This code has been superseded by GRASP2K (ascl:1611.007).

[ascl:1611.007]
GRASP2K: Relativistic Atomic Structure Package

GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from *jj*- to *LSJ*-coupling, and coefficients of fractional parentage have been extended to *j*=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in *LSJLSJ* intermediate coupling.

[ascl:1902.004]
GraviDy: Gravitational Dynamics

GraviDy performs N-body 3D visualizations; it is a GPU, direct-summation N-body integrator based on the Hermite scheme and includes relativistic corrections for sources of gravitational radiation. The software is modular, allowing users to readily introduce new physics, and exploits available computational resources. The software can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version.

[ascl:1102.003]
GRAVLENS: Computational Methods for Gravitational Lensing

Modern applications of strong gravitational lensing require the ability to use precise and varied observational data to constrain complex lens models. Two sets of computational methods for lensing calculations are discussed. The first is a new algorithm for solving the lens equation for general mass distributions. This algorithm makes it possible to apply arbitrarily complicated models to observed lenses. The second is an evaluation of techniques for using observational data including positions, fluxes, and time delays of point-like images, as well as maps of extended images, to constrain models of strong lenses. The techniques presented here are implemented in a flexible and user-friendly software package called gravlens, which is made available to the community.

[ascl:1403.005]
GRay: Massive parallel ODE integrator

GRay is a massive parallel ordinary differential equation integrator that employs the "stream processing paradigm." It is designed to efficiently integrate billions of photons in curved spacetime according to Einstein's general theory of relativity. The code is implemented in CUDA C/C++.

[ascl:1701.008]
GrayStar: Web-based pedagogical stellar modeling

GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.

[ascl:1701.009]
GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

[ascl:1302.007]
GRID-core: Gravitational Potential Identification of Cores

GRID-core is a core-finding method using the contours of the local gravitational potential to identify core boundaries. The GRID-core method applied to 2D surface density and 3D volume density are in good agreement for bound cores. We have implemented a version of the GRID-core algorithm in IDL, suitable for core-finding in observed maps. The required input is a two-dimensional FITS file containing a map of the column density in a region of a cloud.

[ascl:1702.012]
GRIM: General Relativistic Implicit Magnetohydrodynamics

GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

[ascl:1306.002]
grmonty: Relativistic radiative transport Monte Carlo code

grmonty is a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The code models hot accretion flows in the Kerr metric, it incorporates synchrotron emission and absorption and Compton scattering. grmonty can be readily generalized to account for other radiative processes and an arbitrary spacetime.

[ascl:1512.018]
growl: Growth factor and growth rate of expanding universes

Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

[ascl:1605.013]
grtrans: Polarized general relativistic radiative transfer via ray tracing

grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).

[ascl:1503.009]
GSD: Global Section Datafile access library

Tilanus, Remo; Meyerdierks, Horst; Jenness, Tim; Fairclough, Jon; Padman, Rachael; Redman, Russell; Cockayne, Steve

The GSD library reads data written in the James Clerk Maxwell Telescope GSD format. This format uses the General Single-Dish Data model and was used at the JCMT until 2005. The library provides an API to open GSD files and read their contents. The content of the data files is self-describing and the library can return the type and name of any component. The library is used by SPECX (ascl:1310.008), JCMTDR (ascl:1406.019) and COADD (ascl:1411.020). The SMURF (ascl:1310.007) package can convert GSD heterodyne data files to ACSIS format using this library.

[ascl:1806.008]
gsf: galactic structure finder

Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Stinson, Gregory S.; Wang, Liang

gsf applies Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. The gsf analysis package assumes that the simulation snapshot has been pre-processed with a halo finder. It is based on pynbody (ascl:1305.002) and the scikit-learnpython package for Machine Learning; after loading, orienting, and transforming a simulation snapshot to physical units, it runs the clustering algorithm and performs the direct N-body gravity force using all the particles in the given halo.

[ascl:1610.005]
GSGS: In-Focus Phase Retrieval Using Non-Redundant Mask Data

GSGS does phase retrieval on images given an estimate of the pupil phase (from a non-redundant mask or other interferometric approach), the pupil geometry, and the in-focus image. The code uses a modified Gerchberg-Saxton algorithm that iterates between pupil plane and image plane to measure the pupil phase.

[ascl:1701.011]
GWFrames: Manipulate gravitational waveforms

GWFrames eliminates all rotational behavior, thus simplifying the waveform as much as possible and allowing direct generalizations of methods for analyzing nonprecessing systems. In the process, the angular velocity of a waveform is introduced, which also has important uses, such as supplying a partial solution to an important inverse problem.

[ascl:1203.005]
Gyoto: General relativitY Orbit Tracer of Observatoire de Paris

GYOTO, a general relativistic ray-tracing code, aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.

[ascl:1308.010]
GYRE: Stellar oscillation code

GYRE is an oscillation code that solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes. The code is accurate (up to 6th order in the number of grid points), robust, and makes efficient use of multiple processor cores and/or nodes.

[ascl:1402.031]
gyrfalcON: N-body code

gyrfalcON (GalaxY simulatoR using falcON) is a full-fledged N-body code using Dehnen’s force algorithm of complexity O(N) (falcON); this algorithm is approximately 10 times faster than an optimally coded tree code. The code features individual adaptive time steps and individual (but fixed) softening lengths. gyrfalcON is included in and requires NEMO to run.

[ascl:1402.032]
HALOFIT: Nonlinear distribution of cosmological mass and galaxies

HALOFIT provides an explanatory framework for galaxy bias and clustering and has been incorporated into CMB packages such as CMBFAST (ascl:9909.004) and CAMB (ascl:1102.026). It attains a reasonable level of precision, though the halo model does not match N-body data perfectly. The code is written in Fortran 77. HALOFIT tends to underpredict the power on the smallest scales in standard LCDM universes (although HALOFIT was designed to work for a much wider range of power spectra); its accuracy can be improved by using a supplied correction.

[ascl:1010.053]
Halofitting codes for DGP and Degravitation

We perform N-body simulations of theories with infinite-volume extra dimensions, such as the Dvali-Gabadadze-Porrati (DGP) model and its higher-dimensional generalizations, where 4D gravity is mediated by massive gravitons. The longitudinal mode of these gravitons mediates an extra scalar force, which we model as a density-dependent modification to the Poisson equation. This enhances gravitational clustering, particularly on scales that have undergone mild nonlinear processing. While the standard non-linear fitting algorithm of Smith et al. overestimates this power enhancement on non-linear scales, we present a modified fitting formula that offers a remarkably good fit to our power spectra. Due to the uncertainty in galaxy bias, our results are consistent with precision power spectrum determinations from galaxy redshift surveys, even for graviton Compton wavelengths as small as 300 Mpc. Our model is sufficiently general that we expect it to capture the phenomenology of a wide class of related higher-dimensional gravity scenarios.

[ascl:1505.017]
HALOGEN: Approximate synthetic halo catalog generator

HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

[ascl:1407.020]
Halogen: Multimass spherical structure models for N-body simulations

Halogen, written in C, generates multimass spherically symmetric initial conditions for N-body simulations. A large family of radial density profiles is supported. The initial conditions are sampled from the full distribution function.

[ascl:1604.005]
Halotools: Galaxy-Halo connection models

Hearin, Andrew; Tollerud, Erik; Robitaille,Thomas; Droettboom, Michael; Zentner, Andrew; Bray, Erik; Craig, Matt; Bradley, Larry; Barbary, Kyle; Deil, Christoph; Tan, Kevin; Becker, Matthew R.; More, Surhud; Günther, Hans Moritz; Sipocz, Brigitta

Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

[ascl:1210.022]
HAM2D: 2D Shearing Box Model

HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.

[ascl:1201.014]
Hammurabi: Simulating polarized Galactic synchrotron emission

The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

[ascl:1209.005]
HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

HARM uses a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, & van Leer scheme. A variant of constrained transport, proposed earlier by Tóth, is used to maintain a divergence-free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. On smooth flows HARM converges at second order.

[ascl:1306.003]
Harmony: Synchrotron Emission Coefficients

Harmony is a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function.

[ascl:1109.004]
HAZEL: HAnle and ZEeman Light

A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. HAZEL is a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 1083.0 nm and 587.6 nm (or D3) multiplets. It is based on the quantum theory of spectral line polarization, which takes into account in a rigorous way all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, level crossings and repulsions, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods.

[ascl:1711.022]
HBT: Hierarchical Bound-Tracing

HBT is a Hierarchical Bound-Tracing subhalo finder and merger tree builder, for numerical simulations in cosmology. It tracks haloes from birth and continues to track them after mergers, finding self-bound structures as subhaloes and recording their merger histories as merger trees.

[ascl:1711.023]
HBT+: Subhalo finder and merger tree builder

HBT+ is a hybrid subhalo finder and merger tree builder for cosmological simulations. It comes as an MPI edition that can be run on distributed clusters or shared memory machines and is MPI/OpenMP parallelized, and also as an OpenMP edition that can be run on shared memory machines and is only OpenMP parallelized. This version is more memory efficient than the MPI branch on shared memory machines, and is more suitable for analyzing zoomed-in simulations that are difficult to balance on distributed clusters. Both editions support hydro simulations with gas/stars.

[ascl:1502.009]
HDS: Hierarchical Data System

Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).

HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

[ascl:1107.018]
HEALPix: Hierarchical Equal Area isoLatitude Pixelization of a sphere

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere. As suggested in the name, this pixelization produces a subdivision of a spherical surface in which each pixel covers the same surface area as every other pixel. Another property of the HEALPix grid is that the pixel centers occur on a discrete number of rings of constant latitude, the number of constant-latitude rings is dependent on the resolution of the HEALPix grid.

[ascl:1408.004]
HEAsoft: Unified Release of FTOOLS and XANADU

HEASOFT combines XANADU, high-level, multi-mission software for X-ray astronomical spectral, timing, and imaging data analysis tasks, and FTOOLS (ascl:9912.002), general and mission-specific software to manipulate FITS files, into one package. It also contains contains the NuSTAR subpackage of tasks, NuSTAR Data Analysis Software (NuSTARDAS). The source code for the software can be downloaded; precompiled executables for the most widely used computer platforms are also available for download. As an additional service, HEAsoft tasks can be directly from a web browser via WebHera.

[ascl:1506.009]
HEATCVB: Coronal heating rate approximations

HEATCVB is a stand-alone Fortran 77 subroutine that estimates the local volumetric coronal heating rate with four required inputs: the radial distance r, the wind speed u, the mass density ρ, and the magnetic field strength |B0|. The primary output is the heating rate Qturb at the location defined by the input parameters. HEATCVB also computes the local turbulent dissipation rate of the waves, γ = Qturb/(2UA).

[ascl:1903.017]
HelioPy: Heliospheric and planetary physics library

HelioPy provides a set of tools to download and read in data, and carry out other common data processing tasks for heliospheric and planetary physics. It handles a wide variety of solar and satellite data and builds upon the SpiceyPy package (ascl:1903.016) to provide an accessible interface for performing orbital calculations. It has also implemented a framework to perform transformations between some common coordinate systems.

[ascl:1503.004]
HELIOS-K: Opacity Calculator for Radiative Transfer

HELIOS-K is an opacity calculator for exoplanetary atmospheres. It takes a line list as an input and computes the line shapes of an arbitrary number of spectral lines (~millions to billions). HELIOS-K is capable of computing 100,000 spectral lines in 1 second; it is written in CUDA, is optimized for graphics processing units (GPUs), and can be used with the HELIOS radiative transfer code (ascl:1807.009).

[ascl:1807.009]
HELIOS: Radiative transfer code for exoplanetary atmospheres

Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

HELIOS, a radiative transfer code, is constructed for studying exoplanetary atmospheres. The model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. Though HELIOS can be used alone, the opacity calculator HELIOS-K (ascl:1503.004) can be used with it to provide the molecular opacities.

[ascl:1805.019]
HENDRICS: High ENergy Data Reduction Interface from the Command Shell

HENDRICS, a rewrite and update to MaLTPyNT (ascl:1502.021), contains command-line scripts based on Stingray (ascl:1608.001) to perform a quick-look (spectral-)timing analysis of X-ray data, treating the gaps in the data due, e.g., to occultation from the Earth or passages through the SAA, properly. Despite its original main focus on NuSTAR, HENDRICS can perform standard aperiodic timing analysis on X-ray data from, in principle, any other satellite, and its features include power density and cross spectra, time lags, pulsar searches with the Epoch folding and the Z_n^2 statistics, color-color and color-intensity diagrams. The periodograms produced by HENDRICS (such as a power density spectrum or a cospectrum) can be saved in a format compatible with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002)

[ascl:1102.016]
HERACLES: 3D Hydrodynamical Code to Simulate Astrophysical Fluid Flows

Audit, Edouard; González, Matthias; Vaytet, Neil; Fromang, Sebastien; Hennebelle, Patrick; Teyssier, Romain; Tremblin, Pascal; Thooris, Bruno

HERACLES is a 3D hydrodynamical code used to simulate astrophysical fluid flows. It uses a finite volume method on fixed grids to solve the equations of hydrodynamics, MHD, radiative transfer and gravity. This software is developed at the Service d'Astrophysique, CEA/Saclay as part of the COAST project and is registered under the CeCILL license. HERACLES simulates astrophysical fluid flows using a grid based Eulerian finite volume Godunov method. It is capable of simulating pure hydrodynamical flows, magneto-hydrodynamic flows, radiation hydrodynamic flows (using either flux limited diffusion or the M1 moment method), self-gravitating flows using a Poisson solver or all of the above. HERACLES uses cartesian, spherical and cylindrical grids.

[ascl:1808.005]
hfof: Friends-of-Friends via spatial hashing

hfof is a 3-d friends-of-friends (FoF) cluster finder with Python bindings based on a fast spatial hashing algorithm that identifies connected sets of points where the point-wise connections are determined by a fixed spatial distance. This technique sorts particles into fine cells sufficiently compact to guarantee their cohabitants are linked, and uses locality sensitive hashing to search for neighboring (blocks of) cells. Tests on N-body simulations of up to a billion particles exhibit speed increases of factors up to 20x compared with FOF via trees, and is consistently complete in less than the time of a k-d tree construction, giving it an intrinsic advantage over tree-based methods.

[ascl:1607.011]
HfS: Hyperfine Structure fitting tool

HfS fits the hyperfine structure of spectral lines, with multiple velocity components. The HfS_nh3 procedures included in HfS fit simultaneously the hyperfine structure of the NH_{3} (J,K)= (1,1) and (2,2) inversion transitions, and perform a standard analysis to derive the NH_{3} column density, rotational temperature T_{rot}, and kinetic temperature Tk. HfS uses a Monte Carlo approach for fitting the line parameters, with special attention to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

[ascl:1801.004]
hh0: Hierarchical Hubble Constant Inference

hh0 is a Bayesian hierarchical model (BHM) that describes the full distance ladder, from nearby geometric-distance anchors through Cepheids to SNe in the Hubble flow. It does not rely on any of the underlying distributions being Gaussian, allowing outliers to be modeled and obviating the need for any arbitrary data cuts.

[submitted]
HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1808.010]
hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System

hi_class implements Horndeski's theory of gravity in the modern Cosmic Linear Anisotropy Solving System (ascl:1106.020). It can be used to compute any cosmological observable at the level of background or linear perturbations, such as cosmological distances, cosmic microwave background, matter power and number count spectra (including relativistic effects). hi_class can be readily interfaced with Monte Python (ascl:1307.002) to test Gravity and Dark Energy models.

[ascl:1606.004]
HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

[ascl:1607.019]
HIDE: HI Data Emulator

Akeret, Joel; Seehars, Sebastian; Chang, Chihway; Monstein, Christian; Amara, Adam; Refregier, Alexandre

HIDE (HI Data Emulator) forward-models the process of collecting astronomical radio signals in a single dish radio telescope instrument and outputs pixel-level time-ordered-data. Written in Python, HIDE models the noise and RFI modeling of the data and with its companion code SEEK (ascl:1607.020) provides end-to-end simulation and processing of radio survey data.

[ascl:1802.007]
HiGal_SED_Fitter: SED fitting tools for Herschel Hi-Gal data

HiGal SED Fitter fits modified blackbody SEDs to Herschel data, specifically targeted at Herschel Hi-Gal data.

[ascl:1010.065]
Higher Post Newtonian Gravity Calculations

Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski spacetime to O[(v/c)^4] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2 body problem, the major efforts underway to measure gravitational waves produced by in-spiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c)^7]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c)^6] beyond Newton are derived.

[ascl:1207.002]
HiGPUs: Hermite's N-body integrator running on Graphic Processing Units

HiGPUs is an implementation of the numerical integration of the classical, gravitational, N-body problem, based on a 6th order Hermite’s integration scheme with block time steps, with a direct evaluation of the particle-particle forces. The main innovation of this code is its full parallelization, exploiting both OpenMP and MPI in the use of the multicore Central Processing Units as well as either Compute Unified Device Architecture (CUDA) or OpenCL for the hosted Graphic Processing Units. We tested both performance and accuracy of the code using up to 256 GPUs in the supercomputer IBM iDataPlex DX360M3 Linux Infiniband Cluster provided by the italian supercomputing consortium CINECA, for values of N ≤ 8 millions. We were able to follow the evolution of a system of 8 million bodies for few crossing times, task previously unreached by direct summation codes.

HiGPUs is also available as part of the AMUSE project.

[ascl:1807.008]
HII-CHI-mistry_UV: Oxygen abundance and ionizionation parameters for ultraviolet emission lines

HII-CHI-mistry_UV derives oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas phase ionized by massive stars. The code first fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionization parameter from carbon lines in the UV. An optical version of this Python code, HII-CHI-mistry (ascl:1807.007), is also available.

[ascl:1807.007]
HII-CHI-mistry: Oxygen abundance and ionizionation parameters for optical emission lines

HII-CHI-mistry calculates the oxygen abundance for gaseous nebulae ionized by massive stars using optical collisionally excited emission lines. This code takes the extinction-corrected emission line fluxes and, based on a *Χ*^{2} minimization on a photoionization models grid, determines chemical-abundances (O/H, N/O) and ionization parameters. An ultraviolet version of this Python code, HII-CHI-mistry-UV (ascl:1807.008), is also available.

[ascl:1603.017]
HIIexplorer: Detect and extract integrated spectra of HII regions

HIIexplorer detects and extracts the integrated spectra of HII regions from IFS datacubes. The procedure assumes H ii regions are peaky/isolated structures with a strong ionized gas emission, clearly above the continuum emission and the average ionized gas emission across the galaxy and that H ii regions have a typical physical size of about a hundred or a few hundreds of parsecs, which corresponds to a typical projected size at the distance of the galaxies of a few arcsec for galaxies at z~0.016. All input parameters can be derived from either a visual inspection and/or a statistical analysis of the Hα emission line map. The algorithm produces a segmentation FITS file describing the pixels associated to each H ii region.

[ascl:1405.005]
HIIPHOT: Automated Photometry of H II Regions

HIIPHOT enables accurate photometric characterization of H II regions while permitting genuine adaptivity to irregular source morphology. It makes a first guess at the shapes of all sources through object recognition techniques; it then allows for departure from such idealized "seeds" through an iterative growing procedure and derives photometric corrections for spatially coincident diffuse emission from a low-order surface fit to the background after exclusion of all detected sources.

[ascl:1111.001]
HIPE: Herschel Interactive Processing Environment

The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity.

[ascl:1507.008]
HLINOP: Hydrogen LINe OPacity in stellar atmospheres

HLINOP is a collection of codes for computing hydrogen line profiles and opacities in the conditions typical of stellar atmospheres. It includes HLINOP for approximate quick calculation of any line of neutral hydrogen (suitable for model atmosphere calculations), based on the Fortran code of Kurucz and Peterson found in ATLAS9. It also includes HLINPROF, for detailed, accurate calculation of lower Balmer line profiles (suitable for detailed analysis of Balmer lines) and HBOP, to implement the occupation probability formalism of Daeppen, Anderson and Milhalas (1987) and thus account for the merging of bound-bound and bound-free opacity (used often as a wrapper to HLINOP for model atmosphere calculations).

[ascl:1508.001]
HMcode: Halo-model matter power spectrum computation

HMcode computes the halo-model matter power spectrum. It is written in Fortran90 and has been designed to quickly (~0.5s for 200 k-values across 16 redshifts on a single core) produce matter spectra for a wide range of cosmological models. In testing it was shown to match spectra produced by the 'Coyote Emulator' to an accuracy of 5 per cent for k less than 10h Mpc^-1. However, it can also produce spectra well outside of the parameter space of the emulator.

[ascl:1412.006]
HMF: Halo Mass Function calculator

HMF calculates the Halo Mass Function (HMF) given any set of cosmological parameters and fitting function and serves as the backend for the web application HMFcalc. Written in Python, it allows for dynamic accurate calculation of the transfer function with CAMB (ascl:1102.026) and efficient and self-consistent parameter updates. HMF offers exploration of the effects of cosmological parameters, redshift and fitting function on the predicted HMF.

[ascl:1201.010]
HNBody: Hierarchical N-Body Symplectic Integration Package

HNBody is a new set of software utilities geared to the integration of hierarchical (nearly-Keplerian) N-body systems. Our focus is on symplectic methods, and we have included explicit support for three classes of particles (heavy, light, and massless), second and fourth order methods, post-Newtonian corrections, and the use of a symplectic corrector (among other things). For testing purposes, we also provide support for more general integration schemes (Bulirsch-Stoer & Runge-Kutta). Configuration files employing an intuitive syntax allow for easy problem setup, and many simple simulations can be done without the user compiling any code. Low-level interfaces are also available, enabling extensive customization.

[ascl:1711.013]
HO-CHUNK: Radiation Transfer code

HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:1102.019]
HOP: A Group-finding Algorithm for N-body Simulations

We describe a new method (HOP) for identifying groups of particles in N-body simulations. Having assigned to every particle an estimate of its local density, we associate each particle with the densest of the Nh particles nearest to it. Repeating this process allows us to trace a path, within the particle set itself, from each particle in the direction of increasing density. The path ends when it reaches a particle that is its own densest neighbor; all particles reaching the same such particle are identified as a group. Combined with an adaptive smoothing kernel for finding the densities, this method is spatially adaptive, coordinate-free, and numerically straight-forward. One can proceed to process the output by truncating groups at a particular density contour and combining groups that share a (possibly different) density contour. While the resulting algorithm has several user-chosen parameters, we show that the results are insensitive to most of these, the exception being the outer density cutoff of the groups.

[ascl:1411.005]
HOPE: Just-in-time Python compiler for astrophysical computations

HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

[ascl:1504.004]
HOTPANTS: High Order Transform of PSF ANd Template Subtraction

HOTPANTS (High Order Transform of PSF ANd Template Subtraction) implements the Alard 1999 algorithm for image subtraction. It photometrically aligns one input image with another after they have been astrometrically aligned.

[ascl:1702.008]
HOURS: Simulation and analysis software for the KM3NeT

The Hellenic Open University Reconstruction & Simulation (HOURS) software package contains a realistic simulation package of the detector response of very large (km3-scale) underwater neutrino telescopes, including an accurate description of all the relevant physical processes, the production of signal and background as well as several analysis strategies for triggering and pattern recognition, event reconstruction, tracking and energy estimation. HOURS also provides tools for simulating calibration techniques and other studies for estimating the detector sensitivity to several neutrino sources.

[ascl:1707.001]
HRM: HII Region Models

HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

Would you like to view a random code?