ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1601-1700 of 1603 (1585 ASCL, 18 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1511.022] ZInCo: Zoomed Initial Conditions

ZInCo manipulates existing initial conditions (ICs) compatible with GADGET-2/3 (ascl:0003.001) ICs, allowing different flavors of zoom-in simulations rather then producing new ICs from scratch. The code can manipulate initial conditions with multiple types of particles, unlike the vast majority of zoom-in ICs codes available, preserving their properties and random field. This allows ZInCo to take advantage of other codes that produce ICs featuring a broad range of different cosmologies; it can be used also on existing ICs even in the unlikely case nothing is known about their properties. The code is written in C++ and parallelized using MPI.

[ascl:1202.002] ZODIPIC: Zodiacal Cloud Image Synthesis

ZODIPIC synthesizes images of exozodiacal clouds. As a default, ZODIPIC creates an image of the solar zodiacal cloud as seen from 10 pc, but it contains many parameters that are tweakable from the command line, making it a handy general-purpose model for optically-thin debris disks that yields both accurate images and photometric information simultaneously. Written in IDL, ZODIPIC includes dust with real optical constants, user-specified dust maps and can compute images as seen through a linear polarizer.

[ascl:1011.003] ZPEG: An Extension of the Galaxy Evolution Model PEGASE.2

Photometric redshifts are estimated on the basis of template scenarios with the help of the code ZPEG, an extension of the galaxy evolution model PEGASE.2 and available on the PEGASE web site. The spectral energy distribution (SED) templates are computed for nine spectral types including starburst, irregular, spiral and elliptical. Dust, extinction and metal effects are coherently taken into account, depending on evolution scenarios. The sensitivity of results to adding near-infrared colors and IGM absorption is analyzed. A comparison with results of other models without evolution measures the evolution factor which systematically increases the estimated photometric redshift values by $Delta z$ > 0.2 for z > 1.5. Moreover we systematically check that the evolution scenarios match observational standard templates of nearby galaxies, implying an age constraint of the stellar population at z=0 for each type. The respect of this constraint makes it possible to significantly improve the accuracy of photometric redshifts by decreasing the well-known degeneracy problem. The method is applied to the HDF-N sample. From fits on SED templates by a $chi^2$-minimization procedure, not only is the photometric redshift derived but also the corresponding spectral type and the formation redshift $z_for$ when stars first formed. Early epochs of galaxy formation z > 5 are found from this new method and results are compared to faint galaxy count interpretations.

Would you like to view a random code?