Results 301-350 of 1927 (1899 ASCL, 28 submitted)

[ascl:1505.010]
COBS: COnstrained B-Splines

COBS (COnstrained B-Splines), written in R, creates constrained regression smoothing splines via linear programming and sparse matrices. The method has two important features: the number and location of knots for the spline fit are established using the likelihood-based Akaike Information Criterion (rather than a heuristic procedure); and fits can be made for quantiles (e.g. 25% and 75% as well as the usual 50%) in the response variable, which is valuable when the scatter is asymmetrical or non-Gaussian. This code is useful for, for example, estimating cluster ages when there is a wide spread in stellar ages at a chosen absorption, as a standard regression line does not give an effective measure of this relationship.

[ascl:1406.017]
COCO: Conversion of Celestial Coordinates

The COCO program converts star coordinates from one system to another. Both the improved IAU system, post-1976, and the old pre-1976 system are supported. COCO can perform accurate transformations between multiple coordinate systems. COCO’s user-interface is spartan but efficient and the program offers control over report resolution. All input is free-format, and defaults are provided where this is meaningful. COCO uses SLALIB (ascl:1403.025) and is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1703.002]
COCOA: Simulating Observations of Star Cluster Simulations

COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

[ascl:1202.012]
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

[ascl:1602.021]
COLAcode: COmoving Lagrangian Acceleration code

COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

[ascl:1802.014]
collapse: Spherical-collapse model code

collapse calculates the spherical−collapse for standard cosmological models as well as for dark energy models when the dark energy can be taken to be spatially homogeneous. The calculation is valid on sub−horizon scales and takes a top−hat perturbation to exist in an otherwise featureless cosmos and follows its evolution into the non−linear regime where it reaches a maximum size and then recollapses. collapse provides the user with the linear−collapse threshold (delta_c) and the virial overdensity (Delta_v) for the collapsed halo over a range of cosmic scale factors.

[ascl:1508.005]
ColorPro: PSF-corrected aperture-matched photometry

ColorPro automatically obtains robust colors across images of varied PSF. To correct for the flux lost in images with poorer PSF, the "detection image" is blurred to match the PSF of these other images, allowing observation of how much flux is lost. All photometry is performed in the highest resolution frame (images being aligned given WCS information in the FITS headers), and identical apertures are used in every image. Usually isophotal apertures are used, as determined by SExtractor (ascl:1010.064). Using SExSeg (ascl:1508.006), object aperture definitions can be pre-defined and object detections from different image filters can be combined automatically into a single comprehensive "segmentation map." After producing the final photometric catalog, ColorPro can automatically run BPZ (ascl:1108.011) to obtain Bayesian Photometric Redshifts.

[ascl:1501.016]
Colossus: COsmology, haLO, and large-Scale StrUcture toolS

Colossus is a collection of Python modules for cosmology and dark matter halos calculations. It performs cosmological calculations with an emphasis on structure formation applications, implements general and specific density profiles, and provides a large range of models for the concentration-mass relation, including a conversion to arbitrary mass definitions.

[ascl:1606.007]
COMB: Compact embedded object simulations

COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

[ascl:1708.024]
ComEst: Completeness Estimator

ComEst calculates the completeness of CCD images conducted in astronomical observations saved in the FITS format. It estimates the completeness of the source finder SExtractor (ascl:1010.064) on the optical and near-infrared (NIR) imaging of point sources or galaxies as a function of flux (or magnitude) directly from the image itself. It uses PyFITS (ascl:1207.009) and GalSim (ascl:1402.009) to perform the end-to-end estimation of the completeness and can also estimate the purity of the source detection.

[ascl:1404.008]
Comet: Multifunction VOEvent broker

Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

[ascl:1402.028]
Commander 2: Bayesian CMB component separation and analysis

Bull, Phil; Eriksen, Hans Kristian; Gjerløw, Eirik; Gorski, Krzysztof; Jewell, Jeff; Seljebotn, Dag Sverre; Wehus, Ingunn

Commander 2 is a Gibbs sampling code for joint CMB estimation and component separation. The Commander framework uses a parametrized physical model of the sky to perform statistically-rigorous analyses of multi-frequency, multi-resolution CMB data on the full and partial (flat) sky, as well as cross-correlation analyses with large-scale structure datasets.

[ascl:1606.009]
Companion-Finder: Planets and binary companions in time series spectra

Companion-Finder looks for planets and binary companions in time series spectra by searching for the spectral lines of stellar companions to other stars observed with high-precision radial-velocity surveys.

[ascl:1403.015]
computePk: Power spectrum computation

ComputePk computes the power spectrum in cosmological simulations. It is MPI parallel and has been tested up to a 4096^3 mesh. It uses the FFTW library. It can read Gadget-3 and GOTPM outputs, and computes the dark matter component. The user may choose between NGP, CIC, and TSC for the mass assignment scheme.

[ascl:1210.011]
Consistent Trees: Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology

Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.

Consistent Trees generates merger trees and halo catalogs which explicitly ensure consistency of halo properties (mass, position, velocity, radius) across timesteps. It has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. Consistent Trees is able to robustly measure the self-consistency of halo finders and to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations.

[ascl:9905.001]
CONSKY: A Sky CCD Integration Simulation

This program addresses the question of what resources are needed to produce a continuous data record of the entire sky down to a given limiting visual magnitude. Toward this end, the program simulates a small camera/telescope or group of small camera/telescopes collecting light from a large portion of the sky. From a given stellar density derived from a Bahcall - Soneira Galaxy model, the program first converts star densities at visual magnitudes between 5 and 20 to number of sky pixels needed to monitor each star simultaneously. From pixels, the program converts input CCD parameters to needed telescope attributes, needed data storage space, and the length of time needed to accumulate data of photometric quality for stars of each limiting visual magnitude over the whole sky. The program steps though photometric integrations one second at a time and includes the contribution from a bright background, read noise, dark current, and atmospheric absorption.

[ascl:1609.023]
contbin: Contour binning and accumulative smoothing

Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

[ascl:1401.006]
convolve_image.pro: Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes

The IDL package convolve_image.pro transforms images between different instrumental point spread functions (PSFs). It can load an image file and corresponding kernel and return the convolved image, thus preserving the colors of the astronomical sources. Convolution kernels are available for images from Spitzer (IRAC MIPS), Herschel (PACS SPIRE), GALEX (FUV NUV), WISE (W1 - W4), Optical PSFs (multi- Gaussian and Moffat functions), and Gaussian PSFs; they allow the study of the Spectral Energy Distribution (SED) of extended objects and preserve the characteristic SED in each pixel.

[ascl:1210.013]
ConvPhot: A profile-matching algorithm for precision photometry

ConvPhot measures colors between two images having different resolutions. ConvPhot is designed to work especially for faint galaxies, accurately measuring colors in relatively crowded fields. It makes full use of the spatial and morphological information contained in the highest quality images to analyze multiwavelength data with inhomogeneous image quality.

[ascl:1304.022]
Copter: Cosmological perturbation theory

Copter is a software package for doing calculations in cosmological perturbation theory. Specifically, Copter includes code for computing statistical observables in the large-scale structure of matter using various forms of perturbation theory, including linear theory, standard perturbation theory, renormalized perturbation theory, and many others. Copter is written in C++ and makes use of the Boost C++ library headers.

[ascl:1112.012]
CORA: Emission Line Fitting with Maximum Likelihood

CORA analyzes emission line spectra with low count numbers and fits them to a line using the maximum likelihood technique. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise, the software derives the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. CORA has been applied to an X-ray spectrum with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory.

[ascl:1603.002]
CORBITS: Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems

CORBITS (Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems) computes the probability that any particular group of exoplanets can be observed to transit from a collection of conjectured exoplanets orbiting a star. The efficient, semi-analytical code computes the areas bounded by circular curves on the surface of a sphere by applying elementary differential geometry. CORBITS is faster than previous algorithms, based on comparisons with Monte Carlo simulations, and tests show that it is extremely accurate even for highly eccentric planets.

[ascl:1406.003]
CoREAS: CORSIKA-based Radio Emission from Air Showers simulator

CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers; it is an update of and successor code to REAS3 (ascl:1107.009). It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA (ascl:1202.006). As such, it is parameter-free, makes no assumptions on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA.

[ascl:1702.002]
corner.py: Corner plots

*corner.py* uses matplotlib to visualize multidimensional samples using a scatterplot matrix. In these visualizations, each one- and two-dimensional projection of the sample is plotted to reveal covariances. *corner.py* was originally conceived to display the results of Markov Chain Monte Carlo simulations and the defaults are chosen with this application in mind but it can be used for displaying many qualitatively different samples. An earlier version of *corner.py* was known as triangle.py.

[ascl:1711.005]
correlcalc: Two-point correlation function from redshift surveys

correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

[ascl:1211.004]
CORRFIT: Cross-Correlation Routines

CORRFIT is a set of routines that use the cross-correlation method to extract parameters of the line-of-sight velocity distribution from galactic spectra and stellar templates observed on the same system. It works best when the broadening function is well sampled at the spectral resolution used (e.g. 200 km/s dispersion at 2 Angstrom resolution). Results become increasingly sensitive to the spectral match between galaxy and template if the broadening function is not well sampled. CORRFIT does not work well for dispersions less than the velocity sampling interval ('delta' in the code) unless the template is perfect.

[ascl:1703.003]
Corrfunc: Blazing fast correlation functions on the CPU

Corrfunc is a suite of high-performance clustering routines. The code can compute a variety of spatial correlation functions on Cartesian geometry as well Landy-Szalay calculations for spatial and angular correlation functions on a spherical geometry and is useful for, for example, exploring the galaxy-halo connection. The code is written in C and can be used on the command-line, through the supplied python extensions, or the C API.

[ascl:1202.006]
CORSIKA: An Air Shower Simulation Program

CORSIKA (COsmic Ray Simulations for KAscade) is a program for detailed simulation of extensive air showers initiated by high energy cosmic ray particles. Protons, light nuclei up to iron, photons, and many other particles may be treated as primaries. The particles are tracked through the atmosphere until they undergo reactions with the air nuclei or, in the case of unstable secondaries, decay. The hadronic interactions at high energies may be described by several reaction models. Hadronic interactions at lower energies are described, and in particle decays all decay branches down to the 1% level are taken into account. Options for the generation of Cherenkov radiation and neutrinos exist. CORSIKA may be used up to and beyond the highest energies of 100 EeV.

[ascl:1712.008]
CosApps: Simulate gravitational lensing through ray tracing and shear calculation

Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

[ascl:1010.040]
Cosmic String Simulations

Complicated cosmic string loops will fragment until they reach simple, non-intersecting ("stable") configurations. Through extensive numerical study, these attractor loop shapes are characterized including their length, velocity, kink, and cusp distributions. An initial loop containing $M$ harmonic modes will, on average, split into 3M stable loops. These stable loops are approximately described by the degenerate kinky loop, which is planar and rectangular, independently of the number of modes on the initial loop. This is confirmed by an analytic construction of a stable family of perturbed degenerate kinky loops. The average stable loop is also found to have a 40% chance of containing a cusp. This new analytic scheme explicitly solves the string constraint equations.

[ascl:1010.030]
CosmicEmu: Cosmic Emulator for the Dark Matter Power Spectrum

Lawrence, Earl; Heitmann, Katrin; White, Martin; Higdon, David; Wagner, Christian; Habib, Salman; Williams, Brian

Many of the most exciting questions in astrophysics and cosmology, including the majority of observational probes of dark energy, rely on an understanding of the nonlinear regime of structure formation. In order to fully exploit the information available from this regime and to extract cosmological constraints, accurate theoretical predictions are needed. Currently such predictions can only be obtained from costly, precision numerical simulations. The "Coyote Universe'' simulation suite comprises nearly 1,000 N-body simulations at different force and mass resolutions, spanning 38 wCDM cosmologies. This large simulation suite enabled construct of a prediction scheme, or emulator, for the nonlinear matter power spectrum accurate at the percent level out to k~1 h/Mpc. This is the first cosmic emulator for the dark matter power spectrum.

[ascl:1304.006]
CosmicEmuLog: Cosmological Power Spectra Emulator

CosmicEmuLog is a simple Python emulator for cosmological power spectra. In addition to the power spectrum of the conventional overdensity field, it emulates the power spectra of the log-density as well as the Gaussianized density. It models fluctuations in the power spectrum at each k as a linear combination of contributions from fluctuations in each cosmological parameter. The data it uses for emulation consist of ASCII files of the mean power spectrum, together with derivatives of the power spectrum with respect to the five cosmological parameters in the space spanned by the Coyote Universe suite. This data can also be used for Fisher matrix analysis. At present, CosmicEmuLog is restricted to redshift 0.

[ascl:1601.008]
CosmicPy: Interactive cosmology computations

CosmicPy performs simple and interactive cosmology computations for forecasting cosmological parameters constraints; it computes tomographic and 3D Spherical Fourier-Bessel power spectra as well as Fisher matrices for galaxy clustering. Written in Python, it relies on a fast C++ implementation of Fourier-Bessel related computations, and requires NumPy, SciPy, and Matplotlib.

[ascl:9910.004]
COSMICS: Cosmological initial conditions and microwave anisotropy codes

COSMICS is a package of Fortran programs useful for computing transfer functions and microwave background anisotropy for cosmological models, and for generating gaussian random initial conditions for nonlinear structure formation simulations of such models. Four programs are provided: linger_con and linger_syn integrate the linearized equations of general relativity, matter, and radiation in conformal Newtonian and synchronous gauge, respectively; deltat integrates the photon transfer functions computed by the linger codes to produce photon anisotropy power spectra; and grafic tabulates normalized matter power spectra and produces constrained or unconstrained samples of the matter density field.

[ascl:1505.013]
cosmoabc: Likelihood-free inference for cosmology

Ishida, Emille E. O.; Vitenti, Sandro D. P.; Penna-Lima, Mariana; Trindade, Arlindo M.; Cisewski, Jessi; M.; de Souza, Rafael; Cameron, Ewan; Busti, Vinicius C.

Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.

[ascl:1511.019]
CosmoBolognaLib: Open source C++ libraries for cosmological calculations

CosmoBolognaLib contains numerical libraries for cosmological calculations; written in C++, it is intended to define a common numerical environment for cosmological investigations of the large-scale structure of the Universe. The software aids in handling real and simulated astronomical catalogs by measuring one-point, two-point and three-point statistics in configuration space and performing cosmological analyses. These open source libraries can be included in either C++ or Python codes.

[ascl:1303.003]
CosmoHammer: Cosmological parameter estimation with the MCMC Hammer

CosmoHammer is a Python framework for the estimation of cosmological parameters. The software embeds the Python package emcee by Foreman-Mackey et al. (2012) and gives the user the possibility to plug in modules for the computation of any desired likelihood. The major goal of the software is to reduce the complexity when one wants to extend or replace the existing computation by modules which fit the user's needs as well as to provide the possibility to easily use large scale computing environments. CosmoHammer can efficiently distribute the MCMC sampling over thousands of cores on modern cloud computing infrastructure.

[ascl:1110.024]
CosmoMC SNLS: CosmoMC Plug-in to Analyze SNLS3 SN Data

This module is a plug-in for CosmoMC and requires that software. Though programmed to analyze SNLS3 SN data, it can also be used for other SN data provided the inputs are put in the right form. In fact, this is probably a good idea, since the default treatment that comes with CosmoMC is flawed. Note that this requires fitting two additional SN nuisance parameters (alpha and beta), but this is significantly faster than attempting to marginalize over them internally.

[ascl:1106.025]
CosmoMC: Cosmological MonteCarlo

We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.

[ascl:1110.019]
CosmoNest: Cosmological Nested Sampling

CosmoNest is an algorithm for cosmological model selection. Given a model, defined by a set of parameters to be varied and their prior ranges, and data, the algorithm computes the evidence (the marginalized likelihood of the model in light of the data). The Bayes factor, which is proportional to the relative evidence of two models, can then be used for model comparison, i.e. to decide whether a model is an adequate description of data, or whether the data require a more complex model.

For convenience, CosmoNest, programmed in Fortran, is presented here as an optional add-on to CosmoMC, which is widely used by the cosmological community to perform parameter fitting within a model using a Markov-Chain Monte-Carlo (MCMC) engine. For this reason it can be run very easily by anyone who is able to compile and run CosmoMC. CosmoNest implements a different sampling strategy, geared for computing the evidence very accurately and efficiently. It also provides posteriors for parameter fitting as a by-product.

[ascl:1408.018]
CosmoPhotoz: Photometric redshift estimation using generalized linear models

de Souza, Rafael S.; Elliott, Jonathan; Krone-Martins, Alberto; Ishida, Emille E. O.; Hilbe, Joseph; Cameron, Ewan

CosmoPhotoz determines photometric redshifts from galaxies utilizing their magnitudes. The method uses generalized linear models which reproduce the physical aspects of the output distribution. The code can adopt gamma or inverse gaussian families, either from a frequentist or a Bayesian perspective. A set of publicly available libraries and a web application are available. This software allows users to apply a set of GLMs to their own photometric catalogs and generates publication quality plots with no involvement from the user. The code additionally provides a Shiny application providing a simple user interface.

[ascl:1212.006]
CosmoPMC: Cosmology sampling with Population Monte Carlo

Kilbinger, Martin; Benabed, Karim; Cappé, Olivier; Coupon, Jean; Cardoso, Jean-François; Fort, Gersende; McCracken, Henry Joy; Prunet, Simon; Robert, Christian P.; Wraith, Darren

CosmoPMC is a Monte-Carlo sampling method to explore the likelihood of various cosmological probes. The sampling engine is implemented with the package pmclib. It is called Population MonteCarlo (PMC), which is a novel technique to sample from the posterior. PMC is an adaptive importance sampling method which iteratively improves the proposal to approximate the posterior. This code has been introduced, tested and applied to various cosmology data sets.

[ascl:1304.017]
CosmoRec: Cosmological Recombination code

CosmoRec solves the recombination problem including recombinations to highly excited states, corrections to the 2s-1s two-photon channel, HI Lyn-feedback, n>2 two-photon profile corrections, and n≥2 Raman-processes. The code can solve the radiative transfer equation of the Lyman-series photon field to obtain the required modifications to the rate equations of the resolved levels, and handles electron scattering, the effect of HeI intercombination transitions, and absorption of helium photons by hydrogen. It also allows accounting for dark matter annihilation and optionally includes detailed helium radiative transfer effects.

[ascl:1705.001]
COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

[ascl:1409.012]
CosmoSIS: Cosmological parameter estimation

Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

CosmoSIS is a cosmological parameter estimation code. It structures cosmological parameter estimation to ease re-usability, debugging, verifiability, and code sharing in the form of calculation modules. Witten in python, CosmoSIS consolidates and connects existing code for predicting cosmic observables and maps out experimental likelihoods with a range of different techniques.

[ascl:1701.004]
CosmoSlik: Cosmology sampler of likelihoods

CosmoSlik quickly puts together, runs, and analyzes an MCMC chain for analysis of cosmological data. It is highly modular and comes with plugins for CAMB (ascl:1102.026), CLASS (ascl:1106.020), the Planck likelihood, the South Pole Telescope likelihood, other cosmological likelihoods, emcee (ascl:1303.002), and more. It offers ease-of-use, flexibility, and modularity.

[ascl:1311.009]
CosmoTherm: Thermalization code

CosmoTherm allows precise computation of CMB spectral distortions caused by energy release in the early Universe. Different energy-release scenarios (e.g., decaying or annihilating particles) are implemented using the Green's function of the cosmological thermalization problem, allowing fast computation of the distortion signal. The full thermalization problem can be solved on a case-by-case basis for a wide range of energy-release scenarios using the full PDE solver of CosmoTherm. A simple Monte-Carlo toolkit is included for parameter estimation and forecasts using the Green's function method.

[ascl:1504.010]
CosmoTransitions: Cosmological Phase Transitions

CosmoTransitions analyzes early-Universe finite-temperature phase transitions with multiple scalar fields. The code enables analysis of the phase structure of an input theory, determines the amount of supercooling at each phase transition, and finds the bubble-wall profiles of the nucleated bubbles that drive the transitions.

[ascl:1307.010]
cosmoxi2d: Two-point galaxy correlation function calculation

Cosmoxi2d is written in C and computes the theoretical two-point galaxy correlation function as a function of cosmological and galaxy nuisance parameters. It numerically evaluates the model described in detail in Reid and White 2011 (arxiv:1105.4165) and Reid et al. 2012 (arxiv:1203.6641) for the multipole moments (up to ell = 4) for the observed redshift space correlation function of biased tracers as a function of cosmological (though an input linear matter power spectrum, growth rate f, and Alcock-Paczynski geometric factors alphaperp and alphapar) as well as nuisance parameters describing the tracers (bias and small scale additive velocity dispersion, isotropicdisp1d).

This model works best for highly biased tracers where the 2nd order bias term is small. On scales larger than 100 Mpc, the code relies on 2nd order Lagrangian Perturbation theory as detailed in Matsubara 2008 (PRD 78, 083519), and uses the analytic version of Reid and White 2011 on smaller scales.

[ascl:1512.013]
CounterPoint: Zeeman-split absorption lines

CounterPoint works in concert with MoogStokes (ascl:1308.018). It applies the Zeeman effect to the atomic lines in the region of study, splitting them into the correct number of Zeeman components and adjusting their relative intensities according to the predictions of Quantum Mechanics, and finally creates a Moog-readable line list for use with MoogStokes. CounterPoint has the ability to use VALD and HITRAN line databases for both atomic and molecular lines.

Would you like to view a random code?