ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 2251-2500 of 3678 (3581 ASCL, 97 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2409.019] Padé: Protoplanetary disk turbulence simulator

Padé simulates protoplanetary disk hydrodynamics in cylindrical coordinates. Written in Fortran90, it is a finite-difference code and the compact 4th-order standard Padé scheme is used for spatial differencing. Padé differentiation is known to have spectral-like resolving power. The z direction can be periodic or non-periodic. The 4th order Runge-Kutta is used for time advancement. Padé implements a version of the FARGO technique to eliminate the time-step restriction imposed by Keplerian advection, and capturing of shocks that are not too strong can be done by using artificial bulk viscosity.

[ascl:2404.024] pAGN: AGN disk model equations solver

Written in Python, pAGN solves AGN disk model equations. The code is highly customizable and, with the correct inputs, provides a fully evolved AGN disk model through parametric 1D curves for key disk parameters such as temperature and density. pAGN can be used to study migration torques in AGN disks, simulations of compact object formation inside gas disks, and comparisons with new, more complex models of AGN disks.

[ascl:2211.004] PAHDecomp: Decomposing the mid-IR spectra of extremely obscured galaxies

PAHDecomp models mid-infrared spectra of galaxies; it is based on the popular PAHFIT code (ascl:1210.009). In contrast to PAHFIT, this model decomposes the continuum into a star-forming component and an obscured nuclear component based on Bayesian priors on the shape of the star-forming component (using templates + prior on extinction), making this tool ideally suited for modeling the spectra of heavily obscured galaxies. PAHDecomp successfully recovers properties of Compact Obscured Nuclei (CONs) where the inferred nuclear optical depth strongly correlates with the surface brightness of HCN-vib emission in the millimeter. This is currently set up to run on the short low modules of Spitzer IRS data (5.2 - 14.2 microns) but will be ideal for JWST/MIRI MRS data in the future.

[ascl:1210.009] PAHFIT: Properties of PAH Emission

PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code.

PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

[ascl:1606.002] PAL: Positional Astronomy Library

The PAL library is a partial re-implementation of Pat Wallace's popular SLALIB library written in C using a Gnu GPL license and layered on top of the IAU's SOFA library (or the BSD-licensed ERFA) where appropriate. PAL attempts to stick to the SLA C API where possible.

[ascl:2202.005] palettable: Color palettes for Python

Palettable is a library of color palettes for Python. The code is written in pure Python with no dependencies; it can be used to supply color maps for matplotlib plots, customize matplotlib plots, and to supply colors for a web application.

[ascl:2405.021] PALpy: Python positional astronomy library interface

PALpy provides a Python interface to PAL, the positional Astronomy Library (ascl:1606.002), which is written in C. All arguments modified by the C API are returned and none are modified. The one routine that is different is palObs, which returns a simple dict that can be searched using standard Python. The keys to the dict are the short names and the values are another dict with keys name, long, lat and height.

[ascl:2210.029] paltas: Simulation-based inference on strong gravitational lensing systems

paltas conducts simulation-based inference on strong gravitational lensing images. It builds on lenstronomy (ascl:1804.012) to create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. paltas also includes the capability to easily train neural posterior estimators of the parameters of the lensing system and to run hierarchical inference on test populations.

[ascl:1406.002] PAMELA: Optimal extraction code for long-slit CCD spectroscopy

PAMELA is an implementation of the optimal extraction algorithm for long-slit CCD spectroscopy and is well suited for time-series spectroscopy. It properly implements the optimal extraction algorithm for curved spectra, including on-the-fly cosmic ray rejection as well as proper calculation and propagation of the errors. The software is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1805.021] PampelMuse: Crowded-field 3D spectroscopy

PampelMuse analyzes integral-field spectroscopic observations of crowded stellar fields and provides several subroutines to perform the individual steps of the data analysis. All analysis steps assume that the IFS data has been properly reduced and that all the instrumental artifacts have been removed. PampelMuse is designed to correctly handle IFS data regardless of which instrument was used to observe the data. In addition to the actual data, the software also requires an estimate of the variances for the analysis; optionally, it can use a bad pixel mask. The analysis relies on the presence of a reference catalogue, containing coordinates and magnitudes of the stars in and around the observed field.

[ascl:2212.008] panco2: Pressure profile measurements of galaxy clusters

panco2 extracts measurements of the pressure profile of the hot gas inside galaxy clusters from millimeter-wave observations. The extraction is performed using forward modeling the millimeter-wave signal of clusters and MCMC sampling of a posterior distribution for the parameters given the input data. Many characteristic features of millimeter-wave observations can be taken into account, such as filtering (both through PSF smearing and transfer functions), point source contamination, and correlated noise.

[ascl:1906.016] PandExo: Instrument simulations for exoplanet observation planning

PandExo generates instrument simulations of JWST’s NIRSpec, NIRCam, NIRISS and NIRCam and HST WFC3 for planning exoplanet observations. It uses throughput calculations from STScI’s Exposure Time Calculator, Pandeia, and offers both an online tool and a python package.

[ascl:2303.009] Pandora: Fast exomoon transit detection algorithm

Pandora searches for exomoons by employing an analytical photodynamical model that includes stellar limb darkening, full and partial planet-moon eclipses, and barycentric motion of planet and moon. The code can be used with nested samplers such as UltraNest (ascl:1611.001) or dynesty (ascl:1809.013). Pandora is fast, calculating 10,000 models and log-likelihood evaluation per second (give or take an order of magnitude, depending on parameters and data); this means that a retrieval with 250 Mio. evaluations until convergence takes about 5 hours on a single core. For searches in large amounts of data, it is most efficient to assign one core per light curve.

[ascl:1511.009] Pangloss: Reconstructing lensing mass

Pangloss reconstructs all the mass within a light cone through the Universe. Understanding complex mass distributions like this is important for accurate time delay lens cosmography, and also for accurate lens magnification estimation. It aspires to use all available data in an attempt to make the best of all mass maps.

[ascl:2404.010] Panphasia: Create cosmological and resimulation initial conditions

Panphasia computes a very large realization of a Gaussian white noise field. The field has a hierarchical structure based on an octree geometry with 50 octree levels fully populated. The code sets up Gaussian initial conditions for cosmological simulations and resimulations of structure formation. Panphasia provides an easy way to publish the linear phases used to set up cosmological simulation initial conditions; publishing phases enriches the literature and makes it easier to reproduce and extend published simulation work.

[ascl:2105.020] PAP: PHANGS-ALMA pipeline

The PHANGS-ALMA pipeline process data from radio interferometer observations. It uses CASA (ascl:1107.013), AstroPy (ascl:1304.002), and other affiliated packages to process data from calibrated visibilities to science-ready spectral cubes and maps. The PHANGS-ALMA pipeline offers a flexible alternative to the scriptForImaging script distributed by ALMA. The pipeline runs in two separate software environments: CASA 5.6 or 5.7 (staging, imaging and post-processing) and Python 3.6 or later (derived products) with modern versions of several packages.

[ascl:1103.008] Parallel HOP: A Scalable Halo Finder for Massive Cosmological Data Sets

Modern N-body cosmological simulations contain billions ($10^9$) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory, and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly-employed halo finders, such that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes MPI and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger datasets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit yt, an analysis toolkit for Adaptive Mesh Refinement (AMR) data that includes complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and datasets in excess of $2000^3$ particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable. Parallel HOP is part of yt.

[ascl:1106.009] PARAMESH V4.1: Parallel Adaptive Mesh Refinement

PARAMESH is a package of Fortran 90 subroutines designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity.

The package builds a hierarchy of sub-grids to cover the computational domain, with spatial resolution varying to satisfy the demands of the application. These sub-grid blocks form the nodes of a tree data-structure (quad-tree in 2D or oct-tree in 3D). Each grid block has a logically cartesian mesh. The package supports 1, 2 and 3D models. PARAMESH is released under the NASA-wide Open-Source software license.

[ascl:1010.039] Parameter Estimation from Time-Series Data with Correlated Errors: A Wavelet-Based Method and its Application to Transit Light Curves

We consider the problem of fitting a parametric model to time-series data that are afflicted by correlated noise. The noise is represented by a sum of two stationary Gaussian processes: one that is uncorrelated in time, and another that has a power spectral density varying as $1/f^gamma$. We present an accurate and fast [O(N)] algorithm for parameter estimation based on computing the likelihood in a wavelet basis. The method is illustrated and tested using simulated time-series photometry of exoplanetary transits, with particular attention to estimating the midtransit time. We compare our method to two other methods that have been used in the literature, the time-averaging method and the residual-permutation method. For noise processes that obey our assumptions, the algorithm presented here gives more accurate results for midtransit times and truer estimates of their uncertainties.

[ascl:2009.008] Paramo: PArticle and RAdiation MOnitor

Paramo (PArticle and RAdiation MOnitor) numerically solves the Fokker-Planck kinetic equation, which is used to model the dynamics of a particle distribution function, using a robust implicit method, for the proper modeling of the acceleration processes, and accounts for accurate cooling coefficient (e.g., radiative cooling with Klein-Nishina corrections). The numerical solution at every time step is used to calculate radiations processes, namely synchrotron and IC, with sophisticated numerical techniques, obtaining the multi-wavelength spectral evolution of the system.

[ascl:2008.016] ParaMonte: Parallel Monte Carlo library

ParaMonte contains serial and parallel Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions. It is used for posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference and unifies the automation of Monte Carlo simulations. ParaMonte is user friendly and accessible from multiple programming environments, including C, C++, Fortran, MATLAB, and Python, and offers high performance at runtime and scalability across many parallel processors.

[ascl:1103.014] ParaView: Data Analysis and Visualization Application

ParaView is an open-source, multi-platform data analysis and visualization application. ParaView users can quickly build visualizations to analyze their data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D or programmatically using ParaView's batch processing capabilities.

ParaView was developed to analyze extremely large datasets using distributed memory computing resources. It can be run on supercomputers to analyze datasets of terascale as well as on laptops for smaller data.

[ascl:1601.010] PARAVT: Parallel Voronoi Tessellation

PARAVT offers massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition take into account consistent boundary computation between tasks, and support periodic conditions. In addition, the code compute neighbors lists, Voronoi density and Voronoi cell volumes for each particle, and can compute density on a regular grid.

[ascl:2007.014] PARS: Paint the Atmospheres of Rotating Stars

PARS (Paint the Atmospheres of Rotating Stars) quickly computes magnitudes and spectra of rotating stellar models. It uses the star's mass, equatorial radius, rotational speed, luminosity, and inclination as input; the models incorporate Roche mass distribution (where all mass is at the center of the star), solid body rotation, and collinearity of effective gravity and energy flux.

[ascl:1502.005] PARSEC: PARametrized Simulation Engine for Cosmic rays

PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

[ascl:1208.020] ParselTongue: AIPS Python Interface

ParselTongue is a Python interface to classic AIPS, Obit and possibly other task-based data reduction packages. It serves as the software infrastructure for some of the ALBUS implementation. It allows you to run AIPS tasks, and access AIPS headers and extension tables from Python. There is also support for running Obit tasks and accessing data in FITS files. Full access to the visibilities in AIPS UV data is also available.

[ascl:2110.008] ParSNIP: Parametrization of SuperNova Intrinsic Properties

ParSNIP learns generative models of transient light curves from a large dataset of transient light curves. It is designed to work with light curves in sncosmo format using the lcdata package to handle large datasets. This code can be used for classification of transients, cosmological distance estimation, and identifying novel transients.

[ascl:2306.026] Parthenon: Portable block-structured adaptive mesh refinement framework

The Parthenon framework, derived from Athena++ (ascl:1912.005), handles massively-parallel, device-accelerated adaptive mesh refinement. It provides a device first/device resident approach, transparent packing of data across blocks (to reduce/hide kernel launch latency), and direct device-to-device communication via asynchronous, one-sided MPI communication to enable high performance. Parthenon uses an intermediate abstraction layer to hide complexity of device kernel launches, offers support for particles and abstract variable control via metadata tags, and has a flexible plug-in package system.

[ascl:1010.005] Particle module of Piernik MHD code

Piernik is a multi-fluid grid magnetohydrodynamic (MHD) code based on the Relaxing Total Variation Diminishing (RTVD) conservative scheme. The original code has been extended by addition of dust described within the particle approximation. The dust is now described as a system of interacting particles. The particles can interact with gas, which is described as a fluid. The comparison between the test problem results and the results coming from fluid simulations made with Piernik code shows the most important differences between fluid and particle approximations used to describe dynamical evolution of dust under astrophysical conditions.

[ascl:2412.017] Particle_spray: Modeling globular cluster streams

Particle_spray models the position and velocity distributions of newly-escaped stream particles that emerge from globular clusters (GCs). Rather than computing the detailed internal cluster dynamics, which is computationally expensive, the code directly draws tracer particles from these distributions. This algorithm is fast and accurate, and is implemented in a series of notebooks for several galactic dynamics codes, including AGAMA (ascl:1805.008) and galpy (ascl:1411.008).

[ascl:2207.029] ParticleGridMapper: Particle data interpolator

ParticleGridMapper.jl interpolates particle data onto either a Cartesian (uniform) grid or an adaptive mesh refinement (AMR) grid where each cell contains no more than one particle. The AMR grid can be trimmed with a user-defined maximum level of refinement. Three different interpolation schemes are supported: nearest grid point (NGP), smoothed-particle hydrodynamics (SPH), and Meshless finite mass (MFM). It is multi-threading parallel.

[ascl:1010.073] partiview: Immersive 4D Interactive Visualization of Large-Scale Simulations

In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1TB. Visualization of such data has now become a complex 4D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. partiview is a program that enables you to visualize and animate particle data. partiview runs on relatively simple desktops and laptops, but is mostly compatible with its big brother VirDir.

[ascl:1809.003] PASTA: Python Astronomical Stacking Tool Array

PASTA performs median stacking of astronomical sources. Written in Python, it can filter sources, provide stack statistics, generate Karma annotations, format source lists, and read information from stacked Flexible Image Transport System (FITS) images. PASTA was originally written to examine polarization stack properties and includes a Monte Carlo modeler for obtaining true polarized intensity from the observed polarization of a stack. PASTA is also useful as a generic stacking tool, even if polarization properties are not being examined.

[ascl:1102.002] PBL: Particle-Based Lensing for Gravitational Lensing Mass Reconstructions of Galaxy Clusters

Particle-Based Lensing (PBL) does gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multi-scale analysis in smoothed particle hydrodynamics. In PBL, we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce constant signal-noise throughout, and maximally exploit regions of high information density.

PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction, and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied "Bullet Cluster" (1E0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong lensing measurements.

[ascl:1708.007] PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

[ascl:1403.007] PC: Unified EOS for neutron stars

The equation of state (EOS) of dense matter is a crucial input for the neutron-star structure calculations. This Fortran code can obtain a "unified EOS" in the many-body calculations based on a single effective nuclear Hamiltonian, and is valid in all regions of the neutron star interior. For unified EOSs, the transitions between the outer crust and the inner crust and between the inner crust and the core are obtained as a result of many-body calculations.

[ascl:1207.012] PCA: Principal Component Analysis for spectra modeling

The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components.

This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

[ascl:1705.004] PCAT: Probabilistic Cataloger

PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model.

The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

[ascl:1809.002] PCCDPACK: Polarimetry with CCD

PCCDPACK analyzes polarimetry data. The set of routines is written in CL-IRAF (including compiled Fortran codes) and analyzes dozens of point objects simultaneously on the same CCD image. A subpackage, specpol, is included to analyze spectropolarimetry data.

[ascl:2309.011] PCOSTPD: Periodogram Comparison for Optimizing Small Transiting Planet Detection

The Periodogram Comparison for Optimizing Small Transiting Planet Detection R code compares two periodogram algorithms for detecting transiting exoplanets: the Box-fitting Least Squares (BLS) and the Transit Comb Filter (TCF). It calculates the False Alarm Probability (FAP) based on extreme value theory and signal-to-noise ratio (SNR) metrics to quantify periodogram peak significance. The comparison approach is aimed at optimizing the detection of small transiting planets in future transiting exoplanet surveys. The code can be extended for comparing any set of periodograms.

[ascl:2211.014] PDFchem: Average abundance of species from Av-PDFs

PDFchem models the cold ISM at moderate and large scales using functions connecting the quantities of the local and the observed visual extinctions and the local number density with probability density functions. For any given observed visual extinction sampled with thousands of clouds, the algorithm instantly computes the average abundances of the most important species and performs radiative transfer calculations to estimate the average emission of the most commonly observed lines.

[ascl:2105.002] PDM2: Phase Dispersion Minimization

PDM2 (Phase Dispersion Minimization) ddetermines periodic components of data sets with erratic time intervals, poor coverage, non-sine-wave curve shape, and/or large noise components. Essentially a least-squares fitting technique, the fit is relative to the mean curve as defined by the means of each bin; the code simultaneously obtains the best least-squares light curve and the best period. PDM2 allows an arbitrary degree of smoothing and provides improved curve fits, suppressed subharmonics, and beta function statistics.

[ascl:1102.022] PDRT: Photo Dissociation Region Toolbox

Ultraviolet photons from O and B stars strongly influence the structure and emission spectra of the interstellar medium. The UV photons energetic enough to ionize hydrogen (hν > 13.6 eV) will create the H II region around the star, but lower energy UV photons escape. These far-UV photons (6 eV < hν < 13.6 eV) are still energetic enough to photodissociate molecules and to ionize low ionization-potential atoms such as carbon, silicon, and sulfur. They thus create a photodissociation region (PDR) just outside the H II region. In aggregate, these PDRs dominate the heating and cooling of the neutral interstellar medium.

The PDR Toolbox is a science-enabling Python package for the community, designed to help astronomers determine the physical parameters of photodissociation regions from observations. Typical observations of both Galactic and extragalactic PDRs come from ground- and space-based millimeter, submillimeter, and far-infrared telescopes such as ALMA, SOFIA, JWST, Spitzer, and Herschel. Given a set of observations of spectral line or continuum intensities, PDR Toolbox can compute best-fit FUV incident intensity and cloud density based on our models of PDR emission.

[ascl:2207.026] pdspy: MCMC tool for continuum and spectral line radiative transfer modeling

pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.

[ascl:1605.008] PDT: Photometric DeTrending Algorithm Using Machine Learning

PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.

[ascl:2001.014] Peasoup: C++/CUDA GPU pulsar searching library

The NVIDIA GPU-based pipeline code peasoup provides a one-step pulsar search, including searching for pulsars with up to moderate accelerations, with only one command. Its features include dedispersion, dereddening in the Fourier domain, resampling, peak detection, and optional time series folding. peasoup's output is the candidate list.

[ascl:1304.001] PEC: Period Error Calculator

The PEC (Period Error Calculator) algorithm estimates the period error for eclipsing binaries observed by the Kepler Mission. The algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. A simple C implementation of the PEC algorithm is available.

[ascl:1108.008] PÉGASE-HR: Stellar Population Synthesis at High Resolution Spectra

PÉGASE-HR is a code aimed at computing synthetic evolutive optical spectra of galaxies with a very high resolution (R=10 000, or dlambda=0.55) in the range Lambda=[4000, 6800] Angstroms. PÉGASE-HR is the result of combining the code PÉGASE.2 with the high-resolution stellar library ÉLODIE. This code can also be used at low resolution (R=200) over the range covered by the BaSeL library (from far UV to the near IR), and then produces the same results as PÉGASE.2. In PEGASE-HR, the BaSeL library is replaced by a grid of spectra interpolated from the high-resolution ÉLODIE library of stellar spectra. The ÉLODIE library is a stellar database of 1959 spectra for 1503 stars, observed with the echelle spectrograph ÉLODIE on the 193 cm telescope at the Observatoire de Haute Provence.

[ascl:1108.007] PÉGASE: Metallicity-consistent Spectral Evolution Model of Galaxies

PÉGASE (Projet d'Étude des GAlaxies par Synthèse Évolutive) is a code to compute the spectral evolution of galaxies. The evolution of the stars, gas and metals is followed for a law of star formation and a stellar initial mass function. The stellar evolutionary tracks extend from the main sequence to the white dwarf stage. The emission of the gas in HII regions is also taken into account. The main improvement in version 2 is the use of evolutionary tracks of different metallicities (from 10-4 to 5×solar). The effect of extinction by dust is also modelled using a radiative transfer code. PÉGASE.2 uses the BaSeL library of stellar spectra and can therefore synthesize low-resolution (R~200) ultraviolet to near-infrared spectra of Hubble sequence galaxies as well as of starbursts.

[ascl:1507.003] Pelican: Pipeline for Extensible, Lightweight Imaging and CAlibratioN

Pelican is an efficient, lightweight C++ library for quasi-real time data processing. The library provides a framework to separate the acquisition and processing of data, allowing the scalability and flexibility to fit a number of scenarios. Though its origin was in radio astronomy, processing data as it arrives from a telescope, the framework is sufficiently generic to be useful to any application that requires the efficient processing of incoming data streams.

[ascl:1010.060] Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

[ascl:1811.019] PENTACLE: Large-scale particle simulations code for planet formation

PENTACLE calculates gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It uses FDPS (ascl:1604.011) to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. The software can handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc.

[ascl:2306.027] PEP: Planetary Ephemeris Program

Planetary Ephemeris Program (PEP) computes numerical ephemerides and simultaneously analyzes a heterogeneous collection of astrometric data. Written in Fortran, it is a general-purpose astrometric data-analysis program and models orbital motion in the solar system, determines orbital initial conditions and planetary masses, and has been used to, for example, measure general relativistic effects and test physics theories beyond the standard model. PEP also models pulsar motions and distant radio sources, and can solve for sky coordinates for radio sources, plasma densities, and the second harmonic of the Sun's gravitational field.

[ascl:2306.040] PEPITA: Prediction of Exoplanet Precisions using Information in Transit Analysis

PEPITA (Prediction of Exoplanet Precisions using Information in Transit Analysis) makes predictions for the precision of exoplanet parameters using transit light-curves. The code uses information analysis techniques to predict the best precision that can be obtained by fitting a light-curve without actually needing to perform the fit, thus allowing more efficient planning of observations or re-observations.

[ascl:2309.016] PEREGRINE: Gravitational wave parameter inference with neural ration estimation

PEREGRINE performs full parameter estimation on gravitational wave signals. Using an internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and building upon the swyft (ascl:2302.016) code to efficiently access marginal posteriors, PEREGRINE conducts a sequential simulation-based inference approach to support the analysis of both transient and continuous gravitational wave sources. The code can fully reconstruct the posterior distributions for all parameters of spinning, precessing compact binary mergers using waveform approximants.

[ascl:1809.005] perfectns: "Perfect" dynamic and standard nested sampling for spherically symmetric likelihoods and priors

perfectns performs dynamic nested sampling and standard nested sampling for spherically symmetric likelihoods and priors, and analyses the samples produced. The spherical symmetry allows the nested sampling algorithm to be followed “perfectly” - i.e. without implementation-specific errors correlations between samples. It is intended for use in research into the statistical properties of nested sampling, and to provide a benchmark for testing the performance of nested sampling software packages used for practical problems - which rely on numerical techniques to produce approximately uncorrelated samples.

[ascl:1406.005] PERIOD: Time-series analysis package

PERIOD searches for periodicities in data. It is distributed within the Starlink software collection (ascl:1110.012).

[ascl:1407.009] Period04: Statistical analysis of large astronomical time series

Period04 statistically analyzes large astronomical time series containing gaps. It calculates formal uncertainties, can extract the individual frequencies from the multiperiodic content of time series, and provides a flexible interface to perform multiple-frequency fits with a combination of least-squares fitting and the discrete Fourier transform algorithm. Period04, written in Java/C++, supports the SAMP communication protocol to provide interoperability with other applications of the Virtual Observatory. It is a reworked and extended version of Period98 (Sperl 1998) and PERIOD/PERDET (Breger 1990).

[ascl:2007.005] PeTar: ParticlE Tree & particle-particle & Algorithmic Regularization code for simulating massive star clusters

The N-body code PETAR (ParticlE Tree & particle-particle & Algorithmic Regularization) combines the methods of Barnes-Hut tree, Hermite integrator and slow-down algorithmic regularization (SDAR). It accurately handles an arbitrary fraction of multiple systems (e.g. binaries, triples) while keeping a high performance by using the hybrid parallelization methods with MPI, OpenMP, SIMD instructions and GPU. PETAR has very good agreement with NBODY6++GPU results on the long-term evolution of the global structure, binary orbits and escapers and is significantly faster when used on a highly configured GPU desktop computer. PETAR scales well when the number of cores increase on the Cray XC50 supercomputer, allowing a solution to the ten million-body problem which covers the region of ultra compact dwarfs and nuclear star clusters.

[ascl:2207.014] petitRADTRANS: Exoplanet spectra calculator

petitRADTRANS (pRT) calculates transmission and emission spectra of exoplanets for clear and cloudy planets. It also incorporates an easy subpackage for running retrievals with nested sampling. It allows the calculation of emission or transmission spectra, at low or high resolution, clear or cloudy, and includes a retrieval module to fit a petitRADTRANS model to spectral data. pRT has two different opacity treatment modes. The low resolution mode runs calculations at λ/Δλ ≤ 1000 using the so-called correlated-k treatment for opacities. The high resolution mode runs calculations at λ/Δλ ≤ 106, using a line-by-line opacity treatment.

[ascl:2203.013] PetroFit: Petrosian properties calculator and galaxy light profiles fitter

PetroFit calculates Petrosian properties, such as radii and concentration indices; it also fits galaxy light profiles. The package, built on Photutils (ascl:1609.011), includes tools for performing accurate photometry, segmentations, Petrosian properties, and fitting.

[ascl:2210.016] PETSc: Portable, Extensible Toolkit for Scientific Computation

PETSc (Portable, Extensible Toolkit for Scientific Computation) provides a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations, and is intended for use in large-scale application projects. The toolkit includes a large suite of parallel linear, nonlinear equation solvers and ODE integrators that are easily used in application codes written in C, C++, Fortran and Python. PETSc provides many of the mechanisms needed within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc (pronounced PET-see) includes support for managing parallel PDE discretizations.

[ascl:1910.010] PEXO: Precise EXOplanetology

PEXO provides a global modeling framework for ns timing, μas astrometry, and μm/s radial velocities. It can account for binary motion and stellar reflex motions induced by planetary companions and also treat various relativistic effects both in the Solar System and in the target system (Roemer, Shapiro, and Einstein delays). PEXO is able to model timing to a precision of 1 ns, astrometry to a precision of 1 μas, and radial velocity to a precision of 1 μm/s.

[ascl:1812.003] PFANT: Stellar spectral synthesis code

PFANT computes a synthetic spectrum assuming local thermodynamic equilibrium from a given stellar model atmosphere and lists of atomic and molecular lines; it provides large wavelength coverage and line lists from ultraviolet through the visible and near-infrared. PFANT has been optimized for speed, offers error reporting, and command-line configuration options.

[ascl:2407.014] PFFT: Parallel fast Fourier transforms

PFFT computes massively parallel, fast Fourier transformations on distributed memory architectures. PFFT can be understood as a generalization of FFTW-MPI (ascl:1201.015) to multidimensional data decomposition; in fact, using PFFT is very similar to FFTW. The library is written in C and MPI; a Fortran interface is also available.

[ascl:2104.013] pfits: PSRFITS-format data file processor

pfits reads, manipulates and processes PSRFITS format search- and fold-mode pulsar astronomy data files. It summerizes the header information in a PSRFITS file, reproduces some of fv's (ascl:1205.005) functionality, and allows the user to obtain detailed information about the file. It can determine whether the data is search mode or fold mode and plot the profile, color scale image, frequency time, sum in frequency, and 4-pol data, as appropriate. pfits can also read in a search mode file, dedisperses, and frequency-sums (if requested), and offers an option to output multiple dispersed data files, among other tasks.

[ascl:2105.022] PFITS: Spectra data reduction

PFITS performs data reduction of spectra, including dark removal and flat fielding; this software was a standard 1983 Reticon reduction package available at the University of Texas. It was based on the plotting program PCOSY by Gary Ferland, and in 1985 was updated by Andrew McWilliam.

[ascl:2210.026] PGOPHER: Rotational, vibrational, and electronic spectra simulator

PGOPHER simulates and fits rotational, vibrational, and electronic spectra. It handles linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin, with a separate mode for vibrational structure. The code performs many sorts of transitions, including Raman, multiphoton, and forbidden transitions. It can simulate multiple species and states simultaneously, including special effects such as perturbations and state dependent predissociation. Fitting can be to line positions, intensities, or band contours. PGOPHER uses a standard graphical user interface and makes comparison with, and fitting to, spectra from various sources easy. In addition to overlaying numerical spectra, it is also possible to overlay pictures from pdf files and even plate spectra to assist in checking that published constants are being used correctly.

[ascl:1103.002] PGPLOT: Device-independent Graphics Package for Simple Scientific Graphs

The PGPLOT Graphics Subroutine Library is a Fortran- or C-callable, device-independent graphics package for making simple scientific graphs. It is intended for making graphical images of publication quality with minimum effort on the part of the user. For most applications, the program can be device-independent, and the output can be directed to the appropriate device at run time.

The PGPLOT library consists of two major parts: a device-independent part and a set of device-dependent "device handler" subroutines for output on various terminals, image displays, dot-matrix printers, laser printers, and pen plotters. Common file formats supported include PostScript and GIF.

PGPLOT itself is written mostly in standard Fortran-77, with a few non-standard, system-dependent subroutines. PGPLOT subroutines can be called directly from a Fortran-77 or Fortran-90 program. A C binding library (cpgplot) and header file (cpgplot.h) are provided that allow PGPLOT to be called from a C or C++ program; the binding library handles conversion between C and Fortran argument-passing conventions.

[ascl:1209.008] Phantom-GRAPE: SIMD accelerated numerical library for N-body simulations

Phantom-GRAPE is a numerical software library to accelerate collisionless $N$-body simulation with SIMD instruction set on x86 architecture. The Newton's forces and also central forces with an arbitrary shape f(r), which have a finite cutoff radius r_cut (i.e. f(r)=0 at r>r_cut), can be quickly computed.

[ascl:1709.002] PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

[ascl:1611.019] phase_space_cosmo_fisher: Fisher matrix 2D contours

phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

[ascl:2008.002] PhaseTracer: Cosmological phases mapping

PhaseTracer maps out cosmological phases, and potential transitions between them, for Standard Model extensions with any number of scalar fields. The code traces the minima of effective potential as the temperature changes, and then calculates the critical temperatures at which the minima are degenerate. PhaseTracer can use potentials provided by other packages and can be used to analyze cosmological phase transitions which played an important role in the early evolution of the Universe.

[ascl:1112.006] PhAst: Display and Analysis of FITS Images

PhAst (Photometry-Astrometry) is an IDL astronomical image viewer based on the existing application ATV which displays and analyzes FITS images. It can calibrate raw images, provide astrometric solutions, and do circular aperture photometry. PhAst allows the user to load, process, and blink any number of images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting.

[ascl:2406.022] phazap: Low-latency identification of strongly lensed signals

Phazap post-processes gravitational-wave (GW) parameter estimation data to obtain the phases and polarization state of the signal at a given detector and frequency. It is used for low-latency identification of strongly lensed gravitational waves via their phase consistency by measuring their distance in the detector phase space. Phazap builds on top of the IGWN conda enviroment which includes the standard GW packages LALSuite (ascl:2012.021) and bilby (ascl:1901.011), and can be applied beyond lensing to test possible deviations in the phase evolution from modified theories of gravity and constrain GW birefringence.

[ascl:2406.027] phi-GPU: Parallel Hermite Integration on GPU

The phi-GPU (Parallel Hermite Integration on GPU) high-order N-body parallel dynamic code uses the fourth-order Hermite integration scheme with hierarchical individual block time-steps and incorporates external gravity. The software works directly with GPU, using only NVIDIA GPU and CUDA code. It creates numerical simulations and can be used to study galaxy and star cluster evolution.

[ascl:2107.029] PHL: Persistent_Homology_LSS

Persistent_Homology_LSS analyzes halo catalogs using persistent homology to constrain cosmological parameters. It implements persistent homology on a point cloud composed of halos positions in a cubic box from N-body simulations of the universe at large scales. The output of the code are persistence diagrams and images that are used to constrain cosmological parameters from the halo catalog.

[ascl:1106.002] PHOEBE: PHysics Of Eclipsing BinariEs

PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

[ascl:1010.056] PHOENIX: A General-purpose State-of-the-art Stellar and Planetary Atmosphere Code

PHOENIX is a general-purpose state-of-the-art stellar and planetary atmosphere code. It can calculate atmospheres and spectra of stars all across the HR-diagram including main sequence stars, giants, white dwarfs, stars with winds, TTauri stars, novae, supernovae, brown dwarfs and extrasolar giant planets.

[ascl:1307.011] PhoSim: Photon Simulator

The Photon Simulator (PhoSim) is a set of fast photon Monte Carlo codes used to calculate the physics of the atmosphere, telescope, and detector by using modern numerical techniques applied to comprehensive physical models. PhoSim generates images by collecting photons into pixels. The code takes the description of what astronomical objects are in the sky at a particular time (the instance catalog) as well as the description of the observing configuration (the operational parameters) and produces a realistic data stream of images that are similar to what a real telescope would produce. PhoSim was developed for large aperture wide field optical telescopes, such as the planned design of LSST. The initial version of the simulator also targeted the LSST telescope and camera design, but the code has since been broadened to include existing telescopes of a related nature. The atmospheric model, in particular, includes physical approximations that are limited to this general context.

[ascl:2407.017] photGalIMF: Stellar mass and luminosity evolution calculator

The photGalIMF code calculates the evolution of stellar mass and luminosity for a galaxy model, based on the PARSEC stellar evolution model (ascl:1502.005). It requires input lists specifying the age, mass, metallicity, and initial mass function (IMF) of single stellar populations. These input parameters can be provided by the companion galaxy chemical simulation code GalIMF (ascl:1903.010), which generates realistic sets of inputs.

[ascl:1704.009] Photo-z-SQL: Photometric redshift estimation framework

Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

[ascl:2406.021] photochem: Chemical model of planetary atmospheres

Photochem models the photochemical and climate composition of a planet's atmosphere. It takes inputs such as the stellar UV flux and atmospheric temperature structure to find the steady-state chemical composition of an atmosphere, or evolve atmospheres through time. Photochem also contains 1-D climate models and a chemical equilibrium solver.

[ascl:2312.011] PhotochemPy: 1-D photochemical model of rocky planet atmospheres

PhotochemPy finds the steady-state chemical composition of an atmosphere or evolves atmospheres through time. Given inputs such as the stellar UV flux and atmospheric temperature structure, the code creates a photochemical model of a planet's atmosphere. PhotochemPy is a distant fork of Atmos (ascl:2106.039). It provides a Python wrapper to Fortran source code but can also be used exclusively in Fortran.

[ascl:1712.013] photodynam: Photodynamical code for fitting the light curves of multiple body systems

Photodynam facilitates so-called "photometric-dynamical" modeling. This model is quite simple and this is reflected in the code base. A N-body code provides coordinates and the photometric code produces light curves based on coordinates.

[ascl:2302.003] PHOTOe: Monte Carlo model for simulating the slowing down of photoelectrons

PHOTOe simulates the slowing down of photoelectrons in a gas with arbitrary amounts of H, He and O atoms, and thermal electrons, making PHOTOe useful for investigating the atmospheres of exoplanets. The multi-score scheme used in this code differs from other Monte Carlo approaches in that it efficiently handles rare collisional channels, as in the case of low-abundance excited atoms that undergo superelastic and inelastic collisions. PHOTOe outputs include production and energy yields, steady-state photoelectron flux, and estimates of the 'relaxation' time required by the photoelectrons to slow down from the injection energy to the cutoff energy. The model can also estimate the pathlength travelled by the photoelectrons while relaxing.

[ascl:1405.013] PHOTOM: Photometry of digitized images

PHOTOM performs photometry of digitized images. It has two basic modes of operation: using an interactive display to specify the positions for the measurements, or obtaining those positions from a file. In both modes of operation PHOTOM performs photometry using either the traditional aperture method or via optimal extraction. When using the traditional aperture extraction method the target aperture can be circular or elliptical and its size and shape can be varied interactively on the display, or by entering values from the keyboard. Both methods allow the background sky level to be either sampled interactively by the manual positioning of an aperture, or automatically from an annulus surrounding the target object. PHOTOM is the photometry backend for the GAIA tool (ascl:1403.024) and is part of the Starlink software collection (ascl:1110.012).

[ascl:1703.004] PHOTOMETRYPIPELINE: Automated photometry pipeline

PHOTOMETRYPIPELINE (PP) provides calibrated photometry from imaging data obtained with small to medium-sized observatories. PP uses Source Extractor (ascl:1010.064) and SCAMP (ascl:1010.063) to register the image data and perform aperture photometry. Calibration is obtained through matching of field stars with reliable photometric catalogs. PP has been specifically designed for the measurement of asteroid photometry, but can also be used to obtain photometry of fixed sources.

[ascl:1901.007] Photon: Python tool for data plotting

Photon makes simple 1D plots in python. It uses mainly matplotlib and PyQt5 and has been build to be fully customizable, allowing the user to change the fontstyle, fontsize, fontcolors, linewidth of the axes, thickness, and other parameters, and see the changes directly in the plot. Once a customization is created, it can be saved in a configuration file and reloaded for future use, allowing reuse of the customization for other plots. The main tool is a graphical user interface and it is started using a command line interface.

[ascl:2306.007] PhotoParallax: Data-driven photometric parallaxes built with Gaia and 2MASS

PhotoParallax calculates photometric parallaxes for distant stars in the Gaia TGAS catalog without any use of physical stellar models or stellar density models of the Milky Way. It uses the geometric parallaxes to calibrate a photometric model that is purely statistical, which is a model of the data rather than a model of stars per se.

[ascl:1408.022] PhotoRApToR: PHOTOmetric Research APplication TO Redshifts

PhotoRApToR (PHOTOmetric Research APplication TO Redshifts) solves regression and classification problems and is specialized for photo-z estimation. PhotoRApToR offers data table manipulation capabilities and 2D and 3D graphics tools for data visualization; it also provides a statistical report for both classification and regression experiments. The code is written in Java; the machine learning model is in C++ to increase the core execution speed.

[ascl:1609.011] Photutils: Photometry tools

Photutils provides tools for detecting and performing photometry of astronomical sources. It can estimate the background and background rms in astronomical images, detect sources in astronomical images, estimate morphological parameters of those sources (e.g., centroid and shape parameters), and perform aperture and PSF photometry. Written in Python, it is an affiliated package of Astropy (ascl:1304.002).

[ascl:1112.004] PHOX: X-ray Photon Simulator

PHOX is a novel, virtual X-ray observatory designed to obtain synthetic observations from hydro-numerical simulations. The code is a photon simulator and can be apply to simulate galaxy clusters. In fact, X-ray observations of clusters of galaxies continue to provide us with an increasingly detailed picture of their structure and of the underlying physical phenomena governing the gaseous component, which dominates their baryonic content. Therefore, it is fundamental to find the most direct and faithful way to compare such observational data with hydrodynamical simulations of cluster-like objects, which can currently include various complex physical processes. Here, we present and analyse synthetic Suzaku observations of two cluster-size haloes obtained by processing with PHOX the hydrodynamical simulation of the large-scale, filament-like region in which they reside. Taking advantage of the simulated data, we test the results inferred from the X-ray analysis of the mock observations against the underlying, known solution. Remarkably, we are able to recover the theoretical temperature distribution of the two haloes by means of the multi-temperature fitting of the synthetic spectra. Moreover, the shapes of the reconstructed distributions allow us to trace the different thermal structure that distinguishes the dynamical state of the two haloes.

[ascl:2309.008] PI: Plages Identification

Plages Identification identifies solar plages from Ca II K photographic observations irrespective of noise level, brightness, and other image properties. The code provides an efficient, reliable method for identifying solar plages. The output of the algorithm is an image highlighting the plages and the calculated plage index. Plages Identification is also deployed as a webapp, allowing users to experiment with different hyperparameters and visualize their impact on the output image in real time.

[ascl:1408.003] PIA: ISOPHOT Interactive Analysis

ISOPHOT is one of the instruments on board the Infrared Space Observatory (ISO). ISOPHOT Interactive Analysis (PIA) is a scientific and calibration interactive data analysis tool for ISOPHOT data reduction. Written in IDL under Xwindows, PIA offers a full context sensitive graphical interface for retrieving, accessing and analyzing ISOPHOT data. It is available in two nearly identical versions; a general observers version omits the calibration sequences.

[ascl:1412.007] PIAO: Python spherIcAl Overdensity code

PIAO is an efficient memory-controlled Python code that uses the standard spherical overdensity (SO) algorithm to identify halos. PIAO employs two additional parameters besides the overdensity Δc. The first is the mesh-box size, which splits the whole simulation box into smaller ones then analyzes them one-by-one, thereby overcoming a possible memory limitation problem that can occur when dealing with high-resolution, large-volume simulations. The second is the smoothed particle hydrodynamics (SPH) neighbors number, which is used for the SPH density calculation.

[ascl:1905.019] PICASO: Planetary Intensity Code for Atmospheric Scattering Observations

PICASO (Planetary Intensity Code for Atmospheric Scattering Observations), written in Python, computes the reflected light of exoplanets at any phase geometry using direct and diffuse scattering phase functions and Raman scattering spectral features.

[ascl:2409.006] PICASSO: Inpainter for point-sources for synchrotron and dust polarization

PICASSO (Python Inpainter for Cosmological and AStrophysical SOurces) provides a suite of inpainting methodologies to reconstruct holes on images (128x128 pixels) extracted from a HEALPIX map. Three inpainting techniques are included; these are divided into two main groups: diffusive-based methods (Nearest-Neighbors), and learning-based methods that rely on training DCNNs to fill the missing pixels with the predictions learned from a training data-set (Deep-Prior and Generative Adversarial Networks). PICASSO also provides scripts for projecting from full sky HEALPIX maps to flat thumbnails images, performing inpainting on GPUs and parallel inpainting on multiple processes, and for projecting from flat images to HEALPIX. Pretrained models are also included.

[ascl:1610.001] Piccard: Pulsar timing data analysis package

Piccard is a Bayesian-inference pipeline for Pulsar Timing Array (PTA) data and interacts with Tempo2 (ascl:1210.015) through libstempo (ascl:2002.017). The code is used mainly for single-pulsar analysis and gravitational-wave detection purposes of full Pulsar Timing Array datasets. Modeling of the data can include correlated signals per frequency or modeled spectrum, with uniform, dipolar, quadrupolar, or anisotropic correlations; multiple error bars and EFACs per pulsar; and white and red noise. Timing models can be numerically included, either by using the design matrix (linear timing model), or by calling libstempo for the full non-linear timing model. Many types of samplers are included. For common-mode mitigation, the signals can be reconstructed mitigating arbitrary signals simultaneously.

[ascl:1306.011] Pico: Parameters for the Impatient Cosmologist

Pico is an algorithm that quickly computes the CMB scalar, tensor and lensed power spectra, the matter transfer function and the WMAP 5 year likelihood. It is intended to accelerate parameter estimation codes; Pico can compute the CMB power spectrum and matter transfer function, as well as any computationally expensive likelihoods, in a few milliseconds. It is extremely fast and accurate over a large volume of parameter space and its accuracy can be improved by using a larger training set. More generally, Pico allows using massively parallel computing resources, including distributed computing projects such as Cosmology@Home, to speed up the slow steps in inherently sequential calculations.

[ascl:1607.009] PICsar: Particle in cell pulsar magnetosphere simulator

PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.

[ascl:1408.014] pieflag: CASA task to efficiently flag bad data

pieflag compares bandpass-calibrated data to a clean reference channel and identifies and flags essentially all bad data. pieflag compares visibility amplitudes in each frequency channel to a 'reference' channel that is rfi-free (or manually ensured to be rfi-free). pieflag performs this comparison independently for each correlation on each baseline, but will flag all correlations if threshold conditions are met. To operate effectively, pieflag must be supplied with bandpass-calibrated data. pieflag has two core modes of operation (static and dynamic flagging) with an additional extend mode; the type of data largely determines which mode to choose. Instructions for pre-processing data and selecting the mode of operation are provided in the help file. Once pre-processing and selecting the mode of operation are done, pieflag should work well 'out of the box' with its default parameters.

[ascl:2102.024] Piff: PSFs In the Full FOV

Piff models the point-spread function (PSF) across multiple detectors in the full field of view (FOV). Models can be built in chip coordinates or in sky coordinates if needed to account for the effects of astrometric distortion. The software can fit in either real or Fourier space, and can identify and excise outlier stars that are poor exemplars of the PSF according to some metric.

[ascl:1806.014] pile-up: Monte Carlo simulations of star-disk torques on hot Jupiters

The pile-up gnuplot script generates a Monte Carlo simulation with a selectable number of randomized drawings (1000 by default, ~1min on a modern laptop). For each realization, the script calculates the torque acting on a hot Jupiter around a young, solar-type star as a function of the star-planet distance. The total torque on the planet is composed of the disk torque in the type II migration regime (that is, the planet is assumed to have opened up a gap in the disk) and of the stellar tidal torque. The model has four free parameters, which are drawn from a normal or lognormal distribution: (1) the disk's gas surface density at 1 astronomical unit, (2) the magnitude of tidal dissipation within the star, (3) the disk's alpha viscosity parameter, and (4) and the mean molecular weight of the gas in the disk midplane. For each realization, the total torque is screened for a distance at which it becomes zero. If present, then this distance would represent a tidal migration barrier to the planet. In other words, the planet would stop migrating. This location is added to a histogram on top of the main torque-over-distance panel and the realization is counted as one case that contributes to the overall survival rate of hot Jupiters. Finally, the script generates an output file (PDF by default) and prints the hot Jupiter survival rate for the assumed parameterization of the star-planet-disk system.

[ascl:1407.012] PINGSoft2: Integral Field Spectroscopy Software

PINGSoft2 visualizes, manipulates and analyzes integral field spectroscopy (IFS) data based on either 3D cubes or Raw Stacked Spectra (RSS) format. Any IFS data can be adapted to work with PINGSoft2, regardless of the original data format and the size/shape of the spaxel. Written in IDL, PINGSoft2 is optimized for fast visualization rendering; it also includes various routines useful for generic astronomy and spectroscopy tasks.

[ascl:2209.008] PINION: Accelerating radiative transfer simulations for cosmic reionization

PINION (Physics-Informed neural Network for reIONization) predicts the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulations. Trained on C2-Ray simulation outputs with a physics constraint on the reionization chemistry equation, PINION accurately predicts the entire reionization history between z = 6 and 12 with only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path. The network's predictions are in good agreement with simulation to redshift z > 7, though the oversimplified propagation mask degrades the network's accuracy for z < 7.

[ascl:1910.001] PINK: Parallelized rotation and flipping INvariant Kohonen maps

Morphological classification is one of the most demanding challenges in astronomy. With the advent of all-sky surveys, an enormous amount of imaging data is publicly available, and are typically analyzed by experts or encouraged amateur volunteers. For upcoming surveys with billions of objects, however, such an approach is not feasible anymore. PINK (Parallelized rotation and flipping INvariant Kohonen maps) is a simple yet effective variant of a rotation-invariant self-organizing map that is suitable for many analysis tasks in astronomy. The code reduces the computational complexity via modern GPUs and applies the resulting framework to galaxy data for morphological analysis.

[ascl:1305.007] PINOCCHIO: PINpointing Orbit-Crossing Collapsed HIerarchical Objects

PINOCCHIO generates catalogues of cosmological dark matter halos with known mass, position, velocity and merger history. It is able to reproduce, with very good accuracy, the hierarchical formation of dark matter halos from a realization of an initial (linear) density perturbation field, given on a 3D grid. Its setup is similar to that of a conventional N-body simulation, but it is based on the powerful Lagrangian Perturbation Theory. It runs in just a small fraction of the computing time taken by an equivalent N-body simulation, producing promptly the merging histories of all halos in the catalog.

[ascl:1902.007] PINT: High-precision pulsar timing analysis package

PINT (PINT Is Not Tempo3) analyzes high-precision pulsar timing data, enabling interactive data analysis and providing an extensible and flexible development platform for timing applications. PINT utilizes well-debugged public Python packages and modern software development practices (e.g., the NumPy and Astropy libraries, version control and development with git and GitHub, and various types of testing) for increased development efficiency and enhanced stability. PINT has been developed and implemented completely independently from traditional pulsar timing software such as TEMPO (ascl:1509.002) and Tempo2 (ascl:1210.015) and is a robust tool for cross-checking timing analyses and simulating data.

[ascl:1007.001] PINTofALE: Package for Interactive Analysis of Line Emission

PINTofALE was originally developed to analyze spectroscopic data from optically-thin coronal plasmas, though much of the software is sufficiently general to be of use in a much wider range of astrophysical data analyses. It is based on a modular set of IDL tools that interact with an atomic database and with observational data. The tools are designed to allow easy identification of spectral features, measure line fluxes, and carry out detailed modeling. The basic philosophy of the package is to provide access to the innards of atomic line databases, and to have flexible tools to interactively compare with the observed data. It is motivated by the large amount of book-keeping, computation and iterative interaction that is required between the researcher and observational and theoretical data in order to derive astrophysical results. The tools link together transparently and automatically the processes of spectral "browsing", feature identification, measurement, and computation and derivation of results. Unlike standard modeling and fitting engines currently in use, PINTofALE opens up the "black box" of atomic data required for UV/X-ray analyses and allows the user full control over the data that are used in any given analysis.

[ascl:2103.024] PION: Computational fluid-dynamics package for astrophysics

PION (PhotoIonization of Nebulae) is a grid-based fluid dynamics code for hydrodynamics and magnetohydrodynamics, including a ray-tracing module for calculating the attenuation of radiation from point sources of ionizing photons. It also has a module for coupling fluid dynamics and the radiation field to microphysical processes such as heating/cooling and ionization/recombination. PION models the evolution of HII regions, photoionized bubbles that form around hot stars, and has been extended to include stellar wind sources so that both wind bubbles and photoionized bubbles can be simulated at the same time. It is versatile enough to be extended to other applications.

[ascl:2404.002] PIPE: Extracting PSF photometry from CHEOPS data

PIPE (PSF Imagette Photometric Extraction) extracts PSF (point-spread function) photometry from data acquired by the space telescope CHEOPS (CHaracterisation of ExOPlanetS). Advantages of PSF photometry over standard aperture photometry include reduced sensitivity to contaminants such as background stars, cosmic ray hits, and hot/bad pixels. For CHEOPS, an additional advantage is that photometry can be extracted from an imagette, a small window around the target that is downlinked at a shorter cadence than the larger-sized subarray used for aperture photometry. These advantages make PIPE particularly well suited for targets brighter or fainter than the nominal G = 7-11 mag range of CHEOPS, i.e., where short-cadence imagettes are available (bright end) or when contamination becomes a problem (faint end). Within the nominal range, PIPE usually offers no advantage over the standard aperture photometry.

[ascl:2306.021] pipes_vis: Interactive GUI and visualizer tool for SPS spectra

pipes_vis is an interactive graphical user interface for visualizing SPS spectra. Powered by Bagpipes (ascl:2104.017), it provides real-time manipulation of a model galaxy's star formation history, dust, and other relevant properties through sliders and text boxes.

[ascl:1611.015] Pippi: Parse and plot MCMC chains

Pippi (parse it, plot it) operates on MCMC chains and related lists of samples from a function or distribution, and can merge, parse, and plot sample ensembles ('chains') either in terms of the likelihood/fitness function directly, or as implied posterior probability densities. Pippi is compatible with ASCII text and hdf5 chains, operates out of core, and can post-process chains on the fly.

[ascl:2311.011] PIPPIN: Polarimetric Differential Imaging (PDI) pipeline for NACO data

PIPPIN (PDI pipeline for NACO data) reduces the polarimetric observations made with the VLT/NACO instrument. It applies the Polarimetric Differential Imaging (PDI) technique to distinguish the polarized, scattered light from the (largely) un-polarized, stellar light. As a result, circumstellar dust can be uncovered. PIPPIN appropriately handles various instrument configurations, including half-wave plate and de-rotator usage, Wollaston beam-splitter, and wiregrid observations. As part of the PDI reduction, PIPPIN performs various levels of corrections for instrumental polarization and crosstalk.

[ascl:2108.019] PIPS: Period detection and Identification Pipeline Suite

PIPS analyzes the lightcurves of astronomical objects whose brightness changes periodically. Originally developed to determine the periods of RR Lyrae variable stars, the code offers many features designed for variable star analysis and can obtain period values for almost any type of lightcurve with both speed and accuracy. PIPS determines periods through several different methods, analyzes the morphology of lightcurves via Fourier analysis, estimates the statistical significance of the detected signal, and determines stellar properties based on pre-existing stellar models.

[ascl:1405.012] PISA: Position Intensity and Shape Analysis

PISA (Position, Intensity and Shape Analysis) routines deal with the location and parameterization of objects on an image frame. The core of this package is the routine PISAFIND which performs image analysis on a 2-dimensional data frame. The program searches the data array for objects that have a minimum number of connected pixels above a given threshold and extracts the image parameters (position, intensity, shape) for each object. The image parameters can be determined using thresholding techniques or an analytical stellar profile can be used to fit the objects. In crowded regions deblending of overlapping sources can be performed. PISA is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:2110.007] PISCOLA: Python for Intelligent Supernova-COsmology Light-curve Analysis

PISCOLA (Python for Intelligent Supernova-COsmology Light-curve Analysis) fits supernova light curves and corrects them in a few lines of code. It uses Gaussian Processes to estimate rest-frame light curves of transients without needing an underlying light-curve template. The user can add filters, calculates the light-curves parameters, and obtain transmission functions for the observed filters and the Bessell filters. The correction process can be applied with default settings to obtain restframe light curves and light-curve parameters. PISCOLA can plot the SN light curves, filter transmission functions, light-curves fits results, the mangling function for a given phase, and includes several utilities that can, for example, convert fluxes to magnitudes and magnitudes to fluxes, and trim leading and trailing zeros from a 1-D array or sequence.

[ascl:2010.014] Pix2Prof: Deep learning for textraction of useful sequential information from galaxy imagery

Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.

[ascl:2207.033] piXedfit: Analyze spatially resolved SEDs of galaxies

piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.

[ascl:1102.007] PixeLens: A Portable Modeler of Lensed Quasars

We introduce and implement two novel ideas for modeling lensed quasars. The first is to require different lenses to agree about H0. This means that some models for one lens can be ruled out by data on a different lens. We explain using two worked examples. One example models 1115+080 and 1608+656 (time-delay quadruple systems) and 1933+503 (a prospective time-delay system) all together, yielding time-delay predictions for the third lens and a 90% confidence estimate of H0-1=14.6+9.4-1.7 Gyr (H0=67+9-26 km s-1 Mpc-1) assuming ΩM=0.3 and ΩΛ=0.7. The other example models the time-delay doubles 1520+530, 1600+434, 1830-211, and 2149-275, which gives H0-1=14.5+3.3-1.5 Gyr (H0=67+8-13 km s-1 Mpc-1). Our second idea is to write the modeling software as a highly interactive Java applet, which can be used both for coarse-grained results inside a browser and for fine-grained results on a workstation. Several obstacles come up in trying to implement a numerically intensive method thus, but we overcome them.

[ascl:2102.003] Pixell: Rectangular pixel map manipulation and harmonic analysis library

Pixell loads, manipulates, and analyzes maps stored in rectangular pixelization. It is mainly targeted for use with maps of the sky (e.g., CMB intensity and polarization maps, stacks of 21 cm intensity maps, binned galaxy positions or shear) in cylindrical projection, but its core functionality is more general. It extends numpy's ndarray to an ndmap class that associates a World Coordinate System (WCS) with a numpy array. It includes tools for Fourier transforms (through numpy or pyfft) and spherical harmonic transforms (through libsharp2 (ascl:1402.033)) of such maps and tools for visualization (through the Python Image Library).

[ascl:2210.012] pixmappy: Python interface to gbdes astrometry solutions

pixmappy provides a Python interface to gbdes pixel map (astrometry) solutions. It reads the YAML format astrometry solutions produced by gbdes (ascl:2210.011) and issues a PixelMap instance, which is a map from one 2d coordinate system ("pixel") to another ("world") 2d system. A PixelMap instance can be used as a function mapping one (or many) coordinate pairs. An inverse method does reverse mapping, and the local jacobian of the map is available also. The type of mapping that can be expressed is very flexible, and PixelMaps can be compounded into chains of tranformations.

[ascl:1305.005] PkdGRAV2: Parallel fast-multipole cosmological code

PkdGRAV2 is a high performance N-body treecode for self-gravitating astrophysical simulations. It is designed to run efficiently in serial and on a wide variety of parallel computers including both shared memory and message passing architectures. It can spatially adapt to large ranges in particle densities, and temporally adapt to large ranges in dynamical timescales. The code uses a non-standard data structure for efficiently calculating the gravitational forces, a variant on the k-D tree, and a novel method for treating periodic boundary conditions.

[ascl:1609.016] PKDGRAV3: Parallel gravity code

Pkdgrav3 is an 𝒪(N) gravity calculation method; it uses a binary tree algorithm with fifth order fast multipole expansion of the gravitational potential, using cell-cell interactions. Periodic boundaries conditions require very little data movement and allow a high degree of parallelism; the code includes GPU acceleration for all force calculations, leading to a significant speed-up with respect to previous versions (ascl:1305.005). Pkdgrav3 also has a sophisticated time-stepping criterion based on an estimation of the local dynamical time.

[ascl:2307.055] plan-net: Bayesian neural networks for exoplanetary atmospheric retrieval

plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.

[ascl:1911.001] PLAN: A Clump-finder for Planetesimal Formation Simulations

PLAN (PLanetesimal ANalyzer) identifies and characterizes planetesimals produced in numerical simulations of the Streaming Instability that includes particle self-gravity with code Athena (ascl:1010.014). PLAN works with the 3D particle output of Athena and finds gravitationally bound clumps robustly and efficiently. PLAN — written in C++ with OpenMP/MPI — is massively parallelized, memory-efficient, and scalable to analyze billions of particles and multiple snapshots simultaneously. The approach of PLAN is based on the dark matter halo finder HOP (ascl:1102.019), but with many customizations for planetesimal formation. PLAN can be easily adapted to analyze other object formation simulations that use Lagrangian particles (e.g., Athena++ simulations). PLAN is also equipped with a toolkit to analyze the grid-based hydro data (VTK dumps of primitive variables) from Athena, which requires the Boost MultiDimensional Array Library.

[ascl:1505.032] Planck Level-S: Planck Simulation Package

The Planck simulation package takes a cosmological model specified by the user and calculates a potential CMB sky consistent with this model, including astrophysical foregrounds, and then performs a simulated observation of this sky. This Simulation embraces many instrumental effects such as beam convolution and noise. Alternatively, the package can simulate the observation of a provided sky model, generated by another program such as the Planck Sky Model software. The Planck simulation package does not only provide Planck-like data, it can also be easily adopted to mimic the properties of other existing and upcoming CMB experiments.

[ascl:2010.009] plancklens: Planck 2018 lensing pipeline

plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).

[ascl:1607.005] Planetary3br: Three massive body resonance calculator

Given two planets P1 and P2 with arbitrary orbits, planetary3br calculates all possible semimajor axes that a third planet P0 can have in order for the system to be in a three body resonance; these are identified by the combination k0*P0 + k1*P1 + k2*P2. P1 and P2 are assumed to be not in an exact two-body resonance. The program also calculates three "strengths" of the resonance, one for each planet, which are only indicators of the dynamical relevance of the resonance on each planet. Sample input data are available along with the Fortran77 source code.

[ascl:2409.013] planetMagFields: Routines to plot magnetic fields of planets in our solar system

planetMagFields accesses and analyzes information about magnetic fields of planets in our solar system and visualizes them in both 2D and 3D. The code provides access to properties of a planet, such as dipole tilt, Gauss coefficients, and computed radial magnetic field at surface, and has methods to plot the field and write a vts file for 3D visualization. planetMagFields can be used to produce both 2D and 3D visualizations of a planetary field; it also provides the option of potential extrapolation.

[ascl:1311.004] PlanetPack: Radial-velocity time-series analysis tool

PlanetPack facilitates and standardizes the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter that can run either in an interactive mode or in a batch mode of automatic script interpretation.

[ascl:1911.007] planetplanet: General photodynamical code for exoplanet light curves

planetplanet models exoplanet transits, secondary eclipses, phase curves, and exomoons, as well as eclipsing binaries, circumbinary planets, and more. The code was originally developed to model planet-planet occultation (PPO) light curves for the TRAPPIST-1 system, but it is generally applicable to any exoplanet system. During a PPO, a planet occults (transits) the disk of another planet in the same planetary system, blocking its thermal (and reflected) light, which can be measured photometrically by a distant observer. planetplanet is coded in C and wrapped in a user-friendly Python interface.

[ascl:2309.020] PlanetSlicer: Orange-slice algorithm for fitting brightness maps to phase curves

PlanetSlicer fits brightness maps to phase curves using the "orange-slice" method and works both for self-luminous objects and those that diffuse reflected light assuming Lambertian reflectance. In both cases, the model supposes that a spherical object can be divided into slices of constant brightness (or albedo) which may be integrated to yield the total flux observed, given the angles of observation. The package contains two key functions: toPhaseCurve and fromPhaseCurve; the former integrates the brightness for each slice to calculate the observed total flux from the object, given the longitude of observation. The latter does the opposite, estimating the brightness of the slices from a set of observed total flux (the phase curve).

[ascl:2107.019] PlaSim: Planet Simulator

PlaSim is a climate model of intermediate complexity for Earth, Mars and other planets. It is written for a university environment, to be used to train the next GCM (general circulation model) developers, to support scientists in understanding climate processes, and to do fundamental research. In addition to an atmospheric GCM of medium complexity, PlaSim includes other compartments of the climate system such as, for example, an ocean with sea ice and a land surface with a biosphere. These other compartments are reduced to linear systems. In other words, PlaSim consists of a GCM with a linear ocean/sea-ice module formulated in terms of a mixed layer energy balance. The soil/biosphere module is introduced analoguously. Thus, working with PlaSim is like testing the performance of an atmospheric or oceanic GCM interacting with various linear processes, which parameterize the variability of the subsystems in terms of their energy (and mass) balances.

[ascl:1906.019] PlasmaPy: Core Python package for plasma physics

PlasmaPy provides core functionality and a common framework for data visualization and analysis for plasma physics. It has modules for basic plasma physics calculations, running desktop-scale simulations to test preliminary ideas such as one-dimensional MHD/PIC or test particles, or comparing data from two different sources, such as simulations and spacecraft.

[ascl:1506.003] PLATO Simulator: Realistic simulations of expected observations

PLATO Simulator is an end-to-end simulation software tool designed for the performance of realistic simulations of the expected observations of the PLATO mission but easily adaptable to similar types of missions. It models and simulates photometric time-series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources.

[ascl:1903.014] PLATON: PLanetary Atmospheric Transmission for Observer Noobs

PLATON (PLanetary Atmospheric Transmission for Observer Noobs) calculates transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra; it is based on ExoTransmit (ascl:1611.005). PLATON supports the most common atmospheric parameters, such as temperature, metallicity, C/O ratio, cloud-top pressure, and scattering slope. It also has less commonly included features, such as a Mie scattering cloud model and unocculted starspot corrections.

[ascl:1907.009] Plonk: Smoothed particle hydrodynamics data analysis and visualization

Plonk analyzes and visualizes smoothed particle hydrodynamics simulation data, focusing on astrophysical applications. It calculates extra quantities on the particles, calculates and plots radial profiles, accesses subsets of particles, and provides visualization of any quantity defined on the particles via kernel density estimation. Plock's visualization module uses Splash (ascl:1103.004) to produce images using smoothed particle hydrodynamics interpolation. The code is modular and extendible, and can be scripted or used interactively.

[ascl:1106.003] PLplot: Cross-platform Software Package for Scientific Plots

PLplot is a cross-platform software package for creating scientific plots. To help accomplish that task it is organized as a core C library, language bindings for that library, and device drivers which control how the plots are presented in non-interactive and interactive plotting contexts. The PLplot core library can be used to create standard x-y plots, semi-log plots, log-log plots, contour plots, 3D surface plots, mesh plots, bar charts and pie charts. Multiple graphs (of the same or different sizes) may be placed on a single page, and multiple pages are allowed for those device formats that support them. PLplot has core support for Unicode. This means for our many Unicode-aware devices that plots can be labelled using the enormous selection of Unicode mathematical symbols. A large subset of our Unicode-aware devices also support complex text layout (CTL) languages such as Arabic, Hebrew, and Indic and Indic-derived CTL scripts such as Devanagari, Thai, Lao, and Tibetan. PLplot device drivers support a number of different file formats for non-interactive plotting and a number of different platforms that are suitable for interactive plotting. It is easy to add new device drivers to PLplot by writing a small number of device dependent routines.

[ascl:1206.007] Plumix: Generating mass segregated star clusters

Plumix is a small package for generating mass segregated star clusters. Its output can be directly used as input initial conditions for NBODY4 or NBODY6 code. Mass segregation stands as one of the most robust features of the dynamical evolution of self-gravitating star clusters. We formulate parametrized models of mass segregated star clusters in virial equilibrium. To this purpose we introduce mean inter-particle potentials for statistically described unsegregated systems and suggest a single-parameter generalization of its form which gives a mass-segregated state. Plumix is a numerical C-code generating the cluster according the algorithm given for construction of appropriate star cluster models. Their stability over several crossing-times is verified by following the evolution by means of direct N-body integration.

[ascl:1010.045] PLUTO: A Code for Flows in Multiple Spatial Dimensions

PLUTO is a modular Godunov-type code intended mainly for astrophysical applications and high Mach number flows in multiple spatial dimensions. The code embeds different hydrodynamic modules and multiple algorithms to solve the equations describing Newtonian, relativistic, MHD, or relativistic MHD fluids in Cartesian or curvilinear coordinates. PLUTO is entirely written in the C programming language and can run on either single processor machines or large parallel clusters through the MPI library. A simple user-interface based on the Python scripting language is available to setup a physical problem in a quick and self-explanatory way. Computations may be carried on either static or adaptive (structured) grids, the latter functionality being provided through the Chombo adaptive mesh refinement library.

[ascl:2211.008] pmclib: Population Monte Carlo library

The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.

[ascl:9909.001] PMCode: Particle-Mesh Code for Cosmological Simulations

Particle-Mesh (PM) codes are still very useful tools for testing predictions of cosmological models in cases when extra high resolution is not very important. We release for public use a cosmological PM N-body code. The code is very fast and simple. We provide a complete package of routines needed to set initial conditions, to run the code, and to analyze the results. The package allows you to simulate models with numerous combinations of parameters: open/flat/closed background, with or without the cosmological constant, different values of the Hubble constant, with or without hot neutrinos, tilted or non-tilted initial spectra, different amount of baryons.

[ascl:1102.008] PMFAST: Towards Optimal Parallel PM N-body Codes

The parallel PM N-body code PMFAST is cost-effective and memory-efficient. PMFAST is based on a two-level mesh gravity solver where the gravitational forces are separated into long and short range components. The decomposition scheme minimizes communication costs and allows tolerance for slow networks. The code approaches optimality in several dimensions. The force computations are local and exploit highly optimized vendor FFT libraries. It features minimal memory overhead, with the particle positions and velocities being the main cost. The code features support for distributed and shared memory parallelization through the use of MPI and OpenMP, respectively.

The current release version uses two grid levels on a slab decomposition, with periodic boundary conditions for cosmological applications. Open boundary conditions could be added with little computational overhead. Timing information and results from a recent cosmological production run of the code using a 3712^3 mesh with 6.4 x 10^9 particles are available.

[ascl:1102.015] PMFASTIC: Initial condition generator for PMFAST

PMFASTIC is a parallel initial condition generator, a slab decomposition Fortran 90 parallel cosmological initial condition generator for use with PMFAST (ascl:1102.008). Files required for generating initial dark matter particle distributions and instructions are included, however one would require CMBFAST (ascl:9909.004) to create alternative transfer functions.

[ascl:2107.003] PMN-body: Particle Mesh N-body code

PMN-body computes the non-linear evolution of the cosmological matter density contrast. It is based on the Particle Mesh (PM) technique. Written in C, the code is parallelized for shared-memory machines using Open Multi-Processing (OpenMP).

[ascl:2205.001] PMOIRED: Parametric Modeling of Optical Interferometric Data

PMOIRED models astronomical spectro-interferometric data stored in the OIFITS format. Parametric modeling is used to describe the observed scene as blocks such as disks, rings and Gaussians which can be combined and their parameters linked. It includes plotting, least-square fitting and bootstrapping estimation of uncertainties. For spectroscopic instruments (such as GRAVITY), tools are provided to model spectral lines and correct spectra for telluric lines.

[ascl:2412.005] pmwd: Particle Mesh With Derivatives

pmwd simulates and models cosmological evolutionary history. The code includes reverse time integration in addition to traditional forward simulation, enabling symmetrical dynamics analysis using the adjoint method. The pmwd particle-mesh model supports fully-differentiable analytic, semi-analytics, and deep learning components in parallel. Based on JAX (ascl:2111.002), pmwd is optimized for PU computation.

[ascl:1010.065] PN: Higher Post Newtonian Gravity Calculations

Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski spacetime to O[(v/c)^4] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2 body problem, the major efforts underway to measure gravitational waves produced by in-spiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c)^7]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c)^6] beyond Newton are derived.

[ascl:2307.009] pnautilus: Three-phase chemical code

The three-phase pnautilus chemical code finds the abundance of each species by solving rate equations for gas-phase and grain surface chemistries. It performs gas–grain simulations in which both the icy mantle and the surface are considered active, taking into account mantle photodissociation, diffusion, and reactions; the code also considers the competition among reaction, diffusion and evaporation.

[ascl:1302.004] pNbody: A python parallelized N-body reduction toolbox

pNbody is a parallelized python module toolbox designed to manipulate and interactively display very large N-body systems. It allows the user to perform complicated manipulations with only very few commands and to load an N-body system and explore it interactively using the python interpreter. pNbody may also be used in python scripts. pNbody contains graphical facilities for creating maps of physical values of the system, such as density, temperature, and velocities maps. Stereo capabilities are also implemented. pNbody is not limited by file format; the user may use a parameter file to redefine how to read a preferred format.

[ascl:2011.025] PNICER: Extinction estimator

PNICER estimates extinction for individual sources and creates extinction maps using unsupervised machine learning algorithms. Extinction towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field observations. PNICER also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps including the NICEST correction for cloud substructure.

[ascl:2207.018] pocoMC: Preconditioned Monte Carlo method for accelerated Bayesian inference

pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.

[ascl:1907.006] POCS: PANOPTES Observatory Control System

PANOPTES (Panoptic Astronomical Networked Observatories for a Public Transiting Exoplanets Survey) is a citizen science project for low cost, robotic detection of transiting exoplanets. POCS (PANOPTES Observatory Control System) is the main software driver for the PANOPTES telescope system, responsible for high-level control of the unit. POCS defines an Observatory class that automatically controls a commercially available equatorial mount, including image analysis and corresponding mount adjustment to obtain a percent-level photometric precision.

[ascl:1408.005] POET: Planetary Orbital Evolution due to Tides

POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

[ascl:2208.011] POIS: Python Optical Interferometry Simulation

POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.

[ascl:2403.005] Poke: Polarization ray tracing and Gaussian beamlet module for Python

Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.

[ascl:1505.018] POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1807.001] POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:2402.006] polarizationtools: Polarization analysis and simulation tools in python

polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.

[ascl:2102.011] polgraw-allsky: All-sky almost-monochromatic gravitational-wave pipeline

polgraw-allsky searches for almost monochromatic gravitational wave signals. This pipeline searches for continuous gravitational wave signals in time-domain data using the F-statistic on data from a network of detectors. The software generates a parameter space grid, conducts a coherent search for candidate signals in narrowband time segments, and searches for coincidences among different time segments. The pipeline also estimates the false alarm probability of coincidences and follows up on interesting outliers.

[ascl:1406.012] POLMAP: Interactive data analysis package for linear spectropolarimetry

POLMAP provides routines for displaying and analyzing spectropolarimetry data that are not available in the complementary TSP package. Commands are provided to read and write TSP (ascl:1406.011) polarization spectrum format files from within POLMAP. This code is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.014] POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1603.018] PolRadTran: Polarized Radiative Transfer Model Distribution

PolRadTran is a plane-parallel polarized radiative transfer model. It is used to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly-oriented particles. Both solar and thermal sources of radiation are considered. A direct method of incorporating the polarized scattering information is combined with the doubling and adding method to produce a relatively simple formulation.

[ascl:1109.005] PolSpice: Spatially Inhomogeneous Correlation Estimator for Temperature and Polarisation

PolSpice (aka Spice) is a tool to statistically analyze Cosmic Microwave Background (CMB) data, as well as any other diffuse data pixelized on the sphere.

This Fortran90 program measures the 2 point auto (or cross-) correlation functions w(θ) and the angular auto- (or cross-) power spectra C(l) from one or (two) sky map(s) of Stokes parameters (intensity I and linear polarisation Q and U). It is based on the fast Spherical Harmonic Transforms allowed by isolatitude pixelisations such as Healpix [for Npix pixels over the whole sky, and a C(l) computed up to l=lmax, PolSpice complexity scales like Npix1/2 lmax2 instead of Npix lmax2]. It corrects for the effects of the masks and can deal with inhomogeneous weights given to the pixels of the map. In the case of polarised data, the mixing of the E and B modes due to the cut sky and pixel weights can be corrected for to provide an unbiased estimate of the "magnetic" (B) component of the polarisation power spectrum. Most of the code is parallelized for shared memory (SMP) architecture using OpenMP.

[ascl:2307.020] PolyBin: Binned polyspectrum estimation on the full sky

PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.

[ascl:2404.006] PolyBin3D: Binned polyspectrum estimation for 3D large-scale structure

PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.

[ascl:1502.011] PolyChord: Nested sampling for cosmology

PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.

[ascl:2007.009] polyMV: Multipolar coefficients converter

polyMV converts multipolar coefficients (alms in healpix order) into Multipole Vectors (MVs) and also Fréchet Vectors (FVs) given a specific multipole. The code uses MPSolve (ascl:2007.008) and is order of magnitudes faster than other existing public codes at high multipoles.

[ascl:1912.001] Polyspectrum: Computing polyspectra using an FFT estimator

Polyspectrum computes the polyspectrum from 3D grids using a fast Fourier transformation (FFT) estimator. The code, written in C and MPI-parallelized, support the computation of power- and bispectra; it also supports higher-order polyspectra, but streamlining the input data is required.

[ascl:2012.016] Pomegranate: Probabilistic model builder

Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.

[ascl:1805.011] PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:2407.018] pony3d: Efficient island-finding tool for radio spectral line imaging

pony3d statistically identifies islands of contiguous emission inside a three-dimensional volume. The primary functionality is the rapid and reliable creation of masks for the deconvolution of radio interferometric radio spectral line emission. It has been designed to run on the output of the wsclean imager (ascl:1408.023) whereby the individual FITS image per frequency plane enables a high degree of parallelism, but can work on any image set providing this criterion is met. Single channel island rejection is offered, along with 3D mask dilation and boxcar averaging. pony3d is also a prototype source-finding and extraction tool.

[ascl:2007.006] PoPE: Population Profile Estimator

PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.

[ascl:1602.018] POPPY: Physical Optics Propagation in PYthon

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[ascl:0202.001] PopRatio: A program to calculate atomic level populations in astrophysical plasmas

PopRatio is a Fortran 90 code to calculate atomic level populations in astrophysical plasmas. The program solves the equations of statistical equilibrium considering all possible bound-bound processes: spontaneous, collisional or radiation induced (the later either directly or by fluorescence). There is no limit on the number of levels or in the number of processes that may be taken into account. The program may find a wide range of applicability in astronomical problems, such as interpreting fine-structure absorption lines or collisionally excited emission lines and also in calculating the cooling rates due to collisional excitation.

[ascl:1912.008] PopSyCLE: Population Synthesis for Compact object Lensing Events

PopSyCLE performs compact object population synthesis while taking photometric and astrometric microlensing effects into consideration. It uses Galaxia (ascl:1101.007) to produces a synthetic survey, injects compact objects into the resulting survey, and then produces a list of microlensing events, enabling the discovery of black holes with microlensing. It can be used to examine historical microlensing events from photometric surveys to statistically constrain the abundance of black holes in our galaxy, and to forward model microlensing survey results to constrain, for example, the properties of compact objects, Galactic structure, and the initial-final mass relation.

[ascl:2202.021] popsynth: Observed surveys from latent population models

Popsynth provides an abstract way to generate survey populations from arbitrary luminosity functions and redshift distributions. Additionally, auxiliary quantities can be sampled and stored. Populations can be saved and restored via an HDF5 files for later use, and population synthesis routines can be created via classes or structured YAML files. Users can construct their own classes for spatial, luminosity, and other distributions, all of which can be connected to arbitrarily complex selection functions.

[ascl:2106.037] PORTA: POlarized Radiative TrAnsfer

PORTA solves three-dimensional non-equilibrium radiative transfer problems with massively parallel computers. The code can be used for modeling the spectral line polarization produced by the scattering of anisotropic radiation and the Hanle and Zeeman effects assuming complete frequency redistribution, either using two-level or multilevel atomic models. The numerical method of solution used to find the self-consistent values of the atomic density matrix at each point of the model’s Cartesian grid is based on Jacobi iterative scheme and on a short-characteristics formal solver of the Stokes-vector transfer equation that uses monotonic Bézier interpolation. The code can also be used to compute the linear polarization of the continuum radiation caused by Rayleigh and Thomson scattering in 3D models of stellar atmospheres, and to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems. PORTA accepts/produces HDF5 input/output and offers an advanced graphical user interface.

[ascl:2003.006] PORTAL: POlarized Radiative Transfer Adapted to Lines

PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes

[ascl:2412.028] POSEIDON: Multidimensional atmospheric retrieval of exoplanet spectra

POSEIDON models and retrieves 1D, 2D, and 3D exoplanet transmission spectra. Given a set of observed exoplanet spectra from space-based or ground-based telescopes, the code uses Bayesian techniques to infer the atmospheric properties of the planet. POSEIDON also includes disk-integrated thermal emission and reflection spectra modeling and retrievals for both secondary eclipses and directly-imaged substellar objects.

[ascl:2104.031] Posidonius: N-Body simulator for planetary and/or binary systems

Posidonius is a N-body code based on the tidal model used in Mercury-T (ascl:1511.020). It uses the REBOUND (ascl:1110.016) symplectic integrator WHFast to compute the evolution of positions and velocities, which is also combined with a midpoint integrator to calculate the spin evolution in a consistent way. As Mercury-T, Posidonius takes into account tidal forces, rotational-flattening effects and general relativity corrections. It also includes different evolution models for FGKML stars and gaseous planets. The N-Body code is written in Rust; a Python package is provided to easily define simulation cases in JSON format, which is readable by the Posidonius integrator.

[ascl:1411.021] POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:2210.019] POSYDON: Single and binary star population synthesis code

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2006.018] Powderday: Dust radiative transfer package

The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).

[ascl:1807.021] POWER: Python Open-source Waveform ExtractoR

POWER (Python Open-source Waveform ExtractoR) monitors the status and progress of numerical relativity simulations and post-processes the data products of these simulations to compute the gravitational wave strain at future null infinity.

[ascl:1805.001] powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

[ascl:2406.025] PowerSpecCovFFT: FFTLog-based computation of non-Gaussian analytic covariance of galaxy power spectrum multipoles

PowerSpecCovFFT computes the non-Gaussian (regular trispectrum and its shot noise) part of the analytic covariance matrix of the redshift-space galaxy power spectrum multipoles using an FFTLog-based method. The galaxy trispectrum is based on a tree-level standard perturbation theory but with a slightly different galaxy bias expansion. The code computes the non-Gaussian covariance of the power spectrum monopole, quadrupole, hexadecapole, and their cross-covariance up to kmax ~ 0.4 h/Mpc.

[ascl:1110.017] POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:2301.023] PoWR: Potsdam Wolf-Rayet Models

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2212.017] powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:1401.009] PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1507.009] PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:2004.008] PPMAP: Column density mapping with extra dimensions

PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.

[ascl:1210.002] pPXF: Penalized Pixel-Fitting stellar kinematics extraction

pPXF extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include:

  • Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.
  • Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.
  • Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.
  • Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

The code is available in IDL and in Python versions.

[ascl:1611.004] PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:2004.016] PRECISION: Astronomical infrared observations data reduction

PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.

[ascl:1710.024] pred_loggs: Predicting individual galaxy G/S probability distributions

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1112.016] PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

- the system console
- the command line
- a network socket
- the generation of audio speech

Data such as a spacecraft's sub-satellite point, azimuth and elevation headings, Doppler shift, path loss, slant range, orbital altitude, orbital velocity, footprint diameter, orbital phase (mean anomaly), squint angle, eclipse depth, the time and date of the next AOS (or LOS of the current pass), orbit number, and sunlight and visibility information are provided on a real-time basis. PREDICT can also track (or predict the position of) the Sun and Moon. PREDICT has the ability to control AZ/EL antenna rotators to maintain accurate orientation in the direction of communication satellites. As an aid in locating and tracking satellites through optical means, PREDICT can articulate tracking coordinates and visibility information as plain speech.

[ascl:1910.002] PreProFit: Pressure Profile Fitter for galaxy clusters in Python

PreProFit fits the pressure profile of galaxy clusters using Markov chain Monte Carlo (MCMC). The software can analyze data from different sources and offers flexible parametrization for the pressure profile. PreProFit accounts for Abel integral, beam smearing, and transfer function filtering when fitting data and returns χ2, model parameters and uncertainties in addition to marginal and joint probability contours, diagnostic plots, and surface brightness radial profiles. The code can be used for analytic approximations for the beam and transfer functions for feasibility studies.

[ascl:1305.006] Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1107.017] PRESTO: PulsaR Exploration and Search TOolkit

PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python.

Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats:

- PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)
- SPIGOT at the GBT
- Most Wideband Arecibo Pulsar Processor (WAPP) at Arecibo
- The Parkes and Jodrell Bank 1-bit filterbank formats
- Berkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)
- 8-bit filterbank format from SIGPROC (other formats will be added if required)
- A time series composed of single precision (i.e. 4-byte) floating point data
- Photon arrival times (or events) in ASCII or double-precision binary formats

[submitted] PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:1903.009] PRF: Probabilistic Random Forest

PRF (Probabilistic Random Forest) is a machine learning algorithm for noisy datasets. The PRF is a modification of the long-established Random Forest (RF) algorithm, and takes into account uncertainties in the measurements (i.e., features) as well as in the assigned classes (i.e., labels). To do so, the Probabilistic Random Forest (PRF) algorithm treats the features and labels as probability distribution functions, rather than as deterministic quantities.

[ascl:2006.002] PRIISM: Python module for Radio Interferometry Imaging with Sparse Modeling

PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.

[ascl:2006.010] PRISim: Precision Radio Interferometer Simulator

PRISim is a modular radio interferometer array simulator, including the radio sky and instrumental effects, and generates a transit dataset in HD5 format.

[ascl:1907.021] PRISM: Probabilistic Regression Instrument for Simulating Models

PRISM analyzes scientific models using the Bayes linear approach, the emulation technique, and history matching to construct an approximation ('emulator') of any given model. The software facilitates and enhances existing MCMC methods by restricting plausible regions and exploring parameter space efficiently and can be used as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific models. PRISM stores results in HDF5-files and can be executed in serial or MPI on any number of processes. It accepts any type of model and comparison data and can reduce relevant parameter space by factors over 100,000 using only a few thousand model evaluations.

[ascl:1601.020] ProC: Process Coordinator

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[submitted] prodimopy: Python tools for the radiation thermo-chemical code ProDiMo.

prodimopy is an open-source Python package to read, analyze and plot modelling results of the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel, https://prodimo.iwf.oeaw.ac.at). It also includes tools to run ProDiMo in 1D slap model mode, to run simple ProDimo model grids and to interface ProDiMo with 1D and 2D disk codes (i.e. use input structure from hydrodynamic models).

prodimopy can also be used independently of ProDiMo (no ProDiMo installation is required) and hence is also useful to extract information from already available ProDiMo models (e.g. as input for other codes) or for model comparison.

[ascl:1608.011] PROFFIT: Analysis of X-ray surface-brightness profiles

PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

[ascl:1705.010] PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1612.004] ProFit: Bayesian galaxy fitting tool

ProFit is a Bayesian galaxy fitting tool that uses the fast C++ image generation library libprofit (ascl:1612.003) and a flexible R interface to a large number of likelihood samplers. It offers a fully featured Bayesian interface to galaxy model fitting (also called profiling), using mostly the same standard inputs as other popular codes (e.g. GALFIT ascl:1104.010), but it is also able to use complex priors and a number of likelihoods.

[ascl:1204.015] PROFIT: Emission-line PROfile FITting routine

The PROFIT is an IDL routine to do automated fitting of emission-line profiles by Gaussian curves or Gauss-Hermite series optimized for use in Integral Field and Fabry-Perot data cubes. As output PROFIT gives two-dimensional FITS files for the emission-line flux distribution, centroid velocity, velocity dispersion and higher order Gauss-Hermite moments (h3 and h4).

[ascl:1804.006] ProFound: Source Extraction and Application to Modern Survey Data

ProFound detects sources in noisy images, generates segmentation maps identifying the pixels belonging to each source, and measures statistics like flux, size, and ellipticity. These inputs are key requirements of ProFit (ascl:1612.004), our galaxy profiling package; these two packages used in unison semi-automatically profile large samples of galaxies. The key novel feature introduced in ProFound is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. ProFound offers good initial parameter estimation for ProFit, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the ProFound and ProFit pipeline.

[ascl:2204.018] ProFuse: Galaxies and components modeler

ProFuse produces physical models of galaxies and their components by combining the functionalities of the source extraction code PROFOUND (ascl:1804.006), the Bayesian galaxy fitting tool ProFit (ascl:1612.004), and the spectral generation package ProSpect (ascl:2002.007). ProFuse uses a self-consistent model for the star formation and metallicity history of the bulge and disk separately to generate images. The package then defines the model likelihood and optimizes the physical galaxy reconstruction using target images across a range of wavelengths.

[ascl:1306.004] PROM4: 1D isothermal and isobaric modeler for solar prominences

PROM4 computes simple models of solar prominences which consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. PROM4 solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level populations and hydrogen line profiles. Written in Fortran 90 and with two versions available (one with text in English, one with text in French), the code needs 64-bit arithmetic for real numbers.

PROM7 (ascl:1805.023) is a more recent version of this code.

[ascl:1805.023] PROM7: 1D modeler of solar filaments or prominences

PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).

[ascl:1511.023] PromptNuFlux: Prompt atmospheric neutrino flux calculator

PromptNuFlux computes the prompt atmospheric neutrino flux E3Φ(GeV2/(cm2ssr)), including the total associated theory uncertainty, for a range of energies between E=103 GeV and E=107.5 GeV. Results are available for five different parametrizations of the input cosmic ray flux: BPL, H3P, H3A, H14a, H14b.

[ascl:2312.020] ProPane: Image warping and stacking utilities

The ProPane package comes with key utilities for warping between different WCS systems: propaneWarp (for warping individual frames once). ProPane also contains the various functions for creating large stacks of many warped frames (which is of class ProPane, which is roughly meant to suggest the idea of many panes of glass being stacked together). It uses the wcslib C library (ascl:1108.003) for projections (all legal ones are supported) via the Rwcs package, and uses the threaded Cimg C++ library via the imager library to do image warping. ProPane also contains functions converted from older (deprecated) Rwcs and ProFound (ascl:1804.006) related functions.

[ascl:1405.006] PROPER: Optical propagation routines

PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Available in IDL, Python, and Matlab, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).

[ascl:1904.025] Properimage: Image coaddition and subtraction

Properimage processes astronomical image; it is specially written for coaddition and image subtraction. It performs the statistical proper-coadd of several images using a spatially variant PSF estimation, and also difference image analysis by several strategies developed by others. Most of the code is based on a class called SingleImage, which provides methods and properties for image processing such as PSF determination.

[ascl:1306.005] PROS: Multi-mission X-ray analysis software system

PROS is a multi-mission x-ray analysis software system designed to run under IRAF. The PROS software includes spatial, spectral, timing, data I/O and conversion routines, plotting applications, and general algorithms for performing arithmetic operations with imaging data.

[ascl:2111.006] prose: FITS images processing pipeline

prose provides pipelines for performing common tasks, such as automated calibration, reduction and photometry, and makes building custom pipelines easy. The prose framework is instrument-agnostic and makes constructing pipelines easy. It offers a wide range of implemented building blocks and also allows users to define their own.

[ascl:2312.002] PROSPECT: Profile likelihood for frequentist cosmological inference

PROSPECT infers cosmological parameters using profile likelihoods. It constructs an approximate profile likelihood from an MCMC and optimizes it using simulated annealing, a gradient-free stochastic optimization algorithm. It employs an automatic tuning of the step size parameter and binned covariance matrices from the MCMC to achieve efficient optimizations of the profile likelihood.

[ascl:2002.007] ProSpect: Spectral generation package

ProSpect generates good quality SEDs that can be used to estimate the broad band photometric properties of galaxies that have known star formation and gas metallicity histories. It allows for complex star formation and metallicity histories to be specified, and can be used in a generative or fitting (Bayesian) mode. ProSpect provides a high level interface to the BC03 (low and high resolution) and EMILES libraries, as well as the Dale 2014 dust emission templates. Its source code is available for download, and it is also available as an interactive web tool.

[ascl:1905.025] Prospector: Stellar population inference from spectra and SEDs

Prospector conducts principled inference of stellar population properties from photometric and/or spectroscopic data. The code combine photometric and spectroscopic data rigorously using a flexible spectroscopic calibration model and infer high-dimensional stellar population properties using parameteric SFHs (with ensemble MCMC sampling). Prospector also constrains the linear combination of stellar population components that are present in a galaxy (e.g. non-parametric SFHs) using spectra and/or photometry, and fits individual stellar spectra using large interpolated grids.

[ascl:2001.006] Protostellar Evolution: Stellar evolution simulator

Protostellar Evolution simulates the evolution of stellar stellar radius and luminosity from the bound core stage through to the core hydrogen ignition as a zero-age main-sequence (ZAMS) star and beyond. Written in Fortran 90, the code is implemented as a module of the FLASH astrophysical fluid dynamics code (ascl:1010.082).

[ascl:2407.006] provabgs: SED modeling tools for PROVABGS

provabgs infers full posterior distributions of galaxy properties for galaxies in the DESI Bright Galaxy Survey using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and photometry. provabgs includes a state-of-the-art stellar population synthesis (SPS) model based on non-parametric prescription for star formation history, a metallicity history that varies over the age of the galaxy, and a flexible dust prescription. It has a neural network emulator for the SPS model that enables accelerated inference. Full posteriors of the 12 SPS parameters can be derived in ~10 minutes. The emulator is currently designed for galaxies from 0 < z < 0.6. provabgs also includes a Bayesian inference pipeline that is based on zeus (ascl:2008.010).

[ascl:2406.010] PRyMordial: Precise computations of BBN within and beyond the Standard Model

PRyMordial offers fast and precise evaluation of both the Big Bang Nucleosynthesis (BBN) light-element abundances and the effective number of relativistic degrees of freedom. It can be used within and beyond the Standard Model. The package calculates Neff and helium-4, deuterium, helium-3 and lithium-7 abundances. PRyMordial corrects for QED plasma effects, neutron lifetime, and incomplete neutrino decoupling, and includes an optional module that re-elaborates all the ODE systems of the code in Julia.

[ascl:2205.016] Pryngles: PlanetaRY spaNGLES

Pryngles produces visualizations of the geometric configuration of a ringed exoplanet (an exoplanet with a ring or exoring for short) and calculates the light-curve signatures produced by these kind of planets. The model behind the package has been developed in an effort to predict the signatures that exorings may produce not only in the light-curve of transiting exoplanets (a problem that has been extensively studied) but also in the light of stars having non-transiting exoplanets.

[ascl:1301.001] PSFEx: Point Spread Function Extractor

PSFEx (“PSF Extractor”) extracts models of the Point Spread Function (PSF) from FITS images processed with SExtractor and measures the quality of images. The generated PSF models can be used for model-fitting photometry or morphological analyses.

[ascl:2306.056] PSFMachine: Toolkit for doing PSF photometry

PSFMachine creates models of instrument effective Point Spread Functions (ePSFs), also called Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. PSFMachine is able to quickly derive photometry from stacks of Kepler and TESS images and separate crowded sources.

[ascl:2210.005] PSFr: Point Spread Function reconstruction

PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.

[ascl:2202.013] PSLS: PLATO Solar-like Light-curve Simulator

PSLS simulates solar-like oscillators representative of PLATO targets. It includes planetary transits, stochastically-excited oscillations, granulation and activity background components, as well as instrumental systematic errors and random noises representative for PLATO.

[ascl:1208.005] PSM: Planck Sky Model

The Planck Sky Model (PSM) is a global representation of the multi-component sky at frequencies ranging from a few GHz to a few THz. It summarizes in a synthetic way as much of our present knowledge as possible of the GHz sky. PSM is a complete and versatile set of programs and data that can be used for the simulation or the prediction of sky emission in the frequency range of typical CMB experiments, and in particular of the Planck sky mission. It was originally developed as part of the activities of Planck component separation Working Group (or "Working Group 2" - WG2), and of the ADAMIS team at APC.

PSM gives users the opportunity to investigate the model in some depth: look at its parameters, visualize its predictions for all individual components in various formats, simulate sky emission compatible with a given parameter set, and observe the modeled sky with a synthetic instrument. In particular, it makes possible the simulation of sky emission maps as could be plausibly observed by Planck or other CMB experiments that can be used as inputs for the development and testing of data processing and analysis techniques.

[ascl:1705.013] PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1010.011] PSpectRe: A Pseudo-Spectral Code for (P)reheating

PSpectRe, written in C++, uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. The code is optimized for the analysis of parametric resonance in the post-inflationary universe and provides an alternative to finite differencing codes. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. In some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code by computing the post-resonance equation of state. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions.

[ascl:1710.020] PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1105.014] PSRCHIVE: Development Library for the Analysis of Pulsar Astronomical Data

PSRCHIVE is an Open Source C++ development library for the analysis of pulsar astronomical data. It implements an extensive range of algorithms for use in pulsar timing, polarimetric calibration, single-pulse analyses, RFI mitigation, scintillation studies, etc. These tools are utilized by a powerful suite of user-end programs that come with the library.

[ascl:2110.003] PSRDADA: Distributed Acquisition and Data Analysis for Radio Astronomy

PSRDADA supports the development of distributed data acquisition and analysis systems; it provides a flexible and well-managed ring buffer in shared memory with a variety of applications for piping data from device to ring buffer and from ring buffer to device. PSRDADA allows more than one data set to be queued in the ring buffer at one time, and data may be recorded in selected bursts using data validity flags. A variety of clients have been implemented that can write data to the ring buffer and read data from it. The primary write clients can be controlled via a simple, text-based socket interface, and read client software exists for writing data to an array of disks, sending data to an array of nodes, or processing the data directly from RAM. At the highest level of control and configuration, scripts launch the PSRDADA configuration across all nodes in the cluster, monitor all relevant processes, configure and control through a web-based interface, interface with observatory scheduling tools, and manage the ownership and archival of project data. It has been used in the implementation of baseband recording and processing instrumentation for radio pulsar astronomy.

[ascl:1107.019] PSRPOP: Pulsar Population Modelling Programs

PSRPOP is a package developed to model the Galactic population and evolution of radio pulsars. It is a collection of modules written in Fortran77 for an analysis of a large sample of pulsars detected by the Parkes Multibeam Pulsar Survey. The main programs are: 1.) populate, which creates a model Galaxy of pulsars distributed according according to various assumptions; 2.) survey, which searches the model galaxies generated using populate using realistic models of pulsar surveys; and 3.) visualize, a Tk/PGPLOT script to plot various aspects of model detected pulsars from survey. A sample screenshot from visualize can be found here.

[ascl:1501.006] PsrPopPy: Pulsar Population Modelling Programs in Python

PsrPopPy is a Python implementation of the Galactic population and evolution of radio pulsars modelling code PSRPOP (ascl:1107.019).

[ascl:1812.017] psrqpy: Python module to query the ATNF Pulsar Catalogue

psrqpy directly queries the Australia Telescope National Facility (ATNF) Pulsar Catalogue by downloading and parsing the full catalog database, which is cached and can be reused. The module assists astronomers who want access to the latest pulsar information via a script rather than through the standard web interface.

[ascl:2007.007] PSRVoid: Statistical suite for folded pulsar data

PSRVoid performs RFI excision, flux calibration and timing of folded pulsar data. RFI excision is administered via both traditional and multi-layered deep learning neural network algorithms. The software offers full neural network control (over training set creation and manipulation and network parameters). PSRVoid also contains useful data miners for the ATNF, a multitude of plotting tools, as well as many useful pulsar processing macros such as space velocity simulators and Tempo2 (ascl:1210.015) wrappers.

[ascl:2210.001] PSS: Pulsar Survey Scraper

Pulsar Survey Scraper aggregates pulsar discoveries before they are included in the ATNF pulsar catalog and enables searching and filtering based on position and dispersion measure. This facilitates identifying new pulsar discoveries. Pulsar Survey Scraper can be downloaded or run online using the Pulsar Survey Scraper webform.

[ascl:2111.003] PSwarm: Global optimization solver for bound and linear constrained problems

PSwarm is a global optimization solver for bound and linear constrained problems (for which the derivatives of the objective function are unavailable, inaccurate or expensive). The algorithm combines pattern search and particle swarm. Basically, it applies a directional direct search in the poll step (coordinate search in the pure simple bounds case) and particle swarm in the search step. PSwarm makes no use of derivative information of the objective function. It has been shown to be efficient and robust for smooth and nonsmooth problems, both in serial and in parallel.

[ascl:2110.021] PT-REX: Point-to-point TRend EXtractor

PT-REX (Point-to-point TRend EXtractor) performs ptp analysis on every kind of extended radio source. The code exploits a set of different fitting methods to allow study of the spatial correlation, and is structured in a series of tasks to handle the individual steps of a ptp analysis independently, from defining a grid to sample the radio emission to accurately analyzing the data using several statistical methods. A major feature of PT-REX is the use of an automatic, randomly-generated sampling routine to combine several SMptp analysis into a Monte Carlo ptp (MCptp) analysis. By repeating several cycles of SMptp analysis with randomly-generated grids, PT-REX produces a distribution of values of k that describe its parameter space, thus allowing a reliably estimate of the trend (and its uncertainties).

[ascl:2211.001] PTAfast: PTA correlations from stochastic gravitational wave background

PTAfast calculates the overlap reduction function in Pulsar Timing Array produced by the stochastic gravitational wave background for arbitrary polarizations, propagation velocities, and pulsar distances.

Would you like to view a random code?