Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1-100 of 1509 (1485 ASCL, 24 submitted)

Title Date
Abstract Compact
Per Page
[submitted] SASRST: Semi-Analytic Solutions for 1-D Radiative Shock Tubes

This small collection of Python scripts attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007, Shock Waves, 16, 445-453) and Lowrie & Edwards (2008, Shock Waves, 18, 129-143), respectively. The included code not only calculates the solution for a given set of input parameters, but also plots the results (using Matplotlib). This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code, as exemplified in Ramsey & Dullemond (2015, A&A, 574, A81).

[submitted] KERN

KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN to is to save time and frustration in setting up of scientific pipelines, and to assist in achieving scientific reproducibility.

[submitted] Kliko - The Scientific Compute Container Format

We present Kliko, a Docker based container specification for running one or multiple related compute jobs. The key concepts of Kliko is the encapsulation of data processing software into a container and the formalisation of the input, output and task parameters. Formalisation is realised by bundling a container with a Kliko file, which describes the IO and task parameters. This Kliko container can then be opened and run by a Kliko runner. The Kliko runner will parse the Kliko definition and gather the values for these parameters, for example by requesting user input or pre defined values in a script. Parameters can be various primitive types, for example float, int or the path to a file. This paper will also discuss the implementation of a support library named Kliko which can be used to create Kliko containers, parse Kliko definitions, chain Kliko containers in workflows using, for example, Luigi a workflow manager. The Kliko library can be used inside the container interact with the Kliko runner. Finally this paper will discuss two reference implementations based on Kliko: RODRIGUES, a web based Kliko container schedular and output visualiser specifically for astronomical data, and VerMeerKAT, a multi container workflow data reduction pipeline which is being used as a prototype pipeline for the commisioning of the MeerKAT radio telescope.

[submitted] EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS is an extensible, modular, open source software framework written in python for generating and analyzing end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission including the observatory, the optical system, the scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions. EXOSIMS development is supported by NASA Grant Nos. NNX14AD99G (GSFC), NNX15AJ67G (WPS) and NNG16PJ24C (SIT).

[submitted] Light Curves Classifier

In this era of Big Data enormous amount of data are collected every day. Besides the others, the light curves are one of the most common product of the observations of the universe gathered by the astronomical instruments. The most fundamental task is to classify them - to identify what kind of objects are observed. Despite of the efforts to categorize particular light curves, there is no
tool which unifies the procedures related to the classification into one powerful instrument.
We present the Light Curves Classifier - ”self-learning” program which utilizes modern instruments of data mining and machine
learning in order to obtain and classify desired objects by using various methods. This task can be accomplished by attributes of
light curves (or any time series) - shapes, histograms, variograms etc, or also by other available information about the inspected
objects as color indexes, temperatures, abundances etc. After specifying of features which describe searched objects, the program
is capable to learn on given train sample. Moreover unsupervised clustering can be used for visualizing of natural separation of the
sample. The package can be also used for automatic tuning parameters of used methods (for example number of hidden neurons,
binning ratio, etc.).
Trained classifiers can be used for filtering of outputs from astronomical databases or data stored locally. Also this tool can
be used just for simple downloading of light curves and all available information of queried stars. There are several connectors
available - OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO. Moreover there are no limits in applying new connectors
or descriptors. For example by using interfaces for TAP and Vizier database, new connectors are implemented just by few lines of
the code (e.g. MACHO connector is implemented just by 7 lines of the code).
All these databases have common interface which could be used for unified queries with the standardized output. Besides direct
usage of the package and command line UI, the program can be used thorough the web interface. Users can create jobs for ”training”
methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and
connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations
are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised
clustering. One can click on points representing objects in the feature space and visualize their light curves and other informations.
For the purposes of the visualization higher dimensions of features can be transformed by PCA.

[submitted] PyMOC: Multi-Order Coverage map module for Python

PyMOC manipulates Multi-Order Coverage (MOC) maps. It supports reading and writing the three encodings mentioned in the IVOA MOC recommendation: FITS, JSON and ASCII.

[ascl:1706.009] sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[ascl:1706.008] the-wizz: Clustering redshift estimation code

the-wizz clusters redshift estimates for any photometric unknown sample in a survey. The software is composed of two main parts: a pair finder and a pdf maker. The pair finder finds spatial pairs and stores the indices of all closer pairs around target reference objects in an output HDF5 data file. Users then query this data file using the indices of their unknown sample to produce an output clustering-z.

[ascl:1706.007] encube: Large-scale comparative visualization and analysis of sets of multidimensional data

Encube is a qualitative, quantitative and comparative visualization and analysis framework, with application to high-resolution, immersive three-dimensional environments and desktop displays, providing a capable visual analytics experience across the display ecology. Encube includes mechanisms for the support of: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. The framework is modular, allowing additional functionalities to be included as required.

[ascl:1706.006] GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1706.005] LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1706.004] Dark Sage: Semi-analytic model of galaxy evolution

DARK SAGE is a semi-analytic model of galaxy formation that focuses on detailing the structure and evolution of galaxies' discs. The code-base, written in C, is an extension of SAGE (ascl:1601.006) and maintains the modularity of SAGE. DARK SAGE runs on any N-body simulation with trees organized in a supported format and containing a minimum set of basic halo properties.

[ascl:1706.003] DaMaSCUS: Dark Matter Simulation Code for Underground Scatterings

DaMaSCUS calculates the density and velocity distribution of dark matter (DM) at any detector of given depth and latitude to provide dark matter particle trajectories inside the Earth. Provided a strong enough DM-matter interaction, the particles scatter on terrestrial atoms and get decelerated and deflected. The resulting local modifications of the DM velocity distribution and number density can have important consequences for direct detection experiments, especially for light DM, and lead to signatures such as diurnal modulations depending on the experiment's location on Earth. The code involves both the Monte Carlo simulation of particle trajectories and generation of data as well as the data analysis consisting of non-parametric density estimation of the local velocity distribution functions and computation of direct detection event rates.

[ascl:1706.002] rtpipe: Searching for Fast Radio Transients in Interferometric Data

rtpipe (real-time pipeline) analyzes radio interferometric data with an emphasis on searching for transient or variable astrophysical sources. The package combines single-dish concepts such as dedispersion and filters with interferometric concepts, including images and the uv-plane. In contrast to time-domain data recorded with large single-dish telescopes, visibilities from interferometers can precisely localize sources anywhere in the entire field of view. rtpipe opens interferometers to the study of fast transient sky, including sources like pulsars, stellar flares, rotating radio transients, and fast radio bursts. Key portions of the search pipeline, such as image generation and dedispersion, have been accelerated. That, in combination with its multi-threaded, multi-node design, makes rtpipe capable of searching millisecond timescale data in real time on small compute clusters.

[ascl:1706.001] Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:1705.017] supernovae: Photometric classification of supernovae

Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

[ascl:1705.016] astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1705.015] WeirdestGalaxies: Outlier Detection Algorithm on Galaxy Spectra

WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.

[ascl:1705.014] NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1705.013] PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1705.012] fd3: Spectral disentangling of double-lined spectroscopic binary stars

The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

[ascl:1705.011] FDBinary: A tool for spectral disentangling of double-lined spectroscopic binary stars

FDBinary disentangles spectra of SB2 stars. The spectral disentangling technique can be applied on a time series of observed spectra of an SB2 to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. The code is written in C and is designed as a command-line utility for a Unix-like operating system. FDBinary uses the Fourier-space approach in separation of composite spectra. This code has been replaced with the newer fd3 (ascl:1705.012).

[ascl:1705.010] PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1705.009] LensPop: Galaxy-galaxy strong lensing population simulation

LensPop simulates observations of the galaxy-galaxy strong lensing population in the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and Euclid surveys.

[ascl:1705.008] MBProj2: Multi-Band x-ray surface brightness PROJector 2

MBProj2 obtains thermodynamic profiles of galaxy clusters. It forward-models cluster X-ray surface brightness profiles in multiple bands, optionally assuming hydrostatic equilibrium. The code is a set of Python classes the user can use or extend. When modelling a cluster assuming hydrostatic equilibrium, the user chooses a form for the density profile (e.g. binning or a beta model), the metallicity profile, and the dark matter profile (e.g. NFW). If hydrostatic equilibrium is not assumed, a temperature profile model is used instead of the dark matter profile. The code uses the emcee Markov Chain Monte Carlo code (ascl:1303.002) to sample the model parameters, using these to produce chains of thermodynamic profiles.

[submitted] HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1705.007] getimages: Background derivation and image flattening method

getimages performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of getimages that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. getimages also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from getsources (ascl:1507.014), which must be installed.

[ascl:1705.006] f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:1705.005] SPTCLASS: SPecTral CLASSificator code

SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.

[ascl:1705.004] PCAT: Probabilistic Cataloger

PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model.

The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

[ascl:1705.003] demc2: Differential evolution Markov chain Monte Carlo parameter estimator

demc2, also abbreviated as DE-MCMC, is a differential evolution Markov Chain parameter estimation library written in R for adaptive MCMC on real parameter spaces.

[ascl:1705.002] DMATIS: Dark Matter ATtenuation Importance Sampling

DMATIS (Dark Matter ATtenuation Importance Sampling) calculates the trajectories of DM particles that propagate in the Earth's crust and the lead shield to reach the DAMIC detector using an importance sampling Monte-Carlo simulation. A detailed Monte-Carlo simulation avoids the deficiencies of the SGED/KS method that uses a mean energy loss description to calculate the lower bound on the DM-proton cross section. The code implementing the importance sampling technique makes the brute-force Monte-Carlo simulation of moderately strongly interacting DM with nucleons computationally feasible. DMATIS is written in Python 3 and MATHEMATICA.

[ascl:1705.001] COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

[ascl:1704.014] Multipoles: Potential gain for binary lens estimation

Multipoles, written in Python, calculates the quadrupole and hexadecapole approximations of the finite-source magnification: quadrupole (Wk,rho,Gamma) and hexadecapole (Wk,rho,Gamma). The code is efficient and faster than previously available methods, and could be generalized for use on large portions of the light curves.

[ascl:1704.013] Difference-smoothing: Measuring time delay from light curves

The Difference-smoothing MATLAB code measures the time delay from the light curves of images of a gravitationally lendsed quasar. It uses a smoothing timescale free parameter, generates more realistic synthetic light curves to estimate the time delay uncertainty, and uses X2 plot to assess the reliability of a time delay measurement as well as to identify instances of catastrophic failure of the time delay estimator. A systematic bias in the measurement of time delays for some light curves can be eliminated by applying a correction to each measured time delay.

[ascl:1704.012] XID+: Next generation XID development

XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.

[ascl:1704.011] VULCAN: Chemical Kinetics For Exoplanetary Atmospheres

VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.

[ascl:1704.010] A-Track: Detecting Moving Objects in FITS images

A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

[ascl:1704.009] Photo-z-SQL: Photometric redshift estimation framework

Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

[ascl:1704.008] Transit: Radiative-transfer code for planetary atmospheres

Transit calculates the transmission or emission spectrum of a planetary atmosphere with application to extrasolar-planet transit and eclipse observations, respectively. It computes the spectra by solving the one-dimensional line-by-line radiative-transfer equation for an atmospheric model.

[ascl:1704.007] PySM: Python Sky Model

PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs

[ascl:1704.006] Quickclump: Identify clumps within a 3D FITS datacube

Quickclump finds clumps in a 3D FITS datacube. It is a fast, accurate, and automated tool written in Python. Though Quickclump is primarily intended for decomposing observations of interstellar clouds into individual clumps, it can also be used for finding clumps in any 3D rectangular data.

[ascl:1704.005] VaST: Variability Search Toolkit

VaST (Variability Search Toolkit) finds variable objects on a series of astronomical images in FITS format. The software performs object detection and aperture photometry using SExtractor (ascl:1010.064) on each image, cross-matches lists of detected stars, performs magnitude calibration with respect to the first (reference) image and constructs a lightcurve for each object. The sigma-magnitude, Stetson's L variability index, Robust Median Statistic (RoMS) and other plots may be used to visually identify variable star candidates. The two distinguishing features of VaST are its ability to perform accurate aperture photometry of images obtained with non-linear detectors and to handle complex image distortions. VaST can be used in cases of unstable PSF (e.g., bad guiding or with digitized wide-field photographic images), and has been successfully applied to images obtained with telescopes ranging from 0.08 to 2.5m in diameter equipped with a variety of detectors including CCD, CMOS, MIC and photographic plates.

[ascl:1704.004] STATCONT: Statistical continuum level determination method for line-rich sources

STATCONT determines the continuum emission level in line-rich spectral data by inspecting the intensity distribution of a given spectrum by using different statistical approaches. The sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination; this uncertainty is used to correct the final continuum emission level. In general, STATCONT obtains accuracies of < 10 % in the continuum determination, and < 5 % in most cases. The main products of the software are the continuum emission level, together with its uncertainty, and data cubes containing only spectral line emission, i.e. continuum-subtracted data cubes. STATCONT also includes the option to estimate the spectral index or variation of the continuum emission with frequency.

[ascl:1704.003] Shwirl: Meaningful coloring of spectral cube data with volume rendering

Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.

[ascl:1704.002] UDAT: A multi-purpose data analysis tool

UDAT is a pattern recognition tool for mass analysis of various types of data, including image and audio. Based on its WND-CHARM (ascl:1312.002) prototype, UDAT computed a large set of numerical content descriptors from each file it analyzes, and selects the most informative features using statistical analysis. The tool can perform automatic classification of galaxy images by training with annotated galaxy images. It also has unsupervised learning capabilities, such as query-by-example of galaxies based on morphology. That is, given an input galaxy image of interest, the tool can search through a large database of images to retrieve the galaxies that are the most similar to the query image. The downside of the tool is its computational complexity, which in most cases will require a small or medium cluster.

[ascl:1704.001] pwkit: Astronomical utilities in Python

pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

[submitted] CINE: Comet INfrared Excitation

CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

[submitted] SPARTA: Subhalo and PARticle Trajectory Analysis

SPARTA is an MPI-parallelized C-code framework for the dynamical analysis or particle-based simulations. The code follows the orbits of dynamical tracers such as particles and subhalos in dark matter halos. As a first application, SPARTA can record the first apocenters of all halo particles and compute the splashback radius of halos.

[ascl:1703.015] Charm: Cosmic history agnostic reconstruction method

Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.

[ascl:1703.014] MC-SPAM: Monte-Carlo Synthetic-Photometry/Atmosphere-Model

MC-SPAM (Monte-Carlo Synthetic-Photometry/Atmosphere-Model) generates limb-darkening coefficients from models that are comparable to transit photometry; it extends the original SPAM algorithm by Howarth (2011) by taking in consideration the uncertainty on the stellar and transit parameters of the system under analysis.

[ascl:1703.013] Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer

Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

[ascl:1703.012] ICICLE: Initial Conditions for Isolated CoLlisionless systEms

ICICLE (Initial Conditions for Isolated CoLlisionless systEms) generates stable initial conditions for isolated collisionless systems that can then be used in NBody simulations. It supports the Navarro-Frenk-White, Hernquist, King and Einasto density profiles.

[ascl:1703.011] QtClassify: IFS data emission line candidates classifier

QtClassify is a GUI that helps classify emission lines found in integral field spectroscopic data. Input needed is a datacube as well as a catalog with emission lines and a signal-to-noise cube, such at that created by LSDCat (ascl:1612.002). The main idea is to take each detected line and guess what line it could be (and thus the redshift of the object). You would expect to see other lines that might not have been detected but are visible in the cube if you know where to look, which is why parts of the spectrum are shown where other lines are expected. In addition, monochromatic layers of the datacube are displayed, making it easy to spot additional emission lines.

[ascl:1703.010] TransitSOM: Self-Organizing Map for Kepler and K2 transits

A self-organizing map (SOM) can be used to identify planetary candidates from Kepler and K2 datasets with accuracies near 90% in distinguishing known Kepler planets from false positives. TransitSOM classifies a Kepler or K2 lightcurve using a self-organizing map (SOM) created and pre-trained using PyMVPA (ascl:1703.009). It includes functions for users to create their own SOMs.

[ascl:1703.009] PyMVPA: MultiVariate Pattern Analysis in Python

PyMVPA eases statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. It is designed to integrate well with related software packages, such as scikit-learn, shogun, and MDP.

[ascl:1703.008] exorings: Exoring Transit Properties

Exorings is suitable for surveying entire catalogs of transiting planet candidates for exoring candidates, providing a subset of objects worthy of more detailed light curve analysis. Moreover, it is highly suited for uncovering evidence of a population of ringed planets by comparing the radius anomaly and PR-effects in ensemble studies.

[ascl:1703.007] sidm-nbody: Monte Carlo N-body Simulation for Self-Interacting Dark Matter

Self-Interacting Dark Matter (SIDM) is a hypothetical model for cold dark matter in the Universe. A strong interaction between dark matter particles introduce a different physics inside dark-matter haloes, making the density profile cored, reduce the number of subhaloes, and trigger gravothermal collapse. sidm-nbody is an N-body simulation code with Direct Simulation Monte Carlo scattering for self interaction, and some codes to analyse gravothermal collapse of isolated haloes. The N-body simulation is based on GADGET 1.1.

[ascl:1703.006] SNRPy: Supernova remnant evolution modeling

SNRPy (Super Nova Remnant Python) models supernova remnant (SNR) evolution and is useful for understanding SNR evolution and to model observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs and includes alternate evolutionary models, including evolution in a cloudy ISM, the fractional energy loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity vs. time, SNR surface brightness profile and spectrum.

[ascl:1703.005] starsense_algorithms: Performance evaluation of various star sensors

The Matlab starsense_algorithms package evaluates the performance of various star sensors through the implementation of centroiding, geometric voting and QUEST algorithms. The physical parameters of a star sensor are parametrized and by changing these parameters, performance estimators such as sky coverage, memory requirement, and timing requirements can be estimated for the selected star sensor.

[ascl:1703.004] PHOTOMETRYPIPELINE: Automated photometry pipeline

PHOTOMETRYPIPELINE (PP) provides calibrated photometry from imaging data obtained with small to medium-sized observatories. PP uses Source Extractor (ascl:1010.064) and SCAMP (ascl:1010.063) to register the image data and perform aperture photometry. Calibration is obtained through matching of field stars with reliable photometric catalogs. PP has been specifically designed for the measurement of asteroid photometry, but can also be used to obtain photometry of fixed sources.

[ascl:1703.003] Corrfunc: Blazing fast correlation functions on the CPU

Corrfunc is a suite of high-performance clustering routines. The code can compute a variety of spatial correlation functions on Cartesian geometry as well Landy-Szalay calculations for spatial and angular correlation functions on a spherical geometry and is useful for, for example, exploring the galaxy-halo connection. The code is written in C and can be used on the command-line, through the supplied python extensions, or the C API.

[ascl:1703.002] COCOA: Simulating Observations of Star Cluster Simulations

COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

[ascl:1703.001] Larch: X-ray Analysis for Synchrotron Applications using Python

Larch is an open-source library and toolkit written in Python for processing and analyzing X-ray spectroscopic data. The primary emphasis is on X-ray spectroscopic and scattering data collected at modern synchrotron sources. Larch provides a wide selection of general-purpose processing, analysis, and visualization tools for processing X-ray data; its related target application areas include X-ray absorption fine structure (XAFS), micro-X-ray fluorescence (XRF) maps, quantitative X-ray fluorescence, X-ray absorption near edge spectroscopy (XANES), and X-ray standing waves and surface scattering. Larch provides a complete set of XAFS Analysis tools and has support for visualizing and analyzing XRF maps and spectra, and additional tools for X-ray spectral analysis, data handling, and general-purpose data modeling.

[submitted] KSTAT

KSTAT calculates the 2 and 3-point correlation functions in discreet point data. These include the two-point correlation function in 2 and 3-dimensions, the anisotripic 2PCF decomposed in either sigma-pi or Kazin's dist. mu projection.

The 3-point correlation function can also work in anisotropic coordinates (currently under development). The code is based on kd-tree structures and is parallelized using a mixture of MPI and OpenMP.

I created these codes as I have found it difficult in the past find similar ones freely available in the public domain. I hope to keep developing them, so please send me bug fixes,suggestions, comments/criticisms to

[submitted] INTRAT: INTensity RATios calculator for hydrogenic recombination lines

The Fortran program INTRAT computes INTensity RATios of hydrogenic recombination lines for specified transitions at temperatures and densities. It utilizes the linear or logarithmic interpolation over temperatures and densities to calculate line emissivities and total recombination coefficients for cases A and B of all hydrogenic ions through oxygen.

[ascl:1702.012] GRIM: General Relativistic Implicit Magnetohydrodynamics

GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

[ascl:1702.011] Chempy: A flexible chemical evolution model for abundance fitting

Chempy models Galactic chemical evolution (GCE); it is a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of 5-10 parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: e.g. the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF) and the incidence of supernova of type Ia (SN Ia). Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets, performing essentially as a chemical evolution fitting tool. Chempy can be used to confront predictions from stellar nucleosynthesis with complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

[ascl:1702.010] streamgap-pepper: Effects of peppering streams with many small impacts

streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the galpy extension, which implements the fast calculation of the perturbed stream structure.

[ascl:1702.009] stream-stream: Stellar and dark-matter streams interactions

Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.

[ascl:1702.008] HOURS: Simulation and analysis software for the KM3NeT

The Hellenic Open University Reconstruction & Simulation (HOURS) software package contains a realistic simulation package of the detector response of very large (km3-scale) underwater neutrino telescopes, including an accurate description of all the relevant physical processes, the production of signal and background as well as several analysis strategies for triggering and pattern recognition, event reconstruction, tracking and energy estimation. HOURS also provides tools for simulating calibration techniques and other studies for estimating the detector sensitivity to several neutrino sources.

[ascl:1702.007] KEPLER: General purpose 1D multizone hydrodynamics code

KEPLER is a general purpose stellar evolution/explosion code that incorporates implicit hydrodynamics and a detailed treatment of nuclear burning processes. It has been used to study the complete evolution of massive and supermassive stars, all major classes of supernovae, hydrostatic and explosive nucleosynthesis, and x- and gamma-ray bursts on neutron stars and white dwarfs.

[ascl:1702.006] GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

[ascl:1702.005] JetCurry: Modeling 3D geometry of AGN jets from 2D images

Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

[ascl:1702.004] Validation: Codes to compare simulation data to various observations

Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

[ascl:1702.003] juwvid: Julia code for time-frequency analysis

Juwvid performs time-frequency analysis. Written in Julia, it uses a modified version of the Wigner distribution, the pseudo Wigner distribution, and the short-time Fourier transform from MATLAB GPL programs, tftb-0.2. The modification includes the zero-padding FFT, the non-uniform FFT, the adaptive algorithm by Stankovic, Dakovic, Thayaparan 2013, the S-method, the L-Wigner distribution, and the polynomial Wigner-Ville distribution.

[ascl:1702.002] corner: Corner plots

corner uses matplotlib to visualize multidimensional samples using a scatterplot matrix. In these visualizations, each one- and two-dimensional projection of the sample is plotted to reveal covariances. corner was originally conceived to display the results of Markov Chain Monte Carlo simulations and the defaults are chosen with this application in mind but it can be used for displaying many qualitatively different samples. An earlier version of corner was known as

[ascl:1702.001] ORBE: Orbital integrator for educational purposes

ORBE performs numerical integration of an arbitrary planetary system composed by a central star and up to 100 planets and minor bodies. ORBE calculates the orbital evolution of a system of bodies by means of the computation of the time evolution of their orbital elements. It is easy to use and is suitable for educational use by undergraduate students in the classroom as a first approach to orbital integrators.

[ascl:1701.012] SONG: Second Order Non-Gaussianity

SONG computes the non-linear evolution of the Universe in order to predict cosmological observables such as the bispectrum of the Cosmic Microwave Background (CMB). More precisely, it is a second-order Boltzmann code, as it solves the Einstein and Boltzmann equations up to second order in the cosmological perturbations.

[ascl:1701.011] GWFrames: Manipulate gravitational waveforms

GWFrames eliminates all rotational behavior, thus simplifying the waveform as much as possible and allowing direct generalizations of methods for analyzing nonprecessing systems. In the process, the angular velocity of a waveform is introduced, which also has important uses, such as supplying a partial solution to an important inverse problem.

[ascl:1701.010] kcorrect: Calculate K-corrections between observed and desired bandpasses

kcorrect fits very restricted spectral energy distribution models to galaxy photometry or spectra in the restframe UV, optical and near-infrared. The main purpose of the fits are for calculating K-corrections. The templates used for the fits may also be interpreted physically, since they are based on the Bruzual-Charlot stellar evolution synthesis codes. Thus, for each fit galaxy kcorrect can provide an estimate of the stellar mass-to-light ratio.

[ascl:1701.009] GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

[ascl:1701.008] GrayStar: Web-based pedagogical stellar modeling

GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.

[ascl:1701.007] Forecaster: Mass and radii of planets predictor

Forecaster predicts the mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude in mass. It is an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. It accounts for observational errors, hyper-parameter uncertainties and the intrinsic dispersions observed in the calibration sample.

[ascl:1701.006] MSWAVEF: Momentum-Space Wavefunctions

MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.

[ascl:1701.005] KAULAKYS: Inelastic collisions between hydrogen atoms and Rydberg atoms

KAULAKYS calculates cross sections and rate coefficients for inelastic collisions between Rydberg atoms and hydrogen atoms according to the free electron model of Kaulakys (1986, 1991). It is written in IDL and requires the code MSWAVEF (ascl:1701.006) to calculate momentum-space wavefunctions. KAULAKYS can be easily adapted to collisions with perturbers other than hydrogen atoms by providing the appropriate scattering amplitudes.

[ascl:1701.004] CosmoSlik: Cosmology sampler of likelihoods

CosmoSlik quickly puts together, runs, and analyzes an MCMC chain for analysis of cosmological data. It is highly modular and comes with plugins for CAMB (ascl:1102.026), CLASS (ascl:1106.020), the Planck likelihood, the South Pole Telescope likelihood, other cosmological likelihoods, emcee (ascl:1303.002), and more. It offers ease-of-use, flexibility, and modularity.

[ascl:1701.003] Spectra: Time series power spectrum calculator

Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

[ascl:1701.002] Vizic: Jupyter-based interactive visualization tool for astronomical catalogs

Vizic is a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. The software visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog and displays interactive and customizable objects in the map. Property values such as redshift and magnitude can be used to filter or apply colormaps, and objects can be selected for further analysis through standard Python functions from inside a Jupyter notebook.

Vizic allows custom overlays to be appended dynamically on top of the sky map; included are Voronoi, Delaunay, Minimum Spanning Tree and HEALPix layers, which are helpful for visualizing large-scale structure. Overlays can be generated, added or removed dynamically with one line of code. Catalog data is kept in a non-relational database. The Jupyter Notebook allows the user to create scripts to analyze and plot the data selected/displayed in the interactive map, making Vizic a powerful and flexible interactive analysis tool. Vizic be used for data inspection, clustering analysis, galaxy alignment studies, outlier identification or simply large-scale visualizations.

[submitted] Lizard: an extensible Cyclomatic Complexity Analyzer

Lizard is an extensible Cyclomatic Complexity Analyzer for many imperative programming languages including C/C++.

[ascl:1701.001] The Joker: A custom Monte Carlo sampler for binary-star and exoplanet radial velocity data

Given sparse or low-quality radial-velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and MCMC posterior sampling over the orbital parameters. The Joker is a custom-built Monte Carlo sampler that can produce a posterior sampling for orbital parameters given sparse or noisy radial-velocity measurements, even when the likelihood function is poorly behaved. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still highly informative and can be used in hierarchical (population) modeling.

[submitted] DiskSim: Modeling Accretion Disk Dynamics with SPH

DiskSim is a source-code distribution of the SPH accretion disk modeling code described in Simpson & Wood (1998) and Wood, Thomas, & Simpson (2009). The code had been released in a Windows executable form as FITDisk (Dolence, Wood & Simpson 2005; ascl:1305.011). The code released now is the full research code in Fortran, which can be modified as needed by the user.

[submitted] Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1612.022] REPS: REscaled Power Spectra for initial conditions with massive neutrinos

REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshift.

[ascl:1612.021] BaTMAn: Bayesian Technique for Multi-image Analysis

Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

[ascl:1612.020] Grackle: Chemistry and radiative cooling library for astrophysical simulations

The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

[ascl:1612.019] Trident: Synthetic spectrum generator

Trident creates synthetic absorption-line spectra from astrophysical hydrodynamics simulations. It uses the yt package (ascl:1011.022) to read in simulation datasets and extends it to provide realistic synthetic observations appropriate for studies of the interstellar, circumgalactic, and intergalactic media.

[ascl:1612.018] pylightcurve: Exoplanet lightcurve model

pylightcurve is a model for light-curves of transiting planets. It uses the four coefficients law for the stellar limb darkening and returns the relative flux, F(t), as a function of the limb darkening coefficients, an, the Rp/R* ratio and all the orbital parameters based on the nonlinear limb darkening model (Claret 2000).

[ascl:1612.017] GAMER: GPU-accelerated Adaptive MEsh Refinement code

GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

[ascl:1612.016] CELib: Software library for simulations of chemical evolution

CELib (Chemical Evolution Library) simulates chemical evolution of galaxy formation under the simple stellar population (SSP) approximation and can be used by any simulation code that uses the SSP approximation, such as particle-base and mesh codes as well as semi-analytical models. Initial mass functions, stellar lifetimes, yields from type II and Ia supernovae, asymptotic giant branch stars, and neutron star mergers components are included and a variety of models are available for use. The library allows comparisons of the impact of individual models on the chemical evolution of galaxies by changing control flags and parameters of the library.

Would you like to view a random code?