Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1-100 of 1577 (1556 ASCL, 21 submitted)

Title Date
Abstract Compact
Per Page
[ascl:1710.020] PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1710.019] GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1710.018] FITSFH: Star Formation Histories

FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.

[ascl:1710.017] ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:1710.016] LGMCA: Local-Generalized Morphological Component Analysis

LGMCA (Local-Generalized Morphological Component Analysis) is an extension to GMCA (ascl:1710.015). Similarly to GMCA, it is a Blind Source Separation method which enforces sparsity. The novel aspect of LGMCA, however, is that the mixing matrix changes across pixels allowing LGMCA to deal with emissions sources which vary spatially. These IDL scripts compute the CMB map from WMAP and Planck data; running LGMCA on the WMAP9 temperature products requires the main script and a selection of mandatory files, algorithm parameters and map parameters.

[ascl:1710.015] GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1710.014] GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1710.013] Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

[ascl:1710.012] FSFE: Fake Spectra Flux Extractor

The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

[ascl:1710.011] mTransport: Two-point-correlation function calculator

mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

[ascl:1710.010] PyTransport: Calculate inflationary correlation functions

PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.

[ascl:1710.009] CppTransport: Two- and three-point function transport framework for inflationary cosmology

CppTransport solves the 2- and 3-point functions of the perturbations produced during an inflationary epoch in the very early universe. It is implemented for models with canonical kinetic terms, although the underlying method is quite general and could be scaled to handle models with a non-trivial field-space metric or an even more general non-canonical Lagrangian.

[ascl:1710.008] Binary: Accretion disk evolution

Binary computes the evolution of an accretion disc interacting with a binary system. It has been developed and used to study the coupled evolution of supermassive BH binaries and gaseous accretion discs.

[ascl:1710.007] FLAG: Exact Fourier-Laguerre transform on the ball

FLAG is a fast implementation of the Fourier-Laguerre Transform, a novel 3D transform exploiting an exact quadrature rule of the ball to construct an exact harmonic transform in 3D spherical coordinates. The angular part of the Fourier-Laguerre transform uses the MW sampling theorem and the exact spherical harmonic transform implemented in the SSHT code. The radial sampling scheme arises from an exact quadrature of the radial half-line using damped Laguerre polynomials. The radial transform can in fact be used to compute the spherical Bessel transform exactly, and the Fourier-Laguerre transform is thus closely related to the Fourier-Bessel transform.

[ascl:1710.006] MOSFiT: Modular Open-Source Fitter for Transients

MOSFiT (Modular Open-Source Fitter for Transients) downloads transient datasets from open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-analytical light curve fits to those datasets and their associated Bayesian parameter posteriors, and optionally delivers the fitting results back to those same catalogs to make them available to the rest of the community. MOSFiT helps bridge the gap between observations and theory in time-domain astronomy; in addition to making the application of existing models and creation of new models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics, with a standard output format that includes all the setup information necessary to reproduce a given result.

[ascl:1710.005] SkyNet: Modular nuclear reaction network library

The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

[ascl:1710.004] SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

[ascl:1710.003] EXOFASTv2: Generalized publication-quality exoplanet modeling code

EXOFASTv2 improves upon EXOFAST (ascl:1207.001) for exoplanet modeling. It uses a differential evolution Markov Chain Monte Carlo code to fit an arbitrary number of transits (each with their own error scaling, normalization, TTV, and/or detrending parameters), an arbitrary number of RV sources (each with their own zero point and jitter), and an arbitrary number of planets, changing nothing but command line arguments and configuration files. The global model includes integrated isochrone and SED models to constrain the stellar properties and can accept priors on any fitted or derived quantities (e.g., parallax from Gaia). It is easily extensible to add additional effects or parameters.

[submitted] SpcAudace: Spectroscopic processing and analysis package of Audela software

SpcAudace is dedicated to process long slit spectra with automated pipelines and to astrophysical analysis of the latter data. Powerful pipelines do in one pass all the required steps: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or time serie anotated plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software. New functionalities and GUI improvements are still in development.

[ascl:1710.002] rfpipe: Radio interferometric transient search pipeline

rfpipe is a fast radio interferometric transient search pipeline, and is the next generation of rtpipe (scl:1706.002).

[ascl:1710.001] vysmaw: Fast visibility stream muncher

The vysmaw client library facilitates the development of code for processes to tap into the fast visibility stream on the National Radio Astronomy Observatory's Very Large Array correlator back-end InfiniBand network.

[ascl:1709.011] FLaapLUC: Fermi-LAT automatic aperture photometry light curve

Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.

[ascl:1709.010] MagIC: Fluid dynamics in a spherical shell simulator

MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

[ascl:1709.009] bmcmc: MCMC package for Bayesian data analysis

bmcmc is a general purpose Markov Chain Monte Carlo package for Bayesian data analysis. It uses an adaptive scheme for automatic tuning of proposal distributions. It can also handle Bayesian hierarchical models by making use of the Metropolis-Within-Gibbs scheme.

[ascl:1709.008] celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia

celerite provides fast and scalable Gaussian Process (GP) Regression in one dimension and is implemented in C++, Python, and Julia. The celerite API is designed to be familiar to users of george and, like george, celerite is designed to efficiently evaluate the marginalized likelihood of a dataset under a GP model. This is then be used alongside a non-linear optimization or posterior inference library for the best results.

[ascl:1709.007] MSSC: Multi-Source Self-Calibration

Multi-Source Self-Calibration (MSSC) provides direction-dependent calibration to standard phase referencing. The code combines multiple faint sources detected within the primary beam to derive phase corrections. Each source has its CLEAN model divided into the visibilities which results in multiple point sources that are stacked in the uv plane to increase the S/N, thus permitting self-calibration. This process applies only to wide-field VLBI data sets that detect and image multiple sources within one epoch.

[ascl:1709.006] DCMDN: Deep Convolutional Mixture Density Network

Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

[ascl:1709.005] DanIDL: IDL solutions for science and astronomy

DanIDL provides IDL functions and routines for many standard astronomy needs, such as searching for matching points between two coordinate lists of two-dimensional points where each list corresponds to a different coordinate space, estimating the full-width half-maximum (FWHM) and ellipticity of the PSF of an image, calculating pixel variances for a set of calibrated image data, and fitting a 3-parameter plane model to image data. The library also supplies astrometry, general image processing, and general scientific applications.

[ascl:1709.004] DOOp: DAOSPEC Output Optimizer pipeline

The DAOSPEC Output Optimizer pipeline (DOOp) runs efficient and convenient equivalent widths measurements in batches of hundreds of spectra. It uses a series of BASH scripts to work as a wrapper for the FORTRAN code DAOSPEC (ascl:1011.002) and uses IRAF (ascl:9911.002) to automatically fix some of the parameters that are usually set by hand when using DAOSPEC. This allows batch-processing of quantities of spectra that would be impossible to deal with by hand. DOOp was originally built for the large quantity of UVES and GIRAFFE spectra produced by the Gaia-ESO Survey, but just like DAOSPEC, it can be used on any high resolution and high signal-to-noise ratio spectrum binned on a linear wavelength scale.

[ascl:1709.003] MeshLab: 3D triangular meshes processing and editing

MeshLab processes and edits 3D triangular meshes. It includes tools for editing, cleaning, healing, inspecting, rendering, texturing and converting meshes, and offers features for processing raw data produced by 3D digitization tools and devices and for preparing models for 3D printing.

[ascl:1709.002] PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

[ascl:1709.001] SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

[ascl:1708.030] GAMBIT: Global And Modular BSM Inference Tool

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1708.029] iSEDfit: Bayesian spectral energy distribution modeling of galaxies

iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone.

After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

[ascl:1708.028] ANA: Astrophysical Neutrino Anisotropy

ANA calculates the likelihood function for a model comprised of two components to the astrophysical neutrino flux detected by IceCube. The first component is extragalactic. Since point sources have not been found and there is increasing evidence that one source catalog cannot describe the entire data set, ANA models the extragalactic flux as isotropic. The second component is galactic. A variety of catalogs of interest are also provided. ANA takes the galactic contribution to be proportional to the matter density of the universe. The likelihood function has one free parameter fgal that is the fraction of the astrophysical flux that is galactic. ANA finds the best fit value of fgal and scans over 0

[ascl:1708.027] empiriciSN: Supernova parameter generator

empiriciSN generates realistic supernova parameters given photometric observations of a potential host galaxy, based entirely on empirical correlations measured from supernova datasets. It is intended to be used to improve supernova simulation for DES and LSST. It is extendable such that additional datasets may be added in the future to improve the fitting algorithm or so that additional light curve parameters or supernova types may be fit.

[ascl:1708.026] XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

[ascl:1708.025] extinction-distances: Estimating distances to dark clouds

Extinction-distances uses the number of foreground stars and a Galactic model of the stellar distribution to estimate the distance to dark clouds. It exploits the relatively narrow range of intrinsic near-infrared colors of stars to separate foreground from background stars. An advantage of this method is that the distribution of stellar colors in the Galactic model need not be precisely correct, only the number density as a function of distance from the Sun.

[ascl:1708.024] ComEst: Completeness Estimator

ComEst calculates the completeness of CCD images conducted in astronomical observations saved in the FITS format. It estimates the completeness of the source finder SExtractor (ascl:1010.064) on the optical and near-infrared (NIR) imaging of point sources or galaxies as a function of flux (or magnitude) directly from the image itself. It uses PyFITS (ascl:1207.009) and GalSim (ascl:1402.009) to perform the end-to-end estimation of the completeness and can also estimate the purity of the source detection.

[ascl:1708.023] ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox

ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.

[ascl:1708.022] Naima: Derivation of non-thermal particle distributions through MCMC spectral fitting

Naima computes non-thermal radiation from relativistic particle populations. It includes tools to perform MCMC fitting of radiative models to X-ray, GeV, and TeV spectra using emcee (ascl:1303.002), an affine-invariant ensemble sampler for Markov Chain Monte Carlo. Naima is an Astropy (ascl:1304.002) affiliated package.

[ascl:1708.020] 4DAO: DAOSPEC interface

4DAO launches DAOSPEC (ascl:1011.002) for a large sample of spectra. Written in Fortran, the software allows one to easily manage the input and output files of DAOSPEC, optimize the main DAOSPEC parameters, and mask specific spectral regions. It also provides suitable graphical tools to evaluate the quality of the solution and provides final, normalized, zero radial velocity spectra.

[ascl:1708.019] SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

[ascl:1708.018] CUTEX: CUrvature Thresholding EXtractor

CuTEx analyzes images in the infrared bands and extracts sources from complex backgrounds, particularly star-forming regions that offer the challenges of crowding, having a highly spatially variable background, and having no-psf profiles such as protostars in their accreting phase. The code is composed of two main algorithms, the first an algorithm for source detection, and the second for flux extraction. The code is originally written in IDL language and it was exported in the license free GDL language. CuTEx could be used in other bands or in scientific cases different from the native case.

This software is also available as an on-line tool from the Multi-Mission Interactive Archive web pages dedicated to the Herschel Observatory.

[ascl:1708.017] LCC: Light Curves Classifier

Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio).

Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

[ascl:1708.016] pyLCSIM: X-ray lightcurves simulator

pyLCSIM simulates X-ray lightcurves from coherent signals and power spectrum models. Coherent signals can be specified as a sum of one or more sinusoids, each with its frequency, pulsed fraction and phase shift; or as a series of harmonics of a fundamental frequency (each with its pulsed fraction and phase shift). Power spectra can be simulated from a model of the power spectrum density (PSD) using as a template one or more of the built-in library functions. The user can also define his/her custom models. Models are additive.

[ascl:1708.021] KERTAP: Strong lensing effects of Kerr black holes

KERTAP computes the strong lensing effects of Kerr black holes, including the effects on polarization. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles.

[ascl:1708.015] TWO-POP-PY: Two-population dust evolution model

TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

[ascl:1708.014] PACSman: IDL Suite for Herschel/PACS spectrometer data

PACSman provides an alternative for several reduction and analysis steps performed in HIPE (ascl:1111.001) on PACS spectroscopic data; it is written in IDL. Among the operations possible with it are transient correction, line fitting, map projection, and map analysis, and unchopped scan, chop/nod, and the decommissioned wavelength switching observation modes are supported.

[ascl:1708.013] GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:1708.012] GANDALF: Gas AND Absorption Line Fitting

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1708.011] RM-CLEAN: RM spectra cleaner

RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

[ascl:1708.010] BAGEMASS: Bayesian age and mass estimates for transiting planet host stars

BAGEMASS calculates the posterior probability distribution for the mass and age of a star from its observed mean density and other observable quantities using a grid of stellar models that densely samples the relevant parameter space. It is written in Fortran and requires FITSIO (ascl:1010.001).

[submitted] inhomog

The inhomog library (licensed under GPL-2+) provides Raychaudhuri integration of cosmological domain-wise average scale factor evolution using an analytical formula for kinematical backreaction Q_D evolution. The inhomog main program illustrates biscale examples. The library routine lib/Omega_D_precalc.c is callable by RAMSES (ascl:1011.007) using the RAMSES extension ramses-scalav (see Roukema 2017, arXiv:1706.06179).

[ascl:1708.009] FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)

FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.

[ascl:1708.008] ALCHEMIC: Advanced time-dependent chemical kinetics

ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

[ascl:1708.007] PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

[ascl:1708.006] DISORT: DIScrete Ordinate Radiative Transfer

DISORT (DIScrete Ordinate Radiative Transfer) solves the problem of 1D scalar radiative transfer in a single optical medium, such as a planetary atmosphere. The code correctly accounts for multiple scattering by an isotropic or plane-parallel beam source, internal Planck sources, and reflection from a lower boundary. Provided that polarization effects can be neglected, DISORT efficiently calculates accurate fluxes and intensities at any user-specified angle and location within the user-specified medium.

[ascl:1708.005] STools: IDL Tools for Spectroscopic Analysis

STools contains a variety of simple tools for spectroscopy, such as reading an IRAF-formatted (multispec) echelle spectrum in FITS, measuring the wavelength of the center of a line, Gaussian convolution, deriving synthetic photometry from an input spectrum, and extracting and interpolating a MARCS model atmosphere (standard composition).

[ascl:1708.003] CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline

CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable
modules (DLMs).

[ascl:1708.002] CINE: Comet INfrared Excitation

CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

[ascl:1708.001] ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

[ascl:1707.007] swot: Super W Of Theta

SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

[ascl:1707.006] Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1707.005] PyMOC: Multi-Order Coverage map module for Python

PyMOC manipulates Multi-Order Coverage (MOC) maps. It supports reading and writing the three encodings mentioned in the IVOA MOC recommendation: FITS, JSON and ASCII.


Detecting candidates of supernova remnants (SNRs) in the interstellar medium (ISM) is a challenging task because of their weak radio signals and irregular shapes. A convolutional neural network (CNN) is a deep learning method that can extract image features from the SNRs regions. In this study, we design the SNR-Net model, which comprises a training component and a detection component, to extract characteristic features from observations and calculate the position of candidate SNRs. In addition, migration learning is used to initialize the network parameters, which improves the speed and accuracy of network training. We apply the T-T plot method (the different brightness temperatures of map pixels at two different frequencies) to compute the spectral index of candidate SNRs areas. To accelerate the scientific computing process, we also take advantage of innovative hardware architecture, such as deep learning optimized GPUs, which increase the speed of computation by a factor of five. This case study suggests that SNR-Net may be applicable to detecting extended sources in the ISM a task that has so far proven difficult to automate.

[submitted] venice

venice is a mask utility program that reads a mask file (DS9 or fits type) and a catalogue of objects (ascii or fits type) to:

1. create a pixelized mask,
2. find objects inside/outside a mask,
3. or generate a random catalogue of objects inside/outside a mask.

The program reads the mask file and checks if a point, giving its coordinates, is inside or outside the mask, i.e. inside or outside at least one polygon of the mask.

[ascl:1707.004] CCFpams: Atmospheric stellar parameters from cross-correlation functions

CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

[ascl:1707.003] pyaneti: Multi-planet radial velocity and transit fitting

Pyaneti is a multi-planet radial velocity and transit fit software. The code uses Markov chain Monte Carlo (MCMC) methods with a Bayesian approach and a parallelized ensemble sampler algorithm in Fortran which makes the code fast. It creates posteriors, correlations, and ready-to-publish plots automatically, and handles circular and eccentric orbits. It is capable of multi-planet fitting and handles stellar limb darkening, systemic velocities for multiple instruments, and short and long cadence data, and offers additional capabilities.

[ascl:1707.002] SASRST: Semi-Analytic Solutions for 1-D Radiative Shock Tubes

SASRST, a small collection of Python scripts, attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008), respectively. The included code calculates the solution for a given set of input parameters and also plots the results using Matplotlib. This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code.

[submitted] CoSMoMVPA MultiVariate Pattern Analysis in Matlab / GNU Octave

CoSMoMVPA provides univariate and multivariate analyses for large datasets in the Matlab / GNU Octave language. It supports a uniform data structure with support for cross validation, classification, similarity measures, data-driven information mapping, and chance capitalization correction.

[ascl:1707.001] HRM: HII Region Models

HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

[ascl:1706.012] KeplerSolver: Kepler equation solver

KeplerSolver solves Kepler's equation for arbitrary epoch and eccentricity, using continued fractions. It is written in C and its speed is nearly the same as the SWIFT routines, while achieving machine precision. It comes with a test program to demonstrate usage.

[ascl:1706.011] PyPulse: PSRFITS handler

PyPulse handles PSRFITS files and performs subsequent analyses on pulse profiles.

[ascl:1706.010] EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[submitted] KERN

KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN to is to save time and frustration in setting up of scientific pipelines, and to assist in achieving scientific reproducibility.

[submitted] Kliko - The Scientific Compute Container Format

We present Kliko, a Docker based container specification for running one or multiple related compute jobs. The key concepts of Kliko is the encapsulation of data processing software into a container and the formalisation of the input, output and task parameters. Formalisation is realised by bundling a container with a Kliko file, which describes the IO and task parameters. This Kliko container can then be opened and run by a Kliko runner. The Kliko runner will parse the Kliko definition and gather the values for these parameters, for example by requesting user input or pre defined values in a script. Parameters can be various primitive types, for example float, int or the path to a file. This paper will also discuss the implementation of a support library named Kliko which can be used to create Kliko containers, parse Kliko definitions, chain Kliko containers in workflows using, for example, Luigi a workflow manager. The Kliko library can be used inside the container interact with the Kliko runner. Finally this paper will discuss two reference implementations based on Kliko: RODRIGUES, a web based Kliko container schedular and output visualiser specifically for astronomical data, and VerMeerKAT, a multi container workflow data reduction pipeline which is being used as a prototype pipeline for the commisioning of the MeerKAT radio telescope.

[ascl:1706.009] sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[ascl:1706.008] the-wizz: Clustering redshift estimation code

the-wizz clusters redshift estimates for any photometric unknown sample in a survey. The software is composed of two main parts: a pair finder and a pdf maker. The pair finder finds spatial pairs and stores the indices of all closer pairs around target reference objects in an output HDF5 data file. Users then query this data file using the indices of their unknown sample to produce an output clustering-z.

[ascl:1706.007] encube: Large-scale comparative visualization and analysis of sets of multidimensional data

Encube is a qualitative, quantitative and comparative visualization and analysis framework, with application to high-resolution, immersive three-dimensional environments and desktop displays, providing a capable visual analytics experience across the display ecology. Encube includes mechanisms for the support of: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. The framework is modular, allowing additional functionalities to be included as required.

[ascl:1706.006] GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1706.005] LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1706.004] Dark Sage: Semi-analytic model of galaxy evolution

DARK SAGE is a semi-analytic model of galaxy formation that focuses on detailing the structure and evolution of galaxies' discs. The code-base, written in C, is an extension of SAGE (ascl:1601.006) and maintains the modularity of SAGE. DARK SAGE runs on any N-body simulation with trees organized in a supported format and containing a minimum set of basic halo properties.

[ascl:1706.003] DaMaSCUS: Dark Matter Simulation Code for Underground Scatterings

DaMaSCUS calculates the density and velocity distribution of dark matter (DM) at any detector of given depth and latitude to provide dark matter particle trajectories inside the Earth. Provided a strong enough DM-matter interaction, the particles scatter on terrestrial atoms and get decelerated and deflected. The resulting local modifications of the DM velocity distribution and number density can have important consequences for direct detection experiments, especially for light DM, and lead to signatures such as diurnal modulations depending on the experiment's location on Earth. The code involves both the Monte Carlo simulation of particle trajectories and generation of data as well as the data analysis consisting of non-parametric density estimation of the local velocity distribution functions and computation of direct detection event rates.

[ascl:1706.002] rtpipe: Searching for Fast Radio Transients in Interferometric Data

rtpipe (real-time pipeline) analyzes radio interferometric data with an emphasis on searching for transient or variable astrophysical sources. The package combines single-dish concepts such as dedispersion and filters with interferometric concepts, including images and the uv-plane. In contrast to time-domain data recorded with large single-dish telescopes, visibilities from interferometers can precisely localize sources anywhere in the entire field of view. rtpipe opens interferometers to the study of fast transient sky, including sources like pulsars, stellar flares, rotating radio transients, and fast radio bursts. Key portions of the search pipeline, such as image generation and dedispersion, have been accelerated. That, in combination with its multi-threaded, multi-node design, makes rtpipe capable of searching millisecond timescale data in real time on small compute clusters.

[ascl:1706.001] Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:1705.017] supernovae: Photometric classification of supernovae

Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

[ascl:1705.016] astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1705.015] WeirdestGalaxies: Outlier Detection Algorithm on Galaxy Spectra

WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.

[ascl:1705.014] NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1705.013] PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1705.012] fd3: Spectral disentangling of double-lined spectroscopic binary stars

The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

[ascl:1705.011] FDBinary: A tool for spectral disentangling of double-lined spectroscopic binary stars

FDBinary disentangles spectra of SB2 stars. The spectral disentangling technique can be applied on a time series of observed spectra of an SB2 to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. The code is written in C and is designed as a command-line utility for a Unix-like operating system. FDBinary uses the Fourier-space approach in separation of composite spectra. This code has been replaced with the newer fd3 (ascl:1705.012).

[ascl:1705.010] PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1705.009] LensPop: Galaxy-galaxy strong lensing population simulation

LensPop simulates observations of the galaxy-galaxy strong lensing population in the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and Euclid surveys.

[ascl:1705.008] MBProj2: Multi-Band x-ray surface brightness PROJector 2

MBProj2 obtains thermodynamic profiles of galaxy clusters. It forward-models cluster X-ray surface brightness profiles in multiple bands, optionally assuming hydrostatic equilibrium. The code is a set of Python classes the user can use or extend. When modelling a cluster assuming hydrostatic equilibrium, the user chooses a form for the density profile (e.g. binning or a beta model), the metallicity profile, and the dark matter profile (e.g. NFW). If hydrostatic equilibrium is not assumed, a temperature profile model is used instead of the dark matter profile. The code uses the emcee Markov Chain Monte Carlo code (ascl:1303.002) to sample the model parameters, using these to produce chains of thermodynamic profiles.

[submitted] HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1705.007] getimages: Background derivation and image flattening method

getimages performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of getimages that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. getimages also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from getsources (ascl:1507.014), which must be installed.

[ascl:1705.006] f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

Would you like to view a random code?