ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1-100 of 2722 (2660 ASCL, 62 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[submitted] forecaster-plus

An internally overhauled but fundamentally similar version of Forecaster by Jingjing Chen and David Kipping, originally presented in arXiv:1603.08614 and hosted at https://github.com/chenjj2/forecaster.

The model itself has not changed- no new data was included and the hyperparameter file was not regenerated. All functions were rewritten to take advantage of Numpy vectorization and some additional user features were added. Now able to be installed via pip.

[submitted] Caustic Mass Estimator for Galaxy Clusters

The caustic technique is a powerful method to infer cluster mass profiles to clustrocentric distances well beyond the virial radius. It relies in the measure of the escape velocity of the sistem using only galaxy redshift information. This method was introduced by Diaferio & Geller (1997) and Diaferio (1999). This code allows the caustic mass estimation for galaxy clusters, as well as outlier identification as a side effect. However, a pre-cleaning of interlopers is recommended, using e.g., the shifting-gapper technique.

[ascl:2111.018] GWToolbox: Gravitational wave observation simulator

GWToolbox simulates gravitational wave observations for various detectors. The package is composed of three modules, namely the ground-based detectors (and their targets), the space-borne detectors (and their targets) and pulsar timing arrays (PTA). These three modules work independently and have different dependencies on other packages and libraries; failed dependencies met in one module will not influence the usage of another module. GWToolbox can accessed with a web interface (gw-universe.org) or as a python package (https://bitbucket.org/radboudradiolab/gwtoolbox).

[ascl:2111.017] pySYD: Measuring global asteroseismic parameters

pySYD detects solar-like oscillations and measures global asteroseismic parameters. The code is a python-based implementation of the IDL-based SYD pipeline by Huber et al. (2009), which was extensively used to measure asteroseismic parameters for Kepler stars, and adapts the well-tested methodology from SYD and also improves these existing analyses. It also provides additional capabilities, including an automated best-fit background model selection, parallel processing, the ability to samples for further analyses, and an accessible and command-line friendly interface. PySYD provides best-fit values and uncertainties for the granulation background, frequency of maximum power, large frequency separation, and mean oscillation amplitudes.

[ascl:2111.016] SteParSyn: Stellar atmospheric parameters using the spectral synthesis method

SteParSyn infers stellar atmospheric parameters (Teff, log g, [Fe/H], and Vbroad) of FGKM-type stars using the spectral synthesis method. The code uses the MCMC sampler emcee (ascl:1303.002) in conjunction with an spectral emulator that can interpolate spectra down to a precision < 1%. A grid of synthetic spectra that allow the user to characterize the spectra of FGKM-type stars with parameters in the range of 3500 to 7000 K in Teff, 0.0 to 5.5 dex in log g, and −2.0 to 1.0 dex in [Fe/H] is also provided.

[ascl:2111.015] gCMCRT: 3D Monte Carlo Radiative Transfer for exoplanet atmospheres using GPUs

gCMCRT globally processes 3D atmospheric data, and as a fully 3D model, it avoids the biases and assumptions present when using 1D models to process 3D structures. It is well suited to performing the post-processing of large parameter GCM model grids, and provides simple pipelines that convert the 3D GCM structures from many well used GCMs in the community to the gCMCRT format, interpolating chemical abundances (if needed) and performing the required spectra calculation. The high-resolution spectra modes of gCMCRT provide an additional highly useful capability for 3D modellers to directly compare output to high-resolution spectral data.

[ascl:2111.014] UniMAP: Unicorn Multi-window Anomaly Detection Pipeline

The data analysis UniMAP (Unicorn Multi-window Anomaly Detection Pipeline) leverages the Temporal Outlier Factor (TOF) method to find anomalies in LVC data. The pipeline requires a target detector and a start and stop GPS time describing a time interval to analyze, and has three outputs: 1.) an array of GPS times corresponding to TOF detections; 2.) a long q-transform of the entire data interval with visualizations of the TOF detections in the time series; and 3.) q-transforms of the data windows that triggered TOF detections.

[ascl:2111.013] Astrosat: Satellite transit calculator

Astrosat calculates which satellites can be seen by a given observer in a given field of view at a given observation time and observation duration. This includes the geometry of the satellite and observer but also estimates the expected apparent brightness of the satellite to aid astronomers in assessing the impact on their observations.

[ascl:2111.012] flatstar: Make 2d intensity maps of limb-darkened stars

flatstar is an open-source Python tool for drawing stellar disks as numpy.ndarray objects with scientifically-rigorous limb darkening. Each pixel has an accurate fractional intensity in relation to the total stellar intensity of 1.0. It is ideal for ray-tracing simulations of stars and planetary transits. The code is fast, has the most well-known limb-darkening laws, including linear, quadratic, square-root, logarithmic, and exponential, and allows the user to implement custom limb-darkening laws. flatstar also offers supersampling for situations where both coarse arrays and precision in stellar disk intensity (i.e., no hard pixel boundaries) is desired, and upscaling to save on computation time when high-resolution intensity maps are needed, though there is some precision loss in intensities.

[ascl:2111.011] p-winds: Python implementation of Parker wind models for planetary atmospheres

p-winds produces simplified, 1-D models of the upper atmosphere of a planet and performs radiative transfer to calculate observable spectral signatures. The scalable implementation of 1D models allows for atmospheric retrievals to calculate atmospheric escape rates and temperatures. In addition, the modular implementation allows for a smooth plugging-in of more complex descriptions to forward model their corresponding spectral signatures (e.g., self-consistent or 3D models).

[ascl:2111.010] Nii: Multidimensional posterior distributions framework

Nii implements an automatic parallel tempering Markov chain Monte Carlo (APT-MCMC) framework for sampling multidimensional posterior distributions and provides an observation simulation platform for the differential astrometric measurement of exoplanets. Although this code specifically focuses on the orbital parameter retrieval problem of differential astrometry, Nii can be applied to other scientific problems with different posterior distributions and offers many control parameters in the APT part to facilitate the adjustment of the MCMC sampling strategy; these include the number of parallel chains, the β values of different chains, the dynamic range of the sampling step sizes, and frequency of adjusting the step sizes.

[ascl:2111.009] CoLoRe: Cosmological Lofty Realization

CoLoRe (Cosmological Lofty Realization) generates fast mock realizations of a given galaxy sample using a lognormal model or LPT for the matter density. Tt can simulate a variety of cosmological tracers, including photometric and spectroscopic galaxies, weak lensing, and intensity mapping. CoLoRe is a parallel C code, and its behavior is controlled primarily by the input param file.

[ascl:2111.008] COCOPLOT: COlor COllapsed PLOTting software

The COCOPLOT (COlor COllapsed PLOTting) quick-look and context image code conveys spectral profile information from all of the spatial pixels in a 3D datacube as a single image using color. It can also identify and expose temporal behavior and display and highlight solar features. COCOPLOT thus aids in identifying regions of interest quickly. The software is available in Python and IDL, and can be used as a standalone package or integrated into other software.

[ascl:2111.007] LEGWORK: LISA Evolution and Gravitational Wave ORbit Kit

LEGWORK (LISA Evolution and Gravitational Wave ORbit Kit) is a simple package for gravitational wave calculations. It evolves binaries and computes signal-to-noise ratios for binary systems potentially observable with LISA; it also visualizes the results. LEGWORK can also compare different detector sensitivity curves, compute the horizon distance for a collection of sources, and tracks signal-to-noise evolution over time.

[ascl:2111.006] prose: FITS images processing pipeline

prose provides pipelines for performing common tasks, such as automated calibration, reduction and photometry, and makes building custom pipelines easy. The prose framework is instrument-agnostic and makes constructing pipelines easy. It offers a wide range of implemented building blocks and also allows users to define their own.

[ascl:2111.005] CEvNS: Calculate Coherent Elastic Neutrino-Nucleus Scattering cross sections and recoil spectra

CEvNS calculates Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) cross sections and recoil spectra. It includes (among other things) the Standard Model contribution to the CEvNS cross section, along with the contribution from Simplified Models with new vector or scalar mediators. It also covers neutrino magnetic moments and non-standard contact neutrino interactions (NSI).

[ascl:2111.004] NLopt: Nonlinear optimization library

The library NLopt performs nonlinear local and global optimization for functions with and without gradient information. It provides a simple, unified interface and wraps many algorithms for global and local, constrained or unconstrained, optimization, and provides interfaces for many other languages, including C++, Fortran, Python, Matlab or GNU Octave, OCaml, GNU Guile, GNU R, Lua, Rust, and Julia.

[ascl:2111.003] PSwarm: Global optimization solver for bound and linear constrained problems

PSwarm is a global optimization solver for bound and linear constrained problems (for which the derivatives of the objective function are unavailable, inaccurate or expensive). The algorithm combines pattern search and particle swarm. Basically, it applies a directional direct search in the poll step (coordinate search in the pure simple bounds case) and particle swarm in the search step. PSwarm makes no use of derivative information of the objective function. It has been shown to be efficient and robust for smooth and nonsmooth problems, both in serial and in parallel.

[ascl:2111.002] JAX: Autograd and XLA

JAX brings Autograd and XLA together for high-performance machine learning research. It can automatically differentiate native Python and NumPy functions. The code can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. JAX supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.

[ascl:2111.001] astroDDPM: Realistic galaxy simulation via score-based generative models

astroDDPM uses a denoising diffusion probabilistic model (DDPM) to synthesize galaxies that are qualitatively and physically indistinguishable from the real thing. The similarity of the synthesized images to real galaxies from the Photometry and Rotation curve OBservations from Extragalactic Surveys (PROBES) sample and from the Sloan Digital Sky Survey is quantified using the Fréchet Inception Distance to test for subjective and morphological similarity. The emergent physical properties (such as total magnitude, color, and half light radius) of a ground truth parent and synthesized child dataset are also compared to generate a Synthetic Galaxy Distance metric. The DDPM approach produces sharper and more realistic images than other generative methods such as Adversarial Networks (with the downside of more costly inference), and could be used to produce large samples of synthetic observations tailored to a specific imaging survey. Potential uses of the DDPM include accurate in-painting of occluded data, such as satellite trails, and domain transfer, where new input images can be processed to mimic the properties of the DDPM training set.

[submitted] Data modelling approaches to astronomical data - Mapping large spectral line data cubes to dimensional data models

As a new generation of large-scale telescopes are expected to produce single data products in the range of hundreds of GBs to multiple TBs, different approaches to I/O efficient data interaction and extraction need to be investigated and made available to researchers. This will become increasingly important as the downloading and distribution of TB scale data products will become unsustainable, and researchers will have to take their processing analysis to the data. We present a methodology to extract 3 dimensional spatial-spectral data from dimensionally modelled tables in Parquet format on a Hadoop system. The data is loaded into the Parquet tables from FITS cube files using a dedicated process. We compare the performance of extracting data using the Apache Spark parallel compute framework on top of the Parquet-Hadoop ecosystem with data extraction from the original source files on a shared file system. We have found that the Spark-Parquet-Hadoop solution provides significant performance benefits, particularly in a multi user environment. We present a detailed analysis of the single and multi-user experiments conducted and also discuss the benefits and limitations of the platform used for this study.

[submitted] SCORPIO: Sky COllector of galaxy Pairs and Image Output

The Python package SCORPIO retrieves images and associated data of galaxy pairs based on their position, facilitating visual analysis and data collation of multiple archetypal systems. The code ingests information from SDSS, 2MASS and WISE surveys based on the available bands and is designed for studies of galaxy pairs as natural laboratories of multiple astrophysical phenomena for, among other things, tidal force deformation of galaxies, pressure gradient induced star formation regions, and morphological transformation.

[ascl:2110.022] XookSuut: Model circular and noncircular flows on 2D velocity maps

XookSuut models circular and noncircular flows on resolved velocity maps. The code performs nonparametric fits to derive kinematic models without assuming analytical functions on the different velocity components of the models. It recovers the circular and radial motions in galaxies in dynamical equilibrium and can derive the noncircular motions induced by oval distortions, such as that produced by stellar bars. XookSuut explores the full space of parameters on a N-dimensional space to derive their mean values; this combined method efficiently recovers the constant parameters and the different kinematic components.

[ascl:2110.021] PT-REX: Point-to-point TRend EXtractor

PT-REX (Point-to-point TRend EXtractor) performs ptp analysis on every kind of extended radio source. The code exploits a set of different fitting methods to allow study of the spatial correlation, and is structured in a series of tasks to handle the individual steps of a ptp analysis independently, from defining a grid to sample the radio emission to accurately analyzing the data using several statistical methods. A major feature of PT-REX is the use of an automatic, randomly-generated sampling routine to combine several SMptp analysis into a Monte Carlo ptp (MCptp) analysis. By repeating several cycles of SMptp analysis with randomly-generated grids, PT-REX produces a distribution of values of k that describe its parameter space, thus allowing a reliably estimate of the trend (and its uncertainties).

[ascl:2110.020] BCES: Linear regression for data with measurement errors and intrinsic scatter

BCES performs robust linear regression on (X,Y) data points where both X and Y have measurement errors. The fitting method is the bivariate correlated errors and intrinsic scatter (BCES). Some of the advantages of BCES regression compared to ordinary least squares fitting are that it allows for measurement errors on both variables and permits the measurement errors for the two variables to be dependent. Further it permits the magnitudes of the measurement errors to depend on the measurements and other lines such as the bisector and the orthogonal regression can be constructed.

[ascl:2110.019] SELCIE: Screening Equations Linearly Constructed and Iteratively Evaluated

SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) investigates the chameleon model that arises from screening a scalar field introduced in some modified gravity models that is coupled to matter. The code provides tools to construct user defined meshes by utilizing the GMSH mesh generation software. These tools include constructing shapes whose boundaries are defined by some function or by constructing it out of basis shapes such as circles, cones and cylinders. The mesh can also be separated into subdomains, each of which having its own refinement parameters. These meshes can then be converted into a format that is compatible with the finite element software FEniCS. SELCIE uses FEniCS (ascl:2110.018) with a nonlinear solving method (Picard or Newton method) to solve the chameleon equation of motion for some parameters and density distribution. These density distributions are constructed by having the density profile of each subdomain being set by a user defined function, allowing for extremely customizable setups that are easy to implement.

[ascl:2110.018] FEniCS: Computing platform for solving partial differential equations

FEniCS solves partial differential equations (PDEs) and enables users to quickly translate scientific models into efficient finite element code. With the high-level Python and C++ interfaces to FEniCS, it is easy to get started, but FEniCS offers also powerful capabilities for more experienced programmers. FEniCS runs on a multitude of platforms ranging from laptops to high-performance clusters, and each component of the FEniCS platform has been fundamentally designed for parallel processing. This framework allows for rapid prototyping of finite element formulations and solvers on laptops and workstations, and the same code may then be deployed on large high-performance computers.

[ascl:2110.017] ThERESA: 3D Exoplanet Cartography

ThERESA retrieves three-dimensional maps of exoplanets. The code constructs 2-dimensional maps for each light given light curve, places those maps vertically in an atmosphere, and runs radiative transfer to calculate emission from the planet over a latitude/longitude grid. ThERESA then integrates over the grid (combined with the visibility function) to generate light curves. These light curves are compared against the input light curves behind MCMC to explore parameter space.

[ascl:2110.016] pyro: Deep universal probabilistic programming with Python and PyTorch

Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. It can represent any computable probability distribution and scales to large data sets with little overhead compared to hand-written code. The library is implemented with a small core of powerful, composable abstractions. Its high-level abstractions express generative and inference models, but also allows experts to customize inference.

[ascl:2110.015] Flux: Julia machine learning library

Flux provides an elegant approach to machine learning. Written in Julia, it provides lightweight abstractions on top of Julia's native GPU and AD support. It has many useful tools built in, but also lets you use the full power of the Julia language where you need it. Flux has relatively few explicit APIs for features like regularization or embeddings; instead, writing down the mathematical form works and is fast. The package works well with Julia libraries from data frames and images to differential equation solvers, so building complex data processing pipelines that integrate Flux models is straightforward.

[ascl:2110.014] swordfish: Information yield of counting experiments

Swordfish studies the information yield of counting experiments. It implements at its core a rather general version of a Poisson point process with background uncertainties described by a Gaussian random field, and provides easy access to its information geometrical properties. Based on this information, a number of common and less common tasks can be performed. Swordfish allows quick and accurate forecasts of experimental sensitivities without time-intensive Monte Carlos, mock data generation and likelihood maximization. It can:

- calculate the expected upper limit or discovery reach of an instrument;
- derive expected confidence contours for parameter reconstruction;
- visualize confidence contours as well as the underlying information metric field;
- calculate the information flux, an effective signal-to-noise ratio that accounts for background systematics and component degeneracies; and
- calculate the Euclideanized signal which approximately maps the signal to a new vector which can be used to calculate the Euclidean distance between points.

[ascl:2110.013] Nauyaca: N-body approach for determining planetary masses and orbital elements

Nauyaca infers planetary masses and orbits from mid-transit times fitting. The code requires transit ephemeris per planet and stellar mass and radius, and uses minimization routines and a Markov chain Monte Carlo method to find planet parameters that best reproduce the transit times based on numerical simulations. The code package provides customized plotting tools for analyzing the results.

[ascl:2110.012] GGCHEMPY: Gas-Grain CHEMical code for interstellar medium in Python3

GGCHEMPY is efficient for building 1-D, 2-D and 3-D simulations of physical parameters of Planck galactic cold clumps; it provides a graphical user interface and can also be invoked by a Python script. The code initializes the reaction network using input parameters, and then computes the reaction rate coefficients for all reactions. It uses the backward-differentiation formulas method to solve the ordinary differential equations for the integration. The modeled results are saved and can be directly passed to a Python dictionary for analysis and plotting.

[ascl:2110.011] GRASS: GRanulation and Spectrum Simulator

The Julia library GRASS produces realistic stellar spectra with time-variable granulation signatures. It is based on real observations of the Sun, and does not rely on magnetohydrodynamic simulations to produce its spectra. GRASS can also compute bisectors for absorption lines or CCF profiles, and provides two methods for calculating bisectors.

[ascl:2110.010] BASTA: BAyesian STellar Algorithm

BASTA determines properties of stars using a pre-computed grid of stellar models. It calculates the probability density function of a given stellar property based on a set of observational constraints defined by the user. BASTA is very versatile and has been used in a large variety of studies requiring robust determination of fundamental stellar properties.

[ascl:2110.009] Quokka: Two-moment AMR radiation hydrodynamics on GPUs for astrophysics

Quokka is a two-moment radiation hydrodynamics code that uses the piecewise-parabolic method, with AMR and subcycling in time. It runs on CPUs (MPI+vectorized) or NVIDIA GPUs (MPI+CUDA) with a single-source codebase. The hydrodynamics solver is an unsplit method, using the piecewise parabolic method for reconstruction in the primitive variables, the HLLC Riemann solver for flux computations, and a method-of-lines formulation for the time integration. The order of reconstruction is reduced in zones where shocks are detected in order to suppress spurious oscillations in strong shocks. Quokka's radiation hydrodynamics formulation is based on the mixed-frame moment equations. The radiation subsystem is coupled to the hydrodynamic subsystem via operator splitting, with the hydrodynamic update computed first, followed by the radiation update, with the latter update including the source terms corresponding to the radiation four-force applied to both the radiation and hydrodynamic variables. A method-of-lines formulation is also used for the time integration, with the time integration done by the same integrator chosen for the hydrodynamic subsystem.

[ascl:2110.008] ParSNIP: Parametrization of SuperNova Intrinsic Properties

ParSNIP learns generative models of transient light curves from a large dataset of transient light curves. It is designed to work with light curves in sncosmo format using the lcdata package to handle large datasets. This code can be used for classification of transients, cosmological distance estimation, and identifying novel transients.

[ascl:2110.007] PISCOLA: Python for Intelligent Supernova-COsmology Light-curve Analysis

PISCOLA (Python for Intelligent Supernova-COsmology Light-curve Analysis) fits supernova light curves and corrects them in a few lines of code. It uses Gaussian Processes to estimate rest-frame light curves of transients without needing an underlying light-curve template. The user can add filters, calculates the light-curves parameters, and obtain transmission functions for the observed filters and the Bessell filters. The correction process can be applied with default settings to obtain restframe light curves and light-curve parameters. PISCOLA can plot the SN light curves, filter transmission functions, light-curves fits results, the mangling function for a given phase, and includes several utilities that can, for example, convert fluxes to magnitudes and magnitudes to fluxes, and trim leading and trailing zeros from a 1-D array or sequence.

[ascl:2110.006] ArtPop: Artificial Stellar Populations generator

ArtPop (Artificial Stellar Populations) synthesizes stellar populations and simulates realistic images of stellar systems. The code is modular, making it possible to use each of its functionalities independently or together. ArtPop can build stellar populations independently from generating mock images, as one might want to do when interested only in calculating integrated photometric properties of the population. The code can also generate stellar magnitudes and artificial galaxies, which can be inject into real imaging data.

[ascl:2110.005] TauRunner: Code to propagate tau neutrinos at very high energies

TauRunner propagates ultra-high-energy neutrinos, with a focus on tau neutrinos. Although it was developed for extremely high energy (EeV+) applications, it is able to propagate neutrinos from 1 to 10^16 GeV. Oscillations are not taken into account at the lowest energies, but they become negligible above 1 TeV.

[ascl:2110.004] TULIPS: Tool for Understanding the Lives, Interiors, and Physics of Stars

TULIPS (Tool for Understanding the Lives, Interiors, and Physics of Stars) creates diagrams of the structure and evolution of stars. It creates plots and movies based on output from the MESA stellar evolution code (ascl:1010.083). TULIPS represents stars as circles of varying size and color. The code can also visualize the size and perceived color of stars, their interior mixing and nuclear burning processes, their chemical composition, and can compare different MESA models.

[ascl:2110.003] PSRDADA: Distributed Acquisition and Data Analysis for Radio Astronomy

PSRDADA supports the development of distributed data acquisition and analysis systems; it provides a flexible and well-managed ring buffer in shared memory with a variety of applications for piping data from device to ring buffer and from ring buffer to device. PSRDADA allows more than one data set to be queued in the ring buffer at one time, and data may be recorded in selected bursts using data validity flags. A variety of clients have been implemented that can write data to the ring buffer and read data from it. The primary write clients can be controlled via a simple, text-based socket interface, and read client software exists for writing data to an array of disks, sending data to an array of nodes, or processing the data directly from RAM. At the highest level of control and configuration, scripts launch the PSRDADA configuration across all nodes in the cluster, monitor all relevant processes, configure and control through a web-based interface, interface with observatory scheduling tools, and manage the ownership and archival of project data. It has been used in the implementation of baseband recording and processing instrumentation for radio pulsar astronomy.

[ascl:2110.002] exodetbox: Finding planet-star projected separation extrema and difference in magnitude extrema

Exodetbox provides mathematical methods for calculating the planet-star separation and difference in magnitude extrema as well as when planets have particular planet-star separations or differences in magnitude. The code also projects the 3D Keplerian Orbit into a reparameterized 2D ellipse in the plane of the sky. Exodetbox is implemented in the EXOSIMS modeling software (ascl:1706.010).

[submitted] EzTao: Easier CARMA Modeling

EzTao models time series as a continuous-time autoregressive moving-average (CARMA) process. EzTao utilizes celerite (ascl:1709.008), a fast and scalable Gaussian Process Regression library, to evaluate the likelihood function. On average, EzTao is ten times faster than other tools relying on a Kalman filter for likelihood computation.

[submitted] AllStarFit: An Experimental R package for source detection, PSF and multi-component galaxy fitting

AllStarFit is an experimental R package that includes functions for analyzing optical/infrared images, including:
- object detection and image segmentation using the ProFound package;
- PSF determination using the ProFit package to fit multiple stars in the field simultaneously; and
- galaxy modelling with ProFit, using the previously determined PSF and user-specified models.

AllStarFit supports a variety of optimization methods (provided by external packages), including maximum-likelihood and Markov chain Monte Carlo (MCMC).

[ascl:2110.001] JWSTSim: Geometric-Focused JWST Deep Field Image Simulation

JWST_Simulation generates a novel geometric-focused deep field simulation of the expected JWST future deep field image. Galaxies are represented by ellipses with randomly-generated positions and orientations. Three scripts are included: a deterministic simulation, an ensemble simulation, and a more-realistic monochrome image simulation. The following initial conditions can be perturbed in these codes: H0, Ωm, ΩΛ, the dark energy equation of state parameter, the number of unseen galaxies in the Hubble Ultra Deep Field Image (HUDF), the increase in effective radius due to the JWST’s higher sensitivity, the anisotropy of dark energy, and the maximum redshift reached by the JWST. Galaxy number densities are estimated using integration over comoving volume with an integration constant calibrated with the Hubble Ultra Deep Field. A galaxy coverage percentage is calculated for each image to determine the percentage of the background occupied by galaxies.

[submitted] Defringe

This code corrects fringe artefacts in near-infrared astronomical images taken with old generation CCD cameras. It essentially solves a robust PCA problem, masking out astrophysical sources, and models the contaminants as a linear superposition of (unknown) modes, with (unknown) projection coefficients. The problem uses nuclear norm regularization, which acts as a convex proxy for rank minimization.
The code is written in python, using cupy for GPU acceleration, but will also work on CPUs.

[submitted] Interferopy: Analyzing datacubes from radio-to-submm observations

Interferopy analyzes datacubes from radio-to-submm observations. It provides a homogenous interface to common tasks, making it easy to go from reduced datacubes to essential measurements and publication-quality plots. Its core functionalities are widely applicable and have been successfully tested on (but are not limited to) ALMA, NOEMA, VLA and JCMT data.

[ascl:2109.030] Snowball: Generalizable atmospheric mass loss calculator

Snowball models atmospheric loss in order to constrain an atmosphere's cumulative impact of historic X-ray and extreme ultraviolet radiation-driven mass loss. The escape model interpolates the BaSTI luminosity evolution grid to the observed mass and luminosity of the host star.

[ascl:2109.029] BiPoS1: Dynamical processing of the initial binary star population

BiPoS1 (Binary Population Synthesizer) efficiently calculates binary distribution functions after the dynamical processing of a realistic population of binary stars during the first few Myr in the hosting embedded star cluster. It is particularly useful for generating a realistic birth binary population as an input for N-body simulations of globular clusters. Instead of time-consuming N-body simulations, BiPoS1 uses the stellar dynamical operator, which determines the fraction of surviving binaries depending on the binding energy of the binaries. The stellar dynamical operator depends on the initial star cluster density, as well as the time until the residual gas of the star cluster is expelled. At the time of gas expulsion, the dynamical processing of the binary population is assumed to effectively end due to the expansion of the star cluster related to that event. BiPoS1 has also a galactic-field mode, in order to synthesize the stellar population of a whole galaxy.

[ascl:2109.028] Healpix.jl: Julia-only port of the HEALPix library

Healpix.jl is a Julia-only port of the C/C++/Fortran/Python HEALPix library (ascl:1107.018), which implements a hierarchical pixelization of the sphere in equal-area pixels. Much like the original library, Healpix.jl supports two enumeration schemes for the pixels (RING and NESTED) and implements an optimized computation of the generalized Fourier transform using spherical harmonics, binding libsharp2 (ascl:1402.033). In addition, Healpix.jl provides four additional features: 1.) it fully supports Windows systems, alongside the usual Linux and MAC OS X machines; 2.) it uses Julia's strong typesystem to prevent several bugs related to mismatches in map ordering (e.g., combining a RING map with a NESTED map); 3.) it uses a versatile memory layout so that map bytes can be stored in shared memory objects or on GPUs; and 4.) it implements an elegant and general way to signal missing values in maps.

[ascl:2109.027] OSPREI: Sun-to-Earth (or satellite) CME simulator

OSPREI simulates the Sun-to-Earth (or satellite) behavior of CMEs. It is comprised of three separate models: ForeCAT, ANTEATR, and FIDO. ForeCAT uses the PFSS background to determine the external magnetic forces on a CME; ANTEATR takes the ForeCAT CME and propagates it to the final satellite distance, and outputs the final CME speed (both propagation and expansion), size, and shape (and their profiles with distance) as well as the arrival time and internal thermal and magnetic properties of the CME. FIDO takes the evolved CME from ANTEATR with the position and orientation from ForeCAT and passes the CME over a synthetic spacecraft. The relative location of the spacecraft within the CME determines the in situ magnetic field vector and velocity. It also calculates the Kp index from these values. OSPREI includes tools for creating figures from the results, including histograms, contour plots, and ensemble correlation plots, and new figures can be created using the results object that contains all the simulation data in an easily accessible format.

[ascl:2109.026] Varstar Detect: Variable star detection in TESS data

Varstar Detect uses several numerical and statistical methods to filter and interpret the data obtained from TESS. It performs an amplitude test to determine whether a star is variable and if so, provides the characteristics of each star through phenomenological analysis of the lightcurve.

[ascl:2109.025] Menura: Multi-GPU numerical model for space plasma simulation

Menura simulates the interaction between a fully turbulent solar wind and various bodies of the solar system using a novel two-step approach. It is an advanced numerical tool for self-consistent modeling that bridges planetary science and plasma physics. Menura is built around a hybrid Particle-In-Cell solver, treating electrons as a charge-neutralising fluid, and ions as massive particles. It solves iteratively the particles’ dynamics, gathers particle moments at the nodes of a grid, at which the magnetic field is also computed, and then solves the Maxwell equations. This solver uses the popular Current Advance Method (CAM).

[ascl:2109.024] BHJet: Semi-analytical black hole jet model

BHJet models steady-state SEDs of jets launched from accreting black holes. This semi-analytical, multi-zone jet model is applicable across the entire black hole mass scale, from black hole X-ray binaries (both low and high mass) to active galactic nuclei of any class (from low-luminosity AGN to flat spectrum radio quasars). It is designed to be more comparable than other codes to GRMHD simulations and/or RMHD semi-analytical solutions.

[ascl:2109.023] gphist: Cosmological expansion history inference using Gaussian processes

gphist performs Bayesian inference on the cosmological expansion history using Gaussian process priors. It is written in Python and includes driver programs to run inference calculations and plot the results. The code infers the cosmological expansion history using a Gaussian process prior, reads these ouputs, and performs checks to ensure they are indeed compatible. gphist then generates a single combined output file to plot expansion history inferences.

[ascl:2109.022] ShapeMeasurementFisherFormalism: Fisher Formalism for Weak Lensing

ShapeMeasurementFisherFormalism is used to study Fisher Formalism predictions on galaxy weak lensing for LSST Dark Energy Science Collaboration. It can create predictions with user-defined parameters for one or two galaxies simulated from GalSim (ascl:1402.009).

[ascl:2109.021] WeakLensingDeblending: Weak lensing fast simulations and analysis of blended objects

WeakLensingDeblending provides weak lensing fast simulations and analysis for the LSST Dark Energy Science Collaboration. It is used to study the effects of overlapping sources on shear estimation, photometric redshift algorithms, and deblending algorithms. Users can run their own simulations (of LSST and other surveys) or download the galaxy catalog and simulation outputs to use with their own code.

[ascl:2109.020] SNEWPY: Supernova Neutrino Early Warning Models for Python

SNEWPY uses simulated supernovae data to generate a time series of neutrino spectral fluences at Earth or the total time-integrated spectral fluence. The code can also process generated data through SNOwGLoBES (ascl:2109.019) and collate its output into the observable channels of each detector. Data from core-collapse, thermonuclear, and pair-instability supernovae simulations are included in the package.

[ascl:2109.019] SNOwGLoBES: SuperNova Observatories with GLoBES

SNOwGLoBES (SuperNova Observatories with GLoBES) computes interaction rates and distributions of observed quantities for supernova burst neutrinos in common detector materials. The code provides a very simple and fast code and data package for tests of observability of physics signatures in current and future detectors, and for evaluation of relative sensitivities of different detector configurations. The event estimates are made using available cross-sections and parameterized detector responses. Water, argon, scintillator and lead-based configurations are included. The package makes use of GLoBES (ascl:2109.018). SNOwGLoBES is not intended to replace full detector simulations; however output should be useful for many types of studies, and simulation results can be incorporated.

[ascl:2109.018] GLoBES: General Long Baseline Experiment Simulator

GLoBES simulates long baseline neutrino oscillation experiments. The package features full incorporation of correlations and degeneracies in the oscillation parameter space, advanced routines for the treatment of arbitrary systematical errors, and user-defined priors, which allowsn for the inclusion of arbitrary external physical information. Its use of AEDL, the Abstract Experiment Definition Language, provides an easy way to define experimental setups. GLoBES also provides an interface for the simulation of non-standard physics, and offers predefined setups for many experiments, including Superbeams, Beta Beams, Neutrino factories, Reactors, and various detector technologies.

[ascl:2109.017] HTOF: Astrometric solutions for Hipparcos and Gaia intermediate data

HTOF parses the intermediate data from Hipparcos and Gaia and fits astrometric solutions to those data. It computes likelihoods and parameter errors in line with the catalog and can reproduce five, seven, and nine (or higher) parameter fits to their astrometry.

[ascl:2109.016] SkyPy: Simulating the astrophysical sky

SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.

[ascl:2109.015] unpopular: Using CPM detrending to obtain TESS light curves

unpopular is an implementation of the Causal Pixel Model (CPM) de-trending method to obtain TESS Full-Frame Image (FFI) light curves. The code, written in Python, models the systematics in the light curves of individual pixels as a linear combination of light curves from many other distant pixels and removes shared flux variations. unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data.

[ascl:2109.014] HSS: The Hough Stream Spotter

The Hough Stream Spotter (HSS) is a stream finding code which transforms individual positions of stars to search for linear structure in discrete data sets. The code requires only the two-dimensional plane of galactic longitude and latitude as input.

[ascl:2109.013] WimPyDD: WIMP direct–detection rates predictor

WimPyDD calculates accurate predictions for the expected rates in WIMP direct–detection experiments within the framework of Galilean–invariant non–relativistic effective theory. The object–oriented customizable Python code handles different scenarios including inelastic scattering, WIMP of arbitrary spin, and a generic velocity distribution of WIMP in the Galactic halo.

[ascl:2109.012] STAR-MELT: STellar AccrRetion Mapping with Emission Line Tomography

STAR-MELT extracts and identifies emission lines from FITS files by matching to a compiled reference database of lines. Line profiles are fitted and quantified, allowing for calculations of physical properties across each individual observation. Temporal variations in lines can readily be displayed and quantified. STAR-MELT is also useful for different applications of spectral analysis where emission line identification is required. Standard data formats for spectra are automatically compatible, with user-defined custom formats also available. Any reference database (atomic or molecular) can also be used for line identification.

[ascl:2109.011] Rubble: Simulating dust size distributions in protoplanetary disks

Rubble implicitly models the local evolution of dust distributions in size, mass, and surface density by solving the Smoluchowski equation (also known as the coagulation-fragmentation equation) under given disk conditions. The Python package's robustness has been validated by a suite of numerical benchmarks against known analytical and empirical results. Rubble can model prescribed physical processes such as bouncing, modulated mass transfer, regulated dust loss/supply, probabilistic collisional outcomes based on velocity distributions, and more. The package also includes a toolkit for analyzing and visualizing results produced by Rubble.

[ascl:2109.010] Frankenstein: Flux reconstructor

Frankenstein (frank) fits the 1D radial brightness profile of an interferometric source given a set of visibilities. It uses a Gaussian process that performs the fit in <1 minute for a typical protoplanetary disc continuum dataset. Frankenstein can perform a fit in 2 ways, by running the code directly from the terminal or using the code as a Python module.

[ascl:2109.009] pyFFTW: python wrapper around FFTW

pyFFTW is a pythonic wrapper around FFTW (ascl:1201.015), the speedy FFT library. Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft. Additionally, it supports the clongdouble dtype, which numpy.fft does not, and operating FFTW in multithreaded mode.

[ascl:2109.008] pyia: Python package for working with Gaia data

pyia provides tools for working with Gaia data. It accesses Gaia data columns as Quantity objects, i.e., with units (e.g., data.parallax will have units ‘milliarcsecond’)
, constructs covariance matrices for Gaia data, and generates random samples from the Gaia error distribution per source. pyia can also create SkyCoord objects from Gaia data and execute simple (small) remote queries via the Gaia science archive and automatically fetch the results.

[ascl:2109.007] SkyCalc_ipy: SkyCalc wrapper for interactive Python

SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.

[ascl:2109.006] eMCP: e-MERLIN CASA pipeline

The e-MERLIN CASA Pipeline calibrates and processes data from the e-MERLIN radio interferometer. It works on top of CASA (ascl:1107.013) and can convert, concatenate, prepare, flag and calibrate raw to produce advanced calibrated products for both continuum and spectral line data. The main outputs of the data are calibration tables, calibrated data, assessment plots, preliminary images of target and calibrator sources and a summary weblog. The pipeline provides an easy, ready-to-use toolkit that delivers calibrated data in a consistent, clear, and repeatable way. A parameters file is used to control the pipeline execution, so optimization of the algorithms is straightforward and reproducible. Good quality images are usually obtained with minimum human intervention.

[ascl:2109.005] SoFiA 2: An automated, parallel HI source finding pipeline

SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.

[ascl:2109.004] DviSukta: Spherically Averaged Bispectrum calculator

DviSukta calculates the Spherically Averaged Bispectrum (SABS). The code is based on an optimized direct estimation method, is written in C, and is parallelized. DviSukta starts by reading the real space gridded data and performing a 3D Fourier transform of it. Alternatively, it starts by reading the data already in Fourier space. The grid spacing, number of k1 bins, number of n bins, and number of cos(theta) bins need to be specified in the input file.

[ascl:2109.003] VOLKS2: VLBI Observation for transient Localization Keen Searcher

The VOLK2 (VLBI Observation for transient Localization Keen Searcher) pipeline conducts single pulse searches and localization in regular VLBI observations as well as single pulse detections from known sources in dedicated observations. In VOLKS2, the search and localization are two independent steps. The search step takes the idea of geodetic VLBI post processing, which fully utilizes the cross spectrum fringe phase information to maximize the signal power. Compared with auto spectrum based method, it is able to extract single pulses from highly RFI contaminated data. The localization uses the geodetic VLBI solving methods, which derives the single pulse location by solving a set of linear equations given the relation between the residual delay and the offset to a priori position.

[ascl:2109.002] alpconv: Calculating alp-photon conversion

alpconv calculates the alp-photon conversion by calculating the degree of irregularity of the spectrum, in contract to some other methods that fit the source's spectrum with both null and ALP models and then compare the goodness of fit between the two.

[ascl:2109.001] gammaALPs: Conversion probability between photons and axions/axionlike particles

gammaALPs calculates the conversion probability between photons and axions/axion-like particles in various astrophysical magnetic fields. Though focused on environments relevant to mixing between gamma rays and ALPs, this suite, written in Python, can also be used for broader applications. The code also implements various models of astrophysical magnetic fields, which can be useful for applications beyond ALP searches.

[submitted] Pyckles

A super lightweight interface in Python to load spectra from the Pickles 1998 (stellar) and Brown 2014 (galactic) spectral catalogues

[submitted] AnisoCADO

A python package created around Eric Gendron’s code for analytically (and quickly) generating field-varying SCAO PSFs for the ELT.

[submitted] ScopeSim Instrument Reference Database

A reference database for astronomical instrument and telescope characteristics for all types of visual and infrared systems. Instrument packages are used in conjunction with the ScopeSim instrument data simulator.

[submitted] ScopeSim Templates

Templates and helper functions for creating on-sky Source description objects for the ScopeSim instrument data simulation engine.

[submitted] ScopeSim

An attempt at creating a common pythonic framework for visual and infrared telescope instrument data simulators.

[submitted] STDPipe - Simple Transient Detection Pipeline

STDPipe is a set of Python routines for astrometry, photometry and transient detection related tasks, intended for quick and easy implementation of custom pipelines, as well as for interactive data analysis.

[ascl:2108.025] SORA: Stellar Occultation Reduction Analysis

SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.

[ascl:2108.024] iminuit: Jupyter-friendly Python interface for C++ MINUIT2

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN's ROOT team. It can be used as a general robust function minimization method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.

[ascl:2108.023] CMC-COSMIC: Cluster Monte Carlo code

CMC-COSMIC models dense star clusters using Hénon's method using orbit-averaging collisional stellar dynamics. It includes all the relevant physics for modeling dense spherical star clusters, such as strong dynamical encounters, single and binary stellar evolution, central massive black holes, three-body binary formation, and relativistic dynamics, among others. CMC is parallelized using the Message Passing Interface (MPI), and is pinned to the COSMIC (ascl:2108.022) package for binary population synthesis, which itself was originally based on the version of BSE (ascl:1303.014). COSMIC is currently a submodule within CMC, ensuring that any cluster simulations or binary populations are integrated with the same physics.

[ascl:2108.022] COSMIC: Compact Object Synthesis and Monte Carlo Investigation Code

COSMIC (Compact Object Synthesis and Monte Carlo Investigation Code) generates synthetic populations with an adaptive size based on how the shape of binary parameter distributions change as the number of simulated binaries increases. It implements stellar evolution using SSE (ascl:1303.015) and binary interactions using BSE (ascl:1303.014). COSMIC can also be used to simulate a single binary at a time, a list of multiple binaries, a grid of binaries, or a fixed population size as well as restart binaries at a mid point in their evolution. The code is included in CMC-COSMIC (ascl:2108.023).

[ascl:2108.021] ExoPlaSim: Exoplanet climate simulator

ExoPlaSim extends the PlaSim (ascl:2107.019) 3D general climate model to terrestrial exoplanets. It includes the PlaSim general circulation model and modifications that allow this code to run tidally-locked planets, planets with substantially different surface pressures than Earth, planets orbiting stars with different effective temperatures, super-Earths, and more. ExoPlaSim includes the ability to compute carbon-silicate weathering, dynamic orography through the glacier module (though only accumulation and ablation/evaporation/melting are included; glacial flow and spreading are not), and storm climatology.

[ascl:2108.020] DBSP_DRP: DBSP Data Reduction Pipeline

DBSP_DRP reduces data from the Palomar spectrograph DBSP. Built on top of PypeIt (ascl:1911.004), it automates the reduction, fluxing, telluric correction, and combining of the red and blue sides of one night's data. The pipeline also provides several GUIs for easier control of the reduction, with one for selecting which data to reduce, and verifying the correctness of FITS headers in an editable table. Another GUI manually places traces for a sort of manually "forced" spectroscopy with the -m option, and after manually placing traces, manually selects sky regions and tweaks the FWHM of the manual traces.

[ascl:2108.019] PIPS: Period detection and Identification Pipeline Suite

PIPS analyzes the lightcurves of astronomical objects whose brightness changes periodically. Originally developed to determine the periods of RR Lyrae variable stars, the code offers many features designed for variable star analysis and can obtain period values for almost any type of lightcurve with both speed and accuracy. PIPS determines periods through several different methods, analyzes the morphology of lightcurves via Fourier analysis, estimates the statistical significance of the detected signal, and determines stellar properties based on pre-existing stellar models.

[ascl:2108.018] Cosmic-CoNN: Cosmic ray detection toolkit

Cosmic-CoNN detects cosmic rays (CR) in CCD-captured astronomical images. It offers a PyTorch deep-learning framework to train generic, robust CR detection models for ground- and space-based imaging data as well as spectroscopic observations. Cosmic-CoNN also includes a suite of tools, including console commands, a web app, and Python APIs, to make deep-learning models easily accessible.

[ascl:2108.017] AutoProf: Automatic Isophotal solutions for galaxy images

AutoProf performs basic and advanced non-parametric galaxy image analysis. The pipeline's design allows for fast startup and easy implementation; the package offers a suite of robust default and optional tools for surface brightness profile extractions and related methods. AUTOPROF is highly extensible and can be adapted for a variety of applications, providing flexibility for exploring new ideas and supporting advanced users.

[ascl:2108.016] Chemulator: Thermochemical emulator for hydrodynamical modeling

The neural network-based emulator Chemulator advances the gas temperature and chemical abundances of a single position in an astrophysical gas. It is accurate on a single timestep and stable over many iterations with decreased accuracy, though performs less well at low visual extinctions. The code is useful for applications such as large scale ISM modeling; by retraining the emulator for a given parameter space, Chemulator could also perform more specialized applications such as planetary atmosphere modeling.

[ascl:2108.015] ELISa: Eclipsing binaries Learning Interactive System

ELISa models light curves of close eclipsing binaries. It models surfaces of detached, semi-detached, and over-contact binaries, generates light curves, and generates stellar spots with given longitude, latitude, radius, and temperature. It can also fit radial velocity curves and light curves via the implementation of the non-linear least squares method and also via Markov Chain Monte Carlo method.

[ascl:2108.014] StelNet: Stellar mass and age predictor

StelNet predicts mass and age from absolute luminosity and effective temperature for stars with close to solar metallicity. It uses a Deep Neural Network trained on stellar evolutionary tracks. The underlying model makes no assumption on the evolutionary stage and includes the pre-main sequence phase. A mix of models are trained and bootstrapped to quantify the uncertainty of the model, and data is through all trained models to provide a predictive distribution from which an expectation value and uncertainty level can be estimated.

[ascl:2108.013] AMOEBA: Automated Gaussian decomposition

AMOEBA (Automated Molecular Excitation Bayesian line-fitting Algorithm) employs a Bayesian approach to Gaussian decomposition, resulting in an objective and statistically robust identification of individual clouds along the line-of-sight. It uses the Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler emcee (ascl:1303.002) to sample the posterior probability distribution and numerically evaluate the integrals required to compute the Bayes Factor. Amoeba takes as input a set of OH optical depth spectra and a set of expected brightness temperature spectra that are obtained by measuring the brightness temperature towards the bright background continuum source (the "on-source" observations), and in a pattern surrounding the continuum source (the "off-source" observations). Amoeba can also take as input a set of OH optical depth spectra only, and also allows input of an arbitrary number of spectra to be fit simultaneously.

[ascl:2108.012] NRDD_constraints: Dark Matter interaction with the Standard Model exclusion plot calculator

The NRDD_constraints tool provides simple interpolating functions written in Python that return the most constraining limit on the dark matter-nucleon scattering cross section for a list of non-relativistic effective operators. The package contains four files: the main code, NRDD_constraints.py; a simple driver, NRDD_constraints-example.py; and two data files, NRDD_data1.npy and NRDD_data2.npy

[ascl:2108.011] BOSS-Without-Windows: Window-free analysis of the BOSS DR12 power spectrum and bispectrum

BOSS-Without-Windows analyzes Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data using quadratic and cubic estimators. It contains analysis codes to estimate unwindowed power spectra and unwindowed bispectra. It also supplies the raw power and bispectrum spectrum measurements of BOSS and 999 Patchy simulations, and contains a utility function to generate the background number density, n(r) from the survey mask and n(z) distribution.

[ascl:2108.010] FIREFLY: Chi-squared minimization full spectral fitting code

FIREFLY (Fitting IteRativEly For Likelihood analYsis) derives stellar population properties of stellar systems, whether observed galaxy or star cluster spectra or model spectra from simulations. The code fits combinations of single-burst stellar population models to spectroscopic data following an iterative best-fitting process controlled by the Bayesian Information Criterion without applying priors. Solutions within a statistical cut are retained with their weight, which is arbitrary. No additive or multiplicative polynomia are used to adjust the spectral shape and no regularization is imposed. This fitting freedom allows mapping of the effect of intrinsic spectral energy distribution (SED) degeneracies, such as age, metallicity, dust reddening on stellar population properties, and quantifying the effect of varying input model components on such properties.

Would you like to view a random code?