Results 1101-1200 of 3644 (3551 ASCL, 93 submitted)
**Finalflash** is a Python package designed for primary beam corrections of uGMRT radio interferometric images. The software uses frequency-dependent beam models and FITS file handling to improve the accuracy of radio astronomical data. It is open source and available under the MIT License. The code is hosted at https://github.com/arpan-52/Finalflash.
Find_Orb takes a set of observations of an asteroid, comet, or natural or artificial satellite given in the MPC (Minor Planet Center) format, the ADES astrometric format, and/or the NEODyS or AstDyS formats, and finds the corresponding orbit.
Finder_charts creates multi-band finder charts from image data of various partial- and all-sky surveys such as DSS, 2MASS, WISE, UKIDSS, VHS, Pan-STARRS, and DES. It also creates a WISE time series of image data acquired between 2010 and 2021. All images are reprojected so that north is up and east is to the left. The resulting finder charts can be overplotted with corresponding catalog positions. All catalog entries within the specified field of view can be saved in a variety of formats, including ipac, csv, and tex, as can the finder charts in png, pdf, eps, and other common graphics formats. Finder_charts consists of a single Python module, which depends only on well-known packages, making it easy to install.
Finesse is a numeric simulation for laser interferometers and models parametric instabilities, easily providing the required mechanical-to-optical transfer functions in imperfect and arbitrary interferometer configurations using Hermite-Gaussian beams. The code has been used to apply limits to the number and type of higher order modes used in simulation and investigate the potential use of higher order Laguerre-Gauss modes to reduce thermal noise in future gravitational wave detector designs. The PyKat wrapper (ascl:2004.014) helps automate complex Finesse tasks.
FIPS is a cross-platform FITS viewer with a responsive user interface. Unlike other FITS viewers, FIPS uses GPU hardware via OpenGL to provide functionality such as zooming, panning and level adjustments. OpenGL 2.1 and later is supported. FIPS supports all 2D image formats except floating point formats on OpenGL 2.1. FITS image extension has basic limited support.
FIRE Studio is a Python interface for C libraries that project Smoothed Particle Hydrodynamic (SPH) datasets. These C libraries can, in principle, be applied to any SPH dataset; the Python interface is specialized to conveniently load and format Gadget-derivative datasets such as GIZMO (ascl:1410.003). FIRE Studio is fast, memory efficient, and parallelizable. In addition to producing "1-color" projection maps for SPH datasets, the interface can produce "2-color" maps, where the pixel saturation is set by one projected quantity and the hue is set by another, and "3-color" maps, where three quantities are projected simultaneously and remapped into an RGB colorspace. FIRE Studio can model stellar emission and dust extinction to produce mock Hubble images (by default) or to model surface brightness maps for thirteen of the most common bands (plus the bolometric luminosity). It produces publication quality static images of simulation datasets and provides interpolation scripts to create movies that smoothly evolve in time (provided multiple snapshots in time of the data exist), view the dataset from different perspectives (taking advantage of shared memory buffers to allow massive parallelization), or both.
FIREFLY (Fitting IteRativEly For Likelihood analYsis) derives stellar population properties of stellar systems, whether observed galaxy or star cluster spectra or model spectra from simulations. The code fits combinations of single-burst stellar population models to spectroscopic data following an iterative best-fitting process controlled by the Bayesian Information Criterion without applying priors. Solutions within a statistical cut are retained with their weight, which is arbitrary. No additive or multiplicative polynomia are used to adjust the spectral shape and no regularization is imposed. This fitting freedom allows mapping of the effect of intrinsic spectral energy distribution (SED) degeneracies, such as age, metallicity, dust reddening on stellar population properties, and quantifying the effect of varying input model components on such properties.
Firefly provides interactive exploration of particle-based data in the browser. The user can filter, display vector fields, and toggle the visibility of their customizable datasets all on-the-fly. Different Firefly visualizations, complete with preconfigured data and camera view-settings, can be shared by URL. As Firefly is written in WebGL, it can be hosted online, though Firefly can also be used locally, without an internet connection. Firefly was developed with simulations of galaxy formation in mind but is flexible enough to display any particle-based data. Other features include a stereoscopic 3D picture mode and mobile compatibility.
FIRST Classifier is an on-line system for automated classification of compact and extended radio sources. It is developed based on a trained Deep Convolutional Neural Network Model to automate the morphological classification of compact and extended radio sources observed in the FIRST radio survey. FIRST Classifier is able to predict the morphological class for a single source or for a list of sources as Compact or Extended (FRI, FRII and BENT).
FISA (Fast Integrated Spectra Analyzer) permits fast and reasonably accurate age and reddening determinations for small angular diameter open clusters by using their integrated spectra in the (3600-7400) AA range and currently available template spectrum libraries. This algorithm and its implementation help to achieve astrophysical results in shorter times than from other methods. FISA has successfully been applied to integrated spectroscopy of open clusters, both in the Galaxy and in the Magellanic Clouds, to determine ages and reddenings.
Fisher.py allows you to combine constraints from multiple experiments (e.g., weak lensing + supernovae) and add priors (e.g., a flat universe) simply and easily. Calculate parameter uncertainties and plot confidence ellipses. Fisher matrix expectations for several experiments are included as calculated by myself (time delays) and the Dark Energy Task Force (WL/SN/BAO/CL/CMB), or provide your own.
The Fisher4Cast suite, which requires MatLab, provides a standard, tested tool set for general Fisher Information matrix prediction and forecasting for use in both research and education. The toolbox design is robust and modular, allowing for easy additions and adaptation while keeping the user interface intuitive and easy to use. Fisher4Cast is completely general but the default is coded for cosmology. It provides parameter error forecasts for cosmological surveys providing distance, Hubble expansion and growth measurements in a general, curved FLRW background.
FishLSS computes the Fisher information matrix for a set of observables and model parameters. It can model the redshift-space power spectrum of any biased tracer of the CDM+baryon field and the post-reconstruction galaxy power spectrum. The code also models the projected cross-correlation of galaxies with the CMB lensing convergence, the projected galaxy power spectrum, and the CMB lensing convergence power spectrum. FishLSS requires pyFFTW (ascl:2109.009), velocileptors (ascl:2308.014), and CLASS (ascl:1106.020).
The FISHPACK collection of Fortran77 subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates. A modernization of FISHPACK is available as FISHPACK90 (ascl:1609.005).
FISHPACK90 is a modernization of the original FISHPACK (ascl:1609.004), employing Fortran90 to slightly simplify and standardize the interface to some of the routines. This collection of Fortran programs and subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates. Test programs are provided for the 19 solvers. Each serves two purposes: as a template to guide you in writing your own codes utilizing the FISHPACK90 solvers, and as a demonstration on your computer that you can correctly produce FISHPACK90 executables.
Fit kinematic PA measures the global kinematic position-angle (PA) from integral field observations of a galaxy stellar or gas kinematics; the code is available in IDL and Python.
FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.
FitCov estimates the covariance of two-point correlation functions in a way that requires fewer mocks than the standard mock-based covariance. Rather than using an analytically fixed correction to some terms that enter the jackknife covariance matrix, the code fits the correction to a mock-based covariance obtained from a small number of mocks. The fitted jackknife covariance remains unbiased, an improvement over other methods, performs well both in terms of precision (unbiased constraints) and accuracy (similar uncertainties), and requires significant less computational power. In addition, FitCov can be easily implemented on top of the standard jackknife covariance computation.
FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra. FITDisk is the Windows executable form of this software; its Fortran source code is also available as DiskSim (ascl:1811.013).
The fitOmatic model-fitting prototyping tool tests multi-wavelength model-fitting and exploits VLTI data. It provides tools to define simple geometrical models and conveniently adjust the model's parameters. Written in Yorick, it takes optical interferometry FITS (oifits) files as input and allows the user to define a model of the source from a set of pre-defined models, which can be combined to make more complicated models. fitOmatic then computes the Fourier Transform of the modeled brightness distribution and synthetic observables are computed at the wavelengths and projected baselines of the observations. fitomatic's strength is its ability to define vector-parameters, i.e., parameters that may depend on wavelength and/or time. The self-cal (ascl:2301.006) component of fitOmatic is also available as a separate code.
fitramp fits a ramp to a series of nondestructive reads and detects and rejects jumps. The software performs likelihood-based jump detection for detectors read out up-the-ramp; it uses the entire set of reads to compute likelihoods. The code compares the χ2 value of a fit with and without a jump for every possible jump location. fitramp can fit ramps with and without fitting the reset value (the pedestal), and fit and mask jumps within or between groups of reads. It can also compute the bias of ramp fitting.
The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO’s Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA’s Spitzer Space Telescope, ESA’s XMM–Newton Telescope and Cassini–Huygens or Mars Reconnaissance Orbiter.
fits_warp smoothly removes the distorting effect of the ionosphere and restores sources to their reference positions in both the catalog and image domain. Image warping uses pixel offsets derived from a catalog of cross-matched sources. Though initially written for low-frequency radio astronomy, fits_warp can be used to de-distort any image distorted by some vector field which is sampled by some sparse pierce-points.
fits2hdf ports FITS files to Hierarchical Data Format (HDF5) files in the HDFITS format. HDFITS allows faster reading of data, higher compression ratios, and higher throughput. HDFITS formatted data can be presented transparently as an in-memory FITS equivalent by changing the import lines in Python-based FITS utilities. fits2hdf includes a utility to port MeasurementSets (MS) to HDF5 files.
fitScalingRelation fits galaxy cluster scaling relations using orthogonal or bisector regression and MCMC. It takes into account errors on both variables and intrinsic scatter. Although it geared for fitting galaxy cluster scaling relations of all kinds, it can be used for any kind of regression problem with errors on both variables and intrinsic scatter.
FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.
FITSH provides a standalone environment for analysis of data acquired by imaging astronomical detectors. The package provides utilities both for the full pipeline of subsequent related data processing steps (including image calibration, astrometry, source identification, photometry, differential analysis, low-level arithmetic operations, multiple image combinations, spatial transformations and interpolations, etc.) and for aiding the interpretation of the (mainly photometric and/or astrometric) results. The package also features a consistent implementation of photometry based on image subtraction, point spread function fitting and aperture photometry and provides easy-to-use interfaces for comparisons and for picking the most suitable method for a particular problem. The utilities in the package are built on the top of the commonly used UNIX/POSIX shells (hence the name of the package), therefore both frequently used and well-documented tools for such environments can be exploited and managing massive amount of data is rather convenient.
With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.
FitsMap visualizes astronomical image and catalog data. Implemented in Python, the software is a simple, lightweight tool, requires only a simple web server, and can scale to over gigapixel images with tens of millions of sources. Further, the web-based visualizations can be viewed performantly on mobile devices.
Fitsverify rigorously checks whether a FITS (Flexible Image Transport System) data file conforms to the requirements defined in Version 3.0 of the FITS Standard document; it is a standalone version of the ftverify and fverify tasks that are distributed as part of the ftools (ascl:9912.002) software package. The source code must be compiled and linked with the CFITSIO (ascl:1010.001) library. An interactive web is also available that can verify the format of any FITS data file on a local computer or on the Web.
fkpt computes the 1-loop redshift space power spectrum for tracers using perturbation theory for LCDM and Modified Gravity theories using "fk"-Kernels. Though implemented for the Hu-Sawicky f(R) modified gravity model, it is straightforward to use it for other models.
Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.
FLAG is a fast implementation of the Fourier-Laguerre Transform, a novel 3D transform exploiting an exact quadrature rule of the ball to construct an exact harmonic transform in 3D spherical coordinates. The angular part of the Fourier-Laguerre transform uses the MW sampling theorem and the exact spherical harmonic transform implemented in the SSHT code (ascl:2207.034). The radial sampling scheme arises from an exact quadrature of the radial half-line using damped Laguerre polynomials. The radial transform can in fact be used to compute the spherical Bessel transform exactly, and the Fourier-Laguerre transform is thus closely related to the Fourier-Bessel transform.
FLAGging and CALlibration (FLAGCAL) is a software pipeline developed for automatic flagging and calibration of the GMRT data. This pipeline can be used for preprocessing (before importing the data in AIPS) any other interferromteric data also (given that the data file is in FITS format and contains multiple channels & scans).There are also a few GUI based tools which can be used for quick visualization of the data.
FLAGLET computes flaglet transforms with arbitrary spin direction, probing the angular features of this generic wavelet transform for rapid analysis of signals from wavelet coefficients. The code enables the decomposition of a band-limited signal into a set of flaglet maps that capture all information contained in the initial band-limited map, and it can reconstruct the individual flaglets at varying resolutions. FLAGLET relies upon the SSHT (ascl:2207.034), S2LET (ascl:1211.001), and SO3 codes to provide angular transforms and sampling theorems, as well as the FFTW (ascl:1201.015) code to compute Fourier transforms.
Flame reduces near-infrared and optical multi-object spectroscopic data. Although the pipeline was created for the LUCI instrument at the Large Binocular Telescope, Flame, written in IDL, is modular and can be adapted to work with data from other instruments. The software uses 2D transformations, thus using one interpolation step to wavelength calibrate and rectify the data. The γ(x, y) transformation also includes the spatial misalignment between frames, which can be measured from a reference star observed simultaneously with the science targets; sky subtraction can be performed via nodding and/or modelling of the sky spectrum.
FLARE, a parallel code written in Python, generates 100,000 Fast Radio Bursts (FRB) using the Monte Carlo method. The FRB population is diverse and includes sporadic FRBs, repeaters, and periodic repeaters. However, less than 200 FRBs have been detected to date, which makes understanding the FRB population difficult. To tackle this problem, FLARE uses a Monte Carlo method to generate 100,000 realistic FRBs, which can be analyzed later on for further research. It has the capability to simulate FRB distances (based on the observed FRB distance range), energies (based on the "flaring magnetar model" of FRBs), fluences, multi-wavelength counterparts (based on x-ray to radio fluence ratio of FRB 200428), and other properties. It analyzes the resulting synthetic FRB catalog and displays the distribution of their properties. It is fast (as a result of parallel code) and requires minimal human interaction. FLARE is, therefore, able to give a broad picture of the FRB population.
Flash-X simulates physical phenomena in several scientific domains, primarily those involving compressible or incompressible reactive flows, using Eulerian adaptive mesh and particle techniques. It derives some of its solvers from and is a descendant of FLASH (ascl:1010.082). Flash-X has a new framework that relies on abstractions and asynchronous communications for performance portability across a range of heterogeneous hardware platforms, including exascale machines. It also includes new physics capabilities, such as the Spark general relativistic magnetohydrodynamics (GRMHD) solver, and supports interoperation with the AMReX mesh framework, the HYPRE linear solver package, and the Thornado neutrino radiation hydrodynamics package, among others.
The FLASH code, currently in its 4th version, is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other. A simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework combined with regression tests that run nightly on multiple platforms verify the code.
flashcurve estimates the necessary time windows for adaptive binning light curves in Fermi-LAT data using raw photon data. Fluxes coming from Gamma rays measured by the Fermi-LAT satellite are extremely variable. Gamma-ray light curves produced by flashcurve, which uses deep learning, optimally use adaptive bin sizes to retrieve information about the source dynamics and to combine gamma-ray observations in a multi-messenger perspective.
FLASK (Full-sky Lognormal Astro-fields Simulation Kit) makes tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields; it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges. It is C++ code parallelized with OpenMP; FLASK generates fast full-sky simulations of cosmological large-scale structure observables such as multiple matter density tracers (galaxies, quasars, dark matter haloes), CMB temperature anisotropies and weak lensing convergence and shear fields. The mutiple fields can be generated tomographically in an arbitrary number of redshift slices and all their statistical properties (including cross-correlations) are determined by the angular power spectra supplied as input and the multivariate lognormal (or Gaussian) distribution assumed for the fields. Effects like redshift space distortions, doppler distortions, magnification biases, evolution and intrinsic aligments can be introduced in the simulations via the input power spectra which must be supplied by the user.
flatstar is an open-source Python tool for drawing stellar disks as numpy.ndarray objects with scientifically-rigorous limb darkening. Each pixel has an accurate fractional intensity in relation to the total stellar intensity of 1.0. It is ideal for ray-tracing simulations of stars and planetary transits. The code is fast, has the most well-known limb-darkening laws, including linear, quadratic, square-root, logarithmic, and exponential, and allows the user to implement custom limb-darkening laws. flatstar also offers supersampling for situations where both coarse arrays and precision in stellar disk intensity (i.e., no hard pixel boundaries) is desired, and upscaling to save on computation time when high-resolution intensity maps are needed, though there is some precision loss in intensities.
FLATW'RM (FLAre deTection With Ransac Method) detects stellar flares in light curves using a classical machine-learning method. The code tries to find a rotation period in the light curve and splits the data to detection windows. The light curve sections are fit with the robust fitting algorithm RANSAC (Random sample consensus); outlier points (flare candidates) above the pre-set detection level are marked for each section. For the given detection window, only those flare candidates that have at least a given number of consecutive points (three by default) are kept and marked as flares. When using FLATW’RM, the code's output should be checked to determine whether changes to the default settings are needed to account for light curve noise, data sampling frequency, and scientific needs.
fleck simulates rotational modulation of stars due to starspots and is used to overcome the degeneracies and determine starspot coverages accurately for a sample of young stars. The code simulates starspots as circular dark regions on the surfaces of rotating stars, accounting for foreshortening towards the limb, and limb darkening. Supplied with the latitudes, longitudes, and radii of spots and the stellar inclinations from which each star is viewed, fleck takes advantage of efficient array broadcasting with numpy to return approximate light curves. For example, the code can compute rotational modulation curves sampled at ten points throughout the rotation of each star for one million stars, with two unique spots each, all viewed at unique inclinations, in about 10 seconds on a 2.5 GHz Intel Core i7 processor. This rapid computation of light curves en masse makes it possible to measure starspot distributions with techniques such as Approximate Bayesian Computation.
FleCSPH is a multi-physics compact application that exercises FleCSI parallel data structures for tree-based particle methods. In particular, the software implements a smoothed-particle hydrodynamics (SPH) solver for the solution of Lagrangian problems in astrophysics and cosmology. FleCSPH includes support for gravitational forces using the fast multipole method (FMM). Particle affinity and gravitation is handled using the parallel implementation of the octree data structure provided by FleCSI.
FLEET (Finding Luminous and Exotic Extragalactic Transients) is a machine-learning pipeline that predicts the probability of a transient to be a superluminous supernova. With light curve and contextual host galaxy information, it uses a random forest algorithm to rapidly identify SLSN-I without the need for redshift information.
flexCE (flexible Chemical Evolution) computes the evolution of a one-zone chemical evolution model with inflow and outflow in which gas is instantaneously and completely mixed. It can be used to demonstrate the sensitivity of chemical evolution models to parameter variations, show the effect of CCSN yields on chemical evolution models, and reproduce the 2D distribution in [O/Fe]{[Fe/H] by mixing models with a range of inflow and outflow histories. It can also post-process cosmological simulations to predict element distributions.
This code combines the spectral sum-conserving methods of Weichselbaum and von Delft and of Peters, Pruschke and Anders (both relying upon the complete basis set construction of Anders and Schiller) with the use of non-Abelian symmetries in a flexible manner: Essentially any non-Abelian symmetry can be taught to the code, and any number of such symmetries can be used throughout the computation for any density of states, and to compute any local operators' correlation function's real and imaginary parts or any thermodynamical expectation value. The code works both at zero and finite temperatures.
Gravitational flexion is a technique for measuring 2nd order gravitational lensing signals in background galaxies and radio lobes. Unlike shear, flexion directly probes variations of the potential field. Moreover, the information contained in flexion is orthogonal to what is found in the shear. Thus, we get the information "for free."
A newer version of the code, Lenser, is available here: https://github.com/DrexelLenser/Lenser
Flicker calculates the mean stellar density of a star by inputting the flicker observed in a photometric time series. Written in Fortran90, its output may be used as an informative prior on stellar density when fitting transit light curves.
FLORAH generates the assembly history of halos using a recurrent neural network and normalizing flow model. The machine-learning framework can be used to combine multiple generated networks that are trained on a suite of simulations with different redshift ranges and mass resolutions. Depending on the training, the code recovers key properties, including the time evolution of mass and concentration, and galaxy stellar mass versus halo mass relation and its residuals. FLORAH also reproduces the dependence of clustering on properties other than mass, and is a step towards a machine learning-based framework for planting full merger trees.
FLUKA (FLUktuierende KAskade) is a general-purpose tool for calculations of particle transport and interactions with matter. FLUKA can simulate with high accuracy the interaction and propagation in matter of about 60 different particles, including photons and electrons from 1 keV to thousands of TeV, neutrinos, muons of any energy, hadrons of energies up to 20 TeV (up to 10 PeV by linking FLUKA with the DPMJET code) and all the corresponding antiparticles, neutrons down to thermal energies and heavy ions. The program, written in Fortran, can also transport polarised photons (e.g., synchrotron radiation) and optical photons. Time evolution and tracking of emitted radiation from unstable residual nuclei can be performed online.
This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.
Flux Tube is a nonlinear, two-dimensional, numerical simulation of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after horizontal and vertical oscillatory perturbations are applied to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized by a special boundary condition.
Flux provides an elegant approach to machine learning. Written in Julia, it provides lightweight abstractions on top of Julia's native GPU and AD support. It has many useful tools built in, but also lets you use the full power of the Julia language where you need it. Flux has relatively few explicit APIs for features like regularization or embeddings; instead, writing down the mathematical form works and is fast. The package works well with Julia libraries from data frames and images to differential equation solvers, so building complex data processing pipelines that integrate Flux models is straightforward.
FLUXES calculates approximate topocentric positions of the planets and also integrated flux densities of five of them at several wavelengths. These provide calibration information at the effective frequencies and beam-sizes employed by the UKT14, SCUBA and SCUBA-2 receivers on the JCMT telescope based on Mauna Kea, Hawaii. FLUXES is part of the bundle that comprises the Starlink multi-purpose astronomy software package (ascl:1110.012).
Cosmological simulations of structures and galaxies formations have played a fundamental role in the study of the origin, formation and evolution of the Universe. These studies improved enormously with the use of supercomputers and parallel systems and, recently, grid based systems and Linux clusters. Now we present the new version of the tree N-body parallel code FLY that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and we show the performances obtained. FLY is included in the Computer Physics Communication Program Library. This new version was developed using the Linux Cluster of CINECA, an IBM Cluster with 1024 Intel Xeon Pentium IV 3.0 Ghz. The results show that it is possible to run a 64 Million particle simulation in less than 15 minutes for each timestep, and the code scalability with the number of processors is achieved. This lead us to propose FLY as a code to run very large N-Body simulations with more than $10^{9}$ particles with the higher resolution of a pure tree code.
FoF-Halo-finder identifies the location and size of collapsed objects (halos) within a cosmological simulation box. These halos are the host for the luminous objects in the Universe. Written in C, it is based on the friends-of-friends (FoF) algorithm, and is designed to work with PMN-body (ascl:2107.003).
Fof uses the friends-of-friends method to find groups. A particle belongs to a friends-of-friends group if it is within some linking length of any other particle in the group. After all such groups are found, those with less than a specified minimum number of group members are rejected. The program takes input files in the TIPSY (ascl:1111.015) binary format and produces a single ASCII output file called fof.grp. This output file is in the TIPSY array format and contains the group number to which each particle belongs. A group number of zero means that the particle does not belong to a group. The fof.grp file can be read in by TIPSY and used to color each particle by group number to visualize the groups. Simulations with periodic boundary conditions can also be handled by fof by specifying the period in each dimension on the command line.
Forcepho infers the fluxes and shapes of galaxies from astronomical images. It models the appearance of multiple sources in multiple bands simultaneously and compares to observed data via a likelihood function. Gradients of this likelihood allow for efficient maximization of the posterior probability or sampling of the posterior probability distribution via Hamiltonian Monte Carlo. The model intrinsic galaxy shapes and positions are shared across the different bands, but the fluxes are fit separately for each band. Forcepho does not perform detection; initial locations and (very rough) parameter estimates must be supplied by the user.
FORECAST generates realistic astronomical images and galaxy surveys by forward modeling the output snapshot of any hydrodynamical cosmological simulation. It exploits the snapshot by constructing a lightcone centered on the observer's position; the code computes the observed fluxes of each simulated stellar element, modeled as a Single Stellar Population (SSP), in any chosen set of pass-band filters, including k-correction, IGM absorption, and dust attenuation. These fluxes are then used to create an image on a grid of pixels, to which observational features such as background noise and PSF blurring can be added. FORECAST provides customizable options for filters, size of the field of view, and survey parameters, thus allowing the synthetic images to be tailored for specific research requirements.
An internally overhauled but fundamentally similar version of Forecaster by Jingjing Chen and David Kipping, originally presented in arXiv:1603.08614 and hosted at https://github.com/chenjj2/forecaster.
The model itself has not changed- no new data was included and the hyperparameter file was not regenerated. All functions were rewritten to take advantage of Numpy vectorization and some additional user features were added. Now able to be installed via pip.
Forecaster predicts the mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude in mass. It is an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. It accounts for observational errors, hyper-parameter uncertainties and the intrinsic dispersions observed in the calibration sample.
Forklens measures weak gravitational lensing signal using a deep-learning methoe. It measures galaxy shapes (shear) and corrects the smearing of the point spread function (PSF, an effect from either/both the atmosphere and optical instrument). It contains a custom CNN architecture with two input branches, fed with the observed galaxy image and PSF image, and predicts several features of the galaxy, including shape, magnitude, and size. Simulation in the code is built directly upon GalSim (ascl:1402.009).
FORSTAND constructs dynamical models of galaxies using the Schwarzschild orbit-superposition method; the method is available as part of the AGAMA (ascl:1805.008) framework. The models created are constrained by line-of-sight kinematic observations and are applicable to galaxies of all morphological types, including disks and triaxial rotating bars.
FortesFit efficiently explores and discriminates between various spectral energy distributions (SED) models of astronomical sources. The Python package adds Bayesian inference to a framework that is designed for the easy incorporation and relative assessment of SED models, various fitting engines, and a powerful treatment of priors, especially those that may arise from non-traditional wave-bands such as the X-ray or radio emission, or from spectroscopic measurements. It has been designed with particular emphasis for its scalability to large datasets and surveys.
FORWARD forward models various coronal observables and can access and compare existing data. Given a coronal model, it can produce many different synthetic observables (including Stokes polarimetry), as well as plots of model plasma properties (density, magnetic field, etc.). It uses the CHIANTI database (ascl:9911.004) and CLE polarimetry synthesis code, works with numerical model datacubes, interfaces with the PFSS module of SolarSoft (ascl:1208.013), includes several analytic models, and connects to the Virtual Solar Observatory for downloading data in a format directly comparable to model predictions.
ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD).While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms in both speed and accuracy.
Fosite implements a method for the solution of hyperbolic conservation laws in curvilinear orthogonal coordinates. It is written in Fortran 90/95 integrating object-oriented (OO) design patterns, incorporating the flexibility of OO-programming into Fortran 90/95 while preserving the efficiency of the numerical computation. Although mainly intended for CFD simulations, Fosite's modular design allows its application to other advection problems as well. Unlike other two-dimensional implementations of finite volume methods, it accounts for local conservation of specific angular momentum. This feature turns the program into a perfect tool for astrophysical simulations where angular momentum transport is crucial. Angular momentum transport is not only implemented for standard coordinate systems with rotational symmetry (i.e. cylindrical, spherical) but also for a general set of orthogonal coordinate systems allowing the use of exotic curvilinear meshes (e.g. oblate-spheroidal). As in the case of the advection problem, this part of the software is also kept modular, therefore new geometries may be incorporated into the framework in a straightforward manner.
Fourierdimredn (Fourier dimensionality reduction) implements Fourier-based dimensionality reduction of interferometric data. Written in Matlab, it derives the theoretically optimal dimensionality reduction operator from a singular value decomposition perspective of the measurement operator. Fourierdimredn ensures a fast implementation of the full measurement operator and also preserves the i.i.d. Gaussian properties of the original measurement noise.
Using information theory and Bayesian inference, the foxi Python package computes a suite of expected utilities given futuristic observations in a flexible and user-friendly way. foxi requires a set of n-dim prior samples for each model and one set of n-dim samples from the current data, and can calculate the expected ln-Bayes factor between models, decisiveness between models and its maximum-likelihood averaged equivalent, the decisivity, and the expected Kullback-Leibler divergence (i.e., the expected information gain of the futuristic dataset). The package offers flexible inputs and is designed for all-in-one script calculation or an initial cluster run then local machine post-processing, which should make large jobs quite manageable subject to resources and includes features such as LaTeX tables and plot-making for post-data analysis visuals and convenience of presentation.
fpack is a utility program for optimally compressing images in the FITS data format. The associated funpack program will restore the compressed file back to its original state. These programs may be run from the host operating system command line and are analogous to the gzip and gunzip utility programs, except that they are specifically optimized for FITS format images and offer a wider choice of compression options.
fpack uses the tiled image compression convention for storing the compressed images. This convention can in principle support any number of of different compression algorithms; currently GZIP, Rice, Hcompress, and the IRAF pixel list compression algorithms have been implemented.
The main advantages of fpack compared to the commonly used technique of externally compressing the whole FITS file with gzip are:
- It is generally faster and offers better compression than gzip.
- The FITS header keywords remain uncompressed for fast access.
- Each HDU of a multi-extension FITS file is compressed separately, so it is not necessary to uncompress the entire file to read a single image in a multi-extension file.
- Dividing the image into tiles before compression enables faster access to small subsections of the image.
- The compressed image is itself a valid FITS file and can be manipulated by other general FITS utility software.
- Lossy compression can be used for much higher compression in cases where it is not necessary to exactly preserve the original image.
- The CHECKSUM keywords are automatically updated to help verify the integrity of the files.
- Software that supports the tiled image compression technique can directly read and write the FITS images in their compressed form.
FPFS (Fourier Power Function Shaplets) is a fast, accurate shear estimator for the shear responses of galaxy shape, flux, and detection. Utilizing leading-order perturbations of shear (a vector perturbation) and image noise (a tensor perturbation), the code determines shear and noise responses for both measurements and detections. Unlike methods that distort each observed galaxy repeatedly, the software employs analytical shear responses of select basis functions, including Shapelets basis and peak basis. FPFS is efficient and can process approximately 1,000 galaxies within a single CPU second, and maintains a multiplicative shear estimation bias below 0.5% even amidst blending challenges.
FragMent studies fragmentation in filaments by collating a number of different techniques, including nearest neighbour separations, minimum spanning tree, two-point correlation function, and Fourier power spectrum. It also performs model selection using a frequentist and Bayesian approach to find the best descriptor of a filament's fragmentation. While the code was designed to investigate filament fragmentation, the functions are general and may be used for any set of 2D points to study more general cases of fragmentation.
Frankenstein (frank) fits the 1D radial brightness profile of an interferometric source given a set of visibilities. It uses a Gaussian process that performs the fit in <1 minute for a typical protoplanetary disc continuum dataset. Frankenstein can perform a fit in 2 ways, by running the code directly from the terminal or using the code as a Python module.
FRB performs calculations, estimations, analysis, and Bayesian inferences for Fast Radio Bursts, including dispersion measure and emission measure calculations, derived properties and spectrums, and Galactic RM.
frbcat queries and downloads Fast Radio Burst (FRB) data from the FRBCAT Catalogue web page, the CHIME-REPEATERS web page and the Transient Name Server (TNS). It is written in Python and can be installed using pip.
CHIME/FRB instrument has recently published a catalog containing about half of thousand fast radio bursts (FRB) including their spectra and several reconstructed properties, like signal widths, amplitudes, etc. We have developed a model-independent approach for the classification of these bursts using cross-correlation and clustering algorithms applied to one-dimensional intensity profiles, i.e. to amplitudes as a function of time averaged over the frequency. This approach is implemented in frbmclust package, which is used for classification of bursts featuring different waveform morphology.
frbpoppy conducts fast radio burst population synthesis and continues the work of PSRPOP (ascl:1107.019) and PsrPopPy (ascl:1501.006) in the realm of FRBs. The code replicates observed FRB detection rates and FRB distributions in three steps. It first simulates a cosmic population of one-off FRBs and allows the user to select options such as models for source number density, cosmology, DM host/IGM/Milky Way, luminosity functions, and emission bands as well as maximum redshift and size of the FRB population. The code then generates a survey by adopting a beam pattern using various survey parameters, among them telescope gain, sampling time, receiver temperature, central frequency, channel bandwidth, number of polarizations, and survey region limits. Finally, frbpoppy convolves the generated intrinsic population with the generated survey to simulate an observed FRB population.
FRBSTATS provides a user-friendly web interface to an open-access catalog of fast radio bursts (FRBs) published up to date, along with a highly accurate statistical overview of the observed events. The platform supports the retrieval of fundamental FRB data either directly through the FRBSTATS API, or in the form of a CSV/JSON-parsed database, while enabling the plotting of parameter distributions for a variety of visualizations. These features allow researchers to conduct more thorough population studies while narrowing down the list of astrophysical models describing the origins and emission mechanisms behind these sources. Lastly, the platform provides a visualization tool that illustrates associations between primary bursts and repeaters, complementing basic repeater information provided by the Transient Name Server.
FREDDA detects Fast Radio Bursts (FRBs) in power data. It is optimized for use at ASKAP, namely GHz frequencies with 10s of beams, 100s of channels and millisecond integration times. The code is written in CUDA for NVIDIA Graphics Processing Units.
Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.
FreeEOS is a Fortran library for rapidly calculating the equation of state using an efficient free-energy minimization technique that is suitable for physical conditions in stellar interiors. Converged FreeEOS solutions can be reliably determined for the first time for physical conditions occurring in stellar models with masses between 0.1 M☉ and the hydrogen-burning limit near 0.07 M☉ and hot brown-dwarf models just below that limit. However, an initial survey of results for those conditions showed EOS discontinuities (plasma phase transitions) and other problems which will need to be addressed in future work by adjusting the interaction radii characterizing the pressure ionization used for the FreeEOS calculations.
FreeTure monitors images from GigE all-sky cameras to detect and record falling stars and fireball. Originally, it was developed for the FRIPON (Fireball Recovery and InterPlanetary Observation Network) project, which sought to cover all of France with 100 fish eyes cameras, but can be used by any station that has a GigE camera.
FRELLED (FITS Realtime Explorer of Low Latency in Every Dimension) creates 3D images in real time from 3D FITS files and is written in Python for the 3D graphics suite Blender. Users can interactively generate masks around regions of arbitrary geometry and use them to catalog sources, hide regions, and perform basic analysis (e.g., image statistics within the selected region, generate contour plots, query NED and the SDSS). World coordinates are supported and multi-volume rendering is possible. FRELLED is designed for viewing HI data cubes and provides a number of tasks to commonly-used MIRIAD (ascl:1106.007) tasks (e.g. mbspect); however, many of its features are suitable for any type of data set. It also includes an n-body particle viewer with the ability to display 3D vector information as well as the ability to render time series movies of multiple FITS files and setup simple turntable rotation movies for single files.
FRIDDA forecasts the cosmological impact of measurements of the redshift drift and the fine-structure constant (alpha) as well as their combination. The code is based on Fisher Matrix Analysis techniques and works for various fiducial cosmological models. Though designed for the ArmazoNes high Dispersion Echelle Spectrograph (ANDES), it is easily adaptable to other fiducial cosmological models and to other instruments with similar scientific goals.
FRISBHEE (FRIedmann Solver for Black Hole Evaporation in the Early-universe solves the Friedmann - Boltzmann equations for Primordial Black Holes + SM radiation + BSM Models. Considering the collapse of density fluctuations as the PBH formation mechanism, the code handles monochromatic and extended mass and spin distributions. FRISBHEE can return the full evolution of the PBH, SM and Dark Radiation comoving energy densities, together with the evolution of the PBH mass and spin as a function of the log10 at scale factor, and can determine the relic abundance in the case of Dark Matter produced from BH evaporation for monochromatic and extended distributions.
FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.
Fruitbat estimates the redshift of Fast Radio Bursts (FRB) from their dispersion measure. The code combines various dispersion measure (DM) and redshift relations with the YMW16 galactic dispersion measure model into a single easy to use API.
Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.
The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO (ascl:1909.010).
FSPS is a flexible SPS package that allows the user to compute simple stellar populations (SSPs) for a range of IMFs and metallicities, and for a variety of assumptions regarding the morphology of the horizontal branch, the blue straggler population, the post--AGB phase, and the location in the HR diagram of the TP-AGB phase. From these SSPs the user may then generate composite stellar populations (CSPs) for a variety of star formation histories (SFHs) and dust attenuation prescriptions. Outputs include the "observed" spectra and magnitudes of the SSPs and CSPs at arbitrary redshift. In addition to these fortran routines, several IDL routines are provided that allow easy manipulation of the output. FSPS was designed with the intention that the user would make full use of the provided fortran routines. However, the full FSPS package is quite large, and requires some time for the user to become familiar with all of the options and syntax. Some users may only need SSPs for a range of metallicities and IMFs. For such users, standard SSP sets for several IMFs, evolutionary tracks, and spectral libraries are available here.
FTbg performs Fourier transforms on FITS images and separates low- and high-spatial frequency components by a user-specified cut. Both components are then inverse Fourier transformed back to image domain. FTbg can remove large-scale background/foreground emission in many astrophysical applications. FTbg has been designed to identify and remove Galactic background emission in Herschel/Hi-GAL continuum images, but it is applicable to any other (e.g., Planck) images when background/foreground emission is a concern.
FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. The FTOOLS package contains many utility programs which perform modular tasks on any FITS image or table, as well as higher-level analysis programs designed specifically for data from current and past high energy astrophysics missions. The utility programs for FITS tables are especially rich and powerful, and provide functions for presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual FTOOLS programs can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. FTOOLS development began in 1991 and has produced the main set of data analysis software for the current ASCA and RXTE space missions and for other archival sets of X-ray and gamma-ray data. The FTOOLS software package is supported on most UNIX platforms and on Windows machines. The user interface is controlled by standard parameter files that are very similar to those used by IRAF. The package is self documenting through a stand alone help task called fhelp. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.
The Fast Template Periodogram extends the Generalised Lomb Scargle periodogram (Zechmeister and Kurster 2009) for arbitrary (periodic) signal shapes. A template is first approximated by a truncated Fourier series of length H. The Nonequispaced Fast Fourier Transform NFFT is used to efficiently compute frequency-dependent sums. Template fitting can now be done in NlogN time, improving existing algorithms by an order of magnitude for even small datasets. The FTP can be used in conjunction with gradient descent to accelerate a non-linear model fit, or be used in place of the multi-harmonic periodogram for non-sinusoidal signals with a priori known shapes.
FUNDPAR determines fundamental parameters of solar-type stars, by using as input the Equivalent Widths of Fe I,II lines. The code uses solar-scaled ATLAS9 model atmospheres with NEWODF opacities, together with the 2009 version of the MOOG (ascl:1202.009) program. Parameter files control different details, such as the mixing-length parameter, the overshooting, and the damping of the lines. FUNDPAR also derives the uncertainties of the parameters.
Funtools is a "minimal buy-in" FITS library and utility package developed at the the High Energy Astrophysics Division of SAO. The Funtools library provides simplified access to a wide array of file types: standard astronomical FITS images and binary tables, raw arrays and binary event lists, and even tables of ASCII column data. A sophisticated region filtering library (compatible with ds9) filters images and tables using boolean operations between geometric shapes, support world coordinates, etc. Funtools also supports advanced capabilities such as optimized data searching using index files.
Because Funtools consists of a library and a set of user programs, it is most appropriately built from source. Funtools has been ported to Solaris, Linux, LinuxPPC, SGI, Alpha OSF1, Mac OSX (darwin) and Windows 98/NT/2000/XP. Once the source code tar file is retrieved, Funtools can be built and installed easily using standard commands.
Fyris Alpha is a high resolution, shock capturing, multi-phase, up-wind Godunov method hydrodynamics code that includes a variable equation of state and optional microphysics such as cooling, gravity and multiple tracer variables. The code has been designed and developed for use primarily in astrophysical applications, such as galactic and interstellar bubbles, hypersonic shocks, and a range of jet phenomena. Fyris Alpha boasts both higher performance and more detailed microphysics than its predecessors, with the aim of producing output that is closer to the observational domain, such as emission line fluxes, and eventually, detailed spectral synthesis. Fyris Alpha is approximately 75,000 lines of C code; it encapsulates the split sweep semi-lagrangian remap PPM method used by ppmlr (in turn developed from VH1, Blondin et al. 1998) but with an improved Riemann solver, which is derived from the exact solver of Gottlieb and Groth (1988), a significantly faster solution than previous solvers. It has a number of optimisations that have improved the speed so that additional calculations neeed for multi-phase simulations become practical.
GA Galaxy fits models of interacting galaxies to synthetic data using a genetic algorithm and custom fitness function. The genetic algorithm is real-coded and uses a mixed Gaussian kernel for mutation. The fitness function incorporates 1.) a direct pixel-to-pixel comparison between the target and model images and 2.) a comparison of the degree of tidal distortion present in the target and model image such that target-model pairs which are similarly distorted will have a higher relative fitness. The genetic algorithm is written in Python 2.7 while the simulation code (SPAM: Stellar Particle Animation Module) is written in Fortran 90.
Would you like to view a random code?