ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 201-300 of 3553 (3462 ASCL, 91 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1208.001] Astrometry.net: Astrometric calibration of images

Astrometry.net is a reliable and robust system that takes as input an astronomical image and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing—not even the image scale—is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists.

[ascl:1407.018] AstroML: Machine learning and data mining in astronomy

Written in Python, AstroML is a library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. An optional companion library, astroML_addons, is available; it requires a C compiler and contains faster and more efficient implementations of certain algorithms in compiled code.

[ascl:2103.012] AstroNet-Triage: Neural network for TESS light curve triage

AstroNet-Triage contains TensorFlow models and data processing code for identifying exoplanets in astrophysical light curves; this is the triage version of two TESS neural networks. For the vetting version, see AstroNet-Vetting (ascl:2103.011). The TensorFlow code downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates new models, and generates new predictions using a trained model. Utilities that operate on light curves are provided; these reading TESS data from .h5 files, and perform phase folding, splitting, binning, and other tasks. C++ implementations of some light curve utilities are also included.

[ascl:2103.011] AstroNet-Vetting: Neural network for TESS light curve vetting

AstroNet-Vetting identifies exoplanets in astrophysical light curves. This is the vetting version of two TESS neural networks; for the triage version, see AstroNet-Triage (ascl:2103.012). The package contains TensorFlow code that downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates a new model, and uses a trained model to generate new predictions. It includes utilities for operating on light curves, such as for reading TESS data from .h5 files, phase folding, splitting, and binning. In addition, C++ implementations of light curve utilities are also provided.

[ascl:2404.014] astroNN: Deep learning for astronomers with Tensorflow

astroNN creates neural networks for deep learning using Keras for model and training prototyping while taking advantage of Tensorflow's flexibility. It contains tools for use with APOGEE, Gaia and LAMOST data, though is primarily designed to apply neural nets on APOGEE spectra analysis and predict luminosity from spectra using data from Gaia parallax with reasonable uncertainty from Bayesian Neural Net. astroNN can handle 2D and 2D colored images, and the package contains custom loss functions and layers compatible with Tensorflow or Keras with Tensorflow backend to deal with incomplete labels. The code contains demo for implementing Bayesian Neural Net with Dropout Variational Inference for reasonable uncertainty estimation and other neural nets.

[ascl:2010.012] Astronomaly: Flexible framework for anomaly detection in astronomy

Astronomaly actively detects anomalies in astronomical data. A python back-end runs anomaly detection based on machine learning; a JavaScript front-end provides data viewing and labeling. The package works on many common astronomy data types, including one-dimensional data and images, and offering extendable techniques for preprocessing, feature extraction, and machine learning.

[ascl:2308.004] AstroPhot: Fitting everything everywhere all at once in astronomical images

AstroPhot quickly extracts detailed information from complex astronomical data for individual images or large survey programs. It fits models for sky, stars, galaxies, PSFs, and more in a principled chi^2 forward optimization, recovering Bayesian posterior information and covariance of all parameters. The code optimizes forward models on CPU or GPU, across images that are large, multi-band, multi-epoch, rotated, dithered, and more. Models are optimized together, thus handling overlapping objects and including the covariance between parameters (including PSF and galaxy parameters). AstroPhot includes several optimization algorithms, including Levenberg-Marquardt, Gradient descent, and No-U-Turn MCMC sampling.

[ascl:1802.009] astroplan: Observation planning package for astronomers

astroplan is a flexible toolbox for observation planning and scheduling. It is powered by Astropy (ascl:1304.002); it works for Python beginners and new observers, and is powerful enough for observatories preparing nightly and long-term schedules as well. It calculates rise/set/meridian transit times, alt/az positions for targets at observatories anywhere on Earth, and offers built-in plotting convenience functions for standard observation planning plots (airmass, parallactic angle, sky maps). It can also determine the observability of sets of targets given an arbitrary set of constraints (i.e., altitude, airmass, moon separation/illumination, etc.).

[ascl:1402.003] astroplotlib: Astronomical library of plots

Astropoltlib is a multi-language astronomical library of plots, a collection of templates useful for creating paper-quality figures. Most of the codes for producing the plots are written in IDL and/or Python; a very few are written in Mathematica. Any plot can be downloaded and customized to one's own needs.

[ascl:2204.002] Astroplotlib: Python scripts to handle astronomical images

Astroplotlib builds images with any scale, overlay contours, physical bars, and orientation arrows (N and E axes) automatically. The package contains scripts to overlay pseudo-slits and obtain statistics from apertures, estimate the background sky, and overlay the fitted isophotes and their respective contours on an image. Astroplotlib can work with the output table from the Ellipse task of IRAF and overlay fitted isophotes and their respective contours. It includes a GUI for masking areas in the images by using different polygons, and can also obtain statistical information (e.g., total flux and mean, among others) from the masked areas. There is also a GUI to overlay star catalogs on an image and an option to download them directly from the Vizier server.

[ascl:1805.024] ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

[ascl:1304.002] Astropy: Community Python library for astronomy

Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.

[ascl:1207.007] Astropysics: Astrophysics utilities for python

Astropysics is a library containing a variety of utilities and algorithms for reducing, analyzing, and visualizing astronomical data. Best of all, it encourages the user to leverage the existing capabilities of Python to make this quick, easy, and as painless as cutting-edge science can even actually be. There do exist other Python packages with some of the capabilities of this project, but the goal of this project is to integrate all these tools together and make them interact in the most straightforward ways possible.

[ascl:1407.007] ASTRORAY: General relativistic polarized radiative transfer code

ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

[ascl:2111.013] Astrosat: Satellite transit calculator

Astrosat calculates which satellites can be seen by a given observer in a given field of view at a given observation time and observation duration. This includes the geometry of the satellite and observer but also estimates the expected apparent brightness of the satellite to aid astronomers in assessing the impact on their observations.

[ascl:1010.023] AstroSim: Collaborative Visualization of an Astrophysics Simulation in Second Life

AstroSim is a Second Life based prototype application for synchronous collaborative visualization targeted at astronomers.

[ascl:1507.019] AstroStat: Statistical analysis tool

AstroStat performs statistical analysis on data and is compatible with Virtual Observatory (VO) standards. It accepts data in a variety of formats and performs various statistical tests using a menu driven interface. Analyses, performed in R, include exploratory tests, visualizations, distribution fitting, correlation and causation, hypothesis testing, multivariate analysis and clustering. AstroStat is available in two versions with an identical interface and features: as a web service that can be run using any standard browser and as an offline application.

[ascl:1307.007] AstroTaverna: Tool for Scientific Workflows in Astronomy

AstroTaverna is a plugin for Taverna Workbench that provides the means to build astronomy workflows using Virtual Observatory services discovery and efficient manipulation of VOTables (based on STIL tool set). It integrates SAMP-enabled software, allowing data exchange and communication among local VO tools, as well as the ability to execute Aladin scripts and macros.

[ascl:2201.002] AstroToolBox: Java tools for identifying and classifying astronomical objects

AstroToolBox identifies and classifies astronomical objects with a focus on low-mass stars and ultra-cool dwarfs. It can search numerous catalogs, including SIMBAD (measurements & references), AllWISE, Gaia, SDSS, among others, evaluates spectral type for main sequence stars including brown dwarfs, and provides SED fitting for ultra-cool and white dwarfs. AstroToolBox draws Gaia color-magnitude diagrams (CMD) with overplotted M0-M9 spectral types, and can draw Montreal Cooling Sequences on the white dwarf branch of the Gaia CMD. The tool can also blink images from different epochs in an image viewer, thus allowing visual identification of the motion or variability of objects. The software displays time series (static or animated) using infrared and optical images of various surveys and contains a photometric classifier. It also includes astrometric calculators and converters, an ADQL query interface (IRSA, VizieR, NOAO) and a batch spectral type lookup feature that uses a CSV file with object coordinates as input. The ToolBox also has a file browser linked to the image viewer, which makes it possible to check a large list of objects in a convenient way, and can save interesting finds in an object collection for later use.

[ascl:2009.013] AstroVaDEr: Unsupervised clustering and synthetic image generation

AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.

[ascl:1608.005] AstroVis: Visualizing astronomical data cubes

AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

[ascl:1406.001] ASURV: Astronomical SURVival Statistics

ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

[ascl:2208.005] Asymmetric Uncertainty: Handling nonstandard numerical uncertainties

Asymmetric Uncertainty implements and provides an object class for dealing with uncertainties for physical quantities that are not symmetric. Instances of the class behave appropriately with other numeric objects under most mathematical operations, and the associated errors propagate accordingly. The class also provides utilities such as methods for evaluating and plotting probability density functions, as well as capabilities for handling arrays of such objects. Standard and symmetric uncertainties are also supported.

[ascl:2105.003] ATARRI: A TESS Archive RR Lyrae Classifier

ATARRI is a graphical user interface for downloading TESS Full Frame Images (FFIs) and displaying properties of the lightcurves of selected objects. Preliminary analysis is performed assuming the object is an RR Lyrae variable. The raw lightcurve, a Lomb-Scargle analysis (both full and pre-whitened), and a folded lightcurve are presented to the user along with options to select the type of RR Lyrae and data quality flags for output.

[ascl:2106.015] ATES: ATmospheric EScape

The ATES hydrodynamics code computes the temperature, density, velocity and ionization fraction profiles of highly irradiated planetary atmospheres, along with the current, steady-state mass loss rate. ATES solves the one-dimensional Euler, mass and energy conservation equations in
radial coordinates through a finite-volume scheme. The hydrodynamics module is paired with a photoionization equilibrium solver that includes cooling via bremsstrahlung, recombination and collisional excitation/ionization for the case of an atmosphere of primordial composition (i.e., pure atomic hydrogen-helium), while also accounting for advection of the different ion species.

[ascl:1010.014] Athena: Grid-based code for astrophysical magnetohydrodynamics (MHD)

Athena is a grid-based code for astrophysical magnetohydrodynamics (MHD). It was developed primarily for studies of the interstellar medium, star formation, and accretion flows. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.

[ascl:1402.026] athena: Tree code for second-order correlation functions

athena is a 2d-tree code that estimates second-order correlation functions from input galaxy catalogues. These include shear-shear correlations (cosmic shear), position-shear (galaxy-galaxy lensing) and position-position (spatial angular correlation). Written in C, it includes a power-spectrum estimator implemented in Python; this script also calculates the aperture-mass dispersion. A test data set is available.

[ascl:1912.005] Athena++: Radiation GR magnetohydrodynamics code

Athena++ is a complete re-write of the Athena astrophysical magnetohydrodynamics (MHD) code (ascl:1010.014) in C++. Compared to earlier versions, the Athena++ code has much more flexible coordinate and grid options and supports new physics. It also offers significantly improved performance and scalability, and improved source code clarity and modularity. Athena++ supports compressible hydrodynamics and MHD in 1D, 2D, and 3D, and special and general relativistic hydrodynamics and MHD. In addition, it supports Cartesian, cylindrical, or spherical polar coordinates; static or adaptive mesh refinement in any coordinate system; mixed parallelization with both OpenMP and MPI; and a task-based execution model for improved load balancing, scalability and modularity.

[ascl:1505.006] Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics

Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.

[ascl:1911.006] ATHOS: A Tool for HOmogenizing Stellar parameters

ATHOS provides on-the-fly stellar parameter determination of FGK stars based on flux ratios from optical spectra. Once configured properly, it will measure flux ratios in the input spectra and deduce the stellar parameters effective temperature, iron abundance (a.k.a [Fe/H]), and surface gravity by employing pre-defined analytical relations. ATHOS can be configured to run in parallel in an arbitrary number of threads, thus enabling the fast and efficient analysis of huge datasets.

[ascl:1110.015] atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine'' physical effects of cosmological recombination simultaneously with using fudge factors.

[submitted] atlas-fit

atlas-fit is a python tool to amend the results of [spectroflat] with calibration against a solar atlas. I.e., data for wavelength calibration and continuum-correction is genereted from flat field information and selected solar atlantes

[ascl:1911.013] ATLAS: Turning Dopplergram images into frequency shift measurements

ATLAS performs the tracking, projecting, power-spectrum-making, and ring-fitting needed to turn a set of Dopplergram images into a set of frequency shift measurements. This code is essentially a combination of three codes, FRACK (FORTRAN Tracking), PSPEC (Power SPECtrum), and MRF (Multi-Ridge Fitting), included in the ATLAS package. ATLAS reads in a list of longitude/latitude coordinates corresponding to the desired tile centers and a set of full-disk Dopplergram images and outputs frequency shift measurements from each wave mode of each tile. The code relies on both distributed-memory (MPI) and shared-memory (OpenMP) parallelism to scale up to around 1000 processes. Due to the immense volume of data produced by the tracking and projecting steps, the intermediate data products (tiles, power spectra) are never written out.

[ascl:1303.024] ATLAS12: Opacity sampling model atmosphere program

ATLAS12 is an opacity sampling model atmosphere program to allow computation of models with individual abundances using line data. ATLAS12 is able to compute the same models as ATLAS9 which uses pretabulated opacities, plus models with arbitrary abundances. ATLAS12 sampled fluxes are quite accurate for predicting the total flux except in the intermediate or narrow bandpass intervals because the sample size is too small.

[ascl:1607.003] Atlas2bgeneral: Two-body resonance calculator

For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.

[ascl:1607.004] Atlas3bgeneral: Three-body resonance calculator

For a massless test particle and given a planetary system, atlas3bgeneral calculates all three body resonances in a given range of semimajor axes with all the planets taken by pairs. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the three-body resonances is available for use with the Fortran77 source code.

[ascl:1710.017] ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:2407.009] ATM: Asteroid Thermal Modeling

ATM (Asteroid Thermal Modeling) models asteroid flux measurements to estimate an asteroid's size, surface temperature distribution, and emissivity, and creates model spectral energy distributions for the different thermal models. After downloading lookup tables for relevant models, it can also fit observations of asteroids.

[ascl:2106.039] atmos: Coupled climate–photochemistry model

Atmos contains two atmospheric models and scripts to couple them together. One atmospheric model calculates the profiles of chemical species, including both gaseous and aerosol phases, and the second model calculates the temperature profile. Because these profiles depend on each other - kinetic reaction rates are temperature-dependent and radiative transfer is subject to radiatively active gases - atmos alternates the running of these two models until both models have solutions consistent with the other one. While either of these models can be run with time-dependence, most applications of these models are to find steady-state solutions for the atmosphere that would be stable over long (geological/astronomical) time periods, given constant inputs to the atmosphere.

[ascl:1703.013] Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer

Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

[ascl:2206.017] atoMEC: Average-Atom code for Matter under Extreme Conditions

atoMEC simulates high energy density phenomena such as in warm dense matter. It uses Kohn-Sham density functional theory, in combination with an average-atom approximation, to solve the electronic structure problem for single-element materials at finite temperature.

[ascl:1708.001] ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

[ascl:1405.009] ATV: Image display tool

ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.

[ascl:2108.002] AUM: A Unified Modeling scheme for galaxy abundance, galaxy clustering and galaxy-galaxy lensing

AUM predicts galaxy abundances, their clustering, and the galaxy-galaxy lensing signal, given the halo occupation distribution of galaxies and the underlying cosmological model. In combination with the measurements of the clustering, abundance, and lensing of galaxies, these routines can be used to perform cosmological parameter inference.

[ascl:1909.001] Auto-multithresh: Automated masking for clean

Auto-multithresh implements an automated masking algorithm for clean. It operates on the residual image within the minor cycle of clean to identify and mask regions of significant emission. It then cascades these significant regions down to lower signal to noise. It includes features to pad the mask to avoid sharp edges and to remove small regions that are unlikely to be significant emission. The algorithm described by this code was incorporated into the tclean task within CASA as auto-multithresh.

[ascl:1406.004] Autoastrom: Autoastrometry for Mosaics

Autoastrom performs automated astrometric corrections on an astronomical image by automatically detecting objects in the frame, retrieving a reference catalogue, cross correlating the catalog with CCDPACK (ascl:1403.021) or MATCH, and using the ASTROM (ascl:1406.008) application to calculate a correction. It is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1904.007] AutoBayes: Automatic design of customized analysis algorithms and programs

AutoBayes automatically generates customized algorithms from compact, declarative specifications in the data analysis domain, taking a statistical model as input and creating documented and optimized C/C++ code. The synthesis process uses Bayesian networks to enable problem decompositions and guide the algorithm derivation. Program schemas encapsulate advanced algorithms and data structures, and a symbolic-algebraic system finds closed-form solutions for problems and emerging subproblems. AutoBayes has been used to analyze planetary nebulae images taken by the Hubble Space Telescope, and can be applied to other scientific data analysis tasks.

[ascl:1602.001] Automark: Automatic marking of marked Poisson process in astronomical high-dimensional datasets

Automark models photon counts collected form observation of variable-intensity astronomical sources. It aims to mark the abrupt changes in the corresponding wavelength distribution of the emission automatically. In the underlying methodology, change points are embedded into a marked Poisson process, where photon wavelengths are regarded as marks and both the Poisson intensity parameter and the distribution of the marks are allowed to change.

[ascl:2406.030] AutoPhOT: Rapid publication-quality photometry of transients

AutoPhOT (AUTOmated Photometry Of Transients) produces publication-quality photometry of transients quickly. Written in Python 3, this automated pipeline's capabilities include aperture and PSF-fitting photometry, template subtraction, and calculation of limiting magnitudes through artificial source injection. AutoPhOT is also capable of calibrating photometry against either survey catalogs (e.g., SDSS, PanSTARRS) or using a custom set of local photometric standards.

[ascl:2108.017] AutoProf: Automatic Isophotal solutions for galaxy images

AutoProf performs basic and advanced non-parametric galaxy image analysis. The pipeline's design allows for fast startup and easy implementation; the package offers a suite of robust default and optional tools for surface brightness profile extractions and related methods. AUTOPROF is highly extensible and can be adapted for a variety of applications, providing flexibility for exploring new ideas and supporting advanced users.

[ascl:2203.014] AutoSourceID-Light: Source localization in optical images

AutoSourceID-Light (ASID-L) analyzes optical imaging data using computer vision techniques that can naturally deal with large amounts of data. The framework rapidly and reliably localizes sources in optical images.

[ascl:1812.015] AUTOSPEC: Automated Spectral Extraction Software for integral field unit data cubes

AUTOSPEC provides fast, automated extraction of high quality 1D spectra from astronomical datacubes with minimal user effort. AutoSpec takes an integral field unit (IFU) datacube and a simple parameter file in order to extract a 1D spectra for each object in a supplied catalogue. A custom designed cross-correlation algorithm improves signal to noise as well as isolates sources from neighboring contaminants.

[ascl:1612.014] AUTOSTRUCTURE: General program for calculation of atomic and ionic properties

AUTOSTRUCTURE calculates atomic and ionic energy levels, radiative rates, autoionization rates, photoionization cross sections, plane-wave Born and distorted-wave excitation cross sections in LS- and intermediate-coupling using non- or (kappa-averaged) relativistic wavefunctions. These can then be further processed to form Auger yields, fluorescence yields, partial and total dielectronic and radiative recombination cross sections and rate coefficients, photoabsorption cross sections, and monochromatic opacities, among other properties.

[ascl:2101.005] Avocado: Photometric classification of astronomical transients and variables with biased spectroscopic samples

Avocado produces classifications of arbitrary astronomical transients and variable objects. It addresses the problem of biased spectroscopic samples by generating many lightcurves from each object in the original spectroscopic sample at a variety of redshifts and with many different observing conditions. The "augmented" samples of lightcurves that are generated are much more representative of the full datasets than the original spectroscopic samples.

[ascl:1109.016] aXe: Spectral Extraction and Visualization Software

aXe is a spectroscopic data extraction software package that was designed to handle large format spectroscopic slitless images such as those from the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) on HST. aXe is a PyRAF/IRAF package that consists of several tasks and is distributed as part of the Space Telescope Data Analysis System (STSDAS). The various aXe tasks perform specific parts of the extraction and calibration process and are successively used to produce extracted spectra.

[ascl:2203.026] axionCAMB: Modification of the CAMB Boltzmann code

axionCAMB is a modified version of the publicly available code CAMB (ascl:1102.026). axionCAMB computes cosmological observables for comparison with data. This is normally the CMB power spectra (T,E,B,\phi in auto and cross power), but also includes the matter power spectrum.

[ascl:2307.005] axionHMcode: Non-linear power spectrum calculator

axionHMcode computes the non-linear matter power spectrum in a mixed dark matter cosmology with ultra-light axion (ULA) component of the dark matter. This model uses some of the fitting parameters and is inspired by HMcode (ascl:1508.001). axionHMcode uses the full expanded power spectrum to calculate the non-linear power spectrum; it splits the axion overdensity into a clustered and linear component to take the non clustering of axions on small scales due to free-streaming into account.

[ascl:2006.009] AxionNS: Ray-tracing in neutron stars

AxionNS computes radio light curves resulting from the resonant conversion of Axion dark matter into photons within the magnetosphere of a neutron star. Photon trajectories are traced from the observer to the magnetosphere where a root finding algorithm identifies the regions of resonant conversion. Given the modeling of the axion dark matter distribution and conversion probability, one can compute the photon flux emitted from these regions. The individual contributions from all the trajectories is then summed to obtain the radiated photon power per unit solid angle.

[ascl:2106.021] aztekas: GRHD numerical code

aztekas solves hyperbolic partial differential equations in conservative form using High Resolution Shock-Capturing (HRSC) schemes. The code can solve the non-relativistic and relativistic hydrodynamic equations of motion (Euler equations) for a perfect fluid. The relativistic part can solve these equations on a background fixed metric, such as for Schwarzschild, Minkowski, Kerr-Schild, and others.

[ascl:1605.004] BACCHUS: Brussels Automatic Code for Characterizing High accUracy Spectra

BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) derives stellar parameters (Teff, log g, metallicity, microturbulence velocity and rotational velocity), equivalent widths, and abundances. The code includes on the fly spectrum synthesis, local continuum normalization, estimation of local S/N, automatic line masking, four methods for abundance determinations, and a flagging system aiding line selection. BACCHUS relies on the grid of MARCS model atmospheres, Masseron's model atmosphere thermodynamic structure interpolator, and the radiative transfer code Turbospectrum (ascl:1205.004).

[ascl:2307.010] baccoemu: Cosmological emulators for large-scale structure statistics

baccoemu provides a collection of emulators for large-scale structure statistics over a wide range of cosmologies. The emulators provide fast predictions for the linear cold- and total-matter power spectrum, the nonlinear cold-matter power spectrum, and the modifications to the cold-matter power spectrum caused by baryonic physics in a wide cosmological parameter space, including dynamical dark energy and massive neutrinos.

[submitted] backtrack: fit relative motion of candidate direct imaging sources with background proper motion and parallax

Directly imaged planet candidates (high contrast point sources near bright stars) are often validated, among other supporting lines of evidence, by comparing their observed motion against the projected motion of a background source due to the proper motion of the bright star and the parallax motion due to the Earth's orbit. Often, the "background track" is constructed assuming an interloping point source is at infinity and has no proper motion itself, but this assumption can fail, producing false positive results, for crowded fields or insufficient observing time-baselines (e.g. Nielsen et al. 2017). `backtrack` is a tool for constructing background proper motion and parallax tracks for validation of high contrast candidates. It can produce classical infinite distance, stationary background tracks, but was constructed in order to fit finite distance, non-stationary tracks using nested sampling (and can be used on clusters). The code sets priors on parallax based on the relations in Bailer-Jones et al. 2021 that are fit to Gaia eDR3 data, and are therefore representative of the galactic stellar density. The public example currently reproduces the results of Nielsen et al. 2017 and Wagner et al. 2022, demonstrating that the motion of HD 131399A "b" is fit by a finite distance, non-stationary background star, but the code has been tested and validated on proprietary datasets. The code is open source, available on github, and additional contributions are welcome.

[ascl:2407.005] BaCoN: BAyesian COsmological Network

BaCoN (BAyesian COsmological Network) trains and tests Bayesian Convolutional Neural Networks in order to classify dark matter power spectra as being representative of different cosmologies, as well as to compute the classification confidence. It supports the following theories: LCDM, wCDM, f(R), DGP, and a randomly generated class. Additional cosmologies can be easily added.

[ascl:1708.010] BAGEMASS: Bayesian age and mass estimates for transiting planet host stars

BAGEMASS calculates the posterior probability distribution for the mass and age of a star from its observed mean density and other observable quantities using a grid of stellar models that densely samples the relevant parameter space. It is written in Fortran and requires FITSIO (ascl:1010.001).

[ascl:2104.017] Bagpipes: Bayesian Analysis of Galaxies for Physical Inference and Parameter EStimation

Bagpipes generates realistic model galaxy spectra and fits these to spectroscopic and photometric observations.

[ascl:2303.017] bajes: Bayesian Jenaer software

bajes [baɪɛs] provides a user-friendly interface for setting up a Bayesian analysis for an arbitrary model, and is specialized for the analysis of gravitational-wave and multi-messenger transients. The code runs a parameter estimation job, inferring the properties of the input model. bajes is designed to be simple-to-use and light-weighted with minimal dependencies on external libraries. The user can set up a pipeline for parameters estimation of multi-messenger transients by writing a configuration file containing the information to be passed to the executables. The package also includes tools and methods for data analysis of multi-messenger signals. The pipeline incorporates an interface with reduced-order-quadratude (ROQ) interpolants. In particular, the ROQ pipeline relies on the output provided by PyROQ-refactored.

[ascl:2107.009] Balrog: Astronomical image simulation

The Balrog package of Python simulation code is for use with real astronomical imaging data. Objects are simulated into a survey's images and measurement software is run over the simulated objects' images. Balrog allows the user to derive the mapping between what is actually measured and the input truth. The package uses GalSim (ascl:1402.009) for all object simulations; source extraction and measurement is performed by SExtractor (ascl:1010.064). Balrog facilitates the ease of running these codes en masse over many images, automating useful GalSim and SExtractor functionality, as well as filling in many bookkeeping steps along the way.

[ascl:2102.029] BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects

BALRoGO (Bayesian Astrometric Likelihood Recovery of Galactic Objects) handles data from the Gaia space mission. It extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers using a combination of Bayesian and non-Bayesian approaches. It fits proper motion space, surface density, and the object center. It also provides confidence regions for the color-magnitude diagram and parallaxes.

[ascl:1312.008] BAMBI: Blind Accelerated Multimodal Bayesian Inference

BAMBI (Blind Accelerated Multimodal Bayesian Inference) is a Bayesian inference engine that combines the benefits of SkyNet (ascl:1312.007) with MultiNest (ascl:1109.006). It operated by simultaneously performing Bayesian inference using MultiNest and learning the likelihood function using SkyNet. Once SkyNet has learnt the likelihood to sufficient accuracy, inference finishes almost instantaneously.

[ascl:1408.020] bamr: Bayesian analysis of mass and radius observations

bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O2scl (ascl:1408.019) be installed before compilation.

[ascl:1905.014] Bandmerge: Merge data from different wavebands

Bandmerge takes in ASCII tables of positions and fluxes of detected astronomical sources in 2-7 different wavebands, and write out a single table of the merged data. The tool was designed to work with source lists generated by the Spitzer Science Center's MOPEX (ascl:1111.006) software, although it can be "fooled" into running on other data as well.

[ascl:2205.022] BANG: BAyesian decomposiotioN of Galaxies

BANG (BAyesian decomposiotioN of Galaxies) models both the photometry and kinematics of galaxies. The underlying model is the superposition of different components with three possible combinations: 1.) Bulge + inner disc + outer disc + Halo; 2.) Bulge + disc + Halo; and 3.) inner disc + outer disc + Halo. As CPU parameter estimation can take days, running BANG on GPU is recommended.

[ascl:1801.001] BANYAN_Sigma: Bayesian classifier for members of young stellar associations

BANYAN_Sigma calculates the membership probability that a given astrophysical object belongs to one of the currently known 27 young associations within 150 pc of the Sun, using Bayesian inference. This tool uses the sky position and proper motion measurements of an object, with optional radial velocity (RV) and distance (D) measurements, to derive a Bayesian membership probability. By default, the priors are adjusted such that a probability threshold of 90% will recover 50%, 68%, 82% or 90% of true association members depending on what observables are input (only sky position and proper motion, with RV, with D, with both RV and D, respectively). The algorithm is implemented in a Python package, in IDL, and is also implemented as an interactive web page.

[ascl:2212.012] BANZAI-NRES: BANZAI data reduction pipeline for NRES

The BANZAI-NRES pipeline processes data from the Network of Robotic Echelle Spectrographs (NRES) on the Las Cumbres Observatory network and provides extracted, wavelength calibrated spectra. If the target is a star, it provides stellar classification parameters (e.g., effective temperature and surface gravity) and a radial velocity measurement. The automated radial velocity measurements from this pipeline have a precision of ~ 10 m/s for high signal-to-noise observations. The data flow and infrastructure of this code relies heavily on BANZAI (ascl:2207.031), enabling BANZAI-NRES to focus on analysis that is specific to spectrographs. The wavelength calibration is primarily done using xwavecal (ascl:2212.011). The pipeline propagates an estimate of the formal uncertainties from all of the data processing stages and includes these in the output data products. These are used as weights in the cross correlation function to measure the radial velocity.

[ascl:2207.031] BANZAI: Beautiful Algorithms to Normalize Zillions of Astronomical Images

BANZAI (Beautiful Algorithms to Normalize Zillions of Astronomical Images) processes raw data taken from Las Cumbres Observatory and produces science quality data products. It is capable of reducing single or multi-extension fits files. For historical data, BANZAI can also reduce the data cubes that were produced by the Sinistro cameras.

[ascl:2211.006] baobab: Training data generator for hierarchically modeling strong lenses with Bayesian neural networks

baobab generates images of strongly-lensed systems, given some configurable prior distributions over the parameters of the lens and light profiles as well as configurable assumptions about the instrument and observation conditions. Wrapped around lenstronomy (ascl:1804.012), baobab supports prior distributions ranging from artificially simple to empirical. A major use case for baobab is the generation of training and test sets for hierarchical inference using Bayesian neural networks (BNNs); the code can generate the training and test sets using different priors.

[ascl:2106.009] baofit: Fit cosmological data to measure baryon acoustic oscillations

baofit analyzes cosmological correlation functions to estimate parameters related to baryon acoustic oscillations and redshift-space distortions. It has primarily been used to analyze Lyman-alpha forest autocorrelations and cross correlations with the quasar number density in BOSS data. Fit models are fully three-dimensional and include flexible treatments of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions.

[ascl:1402.025] BAOlab: Baryon Acoustic Oscillations software

Using the 2-point correlation function, BAOlab aids the study of Baryon Acoustic Oscillations (BAO). The code generates a model-dependent covariance matrix which can change the results both for BAO detection and for parameter constraints.

[ascl:1403.013] BAOlab: Image processing program

BAOlab is an image processing package written in C that should run on nearly any UNIX system with just the standard C libraries. It reads and writes images in standard FITS format; 16- and 32-bit integer as well as 32-bit floating-point formats are supported. Multi-extension FITS files are currently not supported. Among its tools are ishape for size measurements of compact sources, mksynth for generating synthetic images consisting of a background signal including Poisson noise and a number of pointlike sources, imconvol for convolving two images (a “source” and a “kernel”) with each other using fast fourier transforms (FFTs) and storing the output as a new image, and kfit2d for fitting a two-dimensional King model to an image.

[ascl:1810.002] Barcode: Bayesian reconstruction of cosmic density fields

Barcode (BAyesian Reconstruction of COsmic DEnsity fields) samples the primordial density fields compatible with a set of dark matter density tracers after cosmic evolution observed in redshift space. It uses a redshift space model based on the analytic solution of coherent flows within a Hamiltonian Monte Carlo posterior sampling of the primordial density field; this method is applicable to analytically derivable structure formation models, such as the Zel'dovich approximation, but also higher order schemes such as augmented Lagrangian perturbation theory or even particle mesh models. The algorithm is well-suited for analysis of the dark matter cosmic web implied by the observed spatial distribution of galaxy clusters, such as obtained from X-ray, SZ or weak lensing surveys, as well as that of the intergalactic medium sampled by the Lyman alpha forest. In these cases, virialized motions are negligible and the tracers cannot be modeled as point-like objects. Barcode can be used in all of these contexts as a baryon acoustic oscillation reconstruction algorithm.

[ascl:2008.008] Barry: Modular BAO fitting code

Barry compares different BAO models. It removes as many barriers and complications to BAO model fitting as possible and allows each component of the process to remain independent, allowing for detailed comparisons of individual parts. It contains datasets, model fitting tools, and model implementations incorporating different descriptions of non-linear physics and algorithms for isolating the BAO (Baryon Acoustic Oscillation) feature.

[ascl:1608.004] BART: Bayesian Atmospheric Radiative Transfer fitting code

BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.

[ascl:1807.018] BARYCORR: Python interface for barycentric RV correction

BARYCORR is a Python interface for ZBARYCORR (ascl:1807.017); it requires the measured redshift and returns the corrected barycentric velocity and time correction.

[ascl:1808.001] Barycorrpy: Barycentric velocity calculation and leap second management

barycorrpy (BCPy) is a Python implementation of Wright and Eastman's 2014 code (ascl:1807.017) that calculates precise barycentric corrections well below the 1 cm/s level. This level of precision is required in the search for 1 Earth mass planets in the Habitable Zones of Sun-like stars by the Radial Velocity (RV) method, where the maximum semi-amplitude is about 9 cm/s. BCPy was developed for the pipeline for the next generation Doppler Spectrometers - Habitable-zone Planet Finder (HPF) and NEID. An automated leap second management routine improves upon the one available in Astropy. It checks for and downloads a new leap second file before converting from the UT time scale to TDB. The code also includes a converter for JDUTC to BJDTDB.

[ascl:2401.012] baryon-sweep: Outlier rejection algorithm for JWST/NIRSpec IFS data

baryon-sweep produces a robust outlier rejection while simultaneously preserving the signal of the science target. The code works as a standalone solution or as a supplement to the current pipeline software. baryon-sweep creates the 2D pixel mask and mask layers, processes the sky (non-science target) spaxels, and creates a post-processed cube ready for use.

[ascl:1601.017] BASCS: Bayesian Separation of Close Sources

BASCS models spatial and spectral information from overlapping sources and the background, and jointly estimates all individual source parameters. The use of spectral information improves the detection of both faint and closely overlapping sources and increases the accuracy with which source parameters are inferred.

[ascl:1608.007] BASE-9: Bayesian Analysis for Stellar Evolution with nine variables

The BASE-9 (Bayesian Analysis for Stellar Evolution with nine variables) software suite recovers star cluster and stellar parameters from photometry and is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE-9 uses a Markov chain Monte Carlo (MCMC) technique along with brute force numerical integration to estimate the posterior probability distribution for the age, metallicity, helium abundance, distance modulus, line-of-sight absorption, and parameters of the initial-final mass relation (IFMR) for a cluster, and for the primary mass, secondary mass (if a binary), and cluster probability for every potential cluster member. The MCMC technique is used for the cluster quantities (the first six items listed above) and numerical integration is used for the stellar quantities (the last three items in the above list).

[ascl:1208.010] BASE: Bayesian Astrometric and Spectroscopic Exoplanet Detection and Characterization Tool

BASE is a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The tool fulfills two major tasks of exoplanet science, namely the detection of exoplanets and the characterization of their orbits. BASE was developed to provide the possibility of an integrated Bayesian analysis of stellar astrometric and Doppler-spectroscopic measurements with respect to their binary or planetary companions’ signals, correctly treating the astrometric measurement uncertainties and allowing to explore the whole parameter space without the need for informative prior constraints. The tool automatically diagnoses convergence of its Markov chain Monte Carlo (MCMC[2]) sampler to the posterior and regularly outputs status information. For orbit characterization, BASE delivers important results such as the probability densities and correlations of model parameters and derived quantities. BASE is a highly configurable command-line tool developed in Fortran 2008 and compiled with GFortran. Options can be used to control the program’s behaviour and supply information such as the stellar mass or prior information. Any option can be supplied in a configuration file and/or on the command line.

[ascl:1308.006] BASIN: Beowulf Analysis Symbolic INterface

BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.

[ascl:2110.010] BASTA: BAyesian STellar Algorithm

BASTA determines properties of stars using a pre-computed grid of stellar models. It calculates the probability density function of a given stellar property based on a set of observational constraints defined by the user. BASTA is very versatile and has been used in a large variety of studies requiring robust determination of fundamental stellar properties.

[ascl:2304.003] BatAnalysis: HEASOFT wrapper for processing Swift-BAT data

BatAnalysis processes and analyzes Swift Burst Alert Telescope (BAT) survey data in a comprehensive computational pipeline. The code downloads BAT survey data, batch processes the survey observations, and extracts light curves and spectra for each survey observation for a given source. BatAnalysis allows for the use of BAT survey data in advanced analyses of astrophysical sources including pulsars, pulsar wind nebula, active galactic nuclei, and other known/unknown transient events that may be detected in the hard X-ray band. BatAnalysis can also create mosaicked images at different time bins and extract light curves and spectra from the mosaicked images for a given source.

[ascl:1510.002] batman: BAsic Transit Model cAlculatioN in Python

batman provides fast calculation of exoplanet transit light curves and supports calculation of light curves for any radially symmetric stellar limb darkening law. It uses an integration algorithm for models that cannot be quickly calculated analytically, and in typical use, the batman Python package can calculate a million model light curves in well under ten minutes for any limb darkening profile.

[ascl:1612.021] BaTMAn: Bayesian Technique for Multi-image Analysis

Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

[ascl:2101.002] BAYES-LOSVD: Bayesian framework for non-parametric extraction of the LOSVD

BAYES-LOSVD performs non-parametric extraction of the Line-Of-Sight Velocity Distributions in galaxies. Written in Python, it uses Stan (ascl:1801.003) to perform all the computations and provides reliable uncertainties for all the parameters of the model chosen for the fit. The code comes with a large number of features, including read-in routines for some of the most popular IFU spectrographs and surveys, such as ATLAS3D, CALIFA, MaNGA, MUSE-WFM, SAMI, and SAURON.

[ascl:1505.027] BAYES-X: Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

The great majority of X-ray measurements of cluster masses in the literature assume parametrized functional forms for the radial distribution of two independent cluster thermodynamic properties, such as electron density and temperature, to model the X-ray surface brightness. These radial profiles (e.g. β-model) have an amplitude normalization parameter and two or more shape parameters. BAYES-X uses a cluster model to parametrize the radial X-ray surface brightness profile and explore the constraints on both model parameters and physical parameters. Bayes-X is programmed in Fortran and uses MultiNest (ascl:1109.006) as the Bayesian inference engine.

[ascl:2002.018] Bayesfit: Command-line program for combining Tempo2 and MultiNest components

Bayesfit pulls together Tempo2 (ascl:1210.015) and MultiNest (ascl:1109.006) components to provide additional functionality such as the specification of priors; Nelder–Mead optimization of the maximum-posterior point; and the capability of computing the partially marginalized likelihood for a given subset of timing-model parameters. Bayesfit is a single python command-line application.

[ascl:1407.015] BayesFlare: Bayesian method for detecting stellar flares

BayesFlare identifies flaring events in light curves released by the Kepler mission; it identifies even weak events by making use of the flare signal shape. The package contains functions to perform Bayesian hypothesis testing comparing the probability of light curves containing flares to that of them containing noise (or non-flare-like) artifacts. BayesFlare includes functions in its amplitude-marginalizer suite to account for underlying sinusoidal variations in light curve data; it includes such variations in the signal model, and then analytically marginalizes over them.

[ascl:1209.001] Bayesian Blocks: Detecting and characterizing local variability in time series

Bayesian Blocks is a time-domain algorithm for detecting localized structures (bursts), revealing pulse shapes within bursts, and generally characterizing intensity variations. The input is raw time series data, in almost any form. Three data modes are elaborated: (1) time-tagged events, (2) binned counts, and (3) measurements at arbitrary times with normal errors. The output is the most probable segmentation of the observation interval into sub-intervals during which the signal is perceptibly constant, i.e. has no statistically significant variations. The idea is not that the source is deemed to actually have this discontinuous, piecewise constant form, rather that such an approximate and generic model is often useful. Treatment of data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multi-variate time series data, analysis of variance, data on the circle, other data modes, and dispersed data are included.

This implementation is exact and replaces the greedy, approximate, and outdated algorithm implemented in BLOCK.

[ascl:2204.004] Bayesian SZNet: Bayesian deep learning to predict redshift with uncertainty

Bayesian SZNet predicts spectroscopic redshift through use of a Bayesian convolutional network. It uses Monte Carlo dropout to associate predictions with predictive uncertainties, allowing the user to determine unusual or problematic spectra for visual inspection and thresholding to balance between the number of incorrect redshift predictions and coverage.

Would you like to view a random code?