Results 2301-2400 of 3598 (3503 ASCL, 95 submitted)

[ascl:2103.024]
PION: Computational fluid-dynamics package for astrophysics

PION (PhotoIonization of Nebulae) is a grid-based fluid dynamics code for hydrodynamics and magnetohydrodynamics, including a ray-tracing module for calculating the attenuation of radiation from point sources of ionizing photons. It also has a module for coupling fluid dynamics and the radiation field to microphysical processes such as heating/cooling and ionization/recombination. PION models the evolution of HII regions, photoionized bubbles that form around hot stars, and has been extended to include stellar wind sources so that both wind bubbles and photoionized bubbles can be simulated at the same time. It is versatile enough to be extended to other applications.

[ascl:2404.002]
PIPE: Extracting PSF photometry from CHEOPS data

PIPE (PSF Imagette Photometric Extraction) extracts PSF (point-spread function) photometry from data acquired by the space telescope CHEOPS (CHaracterisation of ExOPlanetS). Advantages of PSF photometry over standard aperture photometry include reduced sensitivity to contaminants such as background stars, cosmic ray hits, and hot/bad pixels. For CHEOPS, an additional advantage is that photometry can be extracted from an imagette, a small window around the target that is downlinked at a shorter cadence than the larger-sized subarray used for aperture photometry. These advantages make PIPE particularly well suited for targets brighter or fainter than the nominal G = 7-11 mag range of CHEOPS, *i.e.*, where short-cadence imagettes are available (bright end) or when contamination becomes a problem (faint end). Within the nominal range, PIPE usually offers no advantage over the standard aperture photometry.

[ascl:2306.021]
pipes_vis: Interactive GUI and visualizer tool for SPS spectra

pipes_vis is an interactive graphical user interface for visualizing SPS spectra. Powered by Bagpipes (ascl:2104.017), it provides real-time manipulation of a model galaxy's star formation history, dust, and other relevant properties through sliders and text boxes.

[ascl:1611.015]
Pippi: Parse and plot MCMC chains

Pippi (parse it, plot it) operates on MCMC chains and related lists of samples from a function or distribution, and can merge, parse, and plot sample ensembles ('chains') either in terms of the likelihood/fitness function directly, or as implied posterior probability densities. Pippi is compatible with ASCII text and hdf5 chains, operates out of core, and can post-process chains on the fly.

[ascl:2311.011]
PIPPIN: Polarimetric Differential Imaging (PDI) pipeline for NACO data

PIPPIN (PDI pipeline for NACO data) reduces the polarimetric observations made with the VLT/NACO instrument. It applies the Polarimetric Differential Imaging (PDI) technique to distinguish the polarized, scattered light from the (largely) un-polarized, stellar light. As a result, circumstellar dust can be uncovered. PIPPIN appropriately handles various instrument configurations, including half-wave plate and de-rotator usage, Wollaston beam-splitter, and wiregrid observations. As part of the PDI reduction, PIPPIN performs various levels of corrections for instrumental polarization and crosstalk.

[ascl:2108.019]
PIPS: Period detection and Identification Pipeline Suite

Murakami, Yukei S.; Jennings, Connor; Hoffman, Andrew M.; Sunseri, James; Baer-Way, Raphael; Stahl, Benjamin E.; Savel, Arjun B.; Altunin, Ivan; Girish, Nachiket; Filippenko, Alexei V.

PIPS analyzes the lightcurves of astronomical objects whose brightness changes periodically. Originally developed to determine the periods of RR Lyrae variable stars, the code offers many features designed for variable star analysis and can obtain period values for almost any type of lightcurve with both speed and accuracy. PIPS determines periods through several different methods, analyzes the morphology of lightcurves via Fourier analysis, estimates the statistical significance of the detected signal, and determines stellar properties based on pre-existing stellar models.

[ascl:1405.012]
PISA: Position Intensity and Shape Analysis

PISA (Position, Intensity and Shape Analysis) routines deal with the location and parameterization of objects on an image frame. The core of this package is the routine PISAFIND which performs image analysis on a 2-dimensional data frame. The program searches the data array for objects that have a minimum number of connected pixels above a given threshold and extracts the image parameters (position, intensity, shape) for each object. The image parameters can be determined using thresholding techniques or an analytical stellar profile can be used to fit the objects. In crowded regions deblending of overlapping sources can be performed. PISA is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:2110.007]
PISCOLA: Python for Intelligent Supernova-COsmology Light-curve Analysis

PISCOLA (Python for Intelligent Supernova-COsmology Light-curve Analysis) fits supernova light curves and corrects them in a few lines of code. It uses Gaussian Processes to estimate rest-frame light curves of transients without needing an underlying light-curve template. The user can add filters, calculates the light-curves parameters, and obtain transmission functions for the observed filters and the Bessell filters. The correction process can be applied with default settings to obtain restframe light curves and light-curve parameters. PISCOLA can plot the SN light curves, filter transmission functions, light-curves fits results, the mangling function for a given phase, and includes several utilities that can, for example, convert fluxes to magnitudes and magnitudes to fluxes, and trim leading and trailing zeros from a 1-D array or sequence.

[ascl:2010.014]
Pix2Prof: Deep learning for textraction of useful sequential information from galaxy imagery

Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.

[ascl:2207.033]
piXedfit: Analyze spatially resolved SEDs of galaxies

piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.

[ascl:1102.007]
PixeLens: A Portable Modeler of Lensed Quasars

We introduce and implement two novel ideas for modeling lensed quasars. The first is to require different lenses to agree about H_{0}. This means that some models for one lens can be ruled out by data on a different lens. We explain using two worked examples. One example models 1115+080 and 1608+656 (time-delay quadruple systems) and 1933+503 (a prospective time-delay system) all together, yielding time-delay predictions for the third lens and a 90% confidence estimate of H_{0}^{-1}=14.6+9.4-1.7 Gyr (H_{0}=67+9-26 km s^{-1} Mpc^{-1}) assuming ΩM=0.3 and Ω_{Λ}=0.7. The other example models the time-delay doubles 1520+530, 1600+434, 1830-211, and 2149-275, which gives H_{0}^{-1}=14.5+3.3-1.5 Gyr (H_{0}=67+8-13 km s^{-1} Mpc^{-1}). Our second idea is to write the modeling software as a highly interactive Java applet, which can be used both for coarse-grained results inside a browser and for fine-grained results on a workstation. Several obstacles come up in trying to implement a numerically intensive method thus, but we overcome them.

[ascl:2102.003]
Pixell: Rectangular pixel map manipulation and harmonic analysis library

Pixell loads, manipulates, and analyzes maps stored in rectangular pixelization. It is mainly targeted for use with maps of the sky (e.g., CMB intensity and polarization maps, stacks of 21 cm intensity maps, binned galaxy positions or shear) in cylindrical projection, but its core functionality is more general. It extends numpy's ndarray to an ndmap class that associates a World Coordinate System (WCS) with a numpy array. It includes tools for Fourier transforms (through numpy or pyfft) and spherical harmonic transforms (through libsharp2 (ascl:1402.033)) of such maps and tools for visualization (through the Python Image Library).

[ascl:2210.012]
pixmappy: Python interface to gbdes astrometry solutions

pixmappy provides a Python interface to gbdes pixel map (astrometry) solutions. It reads the YAML format astrometry solutions produced by gbdes (ascl:2210.011) and issues a PixelMap instance, which is a map from one 2d coordinate system ("pixel") to another ("world") 2d system. A PixelMap instance can be used as a function mapping one (or many) coordinate pairs. An inverse method does reverse mapping, and the local jacobian of the map is available also. The type of mapping that can be expressed is very flexible, and PixelMaps can be compounded into chains of tranformations.

[ascl:1305.005]
PkdGRAV2: Parallel fast-multipole cosmological code

PkdGRAV2 is a high performance N-body treecode for self-gravitating astrophysical simulations. It is designed to run efficiently in serial and on a wide variety of parallel computers including both shared memory and message passing architectures. It can spatially adapt to large ranges in particle densities, and temporally adapt to large ranges in dynamical timescales. The code uses a non-standard data structure for efficiently calculating the gravitational forces, a variant on the k-D tree, and a novel method for treating periodic boundary conditions.

[ascl:1609.016]
PKDGRAV3: Parallel gravity code

Pkdgrav3 is an 𝒪(*N*) gravity calculation method; it uses a binary tree algorithm with fifth order fast multipole expansion of the gravitational potential, using cell-cell interactions. Periodic boundaries conditions require very little data movement and allow a high degree of parallelism; the code includes GPU acceleration for all force calculations, leading to a significant speed-up with respect to previous versions (ascl:1305.005). Pkdgrav3 also has a sophisticated time-stepping criterion based on an estimation of the local dynamical time.

[ascl:2307.055]
plan-net: Bayesian neural networks for exoplanetary atmospheric retrieval

Cobb, Adam D.; Himes, Michael D.; Soboczenski, Frank; Zorzan, Simone; O'Beirne, Molly D.; Güneş Baydin, Atılım; Gal, Yarin; Domagal-Goldman, Shawn D.; Arney, Giada N.; Angerhausen, Daniel

plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.

[ascl:1911.001]
PLAN: A Clump-finder for Planetesimal Formation Simulations

PLAN (PLanetesimal ANalyzer) identifies and characterizes planetesimals produced in numerical simulations of the Streaming Instability that includes particle self-gravity with code Athena (ascl:1010.014). PLAN works with the 3D particle output of Athena and finds gravitationally bound clumps robustly and efficiently. PLAN — written in C++ with OpenMP/MPI — is massively parallelized, memory-efficient, and scalable to analyze billions of particles and multiple snapshots simultaneously. The approach of PLAN is based on the dark matter halo finder HOP (ascl:1102.019), but with many customizations for planetesimal formation. PLAN can be easily adapted to analyze other object formation simulations that use Lagrangian particles (e.g., Athena++ simulations). PLAN is also equipped with a toolkit to analyze the grid-based hydro data (VTK dumps of primitive variables) from Athena, which requires the Boost MultiDimensional Array Library.

[ascl:1505.032]
Planck Level-S: Planck Simulation Package

The Planck simulation package takes a cosmological model specified by the user and calculates a potential CMB sky consistent with this model, including astrophysical foregrounds, and then performs a simulated observation of this sky. This Simulation embraces many instrumental effects such as beam convolution and noise. Alternatively, the package can simulate the observation of a provided sky model, generated by another program such as the Planck Sky Model software. The Planck simulation package does not only provide Planck-like data, it can also be easily adopted to mimic the properties of other existing and upcoming CMB experiments.

[ascl:2010.009]
plancklens: Planck 2018 lensing pipeline

plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).

[ascl:1607.005]
Planetary3br: Three massive body resonance calculator

Given two planets P1 and P2 with arbitrary orbits, planetary3br calculates all possible semimajor axes that a third planet P0 can have in order for the system to be in a three body resonance; these are identified by the combination k0*P0 + k1*P1 + k2*P2. P1 and P2 are assumed to be not in an exact two-body resonance. The program also calculates three "strengths" of the resonance, one for each planet, which are only indicators of the dynamical relevance of the resonance on each planet. Sample input data are available along with the Fortran77 source code.

[ascl:2409.013]
planetMagFields: Routines to plot magnetic fields of planets in our solar system

planetMagFields accesses and analyzes information about magnetic fields of planets in our solar system and visualizes them in both 2D and 3D. The code provides access to properties of a planet, such as dipole tilt, Gauss coefficients, and computed radial magnetic field at surface, and has methods to plot the field and write a vts file for 3D visualization. planetMagFields can be used to produce both 2D and 3D visualizations of a planetary field; it also provides the option of potential extrapolation.

[ascl:1311.004]
PlanetPack: Radial-velocity time-series analysis tool

PlanetPack facilitates and standardizes the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter that can run either in an interactive mode or in a batch mode of automatic script interpretation.

[ascl:1911.007]
planetplanet: General photodynamical code for exoplanet light curves

planetplanet models exoplanet transits, secondary eclipses, phase curves, and exomoons, as well as eclipsing binaries, circumbinary planets, and more. The code was originally developed to model planet-planet occultation (PPO) light curves for the TRAPPIST-1 system, but it is generally applicable to any exoplanet system. During a PPO, a planet occults (transits) the disk of another planet in the same planetary system, blocking its thermal (and reflected) light, which can be measured photometrically by a distant observer. planetplanet is coded in C and wrapped in a user-friendly Python interface.

[ascl:2309.020]
PlanetSlicer: Orange-slice algorithm for fitting brightness maps to phase curves

PlanetSlicer fits brightness maps to phase curves using the "orange-slice" method and works both for self-luminous objects and those that diffuse reflected light assuming Lambertian reflectance. In both cases, the model supposes that a spherical object can be divided into slices of constant brightness (or albedo) which may be integrated to yield the total flux observed, given the angles of observation. The package contains two key functions: toPhaseCurve and fromPhaseCurve; the former integrates the brightness for each slice to calculate the observed total flux from the object, given the longitude of observation. The latter does the opposite, estimating the brightness of the slices from a set of observed total flux (the phase curve).

[ascl:2107.019]
PlaSim: Planet Simulator

Lunkeit, Frank; Blessing, Simon; Friedrich, Klaus; Jansen, Heiko; Kirk, Edilbert; Luksch, Ute; Sielmann, Frank

PlaSim is a climate model of intermediate complexity for Earth, Mars and other planets. It is written for a university environment, to be used to train the next GCM (general circulation model) developers, to support scientists in understanding climate processes, and to do fundamental research. In addition to an atmospheric GCM of medium complexity, PlaSim includes other compartments of the climate system such as, for example, an ocean with sea ice and a land surface with a biosphere. These other compartments are reduced to linear systems. In other words, PlaSim consists of a GCM with a linear ocean/sea-ice module formulated in terms of a mixed layer energy balance. The soil/biosphere module is introduced analoguously. Thus, working with PlaSim is like testing the performance of an atmospheric or oceanic GCM interacting with various linear processes, which parameterize the variability of the subsystems in terms of their energy (and mass) balances.

[ascl:1906.019]
PlasmaPy: Core Python package for plasma physics

PlasmaPy Community; Murphy, Nicholas A.; Stańczak, Dominik; Kozlowski, Pawel M.; Langendorf, Samuel J.; Leonard, Andrew J.; Beckers, Jasper P.; Haggerty, Colby C.; Mumford, Stuart J.; Malhotra, Ritiek; Bessi, Ludovico; Carroll, Sean; Choubey, Apoorv; Díaz Pérez, Roberto; Einhorn, Leah; Fan, Thomas; Goudeau, Graham; Guidoni, Silvina; Hillairet, Julien; How, Poh Zi; Huang, Yi-Min; Humphrey, Nabil; Isupova, Maria; Kulshrestha, Siddharth; Kuszaj, Piotr; Munn, Joshua; Parashar, Tulasi; Patel, Neil; Raj, Raajit; Sherpa, Dawa Nurbu; Stansby, David; Tavant, Antoine; Xu, Sixue

PlasmaPy provides core functionality and a common framework for data visualization and analysis for plasma physics. It has modules for basic plasma physics calculations, running desktop-scale simulations to test preliminary ideas such as one-dimensional MHD/PIC or test particles, or comparing data from two different sources, such as simulations and spacecraft.

[ascl:1506.003]
PLATO Simulator: Realistic simulations of expected observations

Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

PLATO Simulator is an end-to-end simulation software tool designed for the performance of realistic simulations of the expected observations of the PLATO mission but easily adaptable to similar types of missions. It models and simulates photometric time-series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources.

[ascl:1903.014]
PLATON: PLanetary Atmospheric Transmission for Observer Noobs

PLATON (PLanetary Atmospheric Transmission for Observer Noobs) calculates transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra; it is based on ExoTransmit (ascl:1611.005). PLATON supports the most common atmospheric parameters, such as temperature, metallicity, C/O ratio, cloud-top pressure, and scattering slope. It also has less commonly included features, such as a Mie scattering cloud model and unocculted starspot corrections.

[ascl:1907.009]
Plonk: Smoothed particle hydrodynamics data analysis and visualization

Plonk analyzes and visualizes smoothed particle hydrodynamics simulation data, focusing on astrophysical applications. It calculates extra quantities on the particles, calculates and plots radial profiles, accesses subsets of particles, and provides visualization of any quantity defined on the particles via kernel density estimation. Plock's visualization module uses Splash (ascl:1103.004) to produce images using smoothed particle hydrodynamics interpolation. The code is modular and extendible, and can be scripted or used interactively.

[ascl:1106.003]
PLplot: Cross-platform Software Package for Scientific Plots

Irwin, Alan W.; Ross, Andrew; Furnish, Geoffrey; Babcock, Hazen; Tomé, António; Markus, Arjen; Roach, Andrew; Carty, Hezekiah M.; Hunt, Doug; Dishaw, James; Bauck, Jerry; LeBrun, Maurice; Rosenberg, Phil; Smekal, Werner

PLplot is a cross-platform software package for creating scientific plots. To help accomplish that task it is organized as a core C library, language bindings for that library, and device drivers which control how the plots are presented in non-interactive and interactive plotting contexts. The PLplot core library can be used to create standard x-y plots, semi-log plots, log-log plots, contour plots, 3D surface plots, mesh plots, bar charts and pie charts. Multiple graphs (of the same or different sizes) may be placed on a single page, and multiple pages are allowed for those device formats that support them. PLplot has core support for Unicode. This means for our many Unicode-aware devices that plots can be labelled using the enormous selection of Unicode mathematical symbols. A large subset of our Unicode-aware devices also support complex text layout (CTL) languages such as Arabic, Hebrew, and Indic and Indic-derived CTL scripts such as Devanagari, Thai, Lao, and Tibetan. PLplot device drivers support a number of different file formats for non-interactive plotting and a number of different platforms that are suitable for interactive plotting. It is easy to add new device drivers to PLplot by writing a small number of device dependent routines.

[ascl:1206.007]
Plumix: Generating mass segregated star clusters

Plumix is a small package for generating mass segregated star clusters. Its output can be directly used as input initial conditions for NBODY4 or NBODY6 code. Mass segregation stands as one of the most robust features of the dynamical evolution of self-gravitating star clusters. We formulate parametrized models of mass segregated star clusters in virial equilibrium. To this purpose we introduce mean inter-particle potentials for statistically described unsegregated systems and suggest a single-parameter generalization of its form which gives a mass-segregated state. Plumix is a numerical C-code generating the cluster according the algorithm given for construction of appropriate star cluster models. Their stability over several crossing-times is verified by following the evolution by means of direct N-body integration.

[ascl:1010.045]
PLUTO: A Code for Flows in Multiple Spatial Dimensions

PLUTO is a modular Godunov-type code intended mainly for astrophysical applications and high Mach number flows in multiple spatial dimensions. The code embeds different hydrodynamic modules and multiple algorithms to solve the equations describing Newtonian, relativistic, MHD, or relativistic MHD fluids in Cartesian or curvilinear coordinates. PLUTO is entirely written in the C programming language and can run on either single processor machines or large parallel clusters through the MPI library. A simple user-interface based on the Python scripting language is available to setup a physical problem in a quick and self-explanatory way. Computations may be carried on either static or adaptive (structured) grids, the latter functionality being provided through the Chombo adaptive mesh refinement library.

[ascl:2211.008]
pmclib: Population Monte Carlo library

Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Kilbinger, Martin; Prunet, Simon; Robert, Christian P.; Wraith, Darren

The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.

[ascl:9909.001]
PMCode: Particle-Mesh Code for Cosmological Simulations

Particle-Mesh (PM) codes are still very useful tools for testing predictions of cosmological models in cases when extra high resolution is not very important. We release for public use a cosmological PM N-body code. The code is very fast and simple. We provide a complete package of routines needed to set initial conditions, to run the code, and to analyze the results. The package allows you to simulate models with numerous combinations of parameters: open/flat/closed background, with or without the cosmological constant, different values of the Hubble constant, with or without hot neutrinos, tilted or non-tilted initial spectra, different amount of baryons.

[ascl:1102.008]
PMFAST: Towards Optimal Parallel PM N-body Codes

The parallel PM N-body code PMFAST is cost-effective and memory-efficient. PMFAST is based on a two-level mesh gravity solver where the gravitational forces are separated into long and short range components. The decomposition scheme minimizes communication costs and allows tolerance for slow networks. The code approaches optimality in several dimensions. The force computations are local and exploit highly optimized vendor FFT libraries. It features minimal memory overhead, with the particle positions and velocities being the main cost. The code features support for distributed and shared memory parallelization through the use of MPI and OpenMP, respectively.

The current release version uses two grid levels on a slab decomposition, with periodic boundary conditions for cosmological applications. Open boundary conditions could be added with little computational overhead. Timing information and results from a recent cosmological production run of the code using a 3712^3 mesh with 6.4 x 10^9 particles are available.

[ascl:1102.015]
PMFASTIC: Initial condition generator for PMFAST

PMFASTIC is a parallel initial condition generator, a slab decomposition Fortran 90 parallel cosmological initial condition generator for use with PMFAST (ascl:1102.008). Files required for generating initial dark matter particle distributions and instructions are included, however one would require CMBFAST (ascl:9909.004) to create alternative transfer functions.

[ascl:2107.003]
PMN-body: Particle Mesh N-body code

PMN-body computes the non-linear evolution of the cosmological matter density contrast. It is based on the Particle Mesh (PM) technique. Written in C, the code is parallelized for shared-memory machines using Open Multi-Processing (OpenMP).

[ascl:2205.001]
PMOIRED: Parametric Modeling of Optical Interferometric Data

PMOIRED models astronomical spectro-interferometric data stored in the OIFITS format. Parametric modeling is used to describe the observed scene as blocks such as disks, rings and Gaussians which can be combined and their parameters linked. It includes plotting, least-square fitting and bootstrapping estimation of uncertainties. For spectroscopic instruments (such as GRAVITY), tools are provided to model spectral lines and correct spectra for telluric lines.

[ascl:1010.065]
PN: Higher Post Newtonian Gravity Calculations

Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski spacetime to O[(v/c)^4] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2 body problem, the major efforts underway to measure gravitational waves produced by in-spiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c)^7]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c)^6] beyond Newton are derived.

[ascl:2307.009]
pnautilus: Three-phase chemical code

The three-phase pnautilus chemical code finds the abundance of each species by solving rate equations for gas-phase and grain surface chemistries. It performs gas–grain simulations in which both the icy mantle and the surface are considered active, taking into account mantle photodissociation, diffusion, and reactions; the code also considers the competition among reaction, diffusion and evaporation.

[ascl:1302.004]
pNbody: A python parallelized N-body reduction toolbox

pNbody is a parallelized python module toolbox designed to manipulate and interactively display very large N-body systems. It allows the user to perform complicated manipulations with only very few commands and to load an N-body system and explore it interactively using the python interpreter. pNbody may also be used in python scripts. pNbody contains graphical facilities for creating maps of physical values of the system, such as density, temperature, and velocities maps. Stereo capabilities are also implemented. pNbody is not limited by file format; the user may use a parameter file to redefine how to read a preferred format.

[ascl:2011.025]
PNICER: Extinction estimator

PNICER estimates extinction for individual sources and creates extinction maps using unsupervised machine learning algorithms. Extinction towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field observations. PNICER also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps including the NICEST correction for cloud substructure.

[ascl:2207.018]
pocoMC: Preconditioned Monte Carlo method for accelerated Bayesian inference

pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.

[ascl:1907.006]
POCS: PANOPTES Observatory Control System

PANOPTES (Panoptic Astronomical Networked Observatories for a Public Transiting Exoplanets Survey) is a citizen science project for low cost, robotic detection of transiting exoplanets. POCS (PANOPTES Observatory Control System) is the main software driver for the PANOPTES telescope system, responsible for high-level control of the unit. POCS defines an Observatory class that automatically controls a commercially available equatorial mount, including image analysis and corresponding mount adjustment to obtain a percent-level photometric precision.

[ascl:1408.005]
POET: Planetary Orbital Evolution due to Tides

POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

[ascl:2208.011]
POIS: Python Optical Interferometry Simulation

POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.

[ascl:2403.005]
Poke: Polarization ray tracing and Gaussian beamlet module for Python

Ashcraft, Jaren N.; Mulhal, Kenji; Douglas, Ewan S.; Kim, Daewook; Riggs, A.J. E.; Anche, Ramya M.; Brendel, Trent; Derby, Kevin Z.; Dube, Brandon D.; Jarecki, Quinn; Jenkins, Emory; Milani, Kian

Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.

[ascl:1505.018]
POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1807.001]
POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:2402.006]
polarizationtools: Polarization analysis and simulation tools in python

polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.

[ascl:2102.011]
polgraw-allsky: All-sky almost-monochromatic gravitational-wave pipeline

Astone, Pia; Bejger, Michał; Bolek, Jan; Ciecieląg, Paweł; Dorosh, Orest; Garus, Aleksander; Królak, Andrzej; Nagy-Egri, Máté Ferenc; Piętka, Maciej; Pisarski, Andrzej; Poghosyan, Gevorg; Sieniawska, Magdalena; Skrzypiec, Rafał

polgraw-allsky searches for almost monochromatic gravitational wave signals. This pipeline searches for continuous gravitational wave signals in time-domain data using the F-statistic on data from a network of detectors. The software generates a parameter space grid, conducts a coherent search for candidate signals in narrowband time segments, and searches for coincidences among different time segments. The pipeline also estimates the false alarm probability of coincidences and follows up on interesting outliers.

[ascl:1406.012]
POLMAP: Interactive data analysis package for linear spectropolarimetry

POLMAP provides routines for displaying and analyzing spectropolarimetry data that are not available in the complementary TSP package. Commands are provided to read and write TSP (ascl:1406.011) polarization spectrum format files from within POLMAP. This code is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.014]
POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1603.018]
PolRadTran: Polarized Radiative Transfer Model Distribution

PolRadTran is a plane-parallel polarized radiative transfer model. It is used to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly-oriented particles. Both solar and thermal sources of radiation are considered. A direct method of incorporating the polarized scattering information is combined with the doubling and adding method to produce a relatively simple formulation.

[ascl:1109.005]
PolSpice: Spatially Inhomogeneous Correlation Estimator for Temperature and Polarisation

PolSpice (aka Spice) is a tool to statistically analyze Cosmic Microwave Background (CMB) data, as well as any other diffuse data pixelized on the sphere.

This Fortran90 program measures the 2 point auto (or cross-) correlation functions w(θ) and the angular auto- (or cross-) power spectra C(l) from one or (two) sky map(s) of Stokes parameters (intensity I and linear polarisation Q and U). It is based on the fast Spherical Harmonic Transforms allowed by isolatitude pixelisations such as Healpix [for Npix pixels over the whole sky, and a C(l) computed up to l=lmax, PolSpice complexity scales like Npix1/2 lmax2 instead of Npix lmax2]. It corrects for the effects of the masks and can deal with inhomogeneous weights given to the pixels of the map. In the case of polarised data, the mixing of the E and B modes due to the cut sky and pixel weights can be corrected for to provide an unbiased estimate of the "magnetic" (B) component of the polarisation power spectrum. Most of the code is parallelized for shared memory (SMP) architecture using OpenMP.

[ascl:2307.020]
PolyBin: Binned polyspectrum estimation on the full sky

PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.

[ascl:2404.006]
PolyBin3D: Binned polyspectrum estimation for 3D large-scale structure

PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.

[ascl:1502.011]
PolyChord: Nested sampling for cosmology

PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.

[ascl:2007.009]
polyMV: Multipolar coefficients converter

polyMV converts multipolar coefficients (alms in healpix order) into Multipole Vectors (MVs) and also Fréchet Vectors (FVs) given a specific multipole. The code uses MPSolve (ascl:2007.008) and is order of magnitudes faster than other existing public codes at high multipoles.

[ascl:1912.001]
Polyspectrum: Computing polyspectra using an FFT estimator

Polyspectrum computes the polyspectrum from 3D grids using a fast Fourier transformation (FFT) estimator. The code, written in C and MPI-parallelized, support the computation of power- and bispectra; it also supports higher-order polyspectra, but streamlining the input data is required.

[ascl:2012.016]
Pomegranate: Probabilistic model builder

Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.

[ascl:1805.011]
PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:2407.018]
pony3d: Efficient island-finding tool for radio spectral line imaging

pony3d statistically identifies islands of contiguous emission inside a three-dimensional volume. The primary functionality is the rapid and reliable creation of masks for the deconvolution of radio interferometric radio spectral line emission. It has been designed to run on the output of the wsclean imager (ascl:1408.023) whereby the individual FITS image per frequency plane enables a high degree of parallelism, but can work on any image set providing this criterion is met. Single channel island rejection is offered, along with 3D mask dilation and boxcar averaging. pony3d is also a prototype source-finding and extraction tool.

[ascl:2007.006]
PoPE: Population Profile Estimator

PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.

[ascl:1602.018]
POPPY: Physical Optics Propagation in PYthon

Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine; and others

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[ascl:0202.001]
PopRatio: A program to calculate atomic level populations in astrophysical plasmas

PopRatio is a Fortran 90 code to calculate atomic level populations in astrophysical plasmas. The program solves the equations of statistical equilibrium considering all possible bound-bound processes: spontaneous, collisional or radiation induced (the later either directly or by fluorescence). There is no limit on the number of levels or in the number of processes that may be taken into account. The program may find a wide range of applicability in astronomical problems, such as interpreting fine-structure absorption lines or collisionally excited emission lines and also in calculating the cooling rates due to collisional excitation.

[ascl:1912.008]
PopSyCLE: Population Synthesis for Compact object Lensing Events

PopSyCLE performs compact object population synthesis while taking photometric and astrometric microlensing effects into consideration. It uses Galaxia (ascl:1101.007) to produces a synthetic survey, injects compact objects into the resulting survey, and then produces a list of microlensing events, enabling the discovery of black holes with microlensing. It can be used to examine historical microlensing events from photometric surveys to statistically constrain the abundance of black holes in our galaxy, and to forward model microlensing survey results to constrain, for example, the properties of compact objects, Galactic structure, and the initial-final mass relation.

[ascl:2202.021]
popsynth: Observed surveys from latent population models

Popsynth provides an abstract way to generate survey populations from arbitrary luminosity functions and redshift distributions. Additionally, auxiliary quantities can be sampled and stored. Populations can be saved and restored via an HDF5 files for later use, and population synthesis routines can be created via classes or structured YAML files. Users can construct their own classes for spatial, luminosity, and other distributions, all of which can be connected to arbitrarily complex selection functions.

[ascl:2106.037]
PORTA: POlarized Radiative TrAnsfer

PORTA solves three-dimensional non-equilibrium radiative transfer problems with massively parallel computers. The code can be used for modeling the spectral line polarization produced by the scattering of anisotropic radiation and the Hanle and Zeeman effects assuming complete frequency redistribution, either using two-level or multilevel atomic models. The numerical method of solution used to find the self-consistent values of the atomic density matrix at each point of the model’s Cartesian grid is based on Jacobi iterative scheme and on a short-characteristics formal solver of the Stokes-vector transfer equation that uses monotonic Bézier interpolation. The code can also be used to compute the linear polarization of the continuum radiation caused by Rayleigh and Thomson scattering in 3D models of stellar atmospheres, and to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems. PORTA accepts/produces HDF5 input/output and offers an advanced graphical user interface.

[ascl:2003.006]
PORTAL: POlarized Radiative Transfer Adapted to Lines

PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes

[ascl:2104.031]
Posidonius: N-Body simulator for planetary and/or binary systems

Posidonius is a N-body code based on the tidal model used in Mercury-T (ascl:1511.020). It uses the REBOUND (ascl:1110.016) symplectic integrator WHFast to compute the evolution of positions and velocities, which is also combined with a midpoint integrator to calculate the spin evolution in a consistent way. As Mercury-T, Posidonius takes into account tidal forces, rotational-flattening effects and general relativity corrections. It also includes different evolution models for FGKML stars and gaseous planets. The N-Body code is written in Rust; a Python package is provided to easily define simulation cases in JSON format, which is readable by the Posidonius integrator.

[ascl:1411.021]
POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:2210.019]
POSYDON: Single and binary star population synthesis code

Fragos, Tassos; Andrews, Jeff J.; Bavera, Simone S.; Berry, Christopher P. L.; Coughlin, Scott; Dotter, Aaron; Giri, Prabin; Kalogera, Vicky; Katsaggelos, Aggelos; Kovlakas, Konstantinos; Lalvani, Shamal; Misra, Devina; Srivastava, Philipp M.; Qin, Ying; Rocha, Kyle A.; Roman-Garza, Jaime; Serra, Juan Gabriel; Stahle, Petter; Sun, Meng; Teng, Xu; Trajcevski, Goce; Hai Tran, Nam; Xing, Zepei; Zapartas, Emmanouil; Zevin, Michael

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2006.018]
Powderday: Dust radiative transfer package

Narayanan, Desika; Turk, Matthew J.; Robitaille, Thomas; Kelly, Ashley J.; Connor McClellan, B.; Sharma, Ray S.; Garg, Prerak; Abruzzo, Matthew; Choi, Ena; Conroy, Charlie; Johnson, Benjamin D.; Kimock, Benjamin; Li, Qi; Lovell, Christopher C.; Lower, Sidney; Privon, George C.; Roberts, Jonathan; Sethuram, Snigdaa; Snyder, Gregory F.; Thompson, Robert; Wise, John H.

The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).

[ascl:1807.021]
POWER: Python Open-source Waveform ExtractoR

POWER (Python Open-source Waveform ExtractoR) monitors the status and progress of numerical relativity simulations and post-processes the data products of these simulations to compute the gravitational wave strain at future null infinity.

[ascl:1805.001]
powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

[ascl:2406.025]
PowerSpecCovFFT: FFTLog-based computation of non-Gaussian analytic covariance of galaxy power spectrum multipoles

PowerSpecCovFFT computes the non-Gaussian (regular trispectrum and its shot noise) part of the analytic covariance matrix of the redshift-space galaxy power spectrum multipoles using an FFTLog-based method. The galaxy trispectrum is based on a tree-level standard perturbation theory but with a slightly different galaxy bias expansion. The code computes the non-Gaussian covariance of the power spectrum monopole, quadrupole, hexadecapole, and their cross-covariance up to kmax ~ 0.4 h/Mpc.

[ascl:1110.017]
POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:2301.023]
PoWR: Potsdam Wolf-Rayet Models

Hamann, W. R.; Gräfener, G.; Koesterke, L.; Sander, A.; Shenar, T.; Hainich, R.; Gímenez-García, A.; Todt, H.

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2212.017]
powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:1401.009]
PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1507.009]
PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:2004.008]
PPMAP: Column density mapping with extra dimensions

PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.

[ascl:1210.002]
pPXF: Penalized Pixel-Fitting stellar kinematics extraction

pPXF extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include:

- Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.
- Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.
- Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.
- Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

The code is available in IDL and in Python versions.

[ascl:1611.004]
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:2004.016]
PRECISION: Astronomical infrared observations data reduction

PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.

[ascl:1710.024]
pred_loggs: Predicting individual galaxy G/S probability distributions

Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1112.016]
PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

- the system console
- the command line
- a network socket
- the generation of audio speech

[ascl:1910.002]
PreProFit: Pressure Profile Fitter for galaxy clusters in Python

PreProFit fits the pressure profile of galaxy clusters using Markov chain Monte Carlo (MCMC). The software can analyze data from different sources and offers flexible parametrization for the pressure profile. PreProFit accounts for Abel integral, beam smearing, and transfer function filtering when fitting data and returns χ2, model parameters and uncertainties in addition to marginal and joint probability contours, diagnostic plots, and surface brightness radial profiles. The code can be used for analytic approximations for the beam and transfer functions for feasibility studies.

[ascl:1305.006]
Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1107.017]
PRESTO: PulsaR Exploration and Search TOolkit

PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python.

Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats:

- PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)

- SPIGOT at the GBT

- Most Wideband Arecibo Pulsar Processor (WAPP) at Arecibo

- The Parkes and Jodrell Bank 1-bit filterbank formats

- Berkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)

- 8-bit filterbank format from SIGPROC (other formats will be added if required)

- A time series composed of single precision (i.e. 4-byte) floating point data

- Photon arrival times (or events) in ASCII or double-precision binary formats

[submitted]
PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:1903.009]
PRF: Probabilistic Random Forest

PRF (Probabilistic Random Forest) is a machine learning algorithm for noisy datasets. The PRF is a modification of the long-established Random Forest (RF) algorithm, and takes into account uncertainties in the measurements (i.e., features) as well as in the assigned classes (i.e., labels). To do so, the Probabilistic Random Forest (PRF) algorithm treats the features and labels as probability distribution functions, rather than as deterministic quantities.

[ascl:2006.002]
PRIISM: Python module for Radio Interferometry Imaging with Sparse Modeling

PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.

[ascl:2006.010]
PRISim: Precision Radio Interferometer Simulator

PRISim is a modular radio interferometer array simulator, including the radio sky and instrumental effects, and generates a transit dataset in HD5 format.

[ascl:1907.021]
PRISM: Probabilistic Regression Instrument for Simulating Models

PRISM analyzes scientific models using the Bayes linear approach, the emulation technique, and history matching to construct an approximation ('emulator') of any given model. The software facilitates and enhances existing MCMC methods by restricting plausible regions and exploring parameter space efficiently and can be used as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific models. PRISM stores results in HDF5-files and can be executed in serial or MPI on any number of processes. It accepts any type of model and comparison data and can reduce relevant parameter space by factors over 100,000 using only a few thousand model evaluations.

[ascl:1601.020]
ProC: Process Coordinator

Hovest, Wolfgang; Knoche, Jörg; Hell, Reinhard; Doerl, Uwe; Riller, Thomas; Matthai, Frank; Ensslin, Torsten A.; Rachen, Jörg; Robbers, Georg; Adorf, Hans-Martin; Reinecke, Martin; Bartelmann, Matthias

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[submitted]
prodimopy: Python tools for the radiation thermo-chemical code ProDiMo.

Rab, Christian; Arabhavi, Aditya M.; Chaparro Molano, G.; Backs, Frank; Kamp, Inga; Thi, Wing-Fai; Woitke , Peter

prodimopy is an open-source Python package to read, analyze and plot modelling results of the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel, https://prodimo.iwf.oeaw.ac.at). It also includes tools to run ProDiMo in 1D slap model mode, to run simple ProDimo model grids and to interface ProDiMo with 1D and 2D disk codes (i.e. use input structure from hydrodynamic models).

prodimopy can also be used independently of ProDiMo (no ProDiMo installation is required) and hence is also useful to extract information from already available ProDiMo models (e.g. as input for other codes) or for model comparison.

[ascl:1608.011]
PROFFIT: Analysis of X-ray surface-brightness profiles

PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

[ascl:1705.010]
PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

Would you like to view a random code?