ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 2301-2400 of 3503 (3416 ASCL, 87 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2012.016] Pomegranate: Probabilistic model builder

Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.

[ascl:1805.011] PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:2007.006] PoPE: Population Profile Estimator

PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.

[ascl:1602.018] POPPY: Physical Optics Propagation in PYthon

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[ascl:0202.001] PopRatio: A program to calculate atomic level populations in astrophysical plasmas

PopRatio is a Fortran 90 code to calculate atomic level populations in astrophysical plasmas. The program solves the equations of statistical equilibrium considering all possible bound-bound processes: spontaneous, collisional or radiation induced (the later either directly or by fluorescence). There is no limit on the number of levels or in the number of processes that may be taken into account. The program may find a wide range of applicability in astronomical problems, such as interpreting fine-structure absorption lines or collisionally excited emission lines and also in calculating the cooling rates due to collisional excitation.

[ascl:1912.008] PopSyCLE: Population Synthesis for Compact object Lensing Events

PopSyCLE performs compact object population synthesis while taking photometric and astrometric microlensing effects into consideration. It uses Galaxia (ascl:1101.007) to produces a synthetic survey, injects compact objects into the resulting survey, and then produces a list of microlensing events, enabling the discovery of black holes with microlensing. It can be used to examine historical microlensing events from photometric surveys to statistically constrain the abundance of black holes in our galaxy, and to forward model microlensing survey results to constrain, for example, the properties of compact objects, Galactic structure, and the initial-final mass relation.

[ascl:2202.021] popsynth: Observed surveys from latent population models

Popsynth provides an abstract way to generate survey populations from arbitrary luminosity functions and redshift distributions. Additionally, auxiliary quantities can be sampled and stored. Populations can be saved and restored via an HDF5 files for later use, and population synthesis routines can be created via classes or structured YAML files. Users can construct their own classes for spatial, luminosity, and other distributions, all of which can be connected to arbitrarily complex selection functions.

[ascl:2106.037] PORTA: POlarized Radiative TrAnsfer

PORTA solves three-dimensional non-equilibrium radiative transfer problems with massively parallel computers. The code can be used for modeling the spectral line polarization produced by the scattering of anisotropic radiation and the Hanle and Zeeman effects assuming complete frequency redistribution, either using two-level or multilevel atomic models. The numerical method of solution used to find the self-consistent values of the atomic density matrix at each point of the model’s Cartesian grid is based on Jacobi iterative scheme and on a short-characteristics formal solver of the Stokes-vector transfer equation that uses monotonic Bézier interpolation. The code can also be used to compute the linear polarization of the continuum radiation caused by Rayleigh and Thomson scattering in 3D models of stellar atmospheres, and to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems. PORTA accepts/produces HDF5 input/output and offers an advanced graphical user interface.

[ascl:2003.006] PORTAL: POlarized Radiative Transfer Adapted to Lines

PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes

[ascl:2104.031] Posidonius: N-Body simulator for planetary and/or binary systems

Posidonius is a N-body code based on the tidal model used in Mercury-T (ascl:1511.020). It uses the REBOUND (ascl:1110.016) symplectic integrator WHFast to compute the evolution of positions and velocities, which is also combined with a midpoint integrator to calculate the spin evolution in a consistent way. As Mercury-T, Posidonius takes into account tidal forces, rotational-flattening effects and general relativity corrections. It also includes different evolution models for FGKML stars and gaseous planets. The N-Body code is written in Rust; a Python package is provided to easily define simulation cases in JSON format, which is readable by the Posidonius integrator.

[ascl:1411.021] POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:2210.019] POSYDON: Single and binary star population synthesis code

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2006.018] Powderday: Dust radiative transfer package

The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).

[ascl:1807.021] POWER: Python Open-source Waveform ExtractoR

POWER (Python Open-source Waveform ExtractoR) monitors the status and progress of numerical relativity simulations and post-processes the data products of these simulations to compute the gravitational wave strain at future null infinity.

[ascl:1805.001] powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

[ascl:1110.017] POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:2301.023] PoWR: Potsdam Wolf-Rayet Models

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2212.017] powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:1401.009] PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1507.009] PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:2004.008] PPMAP: Column density mapping with extra dimensions

PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.

[ascl:1210.002] pPXF: Penalized Pixel-Fitting stellar kinematics extraction

pPXF extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include:

  • Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.
  • Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.
  • Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.
  • Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

The code is available in IDL and in Python versions.

[ascl:1611.004] PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:2004.016] PRECISION: Astronomical infrared observations data reduction

PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.

[ascl:1710.024] pred_loggs: Predicting individual galaxy G/S probability distributions

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1112.016] PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

  • the system console
  • the command line
  • a network socket
  • the generation of audio speech
Data such as a spacecraft's sub-satellite point, azimuth and elevation headings, Doppler shift, path loss, slant range, orbital altitude, orbital velocity, footprint diameter, orbital phase (mean anomaly), squint angle, eclipse depth, the time and date of the next AOS (or LOS of the current pass), orbit number, and sunlight and visibility information are provided on a real-time basis. PREDICT can also track (or predict the position of) the Sun and Moon. PREDICT has the ability to control AZ/EL antenna rotators to maintain accurate orientation in the direction of communication satellites. As an aid in locating and tracking satellites through optical means, PREDICT can articulate tracking coordinates and visibility information as plain speech.

[ascl:1910.002] PreProFit: Pressure Profile Fitter for galaxy clusters in Python

PreProFit fits the pressure profile of galaxy clusters using Markov chain Monte Carlo (MCMC). The software can analyze data from different sources and offers flexible parametrization for the pressure profile. PreProFit accounts for Abel integral, beam smearing, and transfer function filtering when fitting data and returns χ2, model parameters and uncertainties in addition to marginal and joint probability contours, diagnostic plots, and surface brightness radial profiles. The code can be used for analytic approximations for the beam and transfer functions for feasibility studies.

[ascl:1305.006] Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1107.017] PRESTO: PulsaR Exploration and Search TOolkit

PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python.

Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats:

- PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)
- SPIGOT at the GBT
- Most Wideband Arecibo Pulsar Processor (WAPP) at Arecibo
- The Parkes and Jodrell Bank 1-bit filterbank formats
- Berkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)
- 8-bit filterbank format from SIGPROC (other formats will be added if required)
- A time series composed of single precision (i.e. 4-byte) floating point data
- Photon arrival times (or events) in ASCII or double-precision binary formats

[submitted] PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:1903.009] PRF: Probabilistic Random Forest

PRF (Probabilistic Random Forest) is a machine learning algorithm for noisy datasets. The PRF is a modification of the long-established Random Forest (RF) algorithm, and takes into account uncertainties in the measurements (i.e., features) as well as in the assigned classes (i.e., labels). To do so, the Probabilistic Random Forest (PRF) algorithm treats the features and labels as probability distribution functions, rather than as deterministic quantities.

[ascl:2006.002] PRIISM: Python module for Radio Interferometry Imaging with Sparse Modeling

PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.

[ascl:2006.010] PRISim: Precision Radio Interferometer Simulator

PRISim is a modular radio interferometer array simulator, including the radio sky and instrumental effects, and generates a transit dataset in HD5 format.

[ascl:1907.021] PRISM: Probabilistic Regression Instrument for Simulating Models

PRISM analyzes scientific models using the Bayes linear approach, the emulation technique, and history matching to construct an approximation ('emulator') of any given model. The software facilitates and enhances existing MCMC methods by restricting plausible regions and exploring parameter space efficiently and can be used as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific models. PRISM stores results in HDF5-files and can be executed in serial or MPI on any number of processes. It accepts any type of model and comparison data and can reduce relevant parameter space by factors over 100,000 using only a few thousand model evaluations.

[ascl:1601.020] ProC: Process Coordinator

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[submitted] prodimopy: Python tools for the radiation thermo-chemical code ProDiMo.

prodimopy is an open-source Python package to read, analyze and plot modelling results of the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel, https://prodimo.iwf.oeaw.ac.at). It also includes tools to run ProDiMo in 1D slap model mode, to run simple ProDimo model grids and to interface ProDiMo with 1D and 2D disk codes (i.e. use input structure from hydrodynamic models).

prodimopy can also be used independently of ProDiMo (no ProDiMo installation is required) and hence is also useful to extract information from already available ProDiMo models (e.g. as input for other codes) or for model comparison.

[ascl:1608.011] PROFFIT: Analysis of X-ray surface-brightness profiles

PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

[ascl:1705.010] PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1612.004] ProFit: Bayesian galaxy fitting tool

ProFit is a Bayesian galaxy fitting tool that uses the fast C++ image generation library libprofit (ascl:1612.003) and a flexible R interface to a large number of likelihood samplers. It offers a fully featured Bayesian interface to galaxy model fitting (also called profiling), using mostly the same standard inputs as other popular codes (e.g. GALFIT ascl:1104.010), but it is also able to use complex priors and a number of likelihoods.

[ascl:1204.015] PROFIT: Emission-line PROfile FITting routine

The PROFIT is an IDL routine to do automated fitting of emission-line profiles by Gaussian curves or Gauss-Hermite series optimized for use in Integral Field and Fabry-Perot data cubes. As output PROFIT gives two-dimensional FITS files for the emission-line flux distribution, centroid velocity, velocity dispersion and higher order Gauss-Hermite moments (h3 and h4).

[ascl:1804.006] ProFound: Source Extraction and Application to Modern Survey Data

ProFound detects sources in noisy images, generates segmentation maps identifying the pixels belonging to each source, and measures statistics like flux, size, and ellipticity. These inputs are key requirements of ProFit (ascl:1612.004), our galaxy profiling package; these two packages used in unison semi-automatically profile large samples of galaxies. The key novel feature introduced in ProFound is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. ProFound offers good initial parameter estimation for ProFit, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the ProFound and ProFit pipeline.

[ascl:2204.018] ProFuse: Galaxies and components modeler

ProFuse produces physical models of galaxies and their components by combining the functionalities of the source extraction code PROFOUND (ascl:1804.006), the Bayesian galaxy fitting tool ProFit (ascl:1612.004), and the spectral generation package ProSpect (ascl:2002.007). ProFuse uses a self-consistent model for the star formation and metallicity history of the bulge and disk separately to generate images. The package then defines the model likelihood and optimizes the physical galaxy reconstruction using target images across a range of wavelengths.

[ascl:1306.004] PROM4: 1D isothermal and isobaric modeler for solar prominences

PROM4 computes simple models of solar prominences which consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. PROM4 solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level populations and hydrogen line profiles. Written in Fortran 90 and with two versions available (one with text in English, one with text in French), the code needs 64-bit arithmetic for real numbers.

PROM7 (ascl:1805.023) is a more recent version of this code.

[ascl:1805.023] PROM7: 1D modeler of solar filaments or prominences

PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).

[ascl:1511.023] PromptNuFlux: Prompt atmospheric neutrino flux calculator

PromptNuFlux computes the prompt atmospheric neutrino flux E3Φ(GeV2/(cm2ssr)), including the total associated theory uncertainty, for a range of energies between E=103 GeV and E=107.5 GeV. Results are available for five different parametrizations of the input cosmic ray flux: BPL, H3P, H3A, H14a, H14b.

[ascl:2312.020] ProPane: Image warping and stacking utilities

The ProPane package comes with key utilities for warping between different WCS systems: propaneWarp (for warping individual frames once). ProPane also contains the various functions for creating large stacks of many warped frames (which is of class ProPane, which is roughly meant to suggest the idea of many panes of glass being stacked together). It uses the wcslib C library (ascl:1108.003) for projections (all legal ones are supported) via the Rwcs package, and uses the threaded Cimg C++ library via the imager library to do image warping. ProPane also contains functions converted from older (deprecated) Rwcs and ProFound (ascl:1804.006) related functions.

[ascl:1405.006] PROPER: Optical propagation routines

PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Available in IDL, Python, and Matlab, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).

[ascl:1904.025] Properimage: Image coaddition and subtraction

Properimage processes astronomical image; it is specially written for coaddition and image subtraction. It performs the statistical proper-coadd of several images using a spatially variant PSF estimation, and also difference image analysis by several strategies developed by others. Most of the code is based on a class called SingleImage, which provides methods and properties for image processing such as PSF determination.

[ascl:1306.005] PROS: Multi-mission X-ray analysis software system

PROS is a multi-mission x-ray analysis software system designed to run under IRAF. The PROS software includes spatial, spectral, timing, data I/O and conversion routines, plotting applications, and general algorithms for performing arithmetic operations with imaging data.

[ascl:2111.006] prose: FITS images processing pipeline

prose provides pipelines for performing common tasks, such as automated calibration, reduction and photometry, and makes building custom pipelines easy. The prose framework is instrument-agnostic and makes constructing pipelines easy. It offers a wide range of implemented building blocks and also allows users to define their own.

[ascl:2312.002] PROSPECT: Profile likelihood for frequentist cosmological inference

PROSPECT infers cosmological parameters using profile likelihoods. It constructs an approximate profile likelihood from an MCMC and optimizes it using simulated annealing, a gradient-free stochastic optimization algorithm. It employs an automatic tuning of the step size parameter and binned covariance matrices from the MCMC to achieve efficient optimizations of the profile likelihood.

[ascl:2002.007] ProSpect: Spectral generation package

ProSpect generates good quality SEDs that can be used to estimate the broad band photometric properties of galaxies that have known star formation and gas metallicity histories. It allows for complex star formation and metallicity histories to be specified, and can be used in a generative or fitting (Bayesian) mode. ProSpect provides a high level interface to the BC03 (low and high resolution) and EMILES libraries, as well as the Dale 2014 dust emission templates. Its source code is available for download, and it is also available as an interactive web tool.

[ascl:1905.025] Prospector: Stellar population inference from spectra and SEDs

Prospector conducts principled inference of stellar population properties from photometric and/or spectroscopic data. The code combine photometric and spectroscopic data rigorously using a flexible spectroscopic calibration model and infer high-dimensional stellar population properties using parameteric SFHs (with ensemble MCMC sampling). Prospector also constrains the linear combination of stellar population components that are present in a galaxy (e.g. non-parametric SFHs) using spectra and/or photometry, and fits individual stellar spectra using large interpolated grids.

[ascl:2001.006] Protostellar Evolution: Stellar evolution simulator

Protostellar Evolution simulates the evolution of stellar stellar radius and luminosity from the bound core stage through to the core hydrogen ignition as a zero-age main-sequence (ZAMS) star and beyond. Written in Fortran 90, the code is implemented as a module of the FLASH astrophysical fluid dynamics code (ascl:1010.082).

[ascl:2205.016] Pryngles: PlanetaRY spaNGLES

Pryngles produces visualizations of the geometric configuration of a ringed exoplanet (an exoplanet with a ring or exoring for short) and calculates the light-curve signatures produced by these kind of planets. The model behind the package has been developed in an effort to predict the signatures that exorings may produce not only in the light-curve of transiting exoplanets (a problem that has been extensively studied) but also in the light of stars having non-transiting exoplanets.

[ascl:1301.001] PSFEx: Point Spread Function Extractor

PSFEx (“PSF Extractor”) extracts models of the Point Spread Function (PSF) from FITS images processed with SExtractor and measures the quality of images. The generated PSF models can be used for model-fitting photometry or morphological analyses.

[ascl:2306.056] PSFMachine: Toolkit for doing PSF photometry

PSFMachine creates models of instrument effective Point Spread Functions (ePSFs), also called Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. PSFMachine is able to quickly derive photometry from stacks of Kepler and TESS images and separate crowded sources.

[ascl:2210.005] PSFr: Point Spread Function reconstruction

PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.

[ascl:2202.013] PSLS: PLATO Solar-like Light-curve Simulator

PSLS simulates solar-like oscillators representative of PLATO targets. It includes planetary transits, stochastically-excited oscillations, granulation and activity background components, as well as instrumental systematic errors and random noises representative for PLATO.

[ascl:1208.005] PSM: Planck Sky Model

The Planck Sky Model (PSM) is a global representation of the multi-component sky at frequencies ranging from a few GHz to a few THz. It summarizes in a synthetic way as much of our present knowledge as possible of the GHz sky. PSM is a complete and versatile set of programs and data that can be used for the simulation or the prediction of sky emission in the frequency range of typical CMB experiments, and in particular of the Planck sky mission. It was originally developed as part of the activities of Planck component separation Working Group (or "Working Group 2" - WG2), and of the ADAMIS team at APC.

PSM gives users the opportunity to investigate the model in some depth: look at its parameters, visualize its predictions for all individual components in various formats, simulate sky emission compatible with a given parameter set, and observe the modeled sky with a synthetic instrument. In particular, it makes possible the simulation of sky emission maps as could be plausibly observed by Planck or other CMB experiments that can be used as inputs for the development and testing of data processing and analysis techniques.

[ascl:1705.013] PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1010.011] PSpectRe: A Pseudo-Spectral Code for (P)reheating

PSpectRe, written in C++, uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. The code is optimized for the analysis of parametric resonance in the post-inflationary universe and provides an alternative to finite differencing codes. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. In some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code by computing the post-resonance equation of state. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions.

[ascl:1710.020] PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1105.014] PSRCHIVE: Development Library for the Analysis of Pulsar Astronomical Data

PSRCHIVE is an Open Source C++ development library for the analysis of pulsar astronomical data. It implements an extensive range of algorithms for use in pulsar timing, polarimetric calibration, single-pulse analyses, RFI mitigation, scintillation studies, etc. These tools are utilized by a powerful suite of user-end programs that come with the library.

[ascl:2110.003] PSRDADA: Distributed Acquisition and Data Analysis for Radio Astronomy

PSRDADA supports the development of distributed data acquisition and analysis systems; it provides a flexible and well-managed ring buffer in shared memory with a variety of applications for piping data from device to ring buffer and from ring buffer to device. PSRDADA allows more than one data set to be queued in the ring buffer at one time, and data may be recorded in selected bursts using data validity flags. A variety of clients have been implemented that can write data to the ring buffer and read data from it. The primary write clients can be controlled via a simple, text-based socket interface, and read client software exists for writing data to an array of disks, sending data to an array of nodes, or processing the data directly from RAM. At the highest level of control and configuration, scripts launch the PSRDADA configuration across all nodes in the cluster, monitor all relevant processes, configure and control through a web-based interface, interface with observatory scheduling tools, and manage the ownership and archival of project data. It has been used in the implementation of baseband recording and processing instrumentation for radio pulsar astronomy.

[ascl:1107.019] PSRPOP: Pulsar Population Modelling Programs

PSRPOP is a package developed to model the Galactic population and evolution of radio pulsars. It is a collection of modules written in Fortran77 for an analysis of a large sample of pulsars detected by the Parkes Multibeam Pulsar Survey. The main programs are: 1.) populate, which creates a model Galaxy of pulsars distributed according according to various assumptions; 2.) survey, which searches the model galaxies generated using populate using realistic models of pulsar surveys; and 3.) visualize, a Tk/PGPLOT script to plot various aspects of model detected pulsars from survey. A sample screenshot from visualize can be found here.

[ascl:1501.006] PsrPopPy: Pulsar Population Modelling Programs in Python

PsrPopPy is a Python implementation of the Galactic population and evolution of radio pulsars modelling code PSRPOP (ascl:1107.019).

[ascl:1812.017] psrqpy: Python module to query the ATNF Pulsar Catalogue

psrqpy directly queries the Australia Telescope National Facility (ATNF) Pulsar Catalogue by downloading and parsing the full catalog database, which is cached and can be reused. The module assists astronomers who want access to the latest pulsar information via a script rather than through the standard web interface.

[ascl:2007.007] PSRVoid: Statistical suite for folded pulsar data

PSRVoid performs RFI excision, flux calibration and timing of folded pulsar data. RFI excision is administered via both traditional and multi-layered deep learning neural network algorithms. The software offers full neural network control (over training set creation and manipulation and network parameters). PSRVoid also contains useful data miners for the ATNF, a multitude of plotting tools, as well as many useful pulsar processing macros such as space velocity simulators and Tempo2 (ascl:1210.015) wrappers.

[ascl:2210.001] PSS: Pulsar Survey Scraper

Pulsar Survey Scraper aggregates pulsar discoveries before they are included in the ATNF pulsar catalog and enables searching and filtering based on position and dispersion measure. This facilitates identifying new pulsar discoveries. Pulsar Survey Scraper can be downloaded or run online using the Pulsar Survey Scraper webform.

[ascl:2111.003] PSwarm: Global optimization solver for bound and linear constrained problems

PSwarm is a global optimization solver for bound and linear constrained problems (for which the derivatives of the objective function are unavailable, inaccurate or expensive). The algorithm combines pattern search and particle swarm. Basically, it applies a directional direct search in the poll step (coordinate search in the pure simple bounds case) and particle swarm in the search step. PSwarm makes no use of derivative information of the objective function. It has been shown to be efficient and robust for smooth and nonsmooth problems, both in serial and in parallel.

[ascl:2110.021] PT-REX: Point-to-point TRend EXtractor

PT-REX (Point-to-point TRend EXtractor) performs ptp analysis on every kind of extended radio source. The code exploits a set of different fitting methods to allow study of the spatial correlation, and is structured in a series of tasks to handle the individual steps of a ptp analysis independently, from defining a grid to sample the radio emission to accurately analyzing the data using several statistical methods. A major feature of PT-REX is the use of an automatic, randomly-generated sampling routine to combine several SMptp analysis into a Monte Carlo ptp (MCptp) analysis. By repeating several cycles of SMptp analysis with randomly-generated grids, PT-REX produces a distribution of values of k that describe its parameter space, thus allowing a reliably estimate of the trend (and its uncertainties).

[ascl:2211.001] PTAfast: PTA correlations from stochastic gravitational wave background

PTAfast calculates the overlap reduction function in Pulsar Timing Array produced by the stochastic gravitational wave background for arbitrary polarizations, propagation velocities, and pulsar distances.

[ascl:2101.006] ptemcee: A parallel-tempered version of emcee

ptemcee, pronounced "tem-cee", is fork of Daniel Foreman-Mackey's emcee (ascl:1303.002) to implement parallel tempering more robustly. As far as possible, it is designed as a drop-in replacement for emcee. It is helpful for characterizing awkward, multi-modal probability distributions.

[ascl:1912.017] PTMCMCSampler: Parallel tempering MCMC sampler package written in Python

PTMCMCSampler performs MCMC sampling using advanced techniques. The code implements a variety of proposal schemes, including adaptive Metropolis, differential evolution, and parallel tempering, which can be used together in the same run.

[ascl:2303.019] pulsar_spectra: Pulsar flux density measurements, spectral models fitting, and catalog

pulsar_spectra provides a pulsar flux density catalog and automated spectral fitting software for finding spectral models. The package can also produce publication-quality plots and allows users to add new spectral measurements to the catalog. The spectral fitting software uses robust statistical methods to determine the best-fitting model for individual pulsar spectra.

[ascl:1811.020] PulsarHunter: Searching for and confirming pulsars

Pulsarhunter searches for and confirms pulsars; it provides a set of time domain optimization tools for processing timeseries data produced by SIGPROC (ascl:1107.016). The software can natively write candidate lists for JReaper (included in the package), removing the need to manually import candidates into JReaper; JReaper also reads the PulsarHunter candidate file format.

[ascl:2312.012] PulsarX: Pulsar searching

The folding pipeline PulsarX searches for pulsars. The code includes radio frequency interference mitigation, de-dispersion, folding, and parameter optimization, and supports both psrfits and filterbank data formats. The toolset has two implementations of the folding pipelines; one uses a brute-force de-dispersion algorithm, and the other an algorithm that becomes more efficient than the brute-force de-dispersion algorithm as the number of candidates increases. PulsarX is appropriate for large-scale pulsar surveys.

[ascl:1606.013] Pulse Portraiture: Pulsar timing

Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

[ascl:1807.022] PUMA: Low-frequency radio catalog cross-matching

PUMA (Positional Update and Matching Algorithm) cross-matches low-frequency radio catalogs using a Bayesian positional probability with spectral matching criteria. The code reliably finds the correct spectral indices of sources and recovers ionospheric offsets. PUMA can be used to facilitate all-sky cross-matches with further constraints applied for other science goals.

[ascl:1110.014] pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other.

In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

[ascl:2301.027] Puri-Psi: Radio interferometric imaging

Puri-Psi addresses radio interferometric imaging problems using state-of-the-art optimization algorithms and deep learning. It performs scalable monochromatic, wide-band, and polarized imaging. It also provide joint calibration and imaging, and scalable uncertainty quantification. A scalable framework for wide-field monochromatic intensity imaging is also available, which encompasses a pure optimization algorithm, as well as an AI-based method in the form of a plug-and-play algorithm propelled by Deep Neural Network denoisers.

[ascl:1307.019] PURIFY: Tools for radio-interferometric imaging

PURIFY is a collection of routines written in C that implements different tools for radio-interferometric imaging including file handling (for both visibilities and fits files), implementation of the measurement operator and set-up of the different optimization problems used for image deconvolution. The code calls the generic Sparse OPTimization (SOPT) (ascl:1307.020) package to solve the imaging optimization problems.

[ascl:1608.010] pvextractor: Position-Velocity Diagram Extractor

Given a path defined in sky coordinates and a spectral cube, pvextractor extracts a slice of the cube along that path and along the spectral axis to produce a position-velocity or position-frequency slice. The path can be defined programmatically in pixel or world coordinates, and can also be drawn interactively using a simple GUI. Pvextractor is the main function, but also includes a few utilities related to header trimming and parsing.

[ascl:1210.026] PVS-GRMHD: Conservative GRMHD Primitive Variable Solvers

Conservative numerical schemes for general relativistic magnetohydrodynamics (GRMHD) require a method for transforming between "conserved'' variables such as momentum and energy density and "primitive" variables such as rest-mass density, internal energy, and components of the four-velocity. The forward transformation (primitive to conserved) has a closed-form solution, but the inverse transformation (conserved to primitive) requires the solution of a set of five nonlinear equations. This code performs the inversion.

[ascl:1704.001] pwkit: Astronomical utilities in Python

pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

[ascl:1806.032] pwv_kpno: Modeling atmospheric absorption

pwv_kpno provides models for the atmospheric transmission due to precipitable water vapor (PWV) at user specified sites. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column density along the line of sight. The pwv_kpno package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission between 3,000 and 12,000 Å. By default, models are provided for Kitt Peak National Observatory (KPNO). Additional locations can be added by the user for any of the hundreds of SuomiNet locations worldwide.

[ascl:2006.012] pxf_kin_err: Radial velocity and velocity dispersion uncertainties estimator

pxf_kin_err estimates the radial velocity and velocity dispersion uncertainties based solely on the shape of a template spectrum used in the fitting procedure and signal-to-noise information. This method can be used for exposure time calculators, in the design of observational programs and estimates on expected uncertainties for spectral surveys of galaxies and star clusters, and as an accurate substitute for Monte-Carlo simulations when running them for large samples of thousands of spectra is unfeasible.

[submitted] Py-PDM: A Python wrapper of the Phase Dispersion Minimization (PDM)

Phase Dispersion Minimization (PDM) is a periodical signal detection method, and it is originally implemented by Stellingwerf with C (https://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34). With the help of Cython, Py-PDM is much faster than other Python implementations.

[ascl:1808.009] py-sdm: Support Distribution Machines

py-sdm (Support Distribution Machines) is a Python implementation of nonparametric nearest-neighbor-based estimators for divergences between distributions for machine learning on sets of data rather than individual data points. It treats points of sets of data as samples from some unknown probability distribution and then statistically estimates the distance between those distributions, such as the KL divergence, the closely related Rényi divergence, L2 distance, or other similar distances.

[ascl:1712.003] Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

[ascl:1905.002] Py4CAtS: PYthon for Computational ATmospheric Spectroscopy

Py4CAtS (PYthon scripts for Computational ATmospheric Spectroscopy) implements the individual steps of an infrared or microwave radiative transfer computation in separate scripts (and corresponding functions) to extract lines of relevant molecules in the spectral range of interest, compute line-by-line cross sections for given pressure(s) and temperature(s), combine cross sections to absorption coefficients and optical depths, and integrate along the line-of-sight to transmission and radiance/intensity. The code is a Python re-implementation of the Fortran code GARLIC (Generic Atmospheric Radiation Line-by-line Code) and uses the Numeric/Scientific Python modules for computationally-intensive highly optimized array-processing. Py4CAtS can be used in the console/terminal, inside the (I)Python interpreter, and in Jupyter notebooks.

[ascl:1906.010] PyA: Python astronomy-related packages

The PyA (PyAstronomy) suite of astronomy-related packages includes a convenient fitting package that provides support for minimization and MCMC sampling, a set of astrophysical models (e.g., transit light-curve modeling), and algorithms for timing analysis such as the Lomb-Scargle and the Generalized Lomb-Scargle periodograms.

[ascl:2405.004] pyADfit: Nested sampling approach to quasi-stellar object (QSO) accretion disc fitting

pyADfit models accretion discs around astrophysical objects. The code provides functions to calculate physical quantities related to accretion disks and perform parameter estimation using observational data. The accretion disc model is the alpha-disc model while the parameter estimation can be performed with Nessai (ascl:2405.002), Raynest (ascl:2405.003), or CPnest (ascl:2205.021).

[ascl:1806.007] PyAMOR: AMmOnia data Reduction

PyAMOR models spectra of low level ammonia transitions (between (J,K)=(1,1) and (5,5)) and derives parameters such as intrinsic linewidth, optical depth, and rotation temperature. For low S/N or low spectral resolution data, the code uses cross-correlation between a model and a regridded spectrum (e.g. 10 times smaller channel width) to find the velocity, then fixes it and runs the minimization process. For high S/N data, PyAMOR runs with the velocity as a free parameter.

[ascl:1707.003] pyaneti: Multi-planet radial velocity and transit fitting

Pyaneti is a multi-planet radial velocity and transit fit software. The code uses Markov chain Monte Carlo (MCMC) methods with a Bayesian approach and a parallelized ensemble sampler algorithm in Fortran which makes the code fast. It creates posteriors, correlations, and ready-to-publish plots automatically, and handles circular and eccentric orbits. It is capable of multi-planet fitting and handles stellar limb darkening, systemic velocities for multiple instruments, and short and long cadence data, and offers additional capabilities.

[ascl:2102.028] PyAutoFit: Classy probabilistic programming

PyAutoFit supports advanced statistical methods such as massively parallel non-linear search grid-searches, chaining together model-fits and sensitivity mapping. It is a Python-based probabilistic programming language which composes and fits models using a range of Bayesian inference libraries, such as emcee (ascl:1303.002) and dynesty (ascl:1809.013). It performs model composition and customization, outputting results, model-specific visualization and posterior analysis. Built for big-data analysis, results are output as a database which can be loaded after model-fitting is complete.

[ascl:1807.003] PyAutoLens: Strong lens modeling

PyAutoLens models and analyzes galaxy-scale strong gravitational lenses. This automated module suite simultaneously models the lens galaxy's light and mass while reconstructing the extended source galaxy on an adaptive pixel-grid. Source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing PyAutoLens to cleanly deblend its light from the source. Bayesian model comparison is used to automatically chose the complexity of the light and mass models. PyAutoLens provides accurate light, mass, and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

[ascl:1502.007] PyBDSF: Python Blob Detection and Source Finder

PyBDSF (Python Blob Detector and Source Finder, formerly PyBDSM) decomposes radio interferometry images into sources and makes their properties available for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA (ascl:1107.013); PyBDSF may also be used in Python scripts.

[ascl:2104.023] PyBird: Python code for biased tracers in redshift space

PyBird evaluates the multipoles of the power spectrum of biased tracers in redshift space. In general, PyBird can evaluate the power spectrum of matter or biased tracers in real or redshift space. The code uses FFTLog (ascl:1512.017) to evaluate the one-loop power spectrum and the IR resummation. PyBird is designed for a fast evaluation of the power spectra, and can be easily inserted in a data analysis pipeline. It is a standalone tool whose input is the linear matter power spectrum which can be obtained from any Boltzmann code, such as CAMB (ascl:1102.026) or CLASS (ascl:1106.020). The Pybird output can be used in a likelihood code which can be part of the routine of a standard MCMC sampler. The design is modular and concise, such that parts of the code can be easily adapted to other case uses (e.g., power spectrum at two loops or bispectrum). PyBird can evaluate the power spectrum either given one set of EFT parameters, or independently of the EFT parameters. If the former option is faster, the latter is useful for subsampling or partial marginalization over the EFT parameters, or to Taylor expand around a fiducial cosmology for efficient parameter exploration.

Would you like to view a random code?