ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1301-1400 of 3550 (3461 ASCL, 89 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2011.008] GOTHIC: Double nuclei galaxy detector

GOTHIC (Graph-bOosTed iterated HIll Climbing) detects whether a given image of a galaxy has characteristic features of a double nuclei galaxy (DNG). Galaxy interactions and mergers play a crucial role in the hierarchical growth of structure in the universe; galaxy mergers can lead to the formation of elliptical galaxies and larger disk galaxies, as well as drive galaxy evolution through star formation and nuclear activity. During mergers, the nuclei of the individual galaxies come closer and finally form a double nuclei galaxy. Although mergers are common, the detection of double-nuclei galaxies (DNGs) is rare and fairly serendipitous. Their properties can help us understand the formation of supermassive black hole (SMBH) binaries, dual active galactic nuclei (DAGN) and the associated feedback effects. GOTHIC provides an automatic and systematic way to survey data for the discovery of double nuclei galaxies.

[ascl:1210.001] GP2PCF: Brute-force computation of 2-point correlation functions

The two-point correlation function is a simple statistic that quantifies the clustering of a given distribution of objects. In studies of the large scale structure of the Universe, it is an important tool containing information about the matter clustering and the evolution of the Universe at different cosmological epochs. A classical application of this statistic is the galaxy-galaxy correlation function to find constraints on the parameter Omega_m or the location of the baryonic acoustic oscillation peak. This calculation, however, is very expensive in terms of computer power and Graphics Processing Units provide one solution for efficient analysis of the increasingly larger galaxy surveys that are currently taking place.

GP2PCF is a public code in CUDA for performing this computation; with a single GPU board it is possible to achieve 120-fold speedups with respect to a standard implementation in C running on a single CPU. With respect to other solutions such as k-trees the improvement is of a factor of a few retaining full precision. The speedup is comparable to running in parallel in a cluster of O(100) cores.

[ascl:1512.006] GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

Internet Archive link provided for archival purposes; per its website, GPC is no longer distributed or available as of August 2020.

[ascl:2011.022] GPCAL: Instrumental polarization calibration in VLBI data

GPCAL performs instrumental polarization calibration in very long baseline interferometry (VLBI) data. It enhances the calibration accuracy by enabling users to fit the model to multiple calibrators data simultaneously and to take into account the calibrators linear polarization structures instead of using the conventional similarity assumption. GPCAL is based on AIPS (ascl:9911.003) and uses ParselTongue (ascl:1208.020) to run AIPS tasks.

[ascl:2303.006] GPCC: Gaussian process cross-correlation for time delay estimation

Gaussian Process Cross-Correlation (GPCC) uses Gaussian processes to estimate time delays for reverberation mapping (RM) of Active Galactic Nuclei (AGN). This statistically principled model delivers a posterior distribution for the delay and accounts for observational noise and the non-uniform sampling of the light curves. Written in Julia, GPCC quantifies the uncertainty and propagates it to subsequent calculations of dependent physical quantities, such as black hole masses. The code delivers out-of-sample predictions, which enables model selection, and can calculate the joint posterior delay for more than two light curves. Though written for RM, the software can also be applied to other fields where cross-correlation analysis is performed.

[ascl:2109.023] gphist: Cosmological expansion history inference using Gaussian processes

gphist performs Bayesian inference on the cosmological expansion history using Gaussian process priors. It is written in Python and includes driver programs to run inference calculations and plot the results. The code infers the cosmological expansion history using a Gaussian process prior, reads these ouputs, and performs checks to ensure they are indeed compatible. gphist then generates a single combined output file to plot expansion history inferences.

[ascl:1603.004] gPhoton: Time-tagged GALEX photon events analysis tools

Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

[ascl:1411.018] GPI Pipeline: Gemini Planet Imager Data Pipeline

The GPI data pipeline allows users to reduce and calibrate raw GPI data into spectral and polarimetric datacubes, and to apply various PSF subtraction methods to those data. Written in IDL and available in a compiled version, the software includes an integrated calibration database to manage reference files and an interactive data viewer customized for high contrast imaging that allows exploration and manipulation of data.

[ascl:2007.001] GProtation: Measuring stellar rotation periods with Gaussian processes

GProtation measures stellar rotation periods with Gaussian processes.

This code is no longer being maintained. Please consider using celerite (ascl:1709.008) or exoplanet (ascl:1910.005) instead.

[ascl:2212.006] GPry: Bayesian inference of expensive likelihoods with Gaussian processes

GPry efficiently obtains marginal quantities from computationally expensive likelihoods. It works best with smooth (continuous) likelihoods and posteriors that are slow to converge by other methods, which is dependent on the number of dimensions and expected shape of the posterior distribution. The likelihood should be low-dimensional (d<20 as a rule of thumb), though the code may still provide considerable improvements in speed in higher dimensions, despite an increase in the computational overhead of the algorithm. GPry is an alternative to samplers such as MCMC and Nested Sampling with a goal of speeding up inference in cosmology, though the software will work with any likelihood that can be called as a python function. It uses Cobaya's (ascl:1910.019) model framework so all of Cobaya's inbuilt likelihoods work, too.

[ascl:1403.001] GPU-D: Generating cosmological microlensing magnification maps

GPU-D is a GPU-accelerated implementation of the inverse ray-shooting technique used to generate cosmological microlensing magnification maps. These maps approximate the source plane magnification patterns created by an ensemble of stellar-mass compact objects within a foreground macrolens galaxy. Unlike other implementations, GPU-D solves the gravitational lens equation without any approximation. Due to the high computational intensity and high degree of parallelization inherent in the algorithm, it is ideal for brute-force implementation on GPUs. GPU-D uses CUDA for GPU acceleration and require NVIDIA devices to run.

[ascl:2404.018] GPUniverse: Quantum fields in finite dimensional Hilbert spaces modeler

GPUniverse models quantum fields in finite dimensional Hilbert spaces with Generalised Pauli Operators (GPOs) and overlapping degrees of freedom. In addition, the package can simulate sets of qubits that are only quasi independent (i.e., the Pauli algebras of different qubits have small, but non-zero anti-commutator), which is useful for validating analytical results for holographic versions of the Weyl field.

[ascl:1906.014] GPUVMEM: Maximum Entropy Method (MEM) GPU algorithm for radio astronomical image synthesis

The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. GPUVMEM presents a high performance GPU version of non-gridding MEM.

[ascl:1010.022] GR1D: Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes

GR1D is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D.

[ascl:1612.020] Grackle: Chemistry and radiative cooling library for astrophysical simulations

The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

[ascl:1010.080] GRACOS: Scalable and Load Balanced P3M Cosmological N-body Code

The GRACOS (GRAvitational COSmology) code, a parallel implementation of the particle-particle/particle-mesh (P3M) algorithm for distributed memory clusters, uses a hybrid method for both computation and domain decomposition. Long-range forces are computed using a Fourier transform gravity solver on a regular mesh; the mesh is distributed across parallel processes using a static one-dimensional slab domain decomposition. Short-range forces are computed by direct summation of close pairs; particles are distributed using a dynamic domain decomposition based on a space-filling Hilbert curve. A nearly-optimal method was devised to dynamically repartition the particle distribution so as to maintain load balance even for extremely inhomogeneous mass distributions. Tests using $800^3$ simulations on a 40-processor beowulf cluster showed good load balance and scalability up to 80 processes. There are limits on scalability imposed by communication and extreme clustering which may be removed by extending the algorithm to include adaptive mesh refinement.

[ascl:1106.008] GRAFIC-2: Multiscale Gaussian Random Fields for Cosmological Simulations

This paper describes the generation of initial conditions for numerical simulations in cosmology with multiple levels of resolution, or multiscale simulations. We present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementation and testing of a computer code package performing this refinement called GRAFIC-2.

[ascl:1011.021] GRALE: A genetic algorithm for the non-parametric inversion of strong lensing systems

We present a non-parametric technique to infer the projected-mass distribution of a gravitational lens system with multiple strong-lensed images. The technique involves a dynamic grid in the lens plane on which the mass distribution of the lens is approximated by a sum of basis functions, one per grid cell. We used the projected mass densities of Plummer spheres as basis functions. A genetic algorithm then determines the mass distribution of the lens by forcing images of a single source, projected back onto the source plane, to coincide as well as possible. Averaging several tens of solutions removes the random fluctuations that are introduced by the reproduction process of genomes in the genetic algorithm and highlights those features common to all solutions. Given the positions of the images and the redshifts of the sources and the lens, we show that the mass of a gravitational lens can be retrieved with an accuracy of a few percent and that, if the sources sufficiently cover the caustics, the mass distribution of the gravitational lens can also be reliably retrieved. A major advantage of the algorithm is that it makes full use of the information contained in the radial images, unlike methods that minimise the residuals of the lens equation, and is thus able to accurately reconstruct also the inner parts of the lens.

[ascl:1908.004] Gramsci: GRAph Made Statistics for Cosmological Information

Gramsci (GRAph Made Statistics for Cosmological Information) computes the general N-point spatial correlation functions of any discrete point set embedded within an Euclidean space of ℝ^n. It uses kd-trees and graph databases to count all possible N-tuples in binned configurations within a given length scale, e.g. all pairs of points or all triplets of points with side lengths. Gramsci can run in serial, OpenMP, MPI and hybrid parallel schemes. It is useful for performing domain decomposition of input catalogs, especially if the catalogs are large or the Rmax value is too large.

[ascl:1812.011] GRAND-HOD: GeneRalized ANd Differentiable Halo Occupation Distribution

GRAND-HOD (GeneRalized ANd Differentiable Halo Occupation Distribution) takes a generalized Halo Occupation Distribution (HOD) prescription as input and outputs the corresponding mock galaxy catalogs in binary files. The code is differentiable and incorporates various generalizations to the standard HOD. It is written for the Abacus simulations, but the main functionalities can be easily adapted for other halo catalogs with the appropriate properties.

[ascl:2010.005] GRAPUS: GRAvitational instability PopUlation Synthesis

GRAPUS (GRAvitational instability PopUlation Synthesis) executes population synthesis modeling of self-gravitating disc fragmentation and tidal downsizing in protostellar discs. It reads in pre-run 1D viscous disc models of self-gravitating discs and computes where fragmentation will occur and the initial fragment mass. GRAPUS then allows these fragment embryos to evolve under various forces, including quasistatic collapse of the embryo, growth and sedimentation of the dust inside the embryo, and the formation of solid cores. The software also evolves migration due to embryo-disc interactions and tidal disruption of the embryo, and can optionally determine gravitational interactions with neighboring embryos.

[ascl:1204.006] GRASIL: Spectral evolution of stellar systems with dust

GRASIL (which stands for GRAphite and SILicate) computes the spectral evolution of stellar systems taking into account the effects of dust, which absorbs and scatters optical and UV photons and emits in the IR-submm region. It may be used as well to do “standard” no-dust stellar spectral synthesis. The code is very well calibrated and applied to interpret galaxies at different redshifts. GRASIL can be downloaded or run online using the GALSYNTH WEB interface.

[ascl:1609.008] GRASP: General-purpose Relativistic Atomic Structure Package

GRASP (General-purpose Relativistic Atomic Structure Package) calculates atomic structure, including energy levels, radiative rates (A-values) and lifetimes; it is a fully relativistic code based on the jj coupling scheme. This code has been superseded by GRASP2K (ascl:1611.007).

[ascl:1611.007] GRASP2K: Relativistic Atomic Structure Package

GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from jj- to LSJ-coupling, and coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in LSJLSJ intermediate coupling.

[ascl:2110.011] GRASS: GRanulation and Spectrum Simulator

The Julia library GRASS produces realistic stellar spectra with time-variable granulation signatures. It is based on real observations of the Sun, and does not rely on magnetohydrodynamic simulations to produce its spectra. GRASS can also compute bisectors for absorption lines or CCF profiles, and provides two methods for calculating bisectors.

[ascl:1902.004] GraviDy: Gravitational Dynamics

GraviDy performs N-body 3D visualizations; it is a GPU, direct-summation N-body integrator based on the Hermite scheme and includes relativistic corrections for sources of gravitational radiation. The software is modular, allowing users to readily introduce new physics, and exploits available computational resources. The software can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version.

[ascl:1102.003] GRAVLENS: Computational Methods for Gravitational Lensing

Modern applications of strong gravitational lensing require the ability to use precise and varied observational data to constrain complex lens models. Two sets of computational methods for lensing calculations are discussed. The first is a new algorithm for solving the lens equation for general mass distributions. This algorithm makes it possible to apply arbitrarily complicated models to observed lenses. The second is an evaluation of techniques for using observational data including positions, fluxes, and time delays of point-like images, as well as maps of extended images, to constrain models of strong lenses. The techniques presented here are implemented in a flexible and user-friendly software package called gravlens, which is made available to the community.

[ascl:2312.009] GravSphere: Jeans modeling code

The non-parametric Jeans code GravSphere models discrete data and can be used to model dark matter distributions in galaxies. It can also recover the density ρ(r) and velocity anisotropy β(r) of spherical stellar systems, assuming only that they are in a steady state. Real or mock data are prepared by using the included binulator.py code; the repository also includes many examples for exploring the GravSphere's capabilities.

[ascl:1403.005] GRay: Massive parallel ODE integrator

GRay is a massive parallel ordinary differential equation integrator that employs the "stream processing paradigm." It is designed to efficiently integrate billions of photons in curved spacetime according to Einstein's general theory of relativity. The code is implemented in CUDA C/C++.

[ascl:2306.039] GRChombo: Numerical relativity simulator

GRChombo performs numerical relativity simulations. It uses Chombo (ascl:1202.008) for adaptive mesh refinement and can evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchies and massive parallelism and evolves the Einstein equation using the standard BSSN formalism. GRChombo is written in C++14 and uses hybrid MPI/OpenMP parallelism and vector intrinsics to achieve good performance.

[ascl:2407.007] GRDzhadzha: Evolve matter on curved spacetimes

GRDzhadzha evolves matter on curved spacetimes with an analytic time and space dependence. Written in C++14, it uses hybrid MPI/OpenMP parallelism to achieve good performance. The code is based on publicly available 3+1D numerical relativity code GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which uses the Chombo library for adaptive mesh refinement.

[submitted] Green Bank Observatory Gridder

A stand-alone spectral gridder and imager for the Green Bank Telescope, as well as functionality for any diameter telescope. Based around the cygrid package from Benjamin Winkel and Daniel Lenz

[ascl:2312.014] GRFolres: Extension to GRChombo for modified gravity simulations

GRFolres performs simulations in modified theories of gravity. It is based on GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which makes use of the Chombo library (ascl:1202.008) for adaptive mesh refinement. The code implements the 4∂ST theory of modified gravity and the cubic Horndeski theory in (3+1)-dimensional numerical relativity. GRFolres can be used for stable gauge evolution, solving the modified energy and momentum constraints for initial conditions, and monitoring the constraint violation and calculating the energy densities associated with the different scalar terms in the action. It can also extract data for the tensor and scalar gravitational waveforms.

[ascl:2305.022] GrGadget: Evolve metric perturbations in the weak field limit

GrGadget merges the Particle-Mesh (PM) relativistic GEVOLUTION code (ascl:1608.014) with the TreePM GADGET-4 code (ascl:2204.014) to create a TreePM simulation code that represents metric perturbations at the scales where they are relevant while resolving non-linear structures. The better resolution of the highly non-linear regime improves the representation of the relativistic fields sampled on the mesh with respect to PM-only simulations.

[ascl:1302.007] GRID-core: Gravitational Potential Identification of Cores

GRID-core is a core-finding method using the contours of the local gravitational potential to identify core boundaries. The GRID-core method applied to 2D surface density and 3D volume density are in good agreement for bound cores. We have implemented a version of the GRID-core algorithm in IDL, suitable for core-finding in observed maps. The required input is a two-dimensional FITS file containing a map of the column density in a region of a cloud.

[ascl:1702.012] GRIM: General Relativistic Implicit Magnetohydrodynamics

GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

[ascl:2406.024] GRINN: Gravity Informed Neural Network for studying hydrodynamical systems

GRINN (Gravity Informed Neural Network) solves the coupled set of time-dependent partial differential equations describing the evolution of self-gravitating flows in one, two, and three spatial dimensions. It is based on physics informed neural networks (PINNs), which are mesh-free and offer a fundamentally different approach to solving such partial differential equations. GRINN has solved for the evolution of self-gravitating, small-amplitude perturbations and long-wavelength perturbations and, when modeling 3D astrophysical flows, provides accuracy on par with finite difference (FD) codes with an improvement in computational speed.

[ascl:1912.013] GriSPy: Fixed-radius nearest neighbors grid search in Python

GriSPy (Grid Search in Python) uses a regular grid search algorithm for quick fixed-radius nearest-neighbor lookup. It indexes a set of k-dimensional points in a regular grid providing a fast approach for nearest neighbors queries. Optional periodic boundary conditions can be provided for each axis individually. GriSPy implements three types of queries: bubble, shell and the nth-nearest, and offers three different metrics of interest in astronomy: the Euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty. It also provides a custom distance function. GriSPy is particularly useful for large datasets where a brute-force search is not practical.

[ascl:2112.021] GRIT: Gravitational Rigid-body InTegrators for simulating coupled dynamics

GRIT (Gravitational Rigid-body InTegrators) simulaties the coupled dynamics of both spin and orbit of N gravitationally interacting rigid bodies. The code supports tidal forces and general relativity correction are supported, and multiple schemes with different orders of convergences and splitting strategies are available. Multiscale splittings boost the simulation speed, and force evaluations can be parallelized. In addition, each body can be set to be a rigid body or just a point mass, and the floating-point format can be customized as float, double, or long double globally.

[ascl:1905.001] Grizli: Grism redshift and line analysis software

Grizli produces quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. This type of analysis provides complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

[ascl:2310.012] GRIZZLY: 1D radiative transfer code

GRIZZLY simulates reionization using a 1D radiative transfer scheme. The code enables the efficient exploration of the parameter space for evaluating 21cm brightness temperature fluctuations near the cosmic dawn. GRIZZLY builds upon the BEARS algorithm for generating simulated reionization maps with density and velocity fields, which are useful for profiling dark matter halos and cosmological density fields.

[ascl:1306.002] grmonty: Relativistic radiative transport Monte Carlo code

grmonty is a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The code models hot accretion flows in the Kerr metric, it incorporates synchrotron emission and absorption and Compton scattering. grmonty can be readily generalized to account for other radiative processes and an arbitrary spacetime.

[ascl:1512.018] growl: Growth factor and growth rate of expanding universes

Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

[ascl:1605.013] grtrans: Polarized general relativistic radiative transfer via ray tracing

grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).

[ascl:2209.009] GRUMPY: Galaxy formation with RegUlator Model in PYthon

GRUMPY (Galaxy formation with RegUlator Model in PYthon) models the formation of dwarf galaxies. When coupled with realistic mass accretion histories of halos from simulations and reasonable choices for model parameter values, this simple regulator-type framework reproduces a broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. GRUMPY matches observational constraints on the stellar mass--halo mass relation and observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate. It also models the general form and diversity of star formation histories (SFHs) of observed dwarf galaxies. The software can be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colors, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies.

[ascl:1503.009] GSD: Global Section Datafile access library

The GSD library reads data written in the James Clerk Maxwell Telescope GSD format. This format uses the General Single-Dish Data model and was used at the JCMT until 2005. The library provides an API to open GSD files and read their contents. The content of the data files is self-describing and the library can return the type and name of any component. The library is used by SPECX (ascl:1310.008), JCMTDR (ascl:1406.019) and COADD (ascl:1411.020). The SMURF (ascl:1310.007) package can convert GSD heterodyne data files to ACSIS format using this library.

[ascl:1806.008] gsf: galactic structure finder

gsf applies Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. The gsf analysis package assumes that the simulation snapshot has been pre-processed with a halo finder. It is based on pynbody (ascl:1305.002) and the scikit-learnpython package for Machine Learning; after loading, orienting, and transforming a simulation snapshot to physical units, it runs the clustering algorithm and performs the direct N-body gravity force using all the particles in the given halo.

[ascl:2211.012] gsf: Grism SED Fitting package

gsf fits photometric data points, simultaneously with grism spectra if provided, to get posterior probability of galaxy physical properties, such as stellar mass, dust attenuation, metallicity, as well as star formation and metallicity enrichment histories. Designed for extra-galactic science, this flexible, python-based SED fitting code involves a Markov-Chain Monte-Carlo (MCMC) process, and may take more time (depending on the number of parameters and length of MCMC chains) than other SED fitting codes based on chi-square minimization.

[ascl:1610.005] GSGS: In-Focus Phase Retrieval Using Non-Redundant Mask Data

GSGS does phase retrieval on images given an estimate of the pupil phase (from a non-redundant mask or other interferometric approach), the pupil geometry, and the in-focus image. The code uses a modified Gerchberg-Saxton algorithm that iterates between pupil plane and image plane to measure the pupil phase.

[ascl:2010.002] GSpec: Gamma-ray Burst Monitor analyzer

GSpec analyzes the Fermi mission's Gamma-ray Burst Monitor (GBM) data via a user-interactive GUI. The software provides a seamless interface to XSPEC (ascl:9910.005). It allows users to create their own Python scripts using the included libraries, and to define additional data reduction techniques, such as background fitting/estimation and data binning, as Python-based plugins. It is part of a larger effort to produce a set of GBM data tools to allow the broader community to analyze all aspects of GBM data, including the continuous data that GBM produces. GSpec is similar to RMfit (ascl:1409.011), a GUI-based spectral analysis code that specializes in the analysis of GBM trigger data, and is intended to eventually replace that IDL package.

[ascl:2208.021] GSSP: Grid Search in Stellar Parameters

GSSP (Grid Search in Stellar Parameters) is based on a grid search in the fundamental atmospheric parameters and (optionally) individual chemical abundances of the star (or binary stellar components) in question. It uses atmosphere models and spectrum synthesis, which assumes a comparison of the observations with each theoretical spectrum from the grid. The code can optimize five stellar parameters at a time (effective temperature, surface gravity, metallicity, microturbulent velocity, and projected rotational velocity of the star) and synthetic spectra can be computed in any number of wavelength ranges. GSSP builds the grid of theoretical spectra from all possible combinations of the above mentioned parameters, and delivers the set of best fit parameters, the corresponding synthetic spectrum, and the ASCII file containing the individual parameter values for all grid points and the corresponding chi-square values.

[ascl:2208.020] GStokes: Magnetic field structure and line profiles calculator

GStokes performs simple multipolar fits to circular polarization data to provide information about the field strength and geometry. It provides forward calculation of the disc-integrated Stokes parameter profiles as well as magnetic inversions under several widely used simplifying approximations of the polarized line formation. GStokes implements the Unno–Rachkovsky analytical solution of the polarized radiative transfer equation and the weak-field approximation with the Gaussian local profiles. The magnetic field geometry is described with one of the common low-order multipolar field parametrizations. Written in IDL, GStokes provides a user-friendly graphical front-end.

[ascl:2307.034] Guacho: 3D uniform mesh parallel HD/MHD code for astrophysics

Guacho is a 3D hydrodynamical/magnetohydrodynamical code suited for astrophysical fluids. The hydrodynamic equations are evolved with a number of approximate Riemann solvers. Gaucho includes various modules to deal with different cooling regimes, and a radiation transfer module based on a Monte Carlo ray tracing method. The code can run sequentially or in parallel with MPI.

[ascl:2107.013] GUBAS: General Use Binary Asteroid Simulator

GUBAS (General Use Binary Asteroid Simulator) predicts binary asteroid system behaviors by implementing the Hou 2016 realization of the full two-body problem (F2BP). The F2BP models binary asteroid systems as two arbitrary mass distributions whose mass elements interact gravitationally and result in both gravity forces and torques. To account for these mass distributions and model the mutual gravity of the F2BP, GUBAS computes the inertia integrals of each body up to a user defined expansion order. This approach provides a recursive expression of the mutual gravity potential and represents a significant decrease in the computational burden of the F2BP when compared to other methods of representing the mutual potential.

[ascl:2305.016] gw_pta_emulator: Gravitational Waves via Pulsar Timing Arrays

The gw_pta_emulator reads in gravitational wave (GW) characteristic strain spectra from black-hole population simulations, re-bins for the user's observing baseline, and constructs new spectra. The user can train a Gaussian process to emulate the spectral behavior at all frequencies across the astrophysical parameter space of supermassive black-hole binary environments.

[ascl:2307.047] GWDALI: Gravitational wave parameter estimation

GWDALI focuses on parameter estimations of gravitational waves generated by compact object coalescence (CBC). This software employs both Gaussian (Fisher Matrix) and Beyond-Gaussian methods to approximate the likelihood of gravitational wave events. GWDALI also addresses the challenges posed by Fisher Matrices with zero determinants. Additionally, the Beyond-Gaussian approach incorporates the Derivative Approximation for Likelihoods (DALI) algorithm, enabling a more reliable estimation process.

[ascl:2207.032] gwdet: Detectability of gravitational-wave signals from compact binary coalescences

gwdet computes the probability of detecting a gravitational-wave signal from compact binaries averaging over sky-location and source inclination. The code has two classes, averageangles and detectability. averageangles computes the detection probability, averaged over all angles (such as sky location, polarization, and inclination), as a function of the projection parameter. detectability computes the detection probability of a non-spinning compact binary.

[ascl:2002.013] GWecc: Calculator for pulsar timing array signals due to eccentric supermassive binaries

GWecc computes the pulsar timing array (PTA) signals induced by eccentric supermassive binaries. Written in C++, it computes the plus/cross polarizations as well as Earth and pulsar terms of the PTA signal given the binary parameters and the sky locations of the binary and the pulsar. A python wrapper is included through which GWecc can be used to simulate, search for and constrain gravitational wave-emitting eccentric supermassive binaries using packages such as ENTERPRISE (ascl:1912.015) and libstempo (ascl:2002.017).

[ascl:2212.001] GWFAST: Fisher information matrix python package for gravitational-wave detectors

GWFAST forecasts the signal-to-noise ratios and parameter estimation capabilities of networks of gravitational-wave detectors, based on the Fisher information matrix approximation. It is designed for applications to third-generation gravitational-wave detectors. It is based on Automatic Differentiation, which makes use of the library JAX (ascl:2111.002). This allows efficient parallelization and numerical accuracy. The code includes a module for parallel computation on clusters.

[ascl:1701.011] GWFrames: Manipulate gravitational waveforms

GWFrames eliminates all rotational behavior, thus simplifying the waveform as much as possible and allowing direct generalizations of methods for analyzing nonprecessing systems. In the process, the angular velocity of a waveform is introduced, which also has important uses, such as supplying a partial solution to an important inverse problem.

This code is no longer maintained; much of its functionality has been moved to scri (ascl:2303.011) or to sxs.

[ascl:1912.016] GWpy: Python package for studying data from gravitational-wave detectors

The Python package GWpy analyzes and characterizes gravitational wave data. It provides a user-friendly, intuitive interface to the common time-domain and frequency-domain data produced by the LIGO and Virgo observatories and their analyses. The core Python infrastructure is influenced by, and extends the functionality of, the Astropy (ascl:1304.002) package, and its methodology has been derived from, and augmented by, the LIGO Algorithm Library Suite (LALSuite), a large collection of primarily C99 routines for analysis and manipulation of data from gravitational-wave detectors. These packages use the SWIG program to produce Python wrappings for all C modules, allowing the GWpy package to leverage both the completeness, and the speed, of these libraries.

[ascl:2309.004] GWSim: Mock gravitational waves event generator

GWSim generates mock gravitational waves (GW) events corresponding to different binary black holes (BBHs) population models. It can incorporate scenarios of GW mass models, GW spin distributions, the merger rate, and the cosmological parameters. GWSim generates samples of binary compact objects for a fixed amount of observation time, duty cycle, and configurations of the detector network; the universe created by the code is uniform in comobile volume.

[ascl:2305.018] GWSurrogate: Gravitational wave surrogate models

GWSurrogate provides an easy to use interface to gravitational wave surrogate models. Surrogates provide a fast and accurate evaluation mechanism for gravitational waveforms which would otherwise be found through solving differential equations. These equations must be solved in the “building” phase, which was performed using other codes.

[ascl:2111.018] GWToolbox: Gravitational wave observation simulator

GWToolbox simulates gravitational wave observations for various detectors. The package is composed of three modules, namely the ground-based detectors (and their targets), the space-borne detectors (and their targets) and pulsar timing arrays (PTA). These three modules work independently and have different dependencies on other packages and libraries; failed dependencies met in one module will not influence the usage of another module. GWToolbox can accessed with a web interface (gw-universe.org) or as a python package (https://bitbucket.org/radboudradiolab/gwtoolbox).

[ascl:1203.005] Gyoto: General relativitY Orbit Tracer of Observatoire de Paris

GYOTO, a general relativistic ray-tracing code, aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.

[ascl:1308.010] GYRE: Stellar oscillation code

GYRE is an oscillation code that solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes. The code is accurate (up to 6th order in the number of grid points), robust, and makes efficient use of multiple processor cores and/or nodes.

[ascl:1402.031] gyrfalcON: N-body code

gyrfalcON (GalaxY simulatoR using falcON) is a full-fledged N-body code using Dehnen’s force algorithm of complexity O(N) (falcON); this algorithm is approximately 10 times faster than an optimally coded tree code. The code features individual adaptive time steps and individual (but fixed) softening lengths. gyrfalcON is included in and requires NEMO (ascl:1010.051) to run.

[ascl:2307.026] gyrointerp: Gyrochronology via interpolation of open cluster rotation sequences

gyrointerp calculates gyrochronal ages by interpolating between open cluster rotation sequences. The framework, written in Python, can be used to find the gyrochronological age posterior of single or many stars. It can also produce a visual interpolation for a star’s age to determine where the star falls in the rotation-temperature plane in comparison to known reference clusters. gyrointerp models the ensemble evolution of rotation periods for main-sequence stars with temperatures of 3800-6200 K (masses of 0.5-1.2 solar) and is not applicable for subgiant or giant stars, and should be used cautiously with binary stars, as they can observationally bias temperature and rotation period measurements.

[ascl:2211.015] H-FISTA: Phase retrieval for pulsar spectroscopy

H-FISTA (Hierarchical Fast Iterative Shrinkage Thresholding Algorithm) retrieves the phases of the wavefield from intensity measurements for pulsar spectroscopy. The code accepts input data in ASCII format as produced by PSRchive's (ascl:1105.014) psrflux function, a FITS file, or a pickle. If using a notebook, any custom reader can be used as long as the data ends up in a NumPy array. H-FISTA obtains sparse models of the wavefield in a hierarchical approach with progressively increasing depth. Once the tail of the noise distribution is reached, the hierarchy terminates with a final unregularized optimization, resulting in a fully dense model of the complex wavefield that permits the discovery of faint signals by appropriate averaging.

[ascl:1909.005] HADES: Hexadecapolar Analysis for Dust Estimation in Simulations (of CMB B-mode thermal dust emission)

HADES analyzse dust levels in simulated CMB galactic dust maps with realistic experimental noise and lensing configurations. It allows detection of dust via its anisotropy properties in CMB B-modes. It also includes techniques for computing null-tests and a rudimentary technique for dedusting.

[ascl:2306.001] HAFFET: Supernovae photometric and spectroscopic data analyzer

HAFFET (Hybrid Analytic Flux FittEr for Transients) analyzes supernovae photometric and spectroscopic data. It handles observational data for a set of targets, estimates their physical parameters, and visualizes the population of inferred parameters. HAFFET defines two classes, snobject for data and fittings for one specific object, and snelist to organize the overall running for a list of objects. The HAFFET package includes utilities for downloading SN data from online sources, intepolating multi band lightcurves, characterizing the first light and rising of SNe with power law fits, and matching epochs of different bands. It can also calculate colors, and/or construct the spectral energy distribution (SED), estimate bolometric LCs and host galaxy extinction, fit the constructed bolometric lightcurves to different models, and identify and fit the absorption minima of spectral lines, in addition to performing other tasks. In addition to utilizing the built-in models, users can add their own models or import models from other python packages.

[ascl:2002.014] HaloAnalysis: Read and analyze halo catalogs and merger trees

HaloAnalysis reads and analyzes halo/galaxy catalogs, generated from Rockstar (ascl:1210.008) or AHF (ascl:1102.009), and merger trees generated from Consistent Trees (ascl:1210.011). Written in Python, it offers the following functionalities: reads halo/galaxy/tree catalogs from multiple file formats; assigns baryonic particles and galaxy properties to dark-matter halos; combines and re-generates halo/galaxy/tree files in hdf5 format; analyzes properties of halos/galaxies; and selects halos to generate zoom-in initial conditions. The code includes a tutorial in the form of a Jupyter notebook.

[ascl:1402.032] HALOFIT: Nonlinear distribution of cosmological mass and galaxies

HALOFIT provides an explanatory framework for galaxy bias and clustering and has been incorporated into CMB packages such as CMBFAST (ascl:9909.004) and CAMB (ascl:1102.026). It attains a reasonable level of precision, though the halo model does not match N-body data perfectly. The code is written in Fortran 77. HALOFIT tends to underpredict the power on the smallest scales in standard LCDM universes (although HALOFIT was designed to work for a much wider range of power spectra); its accuracy can be improved by using a supplied correction.

[ascl:1010.053] Halofitting codes for DGP and Degravitation

We perform N-body simulations of theories with infinite-volume extra dimensions, such as the Dvali-Gabadadze-Porrati (DGP) model and its higher-dimensional generalizations, where 4D gravity is mediated by massive gravitons. The longitudinal mode of these gravitons mediates an extra scalar force, which we model as a density-dependent modification to the Poisson equation. This enhances gravitational clustering, particularly on scales that have undergone mild nonlinear processing. While the standard non-linear fitting algorithm of Smith et al. overestimates this power enhancement on non-linear scales, we present a modified fitting formula that offers a remarkably good fit to our power spectra. Due to the uncertainty in galaxy bias, our results are consistent with precision power spectrum determinations from galaxy redshift surveys, even for graviton Compton wavelengths as small as 300 Mpc. Our model is sufficiently general that we expect it to capture the phenomenology of a wide class of related higher-dimensional gravity scenarios.

[ascl:1505.017] HALOGEN: Approximate synthetic halo catalog generator

HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

[ascl:2011.009] HaloGen: Modular halo model code

HaloGen computes all auto and cross spectra and halo model trispectrum in simple configurations. This modular halo model code computes 3d power spectra, and the corresponding projected 2d power spectra in the Limber and flat sky approximations. The observables include matter density, galaxy lensing, CMB lensing, thermal Sunyaev-Zel'dovich, cosmic infrared background, tracers with any dn/dz, b(z) and HOD.

[ascl:1407.020] Halogen: Multimass spherical structure models for N-body simulations

Halogen, written in C, generates multimass spherically symmetric initial conditions for N-body simulations. A large family of radial density profiles is supported. The initial conditions are sampled from the full distribution function.

[ascl:2303.020] HaloGraphNet: Predict halo masses from simulations

HaloGraphNet predicts halo masses from simulations using Graph Neural Networks. Given a dark matter halo and its galaxies, this software creates a graph with information about the 3D position, stellar mass and other properties. It then trains a Graph Neural Network to predict the mass of the host halo. Data are taken from the CAMELS hydrodynamic simulations.

[ascl:2009.016] halomod: Flexible interface for the halo model of dark matter halos

halomod calculates cosmological halo model and HOD quantities. It is built on HMF (ascl:1412.006); it retains that code's features and provides extended components for the halo model, including numerous halo bias models, including scale-dependent bias, basic concentration-mass-redshift relations, and several plug-and-play halo-exclusion models. halomod includes built-in HOD parameterizations and halo profiles, support for WDM models, and all basic quantities such as 3D correlations and power spectra, and also several derived quantities such as effective bias and satellite fraction. In addition, it offers a simple routine for populating a halo catalog with galaxies via a HOD. halomod is flexible and modular, making it easily extendable.

[ascl:1604.005] Halotools: Galaxy-Halo connection models

Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

[ascl:1210.022] HAM2D: 2D Shearing Box Model

HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.

[ascl:1201.014] Hammurabi: Simulating polarized Galactic synchrotron emission

The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

[ascl:2112.022] hankl: Python implementation of the FFTLog algorithm for cosmology

hankl implements the FFTLog algorithm in lightweight Python code. The FFTLog algorithm can be thought of as the Fast Fourier Transform (FFT) of a logarithmically spaced periodic sequence (= Hankel Transform). hankl consists of two modules, the General FFTLog module and the Cosmology one. The latter is suited for modern cosmological application and relies heavily on the former to perform the Hankel transforms. The accuracy of the method usually improves as the range of integration is enlarged; FFTlog prefers an interval that spans many orders of magnitude. Resolution is important, as low resolution introduces sharp features which in turn causes ringing.

[ascl:1905.009] HAOS-DIPER: HAO Spectral Diagnostic Package For Emitted Radiation

HAOS-DIPER works with and manipulates data for neutral atoms and atomic ions to understand radiation emitted by some space plasmas, notably the solar atmosphere and stellar atmospheres. HAOS-DIPER works with quantum numbers for atomic levels, enabling it to perform tasks otherwise difficult or very tedious, including a variety of data checks, calculations based upon the atomic numbers, and searching and manipulating data based upon these quantum numbers. HAOS-DIPER handles conditions from LTE to coronal-like conditions, in a manner controlled by one system variable !REGIME, and has some capability for estimating data for which no accurate parameters are available and for accounting for the effects of missing atomic levels.

[ascl:2102.010] hardCORE: Exoplanet core radius fractions calculator

hardCORE calculates the minimum, maximum, and marginal core radius fractions (CRFmin, CRFmax, CRFmarg) for a solid exoplanet using only its mass and radius. Written in Python, the code is an efficient tool that is extremely fast to execute and perform inversions.

[ascl:1209.005] HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

HARM uses a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, & van Leer scheme. A variant of constrained transport, proposed earlier by Tóth, is used to maintain a divergence-free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. On smooth flows HARM converges at second order.

[ascl:2009.022] Harmonia: Hybrid-basis inference for large-scale galaxy clustering

Harmonia combines clustering statistics decomposed in spherical and Cartesian Fourier bases for large-scale galaxy clustering likelihood analysis. Optimal weighting schemes for spherical Fourier analysis can also be readily implemented using the code.

[ascl:2401.009] Harmonic: Learnt harmonic mean estimator

harmonic learns an approximate harmonic mean estimator (referred to as a "learnt harmonic mean estimator") from posterior distribution samples to compute the marginal likelihood required for Bayesian model selection. Using a large number of independent Markov chain Monte Carlo (MCMC) chains from another package such as emcee (ascl:1303.002), harmonic uses importance sampling to learn a new target distribution in order to optimize an approximate harmonic estimator while minimizing its variance.

[ascl:1306.003] Harmony: Synchrotron Emission Coefficients

Harmony is a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function.

[ascl:1912.014] HARMPI: 3D massively parallel general relativictic MHD code

HARMPI is a parallel, 3D version of HARM (ascl:1209.005), which solves hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. The code is parallelized using MPI and is fully operational in 3D. HARMPI, like HARM, is capable of using non-uniform grids and solves the relativistic magnetohydrodynamic equations of motion on a stationary black hole spacetime in Kerr-Schild coordinates to evolve an accretion disk model.

[ascl:2302.008] HawkingNet: Finding Hawking points in the Cosmic Microwave Background

HawkingNet searches for Hawking points in large Cosmic Microwave Background (CMB) data sets. It is based on the deep residual network ResNet18 and consists of eighteen neural layers. Written in Paython, HawkingNet inputs the CMB data, processes the data through its internal network trained for data classification, and outputs the result in a form of a classification score that indicates how confident it is that a Hawking point is contained in the image patch.

[ascl:2307.046] HAYASHI: Halo-level AnalYsis of the Absorption Signal in HI

HAYASHI (Halo-level AnalYsis of the Absorption Signal in HI) computes the number of absorption features of the 21cm forest using a semianalytic formalism. It includes the enhancement of the signal due to the presence of substructures within minihalos and supports non-standard cosmologies with impact in the large scale structure, such as warm dark matter and primordial black holes. HAYASHI is written in Python3 and uses the cosmological computations package Colossus (ascl:1501.016).

[ascl:1109.004] HAZEL: HAnle and ZEeman Light

A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. HAZEL is a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 1083.0 nm and 587.6 nm (or D3) multiplets. It is based on the quantum theory of spectral line polarization, which takes into account in a rigorous way all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, level crossings and repulsions, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods.

[ascl:2212.009] Hazma: Compute indirect detection constraints on sub-GeV dark matter

Hazma enables indirect detection of sub-GeV dark matter. It computes gamma-ray and electron/positron spectra from dark matter annihilations, sets limits on sub-GeV dark matter using existing gamma-ray data, and determines the discovery reach of future gamma-ray detectors. The code also derives accurate CMB constraints. Hazma comes with several sub-GeV dark matter models, for which it provides functions to compute dark matter annihilation cross sections and mediator decay widths. A variety of low-level tools are provided to make it straightforward to define new models.

[ascl:1711.022] HBT: Hierarchical Bound-Tracing

HBT is a Hierarchical Bound-Tracing subhalo finder and merger tree builder, for numerical simulations in cosmology. It tracks haloes from birth and continues to track them after mergers, finding self-bound structures as subhaloes and recording their merger histories as merger trees.

[ascl:1711.023] HBT+: Subhalo finder and merger tree builder

HBT+ is a hybrid subhalo finder and merger tree builder for cosmological simulations. It comes as an MPI edition that can be run on distributed clusters or shared memory machines and is MPI/OpenMP parallelized, and also as an OpenMP edition that can be run on shared memory machines and is only OpenMP parallelized. This version is more memory efficient than the MPI branch on shared memory machines, and is more suitable for analyzing zoomed-in simulations that are difficult to balance on distributed clusters. Both editions support hydro simulations with gas/stars.

[ascl:2012.023] HCGrid: Mapping non-uniform radio astronomy data onto a uniformly distributed grid

HCGrid maps non-uniform radio astronomy data onto a uniformly distributed grid using a convolution-based algorithm on CPU-GPU heterogeneous platforms. The package has three modules; the initialization module initializes parameters needed for the calculation process, such as setting the size of the sampling space and output resolution. The gridding module uses a parallel ordering algorithm to pre-order the sampling points based on HEALPix on the CPU platform and uses an efficient two-level lookup table to speed up the acquisition of sampling points; it then accelerates convolution by using the high parallelism of GPU and through related performance optimization strategies based on CUDA architecture to further improve the gridding performance. The third module processes the results; it visualizes the gridding and exports the final products as FITS files.

[ascl:2302.026] HDMSpectra: Dark Matter Spectra from the electroweak to the Planck scale

HDMSpectra computes the decay spectrum for dark matter with masses above the scale of electroweak symmetry breaking, down to Planck scale and including all relevant electroweak interactions. The code determines the distribution of stable states for photons, neutrinos, positrons, and antiprotons.

[ascl:1502.009] HDS: Hierarchical Data System

The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).

HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

[ascl:2301.004] HEADSS: HiErArchical Data Splitting and Stitching for non-distributed clustering algorithms

HEADSS (HiErArchical Data Splitting and Stitching) facilitates clustering at scale, unlike clustering algorithms that scale poorly with increased data volume or that are intrinsically non-distributed. HEADSS automates data splitting and stitching, allowing repeatable handling, and removal, of edge effects. Implemented in conjunction with scikit's HDBSCAN, the code achieves orders of magnitude reduction in single node memory requirements for both non-distributed and distributed implementations, with the latter offering similar order of magnitude reductions in total run times while recovering analogous accuracy. HEADSS also establishes a hierarchy of features by using a subset of clustering features to split the data.

Would you like to view a random code?