ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 1401-1500 of 3556 (3462 ASCL, 94 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1502.009] HDS: Hierarchical Data System

The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).

HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

[ascl:2301.004] HEADSS: HiErArchical Data Splitting and Stitching for non-distributed clustering algorithms

HEADSS (HiErArchical Data Splitting and Stitching) facilitates clustering at scale, unlike clustering algorithms that scale poorly with increased data volume or that are intrinsically non-distributed. HEADSS automates data splitting and stitching, allowing repeatable handling, and removal, of edge effects. Implemented in conjunction with scikit's HDBSCAN, the code achieves orders of magnitude reduction in single node memory requirements for both non-distributed and distributed implementations, with the latter offering similar order of magnitude reductions in total run times while recovering analogous accuracy. HEADSS also establishes a hierarchy of features by using a subset of clustering features to split the data.

[ascl:1107.018] HEALPix: Hierarchical Equal Area isoLatitude Pixelization of a sphere

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere. As suggested in the name, this pixelization produces a subdivision of a spherical surface in which each pixel covers the same surface area as every other pixel. Another property of the HEALPix grid is that the pixel centers occur on a discrete number of rings of constant latitude, the number of constant-latitude rings is dependent on the resolution of the HEALPix grid.

[ascl:2109.028] Healpix.jl: Julia-only port of the HEALPix library

Healpix.jl is a Julia-only port of the C/C++/Fortran/Python HEALPix library (ascl:1107.018), which implements a hierarchical pixelization of the sphere in equal-area pixels. Much like the original library, Healpix.jl supports two enumeration schemes for the pixels (RING and NESTED) and implements an optimized computation of the generalized Fourier transform using spherical harmonics, binding libsharp2 (ascl:1402.033). In addition, Healpix.jl provides four additional features: 1.) it fully supports Windows systems, alongside the usual Linux and MAC OS X machines; 2.) it uses Julia's strong typesystem to prevent several bugs related to mismatches in map ordering (e.g., combining a RING map with a NESTED map); 3.) it uses a versatile memory layout so that map bytes can be stored in shared memory objects or on GPUs; and 4.) it implements an elegant and general way to signal missing values in maps.

[ascl:2008.022] healpy: Python wrapper for HEALPix

healpy handles pixelated data on the sphere. It is based on the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme and bundles the HEALPix (ascl:1107.018) C++ library. healpy provides utilities to convert between sky coordinates and pixel indices in HEALPix nested and ring schemes and find pixels within a disk, a polygon or a strip in the sky. It can apply coordinate transformations between Galactic, Ecliptic and Equatorial reference frames, apply custom rotations either to vectors or full maps, and read and write HEALPix maps to disk in FITS format. healpy also includes utilities to upgrade and downgrade the resolution of existing HEALPix maps and transform maps to Spherical Harmonics space and back using multi-threaded C++ routines, among other utilities.

[ascl:1907.002] healvis: Radio interferometric visibility simulator based on HEALpix maps

Healvis simulates radio interferometric visibility off of HEALPix shells. It generates a flat-spectrum and a GSM model and computes visibilities, and can simulates visibilities given an Observation Parameter YAML file. Healvis can perform partial frequency simulations in serial to minimize instantaneous memory loads.

[ascl:2006.001] HEARSAY: Simulations for the probability of alien contact

HEARSAY computes simulations of the causal contacts between emitters in the Galaxy. It implements the Stochastic Constrained Causal Contact Network (SC3Net) model and explores the parameter space of the model for the emergence of communicating nodes through Monte Carlo simulations and analyzes their causal connections. This model for the abundance and duration of civilizations is based on minimal assumptions and three free parameters, with focus on the statistical properties of empirical models instead of an interpretable model with variables to be determined by observation.

[ascl:1408.004] HEAsoft: Unified Release of FTOOLS and XANADU

HEASOFT combines XANADU, high-level, multi-mission software for X-ray astronomical spectral, timing, and imaging data analysis tasks, and FTOOLS (ascl:9912.002), general and mission-specific software to manipulate FITS files, into one package. It also contains contains the NuSTAR subpackage of tasks, NuSTAR Data Analysis Software (NuSTARDAS). The source code for the software can be downloaded; precompiled executables for the most widely used computer platforms are also available for download. As an additional service, HEAsoft tasks can be directly from a web browser via WebHera.

[ascl:1506.009] HEATCVB: Coronal heating rate approximations

HEATCVB is a stand-alone Fortran 77 subroutine that estimates the local volumetric coronal heating rate with four required inputs: the radial distance r, the wind speed u, the mass density ρ, and the magnetic field strength |B0|. The primary output is the heating rate Qturb at the location defined by the input parameters. HEATCVB also computes the local turbulent dissipation rate of the waves, γ = Qturb/(2UA).

[ascl:1911.008] HeatingRate: Radioactive heating rate and macronova (kilonova) light curve

HeatingRate calculates the nuclear heating rates [erg/s/g] of beta-decay, alpha-decay, and spontaneous fission of r-process nuclei, taking into account for thermalization of gamma-rays and charged decay products in r-process ejecta. It uses the half-lives and injection energy spectra from an evaluated nuclear data library (ENDF/B-VII.1). Each heating rate is computed for given abundances, ejecta mass, velocity, and density profile. HeatingRate also computes the bolometric light curve and the evolution of the effective temperature for given abundances, ejecta mass, velocity, and density profile assuming opacities independent of the wavelength.

[ascl:2407.016] Heimdall: GPU accelerated transient detection pipeline for radio astronomy

Heimdall uses direct, tree, and sub-band dedispersion algorithms on massively parallel computing architectures (GPUs) to speed up real-time detection of radio pulsar and other transient events.

[ascl:2307.056] HELA: Random Forest retrieval for exoplanet atmospheres

HELA performs atmospheric retrieval on exoplanet atmospheres using a Random Forest algorithm. The code has two stages: training (which includes testing), and predicting. It requires a training set that matches the format of the data to be analyzed, with the same number of points and a sample spectrum for each parameter. The number of trees used and the number of jobs are editable. The HELA package includes a training set and data as examples.

[ascl:1903.017] HelioPy: Heliospheric and planetary physics library

HelioPy provides a set of tools to download and read in data, and carry out other common data processing tasks for heliospheric and planetary physics. It handles a wide variety of solar and satellite data and builds upon the SpiceyPy package (ascl:1903.016) to provide an accessible interface for performing orbital calculations. It has also implemented a framework to perform transformations between some common coordinate systems.

[ascl:1503.004] HELIOS-K: Opacity Calculator for Radiative Transfer

HELIOS-K is an opacity calculator for exoplanetary atmospheres. It takes a line list as an input and computes the line shapes of an arbitrary number of spectral lines (~millions to billions). HELIOS-K is capable of computing 100,000 spectral lines in 1 second; it is written in CUDA, is optimized for graphics processing units (GPUs), and can be used with the HELIOS radiative transfer code (ascl:1807.009).

[ascl:2207.010] Helios-r2: Bayesian nested-sampling retrieval code

Helios-r2 performs atmospheric retrieval of brown dwarf and exoplanet spectra. It uses a Bayesian statistics approach by employing a nested sampling method to generate posterior distributions and calculate the Bayesian evidence. The nested sampling itself is done by Multinest (ascl:1109.006). The computationally most demanding parts of the model have been written in NVIDIA's CUDA language for an increase in computational speed. Successful applications include retrieval of brown dwarf emission spectra and secondary eclipse measurements of exoplanets.

[ascl:1807.009] HELIOS: Radiative transfer code for exoplanetary atmospheres

HELIOS, a radiative transfer code, is constructed for studying exoplanetary atmospheres. The model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. Though HELIOS can be used alone, the opacity calculator HELIOS-K (ascl:1503.004) can be used with it to provide the molecular opacities.

[ascl:1805.019] HENDRICS: High ENergy Data Reduction Interface from the Command Shell

HENDRICS, a rewrite and update to MaLTPyNT (ascl:1502.021), contains command-line scripts based on Stingray (ascl:1608.001) to perform a quick-look (spectral-)timing analysis of X-ray data, treating the gaps in the data due, e.g., to occultation from the Earth or passages through the SAA, properly. Despite its original main focus on NuSTAR, HENDRICS can perform standard aperiodic timing analysis on X-ray data from, in principle, any other satellite, and its features include power density and cross spectra, time lags, pulsar searches with the Epoch folding and the Z_n^2 statistics, color-color and color-intensity diagrams. The periodograms produced by HENDRICS (such as a power density spectrum or a cospectrum) can be saved in a format compatible with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002).

[ascl:2104.001] hera_opm: The HERA Online Processing Module

The hera_opm package provides a convenient and flexible framework for developing data analysis pipelines for operating on a sequence of input files. Though developed for application to the Hydrogen Epoch of Reionization Array (HERA), it is a general package that can be applied to any workflow designed to apply a series of analysis steps to any type of files. It is also portable, operating both on a diversity of computer clusters with batch submission systems and local machines.

[ascl:1102.016] HERACLES: 3D Hydrodynamical Code to Simulate Astrophysical Fluid Flows

HERACLES is a 3D hydrodynamical code used to simulate astrophysical fluid flows. It uses a finite volume method on fixed grids to solve the equations of hydrodynamics, MHD, radiative transfer and gravity. This software is developed at the Service d'Astrophysique, CEA/Saclay as part of the COAST project and is registered under the CeCILL license. HERACLES simulates astrophysical fluid flows using a grid based Eulerian finite volume Godunov method. It is capable of simulating pure hydrodynamical flows, magneto-hydrodynamic flows, radiation hydrodynamic flows (using either flux limited diffusion or the M1 moment method), self-gravitating flows using a Poisson solver or all of the above. HERACLES uses cartesian, spherical and cylindrical grids.

[ascl:2209.002] Herculens: Differentiable gravitational lensing

Herculens models imaging data of strong gravitational lenses. The package supports various degrees of model complexity, ranging from standard smooth analytical profiles to pixelated models and machine learning approaches. In particular, it implements multiscale pixelated models regularized with sparsity constraints and wavelet decomposition, for modeling both the source light distribution and the lens potential. The code is fully differentiable - based on JAX (ascl:2111.002) - which enables fast convergence to the solution, access to the parameters covariance matrix, efficient exploration of the parameter space including the sampling of posterior distributions using variational inference or Hamiltonian Monte-Carlo methods.

[ascl:2107.030] HERMES: High-Energy Radiative MESsengers

The HERMES (High-Energy Radiative MESsengers) computational framework for line of sight integration creates sky maps in the HEALPix-compatibile format of various galactic radiative processes, including Faraday rotation, synchrotron and free-free radio emission, gamma-ray emission from pion-decay, bremsstrahlung and inverse-Compton. The code is written in C++ and provides numerous integrators, including dispersion measure, rotation measure, and Gamma-ray emissions from Dark Matter annihilation, among others.

[ascl:1808.005] hfof: Friends-of-Friends via spatial hashing

hfof is a 3-d friends-of-friends (FoF) cluster finder with Python bindings based on a fast spatial hashing algorithm that identifies connected sets of points where the point-wise connections are determined by a fixed spatial distance. This technique sorts particles into fine cells sufficiently compact to guarantee their cohabitants are linked, and uses locality sensitive hashing to search for neighboring (blocks of) cells. Tests on N-body simulations of up to a billion particles exhibit speed increases of factors up to 20x compared with FOF via trees, and is consistently complete in less than the time of a k-d tree construction, giving it an intrinsic advantage over tree-based methods.

[ascl:2103.002] hfs_fit: Atomic emission spectral line hyperfine structure fitting

hfs_fit performs parameter optimization in the analysis of emission line hyperfine structure (HFS). The code uses a simulated annealing algorithm to optimize the magnetic dipole interaction constants, electric quadrupole interaction constants, Voigt profile widths and the center of gravity wavenumber for a given emission line profile. The fit can be changed visually with sliders for parameters, which is useful when HFS constants are unknown.

[ascl:1607.011] HfS: Hyperfine Structure fitting tool

HfS fits the hyperfine structure of spectral lines, with multiple velocity components. The HfS_nh3 procedures included in HfS fit simultaneously the hyperfine structure of the NH3 (J,K)= (1,1) and (2,2) inversion transitions, and perform a standard analysis to derive the NH3 column density, rotational temperature Trot, and kinetic temperature Tk. HfS uses a Monte Carlo approach for fitting the line parameters, with special attention to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

[ascl:1801.004] hh0: Hierarchical Hubble Constant Inference

hh0 is a Bayesian hierarchical model (BHM) that describes the full distance ladder, from nearby geometric-distance anchors through Cepheids to SNe in the Hubble flow. It does not rely on any of the underlying distributions being Gaussian, allowing outliers to be modeled and obviating the need for any arbitrary data cuts.

[submitted] HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1808.010] hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System

hi_class implements Horndeski's theory of gravity in the modern Cosmic Linear Anisotropy Solving System (ascl:1106.020). It can be used to compute any cosmological observable at the level of background or linear perturbations, such as cosmological distances, cosmic microwave background, matter power and number count spectra (including relativistic effects). hi_class can be readily interfaced with Monte Python (ascl:1307.002) to test Gravity and Dark Energy models.

[ascl:2311.009] Hi-COLA: Cosmological large-scale structure simulator for Horndeski theories

Hi-COLA runs fast approximate N-body simulations of non-linear structure formation in reduced Horndeski gravity (Horndeski theories with luminal gravitational waves). It is generic with respect to the reduced Horndeski class. Given an input Lagrangian, Hi-COLA's front-end dynamically constructs the appropriate field equations and consistently solves for the cosmological background, linear growth, and screened fifth force of that theory. This is passed to the back-end, which runs a hybrid N-body simulation at significantly reduced computational and temporal cost compared to traditional N-body codes. By analyzing the particle snapshots, one can study the formation of structure through statistics such as the matter power spectrum.

[ascl:1606.004] HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

[ascl:1607.019] HIDE: HI Data Emulator

HIDE (HI Data Emulator) forward-models the process of collecting astronomical radio signals in a single dish radio telescope instrument and outputs pixel-level time-ordered-data. Written in Python, HIDE models the noise and RFI modeling of the data and with its companion code SEEK (ascl:1607.020) provides end-to-end simulation and processing of radio survey data.

[ascl:2007.002] hierArc: Hierarchical analysis of strong gravitational lenses

hierArc hierarchically infers strong lensing mass density profiles and the cosmological parameters, in particular the Hubble constant. The software supports lenses with imaging data and kinematics, and optionally time delays. The kinematics modeling is performed in conjunction with lenstronomy (ascl:1804.012).

[ascl:2005.008] HiFLEx: Echelle data reduction pipeline

HiFLEx reduces echelle data taken with a single or bifurcated fiber input. It takes a FITS image file (i.e., a CCD image) and runs data reduction steps, extracts out orders from an Echelle spectrograph (regardless of separation and curvature, as long as orders are distinguishable from one-another), applies the wavelength correction, measures the radial velocity, and performs further calibration steps.

[ascl:1802.007] HiGal_SED_Fitter: SED fitting tools for Herschel Hi-Gal data

HiGal SED Fitter fits modified blackbody SEDs to Herschel data, specifically targeted at Herschel Hi-Gal data.

[ascl:1207.002] HiGPUs: Hermite's N-body integrator running on Graphic Processing Units

HiGPUs is an implementation of the numerical integration of the classical, gravitational, N-body problem, based on a 6th order Hermite’s integration scheme with block time steps, with a direct evaluation of the particle-particle forces. The main innovation of this code is its full parallelization, exploiting both OpenMP and MPI in the use of the multicore Central Processing Units as well as either Compute Unified Device Architecture (CUDA) or OpenCL for the hosted Graphic Processing Units. We tested both performance and accuracy of the code using up to 256 GPUs in the supercomputer IBM iDataPlex DX360M3 Linux Infiniband Cluster provided by the italian supercomputing consortium CINECA, for values of N ≤ 8 millions. We were able to follow the evolution of a system of 8 million bodies for few crossing times, task previously unreached by direct summation codes.

HiGPUs is also available as part of the AMUSE project.

[ascl:1807.008] HII-CHI-mistry_UV: Oxygen abundance and ionizionation parameters for ultraviolet emission lines

HII-CHI-mistry_UV derives oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas phase ionized by massive stars. The code first fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionization parameter from carbon lines in the UV. An optical version of this Python code, HII-CHI-mistry (ascl:1807.007), is also available.

[ascl:1807.007] HII-CHI-mistry: Oxygen abundance and ionizionation parameters for optical emission lines

HII-CHI-mistry calculates the oxygen abundance for gaseous nebulae ionized by massive stars using optical collisionally excited emission lines. This code takes the extinction-corrected emission line fluxes and, based on a Χ2 minimization on a photoionization models grid, determines chemical-abundances (O/H, N/O) and ionization parameters. An ultraviolet version of this Python code, HII-CHI-mistry-UV (ascl:1807.008), is also available.

[ascl:1603.017] HIIexplorer: Detect and extract integrated spectra of HII regions

HIIexplorer detects and extracts the integrated spectra of HII regions from IFS datacubes. The procedure assumes H ii regions are peaky/isolated structures with a strong ionized gas emission, clearly above the continuum emission and the average ionized gas emission across the galaxy and that H ii regions have a typical physical size of about a hundred or a few hundreds of parsecs, which corresponds to a typical projected size at the distance of the galaxies of a few arcsec for galaxies at z~0.016. All input parameters can be derived from either a visual inspection and/or a statistical analysis of the Hα emission line map. The algorithm produces a segmentation FITS file describing the pixels associated to each H ii region. A newer version of this code, pyHIIexplorer (ascl:2206.010), is available.

[ascl:1405.005] HIIPHOT: Automated Photometry of H II Regions

HIIPHOT enables accurate photometric characterization of H II regions while permitting genuine adaptivity to irregular source morphology. It makes a first guess at the shapes of all sources through object recognition techniques; it then allows for departure from such idealized "seeds" through an iterative growing procedure and derives photometric corrections for spatially coincident diffuse emission from a low-order surface fit to the background after exclusion of all detected sources.

[ascl:2104.003] Hilal-Obs: Authentication agorithm for new moon visibility report

Hilal-Obs authenticates lunar crescent first visibility reports. The code, written in Python, uses PyEphem (ascl:1112.014) for astrometrics, and takes into account all the factors that affect lunar crescent visibility, including atmospheric extinction, observer physiology, sky and lunar brightness, contrast threshold, and the type of observation.

[ascl:2307.031] HilalPy: Analysis tool for lunar crescent visibility criterion

HilalPy analyzes lunar crescent visibility criteria. Written in Python, the code uses more than 8000 lunar crescent visibility records extracted from literature and websites of lunar crescent observation, descriptive statistics, contradiction rate percentage, and regression analysis in its analysis to predict the visibility of a lunar crescent.

[ascl:2301.008] HiLLiPoP: High-L Likelihood Polarized for Planck

HiLLiPoP is a multifrequency CMB likelihood for Planck data. The likelihood is a spectrum-based Gaussian approximation for cross-correlation spectra from Planck 100, 143 and 217GHz split-frequency maps, with semi-analytic estimates of the Cl covariance matrix based on the data. The cross-spectra are debiased from the effects of the mask and the beam leakage using Xpol (ascl:2301.009) before being compared to the model, which includes CMB and foreground residuals. They cover the multipoles from ℓ=30 to ℓ=2500. HiLLiPoP is interfaced with the Cobaya (ascl:1910.019) MCMC sampler.

[ascl:1111.001] HIPE: Herschel Interactive Processing Environment

The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity.

[submitted] hipipe: VLT/HiRISE reduction pipeline

The High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) instrument at the Very Large Telescope (VLT) combines the exoplanet imager SPHERE with the high-resolution spectrograph CRIRES using single-mode fibers. HiRISE has been designed to enable the characterization of known, directly-imaged planetary companions in the H band at a spectral resolution on the order of R = λ/∆λ = 140 000. The hipipe package is a custom python pipeline used to reduce the HiRISE data and produce high-level science products that can be used for astrophysical interpretation.

[ascl:2301.030] HIPP: HIgh-Performance Package for scientific computation

HIPP (HIgh-Performance Package for scientific computation) provides elegant interfaces for some well-known HPC libraries. Some libraries are wrapped with full-OOP interfaces, and many new extensions based on those raw-interfaces are also provided. This C++ toolkit for HPC can significantly reduce the length of your code, making programming more productive.

[ascl:2005.020] HIPSTER: HIgh-k Power Spectrum EstimatoR

HIPSTER (HIgh-k Power Spectrum EstimatoR) computes small-scale power spectra and isotropic bispectra for cosmological simulations and galaxy surveys of arbitrary shape. The code computes the Legendre multipoles of the power spectrum, P(k), or bispectrum B(k1,k2), by computing weighted pair counts over the simulation box or survey, truncated at some maximum radius. The code can be run either in 'aperiodic' or 'periodic' mode for galaxy surveys or cosmological simulations respectively. HIPSTER also supports weighted spectra, for example when tracer particles are weighted by their mass in a multi-species simulation. Generalization to anisotropic bispectra is straightforward (and requires no additional computing time) and can be added on request.

[ascl:1909.012] HISS: HI spectra stacker

HISS stacks HI (emission and absorption) spectra in a consistent and reliable manner to enable statistical analysis of average HI properties. It provides plots of the stacked spectrum and reference spectrum with any fitted function, of the stacked noise response, and of the distribution of the integrated fluxes when calculating the uncertainties. It also produces a table containing the integrated flux calculated from the fitted functions and the stacked spectrum, among other output files.

[ascl:2306.051] Hitomi: Cosmological analysis of anisotropic galaxy distributions

Hitomi provides a comprehensive set of codes for cosmological analysis of anisotropic galaxy distributions using two- and three-point statistics: two-point correlation function (2PCF), power spectrum, three-point correlation function (3PCF), and bispectrum. The code can measure the Legendre-expanded 2PCF and power spectrum from an observed sample of galaxies, and can measure the 3PCF and bispectrum expanded using the Tripolar spherical harmonic (TripoSH) function. Hitomi is basically a serial code, but can also implement MPI parallelization. Hitomi uses MPI to read multiple different input parameters simultaneously.

[ascl:1911.017] HLattice: Scalar fields and gravity simulator for the early universe

HLattice simulates scalar fields and gravity in the early universe. The code allows the user to select between symplectic integrators, descretization schemes, and metrics such as Minkowski or FRW backgrounds and adaptice schemes in an "all-in-one" configuration file.

[ascl:1507.008] HLINOP: Hydrogen LINe OPacity in stellar atmospheres

HLINOP is a collection of codes for computing hydrogen line profiles and opacities in the conditions typical of stellar atmospheres. It includes HLINOP for approximate quick calculation of any line of neutral hydrogen (suitable for model atmosphere calculations), based on the Fortran code of Kurucz and Peterson found in ATLAS9. It also includes HLINPROF, for detailed, accurate calculation of lower Balmer line profiles (suitable for detailed analysis of Balmer lines) and HBOP, to implement the occupation probability formalism of Daeppen, Anderson and Milhalas (1987) and thus account for the merging of bound-bound and bound-free opacity (used often as a wrapper to HLINOP for model atmosphere calculations).

[ascl:1508.001] HMcode: Halo-model matter power spectrum computation

HMcode computes the halo-model matter power spectrum. It is written in Fortran90 and has been designed to quickly (~0.5s for 200 k-values across 16 redshifts on a single core) produce matter spectra for a wide range of cosmological models. In testing it was shown to match spectra produced by the 'Coyote Emulator' to an accuracy of 5 per cent for k less than 10h Mpc^-1. However, it can also produce spectra well outside of the parameter space of the emulator.

[ascl:1412.006] HMF: Halo Mass Function calculator

HMF calculates the Halo Mass Function (HMF) given any set of cosmological parameters and fitting function and serves as the backend for the web application HMFcalc. Written in Python, it allows for dynamic accurate calculation of the transfer function with CAMB (ascl:1102.026) and efficient and self-consistent parameter updates. HMF offers exploration of the effects of cosmological parameters, redshift and fitting function on the predicted HMF.

[ascl:1201.010] HNBody: Hierarchical N-Body Symplectic Integration Package

HNBody is a new set of software utilities geared to the integration of hierarchical (nearly-Keplerian) N-body systems. Our focus is on symplectic methods, and we have included explicit support for three classes of particles (heavy, light, and massless), second and fourth order methods, post-Newtonian corrections, and the use of a symplectic corrector (among other things). For testing purposes, we also provide support for more general integration schemes (Bulirsch-Stoer & Runge-Kutta). Configuration files employing an intuitive syntax allow for easy problem setup, and many simple simulations can be done without the user compiling any code. Low-level interfaces are also available, enabling extensive customization.

[ascl:1711.013] HO-CHUNK: Radiation Transfer code

HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:2208.017] HOCHUNK3D: Dust radiative transfer in 3D

HOCHUNK3D is an updated version of the HOCHUNK radiative equilibrium code (ascl:1711.013); the code has been converted to Fortran 95, which allows a specification of one-dimensional (1D), 2D, or 3D grids at runtime. The code is parallelized so it can be run on multiple processors on one machine, or on multiple machines in a network. It includes 3-D functionality and several other additional geometries and features. The code calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. HOCHUNK3D also computes spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:2112.026] HoloSim-ML: Analyzing radio holography measurements of complex optical systems

HoloSim-ML performs beam simulation and analysis of radio holography data from complex optical systems. The code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micron accuracy.

[ascl:2003.011] HOMER: A Bayesian inverse modeling code

HOMER (Helper Of My Eternal Retrievals) is a machine-learning-accelerated Bayesian inverse modeling code. Given some data and uncertainties, the code determines the posterior distribution of a model. HOMER uses MC3 (ascl:1610.013) for its MCMC; its forward model is a neural network surrogate model trained by MARGE (ascl:2003.010). The code produces plots of the 1D marginalized posteriors, 2D pairwise posteriors, and parameter history traces, and can also overplot the 1D and 2D posteriors for comparison with another posterior. HOMER computes the Bhattacharyya coefficient to compare the similarity of two 1D marginalized posteriors.

[ascl:1102.019] HOP: A Group-finding Algorithm for N-body Simulations

We describe a new method (HOP) for identifying groups of particles in N-body simulations. Having assigned to every particle an estimate of its local density, we associate each particle with the densest of the Nh particles nearest to it. Repeating this process allows us to trace a path, within the particle set itself, from each particle in the direction of increasing density. The path ends when it reaches a particle that is its own densest neighbor; all particles reaching the same such particle are identified as a group. Combined with an adaptive smoothing kernel for finding the densities, this method is spatially adaptive, coordinate-free, and numerically straight-forward. One can proceed to process the output by truncating groups at a particular density contour and combining groups that share a (possibly different) density contour. While the resulting algorithm has several user-chosen parameters, we show that the results are insensitive to most of these, the exception being the outer density cutoff of the groups.

[ascl:1411.005] HOPE: Just-in-time Python compiler for astrophysical computations

HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

[ascl:2205.019] HOPS: Haystack Observatory Postprocessing System

HOPS (Haystack Observatory Postprocessing System) analyzes the data generated by DiFX VLBI correlators. It is written in C for Linux computers, and emphasizes quality-control aspects of data processing. It sits between the correlator and an image-processing and/or geodetic-processing package, and performs basic fringe-fitting, data editing, problem diagnosis, and correlator support functions.

[ascl:2008.027] HorizonGRound: Relativistic effects in ultra-large-scale clustering

HorizonGRound forward models general relativistic effects from the tracer luminosity function. It also compares relativistic corrections with the local primordial non-Gaussianity signature in ultra-large-scale clustering statistics. The package includes several recipes along with the data required to run them.

[ascl:1504.004] HOTPANTS: High Order Transform of PSF ANd Template Subtraction

HOTPANTS (High Order Transform of PSF ANd Template Subtraction) implements the Alard 1999 algorithm for image subtraction. It photometrically aligns one input image with another after they have been astrometrically aligned.

[ascl:1702.008] HOURS: Simulation and analysis software for the KM3NeT

The Hellenic Open University Reconstruction & Simulation (HOURS) software package contains a realistic simulation package of the detector response of very large (km3-scale) underwater neutrino telescopes, including an accurate description of all the relevant physical processes, the production of signal and background as well as several analysis strategies for triggering and pattern recognition, event reconstruction, tracking and energy estimation. HOURS also provides tools for simulating calibration techniques and other studies for estimating the detector sensitivity to several neutrino sources.

[ascl:2108.001] HRK: HII Region Kinematics

Generate simulated radio recombination line observations of HII regions with various internal kinematic structure. Fit single Gaussians to each pixel of the simulated observations and generate images of the fitted Gaussian center and full-width half-maximum (FWHM) linewidth.

[ascl:1707.001] HRM: HII Region Models

HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

[ascl:1412.008] Hrothgar: MCMC model fitting toolkit

Hrothgar is a parallel minimizer and Markov Chain Monte Carlo generator. It has been used to solve optimization problems in astrophysics (galaxy cluster mass profiles) as well as in experimental particle physics (hadronic tau decays).

[ascl:1912.006] HSIM: HARMONI simulation pipeline

HSIM simulates observations with HARMONI on the Extremely Large Telescope. HSIM takes high spectral and spatial resolution input data cubes, encoding physical descriptions of astrophysical sources, and generates mock observed data cubes. The simulations incorporate detailed models of the sky, telescope, instrument, and detectors to produce realistic mock data. HSIM performs in-depth simulations for several key science cases as part of the design and development of the HARMONI integral field spectrograph, including the ELT AO performance, atmospheric effects and realistic detector statistics.

[ascl:2109.014] HSS: The Hough Stream Spotter

The Hough Stream Spotter (HSS) is a stream finding code which transforms individual positions of stars to search for linear structure in discrete data sets. The code requires only the two-dimensional plane of galactic longitude and latitude as input.

[ascl:2011.021] HSTCosmicrays: Analyzing cosmic rays in HST calibration data

HSTCosmicrays finds and characterizes cosmic rays found in dark frames (exposures taken with the shutter closed) taken with instruments on the Hubble Space Telescope (HST). Dark exposures are obtained routinely by all the Hubble Space Telescope instruments for calibration. The main processing pipeline runs locally or in the cloud on AWS utilizing the HST Public Dataset.

[ascl:2109.017] HTOF: Astrometric solutions for Hipparcos and Gaia intermediate data

HTOF parses the intermediate data from Hipparcos and Gaia and fits astrometric solutions to those data. It computes likelihoods and parameter errors in line with the catalog and can reproduce five, seven, and nine (or higher) parameter fits to their astrometry.

[ascl:2102.019] HUAYNO: Hierarchically split-Up AstrophYsical N-body sOlver N-body code

HUAYNO implements integrators derived from second order Hamiltonian splitting for N-body dynamics. This integration scheme conserves energy and momentum with little or no systematic drift. The code uses an explicit but approximate formula for the time symmetrization that is compatible with the use of individual time steps, making an iterative scheme unnecessary. HUAYNO is available as part of the AMUSE package (ascl:1107.007).

[ascl:1511.014] HumVI: Human Viewable Image creation

HumVI creates a composite color image from sets of input FITS files, following the Lupton et al (2004, ascl:1511.013) composition algorithm. Written in Python, it takes three FITS files as input and returns a color composite, color-saturated png image with an arcsinh stretch. HumVI reads the zero points out of the FITS headers and uses them to put all the images on the same flux scale; photometrically calibrated images produce the best results.

[ascl:1103.010] Hydra: A Parallel Adaptive Grid Code

We describe the first parallel implementation of an adaptive particle-particle, particle-mesh code with smoothed particle hydrodynamics. Parallelisation of the serial code, "Hydra," is achieved by using CRAFT, a Cray proprietary language which allows rapid implementation of a serial code on a parallel machine by allowing global addressing of distributed memory.

The collisionless variant of the code has already completed several 16.8 million particle cosmological simulations on a 128 processor Cray T3D whilst the full hydrodynamic code has completed several 4.2 million particle combined gas and dark matter runs. The efficiency of the code now allows parameter-space explorations to be performed routinely using $64^3$ particles of each species. A complete run including gas cooling, from high redshift to the present epoch requires approximately 10 hours on 64 processors.

[ascl:1402.023] HydraLens: Gravitational lens model generator

HydraLens generates gravitational lens model files for Lenstool (ascl:1102.004), PixeLens (ascl:1102.007), glafic (ascl:1010.012) and Lensmodel and can also translate lens model files among these four lens model codes. Through a GUI, the user enters a new model by specifying the type of model and is then led through screens to collect the data. Written in MS Visual Basic, the code can also translate an existing model from any of the four supported codes to any of the other three.

[ascl:2012.009] HydroCode1D: 1D finite volume code

HydroCode1D is a 1D finite volume code that can run any problem with 1D or 2D/3D spherical symmetry including external gravity or self-gravity. The program provides, depending on the configuration, output files that contain the midpoint position, density, velocity and pressure for each cell in the grid (in SI units). The program will by default use all available threads (as given by the environment variable OMP_NUM_THREADS). This can be overwritten by giving the desired number of threads as a command line argument to the program.

[ascl:1601.002] Hyper-Fit: Fitting routines for multidimensional data with multivariate Gaussian uncertainties

The R package Hyper-Fit fits hyperplanes (hyper.fit) and creates 2D/3D visualizations (hyper.plot2d / hyper.plot3d) to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimensional dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane. A web interface for online fitting is also available at https://hyperfit.icrar.org.

[ascl:2205.009] hyperas: Keras + Hyperopt

Hyperas is a convenience wrapper around hyperopt (ascl:2205.008) for fast prototyping with keras models (ascl:1806.022). Hyperas lets you use the power of hyperopt without having to learn the syntax of it. Instead, just define your keras model as you are used to, but use a simple template notation to define hyper-parameter ranges to tune.

[ascl:1207.004] Hyperion: Parallelized 3D Dust Continuum Radiative Transfer Code

Hyperion is a three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code is problem-independent, and only requires an arbitrary three-dimensional density structure, dust properties, the position and properties of the illuminating sources, and parameters controlling the running and output of the code. Hyperion is parallelized, and is shown to scale well to thousands of processes. Two common benchmark models for protoplanetary disks were computed, and the results are found to be in excellent agreement with those from other codes. Finally, to demonstrate the capabilities of the code, dust temperatures, SEDs, and synthetic multi-wavelength images were computed for a dynamical simulation of a low-mass star formation region.

[ascl:2205.008] Hyperopt: Distributed asynchronous hyper-parameter optimization

The Python library Hyperopt performs serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions. Three algorithms are implemented in hyperopt: Random Search, Tree of Parzen Estimators (TPE), and Adaptive TPE. Algorithms can be parallelized in two ways, using either Apache Spark or MongoDB. To use Hyperopt, the objective function to minimize and the space over which to search, and the database in which to store all the point evaluations of the search have to be described, and the search algorithm to use has to be specified.

[ascl:1108.010] Hyperz: Photometric Redshift Code

From a photometric catalogue, hyperz finds the redshift of each object by means of a standard SED fitting procedure, i.e. comparing the observed magnitudes with the expected ones, computed from template Spectral Energy Distributions. The set of templates used in the minimization procedure (age, metallicity, reddening, absorption in the Lyman forest, ...) is studied in detail, through both real and simulated data. The expected accuracy of photometric redshifts, as well as the fraction of catastrophic identifications and wrong detections, is given as a function of the redshift range, the set of filters considered, and the photometric accuracy. Special attention is paid to the results expected from real data.

[ascl:2209.010] HyPhy: Hydrodynamical Physics via Deep Generative Painting

HyPhy maps from dark matter only simulations to full hydrodynamical physics models. It uses a fully convolutional variational auto-encoder (VAE) to synthesize hydrodynamic fields conditioned on dark matter fields from N-body simulations. After training, HyPhy can probabilistically map new dark matter only simulations to corresponding full hydrodynamical outputs and generate posterior samples for studying the variance of the mapping. This conditional deep generative model is implemented in TensorFlow.

[ascl:1011.023] HyRec: A Fast and Highly Accurate Primordial Hydrogen and Helium Recombination Code

We present a state-of-the-art primordial recombination code, HyRec, including all the physical effects that have been shown to significantly affect recombination. The computation of helium recombination includes simple analytic treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He I] 2 3P - 1 1S line, and treats feedback between these lines within the on-the-spot approximation. Hydrogen recombination is computed using the effective multilevel atom method, virtually accounting for an infinite number of excited states. We account for two-photon transitions from 2s and higher levels as well as frequency diffusion in Lyman-alpha with a full radiative transfer calculation. We present a new method to evolve the radiation field simultaneously with the level populations and the free electron fraction. These computations are sped up by taking advantage of the particular sparseness pattern of the equations describing the radiative transfer. The computation time for a full recombination history is ~2 seconds. This makes our code well suited for inclusion in Monte Carlo Markov chains for cosmological parameter estimation from upcoming high-precision cosmic microwave background anisotropy measurements.

[ascl:2405.008] i-SPin: Multicomponent Schrodinger-Poisson systems with self-interactions

i-SPin simulates 3-component Schrodinger systems with and without gravity and with and without self-interactions while obeying SO(3) symmetry. The code allows the user to input desired parameters, along with initial conditions for the Schrodinger fields. Its three function modules then perform the main (drift-kick-drift) steps of the algorithm, track the fractional changes in total mass and spin in the system, and then plot results. The default plots are mass and spin density projections along with total mass and spin fractional changes.

[ascl:1302.009] IAS Stacking Library in IDL

This IDL library is designed to be used on astronomical images. Its main aim is to stack data to allow a statistical detection of faint signal, using a prior. For instance, you can stack 160um data using the positions of galaxies detected at 24um or 3.6um, or use WMAP sources to stack Planck data. It can estimate error bars using bootstrap, and it can perform photometry (aperture photometry, or PSF fitting, or other that you can plug). The IAS Stacking Library works with gnomonic projections (RA---TAN), and also with HEALPIX projection.

[ascl:1611.018] Icarus: Stellar binary light curve synthesis tool

Icarus is a stellar binary light curve synthesis tool that generates a star, given some basic binary parameters, by solving the gravitational potential equation, creating a discretized stellar grid, and populating the stellar grid with physical parameters, including temperature and surface gravity. Icarus also evaluates the outcoming flux from the star given an observer's point of view (i.e., orbital phase and orbital orientation).

[ascl:1703.012] ICICLE: Initial Conditions for Isolated CoLlisionless systEms

ICICLE (Initial Conditions for Isolated CoLlisionless systEms) generates stable initial conditions for isolated collisionless systems that can then be used in NBody simulations. It supports the Navarro-Frenk-White, Hernquist, King and Einasto density profiles.

[ascl:1302.010] ICORE: Image Co-addition with Optional Resolution Enhancement

ICORE is a command-line driven co-addition, mosaicking, and resolution enhancement (HiRes) tool for creating science quality products from image data in FITS format and with World Coordinate System information following the FITS-WCS standard. It includes preparatory steps such as image background matching, photometric gain-matching, and pixel-outlier rejection. Co-addition and/or HiRes'ing can be performed in either the inertial WCS or in the rest frame of a moving object. Three interpolation methods are supported: overlap-area weighting, drizzle, and weighting by the detector Point Response Function (PRF). The latter enables the creation of matched-filtered products for optimal point-source detection, but most importantly allows for resolution enhancement using a spatially-dependent deconvolution method. This is a variant of the classic Richardson-Lucy algorithm with the added benefit to simultaneously register and co-add multiple images to optimize signal-to-noise and sampling of the instrumental PSF. It can assume real (or otherwise "flat") image priors, mitigate "ringing" artifacts, and assess the quality of image solutions using statistically-motivated convergence criteria. Uncertainties are also estimated and internally validated for all products. The software supports multithreading that can be configured for different architectures. Numerous example scripts are included (with test data) to co-add and/or HiRes image data from Spitzer-IRAC/MIPS, WISE, and Herschel-SPIRE.

[ascl:9905.002] ICOSAHEDRON: A package for pixelizing the sphere

What is the best way to pixelize a sphere? This question occurs in many practical applications, for instance when making maps (of the earth or the celestial sphere) and when doing numerical integrals over the sphere. This package consists of source code and documentation for a method which involves inscribing the sphere in a regular icosahedron and then equalizing the pixel areas.

[ascl:1010.034] iCosmo: An Interactive Cosmology Package

iCosmo is a software package to perform interactive cosmological calculations for the low redshift universe. The computation of distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also performs the computation of observables for several cosmological probes such as weak gravitational lensing, baryon acoustic oscillations and supernovae. The associated errors for these observables can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for the calculation of cosmological forecasts with Fisher matrices which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific library available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient evolutive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers in the field of cosmology.

[ascl:2405.006] ICPertFLRW: Cactus Code thorn for initial conditions

ICPertFLRW, a Cactus code (ascl:1102.013) thorn, provides as initial conditions an FLRW metric perturbed with the comoving curvature perturbation Rc in the synchronous comoving gauge. Rc is defined as a sum of sinusoidals (20 in each x, y, and z direction) whose amplitude, wavelength, and phase shift are all parameters in param.ccl. While the metric and extrinsic curvature only have first order scalar perturbations, the energy density is computed exactly in full from the Hamiltonian constraint, hence vector and tensor perturbations are initially present at higher order. These are then passed to the CT_Dust thorn to be evolved.

[ascl:1903.007] ICSF: Intensity Conserving Spectral Fitting

ICSF (Intensity Conserving Spectral Fitting) "corrects" (x,y) data in which the ordinate represents the average of a quantity over a finite interval in the abscissa. A typical example is spectral data, where the average intensity over a wavelength bin (the measured quantity) is assigned to the center of the bin. If the profile is curved, the average will be different from the discrete value at the bin center location. ICSF, written in IDL and available separately and as part of SolarSoft (ascl:1208.013), corrects the intensity using an iterative procedure and cubic spline. The corrected intensity equals the "true" intensity at bin center, rather than the average over the bin. Unlike other methods that are restricted to a single fitting function, typically a spline, ICSF can be used with any function, such as a cubic spline or a Gaussian, with slight changes to the code.

[ascl:1411.009] iDealCam: Interactive Data Reduction and Analysis for CanariCam

iDealCam is an IDL GUI toolkit for processing multi-extension FITS file produced by CanariCam, the facility mid-IR instrument of Gran Telescopio CANARIAS (GTC). iDealCam is optimized for CanariCam data, but is also compatible with data generated by other instruments using similar detectors and data format (e.g., Michelle and T-ReCS at Gemini). iDealCam provides essential capabilities to examine, reduce, and analyze data obtained in the standard imaging or polarimetric imaging mode of CanariCam.

[ascl:2306.036] IDEFIX: Astrophysical fluid dynamics

Idefix solves non-relativistic HD and MHD equations on various grid geometries. Based on a Godunov finite-volume method, this astrophysical flows code includes a wide choice of solvers and several modules, including constrained transport, orbital advection, and non-ideal MHD, to address complex astrophysical and fluid dynamics applications. Written in C++, Idefix relies on the Kokkos meta-programming library to guarantee performance portability on a wide variety of architectures.

[ascl:1011.001] Identikit 1: A Modeling Tool for Interacting Disk Galaxies

By combining test-particle and self-consistent techniques, we have developed a method to rapidly explore the parameter space of galactic encounters. Our method, implemented in an interactive graphics program, can be used to find the parameters required to reproduce the observed morphology and kinematics of interacting disk galaxies. We test this system on an artificial data-set of 36 equal-mass merging encounters, and show that it is usually possible to reproduce the morphology and kinematics of these encounters and that a good match strongly constrains the encounter parameters. An update to this software with additional capabilities, Identikit 2 (ascl:1102.011), is available.

[ascl:1102.011] Identikit 2: An Algorithm for Reconstructing Galactic Collisions

Using a combination of self-consistent and test-particle techniques, Identikit 1 (ascl:1011.001) provided a way to vary the initial geometry of a galactic collision and instantly visualize the outcome. Identikit 2 uses the same techniques to define a mapping from the current morphology and kinematics of a tidal encounter back to the initial conditions. By requiring that various regions along a tidal feature all originate from a single disc with a unique orientation, this mapping can be used to derive the initial collision geometry. In addition, Identikit 2 offers a robust way to measure how well a particular model reproduces the morphology and kinematics of a pair of interacting galaxies. A set of eight self-consistent simulations is used to demonstrate the algorithm's ability to search a ten-dimensional parameter space and find near-optimal matches; all eight systems are successfully reconstructed.

[ascl:1911.011] IDG: Image Domain Gridding

IDG (Image Domain Gridding) is an imager that makes w-term corrections and a-term corrections computationally very cheap. It works with WSClean (ascl:1408.023) and supports the same cleaning and data selections options that WSClean offers in normal mode (such as cotton-schwab, multi-frequency multi-scale cleaning, and auto-masking). IDG also allows gridding with a time-variable beam including the LOFAR, AARTFAAC and MWA beam and can perform full beam or differential correction. The code requires measurement sets with four polarizations (e.g. XX/XY/YX/YY), can apply a spatially varying time-variable TEC term that can additionally be different for different antennas and output channels, and performs extremely well on GPUs.

[ascl:1303.013] idistort: CMB spectral distortions templates and code

Spectrum created by energy release in the early Universe, before recombination, creates distortions which are a superposition of μ-type, y-type and intermediate-type distortions. The final spectrum can thus be constructed from the templates, once energy injection rate as a function of redshift is known. This package contains the templates spaced at dy=0.001 for y<1 and dy=0.01 for y>1 covering a range 0.001 < y < 10. Also included is a Mathematica code which can combine these templates for user-defined rate of energy injection as a function of redshift. Silk damping, particle decay and annihilation examples are also included.

[ascl:1507.020] IEHI: Ionization Equilibrium for Heavy Ions

IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

[ascl:2008.019] iFIT: 1D surface photometry code

iFIT determines the Sérsic law model for galaxies with imperfect Sérsic law profiles by searching for the best match between the observationally determined and theoretically expected radial variation of the mean surface brightness and light growth curve. The technique ensures quick convergence to a unique solution for both perfect and imperfect Sérsic profiles, even shallow and resolution-degraded SBPs. iFIT allows for correction of PSF convolution effects, offering the user the option of choosing between a Moffat, Gaussian, or user-supplied PSF, and is an efficient tool for the non-supervised structural characterization of large galaxy samples, such as those expected to become available with Euclid and LSST.

[ascl:1304.019] IFrIT: Ionization FRont Interactive Tool

IFrIT (Ionization FRont Interactive Tool) is a powerful general purpose visualization tool that can be used to visualize 3-dimensional data sets. IFrIT is written in C++ and is based on the Visualization ToolKit (VTK) and, optionally, uses a GUI toolkit Qt. IFrIT can visualize scalar, vector field, tensor, and particle data. Several visualization windows can exist at the same time, each one having a full set of visualization objects. Some visualization windows can share the data between them, while other windows can be fully independent. Images from several visualization windows can be combined into one image file on the disk, tiling some windows together, and inserting reduced versions of some windows into larger other windows. A large array of features is also available, including highly advanced animation capabilities, a complex set of lights, markers to label various points in space, and a capability to "pick" a point in the scene and retrieve information about the data at this location.

[ascl:2206.011] IFSCube: Analyze and process integral field spectroscopy data cubes

IFSCube performs analysis tasks in data cubes of integral field spectroscopy. It contains routines for fitting spectral features in 1D spectra and data cubes and rotation models to velocity fields; it also contains a routine that inspects the fit results. Though originally intended to make user scripts more concise, analysis can also be performed on the fly by using an interactive interpreter such as ipython. By default, IFSCube assumes data are in the Flexible Image Transport System (FITS) standard, but the package can be modified easily to allow use of other data formats.

Would you like to view a random code?