Results 101-200 of 2516 (2473 ASCL, 43 submitted)

[ascl:2011.010]
ARES: Accelerated Reionization Era Simulations

The Accelerated Reionization Era Simulations (ARES) code rapidly generates models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or global radiation background calculator.

[ascl:1205.009]
ARES: Automatic Routine for line Equivalent widths in stellar Spectra

ARES was developed for the measurement of Equivalent Width of absortion lines in stellar spectra; it can also be used to determine fundamental spectroscopic stellar parameters.The code reads a 1D FITS spectra and fits the requested lines in order to calculate the Equivalent width. The code is written in C++ based on the standard method of determining EWs. It automates the manual procedure that one normally carries out when using interactive routines such as the splot routine implemented in IRAF.

[ascl:1807.004]
ARKCoS: Radial kernel convolution on the sphere

ARKCoS (Accelerated radial kernel convolution on the sphere) efficiently convolves pixelated maps on the sphere with radially symmetric kernels with compact support. It performs the convolution along isolatitude rings in Fourier space and integrates in longitudinal direction in pixel space. The computational costs scale linearly with the kernel support, making the method most beneficial for convolution with compact kernels. Typical applications include CMB beam smoothing, symmetric wavelet analyses, and point-source filtering operations. The software is written in C++/CUDA and provides two independent code paths to do the necessary computation either on conventional hardware (CPUs), or on graphics processing units (GPUs).

[ascl:1505.005]
ARoME: Analytical Rossiter-McLaughlin Effects

The ARoMe (Analytical Rossiter-McLaughlin Effects) library generates analytical Rossiter-McLaughlin (RM) effects. It models the Doppler-shift of a star during a transit measured by the fit of a cross-correlation function by a Gaussian function, fit of an observed spectrum by a modeled one, and the weighted mean.

[ascl:1311.010]
ARPACK: Solving large scale eigenvalue problems

ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required; only the action of the matrix on a vector is needed. ARPACK is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas.

[ascl:1810.007]
ARTES: 3D Monte Carlo scattering radiative transfer in planetary atmospheres

The 3D Monte Carlo radiative transfer code ARTES calculates reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. Designed specifically for (polarized) scattered light simulations of planetary atmospheres, it can compute both reflected stellar light and thermal emission from the planet for an arbitrary atmospheric structure and distribution of opacity sources. Multiple scattering, absorption, and polarization are fully treated and the output includes an image, spectrum, or phase curve. Several tools are included to create opacities and scattering matrices for molecules and clouds.

[ascl:1802.004]
ARTIP: Automated Radio Telescope Image Processing Pipeline

Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

[ascl:2103.020]
ARTIS: 3D Monte Carlo radiative transfer code for supernovae

ARTIS is a 3D radiative transfer code for Type Ia supernovae using the Monte Carlo method with indivisible energy packets. It incorporates polarization and virtual packets and non-LTE physics appropriate for the nebular phase of Type Ia supernovae.

[ascl:1402.014]
ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter

ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

[ascl:2004.012]
ArviZ: Exploratory analysis of Bayesian models

ArviZ provides backend-agnostic tools for diagnostics and visualizations of Bayesian inference by first converting inference data into xarray objects. It includes functions for posterior analysis, model checking, comparison and diagnostics. ArviZ’s functions work with NumPy arrays, dictionaries of arrays, xarray datasets, and have built-in support for PyMC3 (ascl:1610.016), PyStan, CmdStanPy, Pyro (ascl:1507.018), NumPyro, emcee (ascl:1303.002), and TensorFlow Probability objects. A Julia wrapper is also available.

[ascl:1204.016]
ASCfit: Automatic Stellar Coordinate Fitting Package

A modular software package for automatically fitting astrometric world coordinates (WCS) onto raw optical or infrared FITS images. Image stars are identified with stars in a reference catalog (USNO-A2 or 2MASS), and coordinates derived as a simple linear transformation from (X,Y) pixels to (RA,DEC) to the accuracy level of the reference catalog used. The package works with both optical and infrared images, at sidereal and non-sidereal tracking rates.

[ascl:1804.001]
ASERA: A Spectrum Eye Recognition Assistant

ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.

[ascl:1603.009]
Asfgrid: Asteroseismic parameters for a star

asfgrid computes asteroseismic parameters for a star with given stellar parameters and vice versa. Written in Python, it determines delta_nu, nu_max or masses via interpolation over a grid.

[ascl:1912.003]
ASKAPsoft: ASKAP science data processor software

Guzman, Juan; Whiting, Matthew; Voronkov, Max; Mitchell, Daniel; Ord, Stephen; Collins, Daniel; Marquarding, Malte; Lahur, Paulus; Maher, Tony; Van Diepen, Ger; Bannister, Keith; Wu, Xinyu; Lenc, Emil; Khoo, Jonathan; Bastholm, Eric

ASKAPsoft provides data processing functionality for Australian Square Kilometre Array Pathfinder, including calibration, spectral line imaging, continuum imaging, source detection and generation of source catalogs, and transient detection. The MPI-based package is the primary software for storing and processing raw data, and initiating the archiving of resulting science data products into the data archive (CASDA). The processing pipelines within ASKAPsoft are largely written in C++ built on top of casacore (ascl:1912.002) and other third party libraries.

[ascl:1609.020]
Askaryan Module: Askaryan electric fields predictor

The Askaryan Module is a C++ class that predicts the electric fields that Askaryan-based detectors detect; it is computationally efficient and accurate, performing fully analytic calculations requiring no *a priori* MC analysis to compute the entire field, for any frequencies, times, or viewing angles chosen by the user.

[ascl:1807.030]
ASP: Ames Stereo Pipeline

ASP (Ames Stereo Pipeline) provides fully automated geodesy and stereogrammetry tools for processing stereo imagery captured from satellites (around Earth and other planets), robotic rovers, aerial cameras, and historical imagery, with and without accurate camera pose information. It produces cartographic products, including digital elevation models (DEMs), ortho-projected imagery, 3D models, and bundle-adjusted networks of cameras. ASP's data products are suitable for science analysis, mission planning, and public outreach.

[ascl:1112.017]
ASpec: Astronomical Spectrum Analysis Package

ASpec is a spectrum and line analysis package developed at STScI. ASpec is designed as an add-on package for IRAF and incorporates a variety of analysis techniques for astronomical spectra. ASpec operates on spectra from a wide variety of ground-based and space-based instruments and allows simultaneous handling of spectra from different wavelength regimes. The package accommodates non-linear dispersion relations and provides a variety of functions, individually or in combination, with which to fit spectral features and the continuum. It also permits the masking of known bad data. ASpec provides a powerful, intuitive graphical user interface implemented using the IRAF Object Manager and customized to handle: data input/output (I/O); on-line help; selection of relevant features for analysis; plotting and graphical interaction; and data base management.

[ascl:1209.015]
Aspects: Probabilistic/positional association of catalogs of sources

Given two catalogs K and K' of n and n' astrophysical sources, respectively, Aspects (Association positionnelle/probabiliste de catalogues de sources) computes, for any objects M_{i} ∈ K and M'_{j} ∈ K', the probability that M'_{j} is a counterpart of M_{i}, i.e. that they are the same source. To determine this probability of association, the code takes into account the coordinates and the positional uncertainties of all the objects. Aspects also computes the probability P(A_{i, 0} | C ∩ C') that M_{i} has no counterpart.

Aspects is written in Fortran 95; the required Fortran 90 Numerical Recipes routines used in version 1.0 have been replaced with free equivalents in version 2.0.

[ascl:1806.031]
ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology

Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.

[ascl:1510.006]
ASPIC: STARLINK image processing package

Davenhall, A. C.; Hartley, Ken F.; Penny, Alan J.; Kelly, B. D.; King, Dave J.; Lupton, W. F.; Tudhope, D.; Pike, C. D.; Cooke, J. A.; Pence, W. D.; Wallace, Patrick T.; Brownrigg, D. R. K.; Baines, Dave W. T.; Warren-Smith, Rodney F.; McNally, B. V.; Bell, L. L.; Jones, T. A.; Terrett, Dave L.; Pearce, D. J.; Carey, J. V.; Currie, Malcolm J.; Benn, Chris; Beard, S. M.; Giddings, Jack R.; Balona, Luis A.; Harrison, B.; Wood, Roger; Sparkes, Bill; Allan, Peter M.; Berry, David S.; Shirt, J. V.

ASPIC handled basic astronomical image processing. Early releases concentrated on image arithmetic, standard filters, expansion/contraction/selection/combination of images, and displaying and manipulating images on the ARGS and other devices. Later releases added new astronomy-specific applications to this sound framework. The ASPIC collection of about 400 image-processing programs was written using the Starlink "interim" environment in the 1980; the software is now obsolete.

[ascl:1310.005]
ASPRO 2: Astronomical Software to PRepare Observations

ASPRO 2 (Astronomical Software to PRepare Observations) is an observation preparation tool for interferometric observations with the VLTI or other interferometers such as CHARA and SUSI. It is a Java standalone program that provides a dynamic graphical interface to simulate the projected baseline evolution during observations (super-synthesis) and derive visibilities for targets (i.e., single star, binaries, user defined FITS image). It offers other useful functions such as the ability to load and save your observation settings and generate Observing Blocks.

[ascl:1903.011]
AsPy: Aspherical fluctuations on the spherical collapse background

AsPy computes the determinants of aspherical fluctuations on the spherical collapse background. Written in Python, this procedure includes analytic factorization and cancellation of the so-called `IR-divergences'—spurious enhanced contributions that appear in the dipole sector and are associated with large bulk flows.

[ascl:1404.016]
AST: World Coordinate Systems in Astronomy

The AST library provides a comprehensive range of facilities for attaching world coordinate systems to astronomical data, for retrieving and interpreting that information in a variety of formats, including FITS-WCS, and for generating graphical output based on it. Core projection algorithms are provided by WCSLIB (ascl:1108.003) and astrometry is provided by the PAL (ascl:1606.002) and SOFA (ascl:1403.026) libraries. AST bindings are available in Python (pyast), Java (JNIAST) and Perl (Starlink::AST). AST is used as the plotting and astrometry library in DS9 and GAIA, and is distributed separately and as part of the Starlink software collection.

[ascl:1505.002]
ASteCA: Automated Stellar Cluster Analysis

ASteCA (Automated Stellar Cluster Analysis), written in Python, fully automates standard tests applied on star clusters in order to determine their characteristics, including center, radius, and stars' membership probabilities. It also determines associated intrinsic/extrinsic parameters, including metallicity, age, reddening, distance, total mass, and binarity fraction, among others.

[ascl:1403.023]
ASTERIX: X-ray Data Processing System

Peden, Jim; Allan, David J.; Ponman, Trevor; Saxton, Richard; Andrews, Phillip; Beard, Richard; Vallance, Bob

ASTERIX is a general purpose X-ray data reduction package optimized for ROSAT data reduction. ASTERIX uses the Starlink software environment (ascl:1110.012).

[ascl:1607.016]
astLib: Tools for research astronomers

astLib is a set of Python modules for performing astronomical plots, some statistics, common calculations, coordinate conversions, and manipulating FITS images with World Coordinate System (WCS) information through PyWCSTools, a simple wrapping of WCSTools (ascl:1109.015).

[ascl:2004.006]
ASTRAEUS: Semi-analytical semi-numerical galaxy evolution and reionization code

ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in n-body dArk mattEr simUlationS) self-consistently derives the evolution of galaxies and the reionization of the IGM based on the merger trees and density fields of a DM-only N-body simulation. It models gas accretion, star formation, SN feedback, the time and spatial evolution of the ionized regions, accounting for recombinations, HI fractions and photoionization rates within ionized regions, and radiative feedback. ASTRAEUS is for studying the galaxy-reionization interplay in the first billion years. The underlying code is written in C and is MPI-parallelized; its modular design allows new physical processes and galaxy properties to be added easily. ASTRAEUS can be run on a tree-branch-by-tree-branch basis (*i.e.,* fully vertical) or on a redshift-by-redshift basis (*i.e.,* fully horizontal) when evolving the galaxies by using local horizontal merger trees.

[ascl:1605.009]
ASTRiDE: Automated Streak Detection for Astronomical Images

ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

[ascl:2103.028]
Astro-Fix: Correcting astronomical bad pixels in Python

astrofix is an astronomical image correction algorithm based on Gaussian Process Regression. It trains itself to apply the optimal interpolation kernel for each image, performing multiple times better than median replacement and interpolation with a fixed kernel.

[ascl:1907.032]
Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python

Astro-SCRAPPY detects cosmic rays in images (numpy arrays), based on Pieter van Dokkum's L.A.Cosmic algorithm and originally adapted from cosmics.py written by Malte Tewes. This implementation is optimized for speed, resulting in slight difference from the original code, such as automatic recognition of saturated stars (rather than treating such stars as large cosmic rays, and use of a separable median filter instead of the true median filter. Astro-SCRAPPY is an AstroPy (ascl:1304.002) affiliated package.

[ascl:1705.016]
astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1912.010]
AstroAccelerate: Accelerated software package for processing time-domain radio astronomy data

AstroAccelerate processes time-domain radio astronomy data. It offers a standalone code that can be used to process filterbank data and a library that performs GPU-accelerated single pulse processing (SPS), Fourier Domain Acceleration Searching (FDAS) and dedispersion in real-time on very large data-sets comparable to those that will be produced by next-generation radio telescopes such as the SKA. AstroAccelerate uses NVIDIAR GPUs, and is configurable, stable, and easily maintained.

[ascl:1906.001]
Astroalign: Asterism-matching alignment of astronomical images

Astroalign tries to register (align) two stellar astronomical images, especially when there is no WCS information available. It does so by finding similar 3-point asterisms (triangles) in both images and deducing the affine transformation between them. Generic registration routines try to match feature points, using corner detection routines to make the point correspondence. These generally fail for stellar astronomical images since stars have very little stable structure so are, in general, indistinguishable from each other. Asterism matching is more robust and closer to the human way of matching stellar images. Astroalign can match images of very different field of view, point-spread function, seeing and atmospheric conditions. It may require special care or may not work on images of extended objects with few point-like sources or in crowded fields.

[ascl:1311.003]
AstroAsciiData: ASCII table Python module

ASCII tables continue to be one of the most popular and widely used data exchange formats in astronomy. AstroAsciiData, written in Python, imports all reasonably well-formed ASCII tables. It retains formatting of data values, allows column-first access, supports SExtractor style headings, performs column sorting, and exports data to other formats, including FITS, Numpy/Numarray, and LaTeX table format. It also offers interchangeable comment character, column delimiter and null value.

[ascl:1104.002]
AstroBEAR: Adaptive Mesh Refinement Code for Ideal Hydrodynamics & Magnetohydrodynamics

AstroBEAR is a modular hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications. It uses the BEARCLAW package, a multidimensional, Eulerian computational code used to solve hyperbolic systems of equations. AstroBEAR allows adaptive-mesh-refinment (AMR) simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates. Parallel applications are supported through the MPI architecture. AstroBEAR is written in Fortran 90/95 using standard libraries.

AstroBEAR supports hydrodynamic (HD) and magnetohydrodynamic (MHD) applications using a variety of spatial and temporal methods. MHD simulations are kept divergence-free via the constrained transport (CT) methods of Balsara & Spicer. Three different equation of state environments are available: ideal gas, gas with differing isentropic γ, and the analytic Thomas-Fermi formulation of A.R. Bell.

[ascl:1512.007]
AstroBlend: Visualization package for use with Blender

AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

[ascl:2006.017]
AstroCatR: Time series reconstruction of large-scale astronomical catalogs

AstroCatR reconstructs celestial objects' time series data for astronomical catalogs. It is a command-line program running on the Linux platform and is implemented in C and Python; AstroCatR's capabilities are based on specialized sky partitioning and MPI parallel programming. The package contains three parts: ETL (extract-transform-load) pre-processing, TS-matching calculation, and time series data retrieval. Once the user obtains the original catalogs, running ETL pre-processing generates a sky zoning file. The TS-matching module marks celestial objects, and finally, running the Query program searches celestial objects from the time series datasets which matched with the target.

[ascl:1507.010]
Astrochem: Abundances of chemical species in the interstellar medium

Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

[ascl:1905.007]
Astrocut: Tools for creating cutouts of TESS images

The Transiting Exoplanet Survey Satellite (TESS) produces Full Frame Images (FFIs) at a half hour cadence and keeps the same pointing for ~27 days at a time. Astrocut performs the same cutout across all FFIs that share a common pointing to create a time series of images on a small portion of the sky.

The Astrocut package has two parts: the CubeFactory and the CutoutFactory. The CubeFactory class creates a large image cube from a list of FFI files, which allows the cutout operation to be performed efficiently. The CutoutFactory class performs the actual cutout and builds a target pixel file (TPF) that is compatible with TESS pipeline TPFs. Because this software operates on TESS mission-produced FFIs, the resulting TPFs are not background-subtracted. In addition to the Astrocut software itself, the Mikulski Archive for Space Telescopes (MAST) provides a cutout service, TESScut, which runs Astrocut on MAST servers, and allows users to simply request cutouts through a web form or direct HTTP API query.

[ascl:1804.004]
AstroCV: Astronomy computer vision library

AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

[ascl:1907.016]
astrodendro: Astronomical data dendrogram creator

Astrodendro, written in Python, creates dendrograms for exploring and displaying hierarchical structures in observed or simulated astronomical data. It handles noisy data by allowing specification of the minimum height of a structure and the minimum number of pixels needed for an independent structure. Astrodendro allows interactive viewing of computed dendrograms and can also produce publication-quality plots with the non-interactive plotting interface.

[ascl:1010.013]
AstroGK: Astrophysical Gyrokinetics Code

The gyrokinetic simulation code AstroGK is developed to study fundamental aspects of kinetic plasmas and for applications mainly to astrophysical problems. AstroGK is an Eulerian slab code that solves the electromagnetic Gyrokinetic-Maxwell equations in five-dimensional phase space, and is derived from the existing gyrokinetics code GS2 by removing magnetic geometry effects. Algorithms used in the code are described. The code is benchmarked using linear and nonlinear problems. Serial and parallel performance scalings are also presented.

[ascl:2003.013]
AstroHOG: Analysis correlations using the Histograms of Oriented Gradients

AstroHOG compares extended spectral-line observations (PPV cubes); the histogram of oriented gradients (HOG) technique takes as input two PPV cubes and provides an estimate of their spatial correlation across velocity channels to study spatial correlation between different tracers of the ISM.

[ascl:1309.001]
AstroImageJ: ImageJ for Astronomy

AstroImageJ is generic ImageJ (ascl:1206.013) with customizations to the base code and a packaged set of astronomy specific plugins. It reads and writes FITS images with standard headers, displays astronomical coordinates for images with WCS, supports photometry for developing color-magnitude data, offers flat field, scaled dark, and non-linearity processing, and includes tools for precision photometry that can be used during real-time data acquisition.

[ascl:1502.022]
AstroLines: Astrophysical line list generator in the H-band

AstroLines adjusts spectral line parameters (gf and damping constant) starting from an initial line list. Written in IDL and tailored to the APO Galactic Evolution Experiment (APOGEE), it runs a slightly modified version of MOOG (ascl:1202.009) to compare synthetic spectra with FTS spectra of the Sun and Arcturus.

[ascl:1406.008]
ASTROM: Basic astrometry program

ASTROM performs "plate reductions" by taking user-provided star positions and the (x,y) coordinates of the corresponding star images and establishes the relationship between (x,y) and (ra,dec), thus enabling the coordinates of unknown stars to be determined. ASTROM is distributed with the Starlink software (ascl:1110.012) and uses SLALIB (ascl:1403.025).

[ascl:1010.078]
AstroMD: A Multi Dimensional Visualization and Analysis Toolkit for Astrophysics

Over the past few years, the role of visualization for scientific purpose has grown up enormously. Astronomy makes an extended use of visualization techniques to analyze data, and scientific visualization has became a fundamental part of modern researches in Astronomy. With the evolution of high performance computers, numerical simulations have assumed a great role in the scientific investigation, allowing the user to run simulation with higher and higher resolution. Data produced in these simulations are often multi-dimensional arrays with several physical quantities. These data are very hard to manage and to analyze efficiently. Consequently the data analysis and visualization tools must follow the new requirements of the research. AstroMD is a tool for data analysis and visualization of astrophysical data and can manage different physical quantities and multi-dimensional data sets. The tool uses virtual reality techniques by which the user has the impression of travelling through a computer-based multi-dimensional model.

[ascl:1203.012]
Astrometrica: Astrometric data reduction of CCD images

Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.

[ascl:1208.001]
Astrometry.net: Astrometric calibration of images

Astrometry.net is a reliable and robust system that takes as input an astronomical image and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing—not even the image scale—is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists.

[ascl:1407.018]
AstroML: Machine learning and data mining in astronomy

Written in Python, AstroML is a library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. An optional companion library, astroML_addons, is available; it requires a C compiler and contains faster and more efficient implementations of certain algorithms in compiled code.

[ascl:2103.012]
AstroNet-Triage: Neural network for TESS light curve triage

AstroNet-Triage contains TensorFlow models and data processing code for identifying exoplanets in astrophysical light curves; this is the triage version of two TESS neural networks. For the vetting version, see AstroNet-Vetting (ascl:2103.011). The TensorFlow code downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates new models, and generates new predictions using a trained model. Utilities that operate on light curves are provided; these reading TESS data from .h5 files, and perform phase folding, splitting, binning, and other tasks. C++ implementations of some light curve utilities are also included.

[ascl:2103.011]
AstroNet-Vetting: Neural network for TESS light curve vetting

AstroNet-Vetting identifies exoplanets in astrophysical light curves. This is the vetting version of two TESS neural networks; for the triage version, see AstroNet-Triage (ascl:2103.012). The package contains TensorFlow code that downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates a new model, and uses a trained model to generate new predictions. It includes utilities for operating on light curves, such as for reading TESS data from .h5 files, phase folding, splitting, and binning. In addition, C++ implementations of light curve utilities are also provided.

[ascl:2010.012]
Astronomaly: Flexible framework for anomaly detection in astronomy

Astronomaly actively detects anomalies in astronomical data. A python back-end runs anomaly detection based on machine learning; a JavaScript front-end provides data viewing and labeling. The package works on many common astronomy data types, including one-dimensional data and images, and offering extendable techniques for preprocessing, feature extraction, and machine learning.

[ascl:1802.009]
astroplan: Observation planning package for astronomers

Morris, Brett M.; Tollerud, Erik; Sipocz, Brigitta; Deil, Christoph; Douglas, Stephanie T.; Berlanga Medina, Jazmin; Vyhmeister, Karl; Price-Whelan, Adrian M.; Jeschke, Eric

astroplan is a flexible toolbox for observation planning and scheduling. It is powered by Astropy (ascl:1304.002); it works for Python beginners and new observers, and is powerful enough for observatories preparing nightly and long-term schedules as well. It calculates rise/set/meridian transit times, alt/az positions for targets at observatories anywhere on Earth, and offers built-in plotting convenience functions for standard observation planning plots (airmass, parallactic angle, sky maps). It can also determine the observability of sets of targets given an arbitrary set of constraints (i.e., altitude, airmass, moon separation/illumination, etc.).

[ascl:1402.003]
astroplotlib: Astronomical library of plots

Ubeda, Leonardo; Davis, Matt; Diaz, Rosa; Hammer, Derek; Philippe-Lajoie, Charles; Le Blanc, Tommy; Lim, Pey-Lian; Viana, Alex

Astropoltlib is a multi-language astronomical library of plots, a collection of templates useful for creating paper-quality figures. Most of the codes for producing the plots are written in IDL and/or Python; a very few are written in Mathematica. Any plot can be downloaded and customized to one's own needs.

[ascl:1805.024]
ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

[ascl:1304.002]
Astropy: Community Python library for astronomy

Greenfield, Perry; Robitaille, Thomas; Tollerud, Erik; Aldcroft, Tom; Barbary, Kyle; Barrett, Paul; Bray, Erik; Crighton, Neil; Conley, Alex; Conseil, Simon; Davis, Matt; Deil, Christoph; Dencheva, Nadia; Droettboom, Michael; Ferguson, Henry; Ginsburg, Adam; Grollier, Frédéric; Moritz Günther, Hans; Hanley, Chris; Hsu, J. C.; Kerzendorf, Wolfgang; Kramer, Roban; Lian Lim, Pey; Muna, Demitri; Nair, Prasanth; Price-Whelan, Adrian; Shiga, David; Singer, Leo; Taylor, James; Turner, James; Woillez, Julien; Zabalza, Victor

Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.

[ascl:1207.007]
Astropysics: Astrophysics utilities for python

Astropysics is a library containing a variety of utilities and algorithms for reducing, analyzing, and visualizing astronomical data. Best of all, it encourages the user to leverage the existing capabilities of Python to make this quick, easy, and as painless as cutting-edge science can even actually be. There do exist other Python packages with some of the capabilities of this project, but the goal of this project is to integrate all these tools together and make them interact in the most straightforward ways possible.

[ascl:1708.004]
Astroquery: Access to online data resources

Ginsburg, Adam; Parikh, Madhura; Woillez, Julien; Groener, Austen; Liedtke, Simon; Sipocz, Brigitta; Robitaille, Thomas; Deil, Christoph; Svoboda, Brian; Tollerud, Erik; Persson, Magnus Vilhelm; Séguin-Charbonneau, Loïc; Armstrong, Caden; Mirocha, Jordan; Droettboom, Michael; Allen, James; Moolekamp, Fred; Egeland, Ricky; Singer, Leo; Barbary, Kyle; Grollier, Frédéric; Shiga, David; Moritz Günther, Hans; Parejko, John; Booker, Joseph; Rol, Evert; Edward; Miller, Adam; Willett, Kyle

Astroquery allows users to access online astronomical data from a wide range of sources; it is an Astropy-affiliated package. Each web service has its own sub-package for interfacing with a particular data source.

[ascl:1407.007]
ASTRORAY: General relativistic polarized radiative transfer code

ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

[ascl:1010.023]
AstroSim: Collaborative Visualization of an Astrophysics Simulation in Second Life

AstroSim is a Second Life based prototype application for synchronous collaborative visualization targeted at astronomers.

[ascl:1507.019]
AstroStat: Statistical analysis tool

AstroStat performs statistical analysis on data and is compatible with Virtual Observatory (VO) standards. It accepts data in a variety of formats and performs various statistical tests using a menu driven interface. Analyses, performed in R, include exploratory tests, visualizations, distribution fitting, correlation and causation, hypothesis testing, multivariate analysis and clustering. AstroStat is available in two versions with an identical interface and features: as a web service that can be run using any standard browser and as an offline application.

[ascl:1307.007]
AstroTaverna: Tool for Scientific Workflows in Astronomy

AstroTaverna is a plugin for Taverna Workbench that provides the means to build astronomy workflows using Virtual Observatory services discovery and efficient manipulation of VOTables (based on STIL tool set). It integrates SAMP-enabled software, allowing data exchange and communication among local VO tools, as well as the ability to execute Aladin scripts and macros.

[ascl:2009.013]
AstroVaDEr: Unsupervised clustering and synthetic image generation

AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.

[ascl:1608.005]
AstroVis: Visualizing astronomical data cubes

AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

[ascl:1406.001]
ASURV: Astronomical SURVival Statistics

ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

[ascl:1010.014]
Athena: Grid-based code for astrophysical magnetohydrodynamics (MHD)

Athena is a grid-based code for astrophysical magnetohydrodynamics (MHD). It was developed primarily for studies of the interstellar medium, star formation, and accretion flows. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.

[ascl:1402.026]
athena: Tree code for second-order correlation functions

athena is a 2d-tree code that estimates second-order correlation functions from input galaxy catalogues. These include shear-shear correlations (cosmic shear), position-shear (galaxy-galaxy lensing) and position-position (spatial angular correlation). Written in C, it includes a power-spectrum estimator implemented in Python; this script also calculates the aperture-mass dispersion. A test data set is available.

[ascl:1912.005]
Athena++: Radiation GR magnetohydrodynamics code

Athena++ is a complete re-write of the Athena astrophysical magnetohydrodynamics (MHD) code (ascl:1010.014) in C++. Compared to earlier versions, the Athena++ code has much more flexible coordinate and grid options and supports new physics. It also offers significantly improved performance and scalability, and improved source code clarity and modularity. Athena++ supports compressible hydrodynamics and MHD in 1D, 2D, and 3D, and special and general relativistic hydrodynamics and MHD. In addition, it supports Cartesian, cylindrical, or spherical polar coordinates; static or adaptive mesh refinement in any coordinate system; mixed parallelization with both OpenMP and MPI; and a task-based execution model for improved load balancing, scalability and modularity.

[ascl:1505.006]
Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics

Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.

[ascl:1911.006]
ATHOS: A Tool for HOmogenizing Stellar parameters

ATHOS provides on-the-fly stellar parameter determination of FGK stars based on flux ratios from optical spectra. Once configured properly, it will measure flux ratios in the input spectra and deduce the stellar parameters effective temperature, iron abundance (a.k.a [Fe/H]), and surface gravity by employing pre-defined analytical relations. ATHOS can be configured to run in parallel in an arbitrary number of threads, thus enabling the fast and efficient analysis of huge datasets.

[ascl:1110.015]
atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine'' physical effects of cosmological recombination simultaneously with using fudge factors.

[ascl:1911.013]
ATLAS: Turning Dopplergram images into frequency shift measurements

ATLAS performs the tracking, projecting, power-spectrum-making, and ring-fitting needed to turn a set of Dopplergram images into a set of frequency shift measurements. This code is essentially a combination of three codes, FRACK (FORTRAN Tracking), PSPEC (Power SPECtrum), and MRF (Multi-Ridge Fitting), included in the ATLAS package. ATLAS reads in a list of longitude/latitude coordinates corresponding to the desired tile centers and a set of full-disk Dopplergram images and outputs frequency shift measurements from each wave mode of each tile. The code relies on both distributed-memory (MPI) and shared-memory (OpenMP) parallelism to scale up to around 1000 processes. Due to the immense volume of data produced by the tracking and projecting steps, the intermediate data products (tiles, power spectra) are never written out.

[ascl:1303.024]
ATLAS12: Opacity sampling model atmosphere program

ATLAS12 is an opacity sampling model atmosphere program to allow computation of models with individual abundances using line data. ATLAS12 is able to compute the same models as ATLAS9 which uses pretabulated opacities, plus models with arbitrary abundances. ATLAS12 sampled fluxes are quite accurate for predicting the total flux except in the intermediate or narrow bandpass intervals because the sample size is too small.

[ascl:1607.003]
Atlas2bgeneral: Two-body resonance calculator

For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.

[ascl:1607.004]
Atlas3bgeneral: Three-body resonance calculator

For a massless test particle and given a planetary system, atlas3bgeneral calculates all three body resonances in a given range of semimajor axes with all the planets taken by pairs. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the three-body resonances is available for use with the Fortran77 source code.

[ascl:1710.017]
ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:1703.013]
Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer

Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

[ascl:1708.001]
ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

[ascl:1405.009]
ATV: Image display tool

Barth, Aaron J.; Schlegel, David; Finkbeiner, Doug; Colley, Wesley; Liu, Mike; Brauher, Jim; Cunningham, Nathaniel; Perrin, Marshall; Roe, Henry; Weaver, Hal

ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.

[ascl:1909.001]
Auto-multithresh: Automated masking for clean

Auto-multithresh implements an automated masking algorithm for clean. It operates on the residual image within the minor cycle of clean to identify and mask regions of significant emission. It then cascades these significant regions down to lower signal to noise. It includes features to pad the mask to avoid sharp edges and to remove small regions that are unlikely to be significant emission. The algorithm described by this code was incorporated into the tclean task within CASA as auto-multithresh.

[ascl:1406.004]
Autoastrom: Autoastrometry for Mosaics

Autoastrom performs automated astrometric corrections on an astronomical image by automatically detecting objects in the frame, retrieving a reference catalogue, cross correlating the catalog with CCDPACK (ascl:1403.021) or MATCH, and using the ASTROM (ascl:1406.008) application to calculate a correction. It is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1904.007]
AutoBayes: Automatic design of customized analysis algorithms and programs

AutoBayes automatically generates customized algorithms from compact, declarative specifications in the data analysis domain, taking a statistical model as input and creating documented and optimized C/C++ code. The synthesis process uses Bayesian networks to enable problem decompositions and guide the algorithm derivation. Program schemas encapsulate advanced algorithms and data structures, and a symbolic-algebraic system finds closed-form solutions for problems and emerging subproblems. AutoBayes has been used to analyze planetary nebulae images taken by the Hubble Space Telescope, and can be applied to other scientific data analysis tasks.

[ascl:1602.001]
Automark: Automatic marking of marked Poisson process in astronomical high-dimensional datasets

Automark models photon counts collected form observation of variable-intensity astronomical sources. It aims to mark the abrupt changes in the corresponding wavelength distribution of the emission automatically. In the underlying methodology, change points are embedded into a marked Poisson process, where photon wavelengths are regarded as marks and both the Poisson intensity parameter and the distribution of the marks are allowed to change.

[ascl:1812.015]
AUTOSPEC: Automated Spectral Extraction Software for integral field unit data cubes

AUTOSPEC provides fast, automated extraction of high quality 1D spectra from astronomical datacubes with minimal user effort. AutoSpec takes an integral field unit (IFU) datacube and a simple parameter file in order to extract a 1D spectra for each object in a supplied catalogue. A custom designed cross-correlation algorithm improves signal to noise as well as isolates sources from neighboring contaminants.

[ascl:1612.014]
AUTOSTRUCTURE: General program for calculation of atomic and ionic properties

AUTOSTRUCTURE calculates atomic and ionic energy levels, radiative rates, autoionization rates, photoionization cross sections, plane-wave Born and distorted-wave excitation cross sections in LS- and intermediate-coupling using non- or (kappa-averaged) relativistic wavefunctions. These can then be further processed to form Auger yields, fluorescence yields, partial and total dielectronic and radiative recombination cross sections and rate coefficients, photoabsorption cross sections, and monochromatic opacities, among other properties.

[ascl:2101.005]
Avocado: Photometric classification of astronomical transients and variables with biased spectroscopic samples

Avocado produces classifications of arbitrary astronomical transients and variable objects. It addresses the problem of biased spectroscopic samples by generating many lightcurves from each object in the original spectroscopic sample at a variety of redshifts and with many different observing conditions. The "augmented" samples of lightcurves that are generated are much more representative of the full datasets than the original spectroscopic samples.

[ascl:1109.016]
aXe: Spectral Extraction and Visualization Software

aXe is a spectroscopic data extraction software package that was designed to handle large format spectroscopic slitless images such as those from the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) on HST. aXe is a PyRAF/IRAF package that consists of several tasks and is distributed as part of the Space Telescope Data Analysis System (STSDAS). The various aXe tasks perform specific parts of the extraction and calibration process and are successively used to produce extracted spectra.

[ascl:2006.009]
AxionNS: Ray-tracing in neutron stars

AxionNS computes radio light curves resulting from the resonant conversion of Axion dark matter into photons within the magnetosphere of a neutron star. Photon trajectories are traced from the observer to the magnetosphere where a root finding algorithm identifies the regions of resonant conversion. Given the modeling of the axion dark matter distribution and conversion probability, one can compute the photon flux emitted from these regions. The individual contributions from all the trajectories is then summed to obtain the radiated photon power per unit solid angle.

[ascl:1605.004]
BACCHUS: Brussels Automatic Code for Characterizing High accUracy Spectra

BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) derives stellar parameters (T_{eff}, log *g*, metallicity, microturbulence velocity and rotational velocity), equivalent widths, and abundances. The code includes on the fly spectrum synthesis, local continuum normalization, estimation of local S/N, automatic line masking, four methods for abundance determinations, and a flagging system aiding line selection. BACCHUS relies on the grid of MARCS model atmospheres, Masseron's model atmosphere thermodynamic structure interpolator, and the radiative transfer code Turbospectrum (ascl:1205.004).

[ascl:1708.010]
BAGEMASS: Bayesian age and mass estimates for transiting planet host stars

BAGEMASS calculates the posterior probability distribution for the mass and age of a star from its observed mean density and other observable quantities using a grid of stellar models that densely samples the relevant parameter space. It is written in Fortran and requires FITSIO (ascl:1010.001).

[ascl:2104.017]
Bagpipes: Bayesian Analysis of Galaxies for Physical Inference and Parameter EStimation

Bagpipes generates realistic model galaxy spectra and fits these to spectroscopic and photometric observations.

[ascl:2102.029]
BALRoGO: Bayesian Astrometric Likelihood Recovery of Galactic Objects

BALRoGO (Bayesian Astrometric Likelihood Recovery of Galactic Objects) handles data from the Gaia space mission. It extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers using a combination of Bayesian and non-Bayesian approaches. It fits proper motion space, surface density, and the object center. It also provides confidence regions for the color-magnitude diagram and parallaxes.

[ascl:1312.008]
BAMBI: Blind Accelerated Multimodal Bayesian Inference

BAMBI (Blind Accelerated Multimodal Bayesian Inference) is a Bayesian inference engine that combines the benefits of SkyNet (ascl:1312.007) with MultiNest (ascl:1109.006). It operated by simultaneously performing Bayesian inference using MultiNest and learning the likelihood function using SkyNet. Once SkyNet has learnt the likelihood to sufficient accuracy, inference finishes almost instantaneously.

[ascl:1408.020]
bamr: Bayesian analysis of mass and radius observations

bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O_{2}scl (ascl:1408.019) be installed before compilation.

[ascl:1905.014]
Bandmerge: Merge data from different wavebands

Bandmerge takes in ASCII tables of positions and fluxes of detected astronomical sources in 2-7 different wavebands, and write out a single table of the merged data. The tool was designed to work with source lists generated by the Spitzer Science Center's MOPEX (ascl:1111.006) software, although it can be "fooled" into running on other data as well.

[ascl:1801.001]
BANYAN_Sigma: Bayesian classifier for members of young stellar associations

Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René

BANYAN_Sigma calculates the membership probability that a given astrophysical object belongs to one of the currently known 27 young associations within 150 pc of the Sun, using Bayesian inference. This tool uses the sky position and proper motion measurements of an object, with optional radial velocity (RV) and distance (D) measurements, to derive a Bayesian membership probability. By default, the priors are adjusted such that a probability threshold of 90% will recover 50%, 68%, 82% or 90% of true association members depending on what observables are input (only sky position and proper motion, with RV, with D, with both RV and D, respectively). The algorithm is implemented in a Python package, in IDL, and is also implemented as an interactive web page.

[ascl:1402.025]
BAOlab: Baryon Acoustic Oscillations software

Using the 2-point correlation function, BAOlab aids the study of Baryon Acoustic Oscillations (BAO). The code generates a model-dependent covariance matrix which can change the results both for BAO detection and for parameter constraints.

[ascl:1403.013]
BAOlab: Image processing program

BAOlab is an image processing package written in C that should run on nearly any UNIX system with just the standard C libraries. It reads and writes images in standard FITS format; 16- and 32-bit integer as well as 32-bit floating-point formats are supported. Multi-extension FITS files are currently not supported. Among its tools are ishape for size measurements of compact sources, mksynth for generating synthetic images consisting of a background signal including Poisson noise and a number of pointlike sources, imconvol for convolving two images (a “source” and a “kernel”) with each other using fast fourier transforms (FFTs) and storing the output as a new image, and kfit2d for fitting a two-dimensional King model to an image.

[ascl:1810.002]
Barcode: Bayesian reconstruction of cosmic density fields

Barcode (BAyesian Reconstruction of COsmic DEnsity fields) samples the primordial density fields compatible with a set of dark matter density tracers after cosmic evolution observed in redshift space. It uses a redshift space model based on the analytic solution of coherent flows within a Hamiltonian Monte Carlo posterior sampling of the primordial density field; this method is applicable to analytically derivable structure formation models, such as the Zel'dovich approximation, but also higher order schemes such as augmented Lagrangian perturbation theory or even particle mesh models. The algorithm is well-suited for analysis of the dark matter cosmic web implied by the observed spatial distribution of galaxy clusters, such as obtained from X-ray, SZ or weak lensing surveys, as well as that of the intergalactic medium sampled by the Lyman alpha forest. In these cases, virialized motions are negligible and the tracers cannot be modeled as point-like objects. Barcode can be used in all of these contexts as a baryon acoustic oscillation reconstruction algorithm.

Would you like to view a random code?