ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 3362-6722 of 3572 (3481 ASCL, 91 submitted)

Previous12
Next
Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2312.004] DENSe: Bayesian density estimation for Poisson data

DENSe enables Bayesian non-parametric inferences of densities of Poisson data counts. Its framework of stateless methods is written in Python, although it relies on NIFTy (ascl:1302.013, ascl:1903.008) for the heavy lifting. DENSe utilizes all available information in the data by modeling the inherent correlation structure using a Matérn kernel. The inference of the density from count data can be written in a single line of python code. The fitting method takes a multidimensional numpy array as input and returns multidimensional arrays of the same dimensions encoding the density field.

[ascl:2312.005] LyaCoLoRe: Generate simulated Lyman alpha forest spectra

LyaCoLoRe uses CoLoRe (ascl:2111.009) simulations to generate simulated Lyman alpha forest spectra. The code takes the output files from CoLoRe as an input, carries out several stages of processing, and produces realistic skewers of transmitted flux fraction as an output. The repository includes tools to tune the parameters within LyaCoLoRe's transformation, and to measure the 1D power spectrum of output skewers quickly.

[ascl:2312.006] SolarAxionFlux: Solar axion flux calculator for different solar models and opacity codes

SolarAxionFlux quantifies systematic differences and statistical uncertainties in the calculation of the solar axion flux from axion-photon and axion-electron interactions. Determining the limitations of these calculations can be used to identify potential improvements and help determine axion model parameters more accurately.

[ascl:2312.007] CosmoLED: Cosmo code for Large Extra Dimension (LED) black holes

CosmoLED computes Hawking evaporation from black holes and set constraints on the fraction of black holes in dark matter. Based on ExoCLASS (ascl:1106.020), the code provides a DarkAges_LED module and C codes in class_LED to compute the evolution and energy deposition functions from LED black holes. Though CosmoLED is designed for large extra dimension black holes, it can also be used to study 4D black holes.

[ascl:2312.008] CompressedFisher: Library for testing Fisher forecasts

The CompressedFisher library tests whether Fisher forecasts using simulated components are converged. The library contains tools to compute standard Fisher estimates, estimate the level of bias due to the finite number of simulations, and compute the compressed Fisher information. Typical usage of CompressedFisher requires two ensembles of simulations: one set of simulations is given at the fiducial parameters (𝜃) to estimate the covariance matrix. The second is a set of simulated derivatives; these can either be in the form of realizations of the derivatives themselves or simulations evaluate at a set of point in the neighborhood of the fiducial point that the code can use to estimate the derivatives.

[ascl:2312.009] GravSphere: Jeans modeling code

The non-parametric Jeans code GravSphere models discrete data and can be used to model dark matter distributions in galaxies. It can also recover the density ρ(r) and velocity anisotropy β(r) of spherical stellar systems, assuming only that they are in a steady state. Real or mock data are prepared by using the included binulator.py code; the repository also includes many examples for exploring the GravSphere's capabilities.

[ascl:2312.010] FORECAST: Realistic astronomical image and galaxy survey generator

FORECAST generates realistic astronomical images and galaxy surveys by forward modeling the output snapshot of any hydrodynamical cosmological simulation. It exploits the snapshot by constructing a lightcone centered on the observer's position; the code computes the observed fluxes of each simulated stellar element, modeled as a Single Stellar Population (SSP), in any chosen set of pass-band filters, including k-correction, IGM absorption, and dust attenuation. These fluxes are then used to create an image on a grid of pixels, to which observational features such as background noise and PSF blurring can be added. FORECAST provides customizable options for filters, size of the field of view, and survey parameters, thus allowing the synthetic images to be tailored for specific research requirements.

[ascl:2312.011] PhotochemPy: 1-D photochemical model of rocky planet atmospheres

PhotochemPy finds the steady-state chemical composition of an atmosphere or evolves atmospheres through time. Given inputs such as the stellar UV flux and atmospheric temperature structure, the code creates a photochemical model of a planet's atmosphere. PhotochemPy is a distant fork of Atmos (ascl:2106.039). It provides a Python wrapper to Fortran source code but can also be used exclusively in Fortran.

[ascl:2312.012] PulsarX: Pulsar searching

The folding pipeline PulsarX searches for pulsars. The code includes radio frequency interference mitigation, de-dispersion, folding, and parameter optimization, and supports both psrfits and filterbank data formats. The toolset has two implementations of the folding pipelines; one uses a brute-force de-dispersion algorithm, and the other an algorithm that becomes more efficient than the brute-force de-dispersion algorithm as the number of candidates increases. PulsarX is appropriate for large-scale pulsar surveys.

[ascl:2312.013] 21cmEMU: 21cmFAST summaries emulator

21cmEMU emulates 21cmFAST (ascl:1102.023) summary statistics, among them the 21-cm power spectrum, 21-cm global brightness temperature, IGM spin temperature, and neutral fraction. It also emulates the Thomson scattering optical depth and UV luminosity functions. With 21cmFAST installed, parameters can be supplied direction to 21cmEMU, and 21cmEMU can be used for, for example, analytic calculations of taue and UV luminosity functions. The code is included as an alternative simulator in 21cmMC (ascl:1608.017).

[ascl:2312.014] GRFolres: Extension to GRChombo for modified gravity simulations

GRFolres performs simulations in modified theories of gravity. It is based on GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which makes use of the Chombo library (ascl:1202.008) for adaptive mesh refinement. The code implements the 4∂ST theory of modified gravity and the cubic Horndeski theory in (3+1)-dimensional numerical relativity. GRFolres can be used for stable gauge evolution, solving the modified energy and momentum constraints for initial conditions, and monitoring the constraint violation and calculating the energy densities associated with the different scalar terms in the action. It can also extract data for the tensor and scalar gravitational waveforms.

[ascl:2312.015] SUNBIRD: Neural-network-based models for galaxy clustering

SUNBIRD trains neural-network-based models for galaxy clustering. It also incorporates pre-trained emulators for different summary statistics, including galaxy two-point correlation function, density-split clustering statistics, and old-galaxy cross-correlation function. These models have been trained on mock galaxy catalogs, and were calibrated to work for specific samples of galaxies. SUNBIRD implements routines with PyTorch to train new neural-network emulators.

[ascl:2312.016] The Farmer: Photometry routines for deep multi-wavelength galaxy surveys

The Farmer contains photometry routines geared towards deep, multi-wavelength galaxy surveys. It fits simple parametric surface brightness profiles provided by The Tractor (ascl:1604.008) to measure precision photometry even in deeply crowded fields when provided with a suitable high resolution detection image. The Farmer has been used to build a number of galaxy survey catalogs including COSMOS202, SHELA, and H20.

[ascl:2312.017] LimberJack.jl: Auto-differentiable methods for cosmology

LimberJack.jl performs cosmological analyses of 2 point auto- and cross-correlation measurements from galaxy clustering, CMB lensing and weak lensing data. Written in Julia, it obtains gradients for its outputs faster than traditional finite difference methods, making the code greatly synergistic with gradient-based sampling methods such as Hamiltonian Monte Carlo. LimberJack.jl can efficiently exploring parameter spaces with hundreds of dimensions.

[ascl:2312.018] PyMsOfa: Python package for the Standards of Fundamental Astronomy (SOFA) service

PyMsOfa accesses the International Astronomical Union’s SOFA library (ascl:1403.026) from Python. It offers a wrapper package based on a foreign function library for Python (ctypes), a wrapper with the foreign function interface for Python calling C code (cffi), and a package directly written in pure Python codes from SOFA subroutines. PyMsOfa is suitable for the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission and for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.

[ascl:2312.019] Rainbow: Simultaneous multi-band light curve fitting

Rainbow is a black-body parametric model for transient light curves. It uses Bazin function as a model for bolometric flux evolution and a logistic function for the temperature evolution; it provides seven fit parameters and goodness of fit (reduced χ2) and is well-suited for transient objects. Also included is RainbowRisingFit, suitable for rising transient objects, which offers six fit parameters. It is based on a rising sigmoid bolometric flux and a sigmoid temperature evolution. These implementations are implemented in the light-curve processing toolbox (ascl:2107.001) for Python.

[ascl:2312.020] ProPane: Image warping and stacking utilities

The ProPane package comes with key utilities for warping between different WCS systems: propaneWarp (for warping individual frames once). ProPane also contains the various functions for creating large stacks of many warped frames (which is of class ProPane, which is roughly meant to suggest the idea of many panes of glass being stacked together). It uses the wcslib C library (ascl:1108.003) for projections (all legal ones are supported) via the Rwcs package, and uses the threaded Cimg C++ library via the imager library to do image warping. ProPane also contains functions converted from older (deprecated) Rwcs and ProFound (ascl:1804.006) related functions.

[ascl:2312.021] PyRaTE: Non-LTE spectral lines simulations

PyRaTE (Python Radiative Transfer Emission) post-processes astrochemical simulations. This multilevel radiative transfer code uses the escape probablity method to calculate the population densities of the species under consideration. The code can handle all projection angles and geometries and can also be used to produce mock observations of the Goldreich-Kylafis effect. PyRaTE is written in Python; it uses a parallel strategy and relies on the YT analysis toolkit (ascl:1011.022), mpi4py and numba.

[ascl:2312.022] C2-Ray: Time-dependent photo-ionization calculations

C2-Ray calculates spherical symmetric time-dependent photo-ionization in 1D with the source at the origin for hydrogen only. The code is explicitly photon-conserving and uses an analytical relaxation solution for the ionization rate equations for each time step, thus enabling integration of the equation of transfer along a ray with fewer cells and time steps than previous methods. It is suitable for coupling radiative transfer to gas and N-body dynamics methods on fixed or adaptive grids. C2-Ray is not parallelized but contains an MPI module for compatibility with the 3D version (C2-Ray3Dm).

[ascl:2312.023] C2-Ray3Dm: 3D version of C2-Ray for multiple sources, hydrogen only

C2-Ray3Dm performs time-dependent photo-ionization calculations for 3D multiple sources, and for hydrogen only. Based on C2-Ray (ascl:2312.022), it runs under both MPI and OpenMP. The length of subroutines has been reduced to make the code more manageable and easier to read.

[ascl:2312.024] C2-Ray3Dm1D_Helium: Hydrogen + helium version of C2-Ray

C2-Ray3Dm1D_Helium is the hydrogen + helium version of the radiative transfer photo-ionization code C2-Ray. It combines the 1D and 3D versions of the code.

[ascl:2312.025] pyC2Ray: Python interface to C2Ray with GPU acceleration

pyC2Ray updates C2-Ray (ascl:2312.022), an astrophysical radiative transfer code used to simulate the Epoch of Reionization (EoR). pyC2Ray includes a new raytracing method, ASORA, developed for GPUs, and provides a Python interface for customizable use of the code. The core features of C2-Ray, written in Fortran90, are wrapped using f2py as a Python extension module, while the raytracing library ASORA is implemented in C++ using CUDA. Both are native Python C-extensions and can be directly accessed from any Python script.

[ascl:2312.026] CloudFlex: Small-scale structure observational signatures modeling

CloudFlex models observational signatures associated with the small-scale structure of the circumgalactic medium. It populates cool gas structures in the CGM as a complex of cloudlets using a Monte Carlo method. Various parameters can be set to describe the structure of the cloudlet complexes, including cloudlet mass, density, velocity, and size. Functionality exists for generating the observational signatures of sightlines piercing these cloudlet complexes, borrowing heavily from the Trident code (ascl:1612.019).

[ascl:2312.027] galclaim: GALaxy Chance of Local Alignment algorIthM

galclaim identifies association between astrophysical transient sources and host galaxy. This association is made by estimating the chance alignment between a given transient sky localization and nearby galaxies. The code can be used with various catalogs, including Pan-STARRS, HSC, AllWISE and GLADE. galclaim also pre-checks for nearby bright galaxy using the RC3 catalog (https://heasarc.gsfc.nasa.gov/w3browse/all/rc3.html). When a nearby galaxy is found, a warning is raised and the properties of the galaxy are saved in a dedicated output file. The package can create plots displaying the computed pval for the found objects for each transient and each catalog; plots are stored in the result/plots directory.

[ascl:2312.028] SAGE: Stellar Activity Grid for Exoplanets

SAGE corrects the time-dependent impact of stellar activity on transmission spectra. It uses a pixelation approach to model the stellar surface with spots and faculae, while accounting for limb-darkening and rotational line-broadening. The code can be used to evaluate stellar contamination for F to M-type hosts, test various spot sizes and locations, and quantify the impact of limb-darkening. SAGE can also retrieve the properties and distribution of active regions on the stellar surface from photometric monitoring, and connect the photometric variability to the stellar contamination of transmission spectra.

[ascl:2312.029] RRLFE: Metallicity calibrations for RR Lyrae variable stars

RRLFE generates and applies calibrations for retrieving [Fe/H] from low-res spectra of RR Lyrae variable stars. The code can generate a metallicity calibration anew, from real or synthetic spectra; it can also apply a metallicity calibration to low-resolution (R ~2000) RR Lyrae spectra spanning 3911 to 4950 angstroms.

[ascl:2312.030] matvis: Fast matrix-based visibility simulator
Kittiwisit, Piyanat; Murray, Steven G.; Garsden, Hugh; Bull, Philip; Cain, Christopher; Parsons, Aaron R.; Sipple, Jackson; Abdurashidova, Zara; Adams, Tyrone; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Baartman, Rushelle; Balfour, Yanga; Beardsley, Adam P.; Berkhout, Lindsay M.; Bernardi, Gianni; Billings, Tashalee S.; Bowman, Judd D.; Bradley, Richard F.; Burba, Jacob; Carey, Steven; Carilli, Chris L.; Chen, Kai-Feng; Cheng, Carina; Choudhuri, Samir; DeBoer, David R.; de Lera Acedo, Eloy; Dexter, Matt; Dillon, Joshua S.; Dynes, Scott; Eksteen, Nico; Ely, John; Ewall-Wice, Aaron; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steven R.; Gale-Sides, Kingsley; Gehlot, Bharat Kumar; Ghosh, Abhik; Glendenning, Brian; Gorce, Adelie; Gorthi, Deepthi; Greig, Bradley; Grobbelaar, Jasper; Halday, Ziyaad; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Huang, Tian; Jacobs, Daniel C.; Josaitis, Alec; Julius, Austin; Kariseb, MacCalvin; Kern, Nicholas S.; Kerrigan, Joshua; Kim, Honggeun; Kohn, Saul A.; Kolopanis, Matthew; Lanman, Adam; La Plante, Paul; Liu, Adrian; Loots, Anita; Ma, Yin-Zhe; MacMahon, David H. E.; Malan, Lourence; Malgas, Cresshim; Malgas, Keith; Marero, Bradley; Martinot, Zachary E.; Mesinger, Andrei; Molewa, Mathakane; Morales, Miguel F.; Mosiane, Tshegofalang; Neben, Abraham R.; Nikolic, Bojan; Devi Nunhokee, Chuneeta; Nuwegeld, Hans; Pascua, Robert; Patra, Nipanjana; Pieterse, Samantha; Qin, Yuxiang; Rath, Eleanor; Razavi-Ghods, Nima; Riley, Daniel; Robnett, James; Rosie, Kathryn; Santos, Mario G.; Sims, Peter; Singh, Saurabh; Storer, Dara; Swarts, Hilton; Tan, Jianrong; Thyagarajan, Nithyanandan; van Wyngaarden, Pieter; Williams, Peter K. G.; Xu, Zhilei; Zheng, Haoxuan

matvis simulates radio interferometric visibilities at the necessary scale with both CPU and GPU implementations. It is matrix-based and applicable to wide field-of-view instruments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), as it does not make any approximations of the visibility integral (such as the flat-sky approximation). The only approximation made is that the sky is a collection of point sources, which is valid for sky models that intrinsically consist of point-sources, but is an approximation for diffuse sky models. The matvix matrix-based algorithm is fast and scales well to large numbers of antennas. The code supports both CPU and GPU implementations as drop-in replacements for each other and also supports both dense and sparse sky models.

[ascl:2312.031] AM3: Astrophysical Multi-Messenger Modeling

AM3 simulates lepto-hadronic interactions in astrophysical environments. It solves the time-dependent partial differential equations for the energy spectra of electrons, positrons, protons, neutrons, photons, neutrinos as well as charged secondaries (pions and muons), immersed in an isotropic magnetic field. The code accounts for the emission of photons and charged secondaries in electromagnetic and hadronic interactions feed back into the interaction rates in a time-dependent manner, therefore grasping non-linear effects including electromagnetic cascades. AM3 is computationally efficient, making it possible to scan vast source parameter scans and fit the observational data, and has been deployed to explain multi-wavelength observations from blazars, gamma-ray bursts and tidal disruption events.

[ascl:2312.032] gaia_tools: Tools for working with Gaia and related data sets

gaia_tools contains codes for working with the ESA/Gaia data and related data sets (APOGEE, GALAH, LAMOST DR2, and RAVE). Written in Python, it includes tools to read catalogs, perform cross-matching, read RVS or XP spectra, and query the Gaia archive. gaia_tools also contains various matching recipes, such as matching APOGEE or APOGEE-RC to Gaia DR2, and RAVE to TGAS (taking into account the epoch difference).

[ascl:2312.033] RADIS: Fast line-by-line code for high-resolution infrared molecular spectra

RADIS resolves spectra with millions of lines within seconds on a single-CPU and can be GPU-accelerated. It supports HITRAN, HITEMP and ExoMol out-of-the-box (auto-download), and therefore is particularly suitable to compute cross-sections or transmission spectra at high-temperature. RADIS includes equilibrium calculations for all species, and non-LTE for CO2 and CO.

[ascl:2312.035] SubGen: Fast subhalo sampler

SubGen generates Monte-Carlo samples of dark matter subhaloes. It fully describes the joint distribution of subhaloes in final mass, infall mass, and radius; it can be used to predict derived distributions involving combinations of these quantities, including the universal subhalo mass function, the subhalo spatial distribution, the gravitational lensing profile, the dark matter annihilation radiation profile and boost factor. SubGen works only for CDM subhaloes; for an extension of the code to also work with WDM subhaloes, see SubGen2 (ascl:2312.036).

[ascl:2312.036] SubGen2: Subhalo population generator

The SubGen2 subhalo population generator works for both CDM and WDM of arbitrary DM particle mass. It can be used to generate a population of subhaloes according to the joint distribution of subhalo bound mass, infall mass and halo-centric distance in a halo of a given mass. SubGen2 is an extension to SubGen (ascl:2312.035), which works only for CDM subhaloes.

[submitted] NE2001p: A Native Python Implementation of the NE2001 Galactic Electron Density Model

NE2001p is a fully Python implementation of the NE2001 Galactic electron density model. NE2001p forward models the dispersion and scattering of compact radio sources, including pulsars, fast radio bursts, AGNs, and masers, and the model predicts the distances of radio sources that lack independent distance measures.

[submitted] BSAVI: Bayesian Sample Visualizer for Cosmological Likelihoods

BSAVI (Bayesian Sample Visualizer) is a tool to aid likelihood analysis of model parameters where samples from a distribution in the parameter space are used as inputs to calculate a given observable. For example, selecting a range of samples will allow you to easily see how the observables change as you traverse the sample distribution. At the core of BSAVI is the Observable object, which contains the data for a given observable and instructions for plotting it. It is modular, so you can write your own function that takes the parameter values as inputs, and BSAVI will use it to compute observables on the fly. It also accepts tabular data, so if you have pre-computed observables, simply import them alongside the dataset containing the sample distribution to start visualizing.

[ascl:2401.001] tomso: TOols for Models of Stars and their Oscillations

tomso loads and saves input and output files for and from stellar evolution and oscillation codes. The functions are bundled together in modules that correspond with a specific stellar evolution code, stellar oscillation code, or file format. tomso supports the FGONG format and various input/output files for ADIPLS (ascl:1109.002), GYRE (ascl:1308.010), MESA (ascl:1010.083), and STARS (ascl:1107.008). tomso's main purpose is to provide a compact interface for manipulating input and output data in these formats and simplify research that uses them.

[ascl:2401.002] Rayleigh: Pseudo-spectral MHD

The 3-D convection code Rayleigh enables study of dynamo behavior in spherical geometry. It evolves the incompressible and anelastic MHD equations in spherical geometry using a pseudo-spectral approach. Rayleigh employs spherical harmonics in the horizontal direction and Chebyshev polynomials in the radial direction and has undergone extensive accuracy testing.

[ascl:2401.003] LUNA: Forward model luna simulator

LUNA generates dynamically accurate lightcurves from a planet-moon pair, analytically accounting for shadow overlaps, stellar limb darkening, and planet-moon dynamical motion. The code takes transit timing/duration variations and ingress/egress asymmetries into consideration not only for the planet, but also the moon. LUNA was designed to be analytical and dynamical and to incorporate limb darkening (including non-linear laws) and account for all orbital elements, including eccentricity and longitude of the ascending node. Because the software is precise and analytic, LUNA is a highly potent tool for exomoon detection.

[ascl:2401.004] pyPETaL: A Pipeline for Estimating AGN Time Lags

pyPETAL produces cross-correlation functions, discrete correlation functions, and mean time lags from multi-band AGN time-series data, combining multiple different codes (including pyCCF (ascl:1805.032), pyZDCF, PyROA (ascl:2107.012), and JAVELIN (ascl:1010.007)) used for active galactic nuclei (AGN) reverberation mapping (RM) analysis into a unified pipeline. This pipeline also implements outlier rejection using Damped Random Walk Gaussian process fitting, and detrending through the LinMix algorithm. pyPETAL implements a weighting scheme for all lag-producing modules, mitigating aliasing in peaks of time lag distributions between light curves. pyPETAL scales to any combination of internal code modules, supporting a variety of computational workflows.

[ascl:2401.005] CosmosCanvas: Useful color maps for different astrophysical properties

CosmosCanvas creates perception-based color maps for different astrophysical properties such as spectral index and velocity fields. Three tutorials demonstrate how to use python code to exploit and adjust the boundaries in these divergent colour schemes. Intended to work with human physiology, each tutorial offers at least one default scheme that is monotonic in value both as a redundancy for supporting data information and an aid for colour blind viewers. This library relies on Gilles Ferrand's colourspace library.

[ascl:2401.006] LoSoTo: LOFAR solutions tool

LoSoTo (LOFAR Solution Tool) performs a variety of operations on H5parm data, which is based on the HDF5 format; it isolates direction independent systematic effects and can therefore be transferred to the target field. Subsets of data can be selected for each operation using lists of axes values, regular expressions, or intervals. The LoSoTo package stores solutions in arrays organized in a hierarchical fashion; this provides flexibility and preserves performance. The code can, for example, extract Faraday rotation from RR/LL phase solutions or a rotation matrix, clip solutions around the median, and calculate the ionospheric structure function. LoSoTo includes an outlier flagging procedure, normalizes solutions to a given value, and offers an advanced plotting routine, and many other operations.

[ascl:2401.007] deal.II: Finite element library

deal.II computes solutions to partial differential equations (PDEs) using adaptive finite elements. The code provides an interface for processing PDEs accessible to both laptops and supercomputers, and has been used to investigate the local and global waveform effects of gravitational waves by numerical simulation. deal.II supports massively parallel computing of very large linear systems of equations and provides access to triangulation of various geometries of the simulation domain.

[ascl:2401.008] DARC: Dirac Atomic R-matrix Codes

DARC (Dirac Atomic R-matrix Codes) enables the study of continuum processes for a general atomic system. The suite of programs calculate electron-atom or electron-ion collision cross-sections. In addition, the programs include code for bound-state and photoionization calculations.

[ascl:2401.009] Harmonic: Learnt harmonic mean estimator

harmonic learns an approximate harmonic mean estimator (referred to as a "learnt harmonic mean estimator") from posterior distribution samples to compute the marginal likelihood required for Bayesian model selection. Using a large number of independent Markov chain Monte Carlo (MCMC) chains from another package such as emcee (ascl:1303.002), harmonic uses importance sampling to learn a new target distribution in order to optimize an approximate harmonic estimator while minimizing its variance.

[ascl:2401.010] SYSNet: Neural Network modeling of imaging systematics in galaxy surveys

The Feed Forward Neural Network SYSNet models the relationship between the imaging maps, such as stellar density and the observed galaxy density field, in order to mitigate the systematic effects and to make a robust galaxy clustering measurements. The cost function is Mean Squared Error and a L2 regularization term, and the optimization algorithm is Adaptive Moment (ADAM).

[ascl:2401.011] ostrich: Surrogate modeling using PCA and Gaussian process interpolation

Ostrich emulates surrogate models for complex and expensive functions using Principal Component Analysis (PCA) to decompose a signal, then interpolate the PCA weights over the parameters θ using a Gaussian Process interpolator. The code is trained on samples from the expensive functions, recreating and interpolating between those training samples with reduced computational cost, and recalculating for each use.

[ascl:2401.012] baryon-sweep: Outlier rejection algorithm for JWST/NIRSpec IFS data

baryon-sweep produces a robust outlier rejection while simultaneously preserving the signal of the science target. The code works as a standalone solution or as a supplement to the current pipeline software. baryon-sweep creates the 2D pixel mask and mask layers, processes the sky (non-science target) spaxels, and creates a post-processed cube ready for use.

[ascl:2401.013] SolarKAT: Solar imaging pipeline for MeerKAT

SolarKAT mitigates solar interference in MeerKAT data and recovers the visibilities rather than discarding them; this solar imaging pipeline takes 1GC calibrated data in Measurement Set format as input. Written in Python, the pipeline employs solar tracking, subtraction, and peeling techniques to enhance data quality by significantly reducing solar radio interference. This is achieved while preserving the flux measurements in the main field. SolarKAT is versatile and can be applied to general radio astronomy observations and solar radio astronomy; additionally, generated solar images can be used for weather forecasting. SolarKAT is deployed in Stimela (ascl:2305.007). It is based on existing radio astronomy software, including CASA (ascl:1107.013), breizorro (ascl:2305.009), WSclean (ascl:1408.023), Quartical (ascl:2305.006), and Astropy (ascl:1304.002).

[ascl:2401.014] LoRD: Locate Reconnection Distribution

LoRD (Locate Reconnection Distribution) identifies the locations and structures of 3D magnetic reconnection within discrete magnetic field data. The toolkit contains three main functions; the first, ARD (Analyze Reconnection Distribution) locates the grids undergoing reconnection without null points and also recognizes the local configurations of reconnection sites. ANP (Analyze Null Points) locates and classifies the 3D null points, and APNP (Analyze Projected Null Points) analyzes the 2D neutral points projected on a plane near a cell. LoRD is written in Matlab and the toolkit contains demo scripts.

[ascl:2401.015] maskfill: Fill in masked values in an image

maskfill inward extrapolates edge pixels just outside masked regions, using iterative median filtering and the full information contained in the edge pixels. This provides seamless transitions between masked pixels and good pixels, and allows high fidelity reconstruction of gaps in continuous narrow features. An image and a mask the only required inputs.

[ascl:2401.016] CRR: Convex Ridge Regularizer

CRR (Convex Ridge Regularizer) takes the gradient of regularizers that are the sum of convex-ridge functions and parameterizes them using a neural network that has a single hidden layer with increasing and learnable activation functions. The neural network is trained within a few minutes as a multistep Gaussian denoiser, and offers improvements for denoising and image reconstruction over other methods with similar reliability.

[ascl:2401.017] QuantifAI: Radio interferometric imaging reconstruction with scalable Bayesian uncertainty quantification

QuantifAI reconstructs radio interferometric images using scalable Bayesian uncertainty quantification relying on data-driven (learned) priors. It relies on the convex accelerated optimization algorithms in CRR (ascl:2401.016) and is built on top of PyTorch. QuantifAI also includes MCMC algorithms for posterior sampling.

[ascl:2401.018] tidalspin: Constrain black hole spins using relativistic tidal forces properties

tidalspin uses a Bayesian approach to infer posterior distributions of a black hole's parameters (mass and spin) in an observed tidal disruption event, given a prior estimate of the black hole’s mass (e.g., from a galactic scaling relationship, or the tidal disruption event’s observed properties). These posterior distributions will only utilize the properties of tidal forces in their inference. tidalspin can be applied to the population of tidal disruption events already discovered.

[ascl:2401.019] StructureFunction: Bayesian estimation of the AGN structure function for Poisson data

StructureFunction determines the X-ray Structure Function of a population of Active Galactic Nuclei (AGN) for which two epoch X-ray observations are available and are separated by rest frame time interval. The calculation of the X-ray structure function is Bayesian. The sampling of the likelihood uses Stan (ascl:1801.003) for statistical modeling and high-performance statistical computation.

[ascl:2401.020] escatter: Electron scattering in Python

escatter.py performs Monte Carlo simulations of electron scattering events. The code was developed to better understand the emission lines from the interacting supernova SN 2021adxl, specifically the blue excess seen in the Hα 6563A emission line. escatter follows a photon that was formed in a thin interface between the supernova ejecta and surrounding material as it travels radially outwards through the dense material, scattering electrons outwards until it reaches an optically thin region, and plots a histogram of the emergent photons.

[ascl:2402.001] NMMA: Nuclear Multi Messenger Astronomy framework

NMMA probes nuclear physics and cosmology with multimessenger analysis. This fully featured, Bayesian multi-messenger pipeline targets joint analyses of gravitational-wave and electromagnetic data (focusing on the optical). Using bilby (ascl:1901.011) as the back-end, the software uses a variety of samplers to sampling these data sets. NMMA uses chiral effective field theory based neutron star equation of states when performing inference, and is also capable of estimating the Hubble Constant.

[ascl:2402.002] Rfits: FITS file manipulation in R

Rfits reads and writes FITS images, tables, and headers. Written in R, Rfits works with all types of compressed images, and both ASCII and binary tables. It uses CFITSIO (ascl:1010.001) for all low level FITS IO, so in general should be as fast as other CFITSIO-based software. For images, Rfits offers fully featured memory mapping and on-the-fly subsetting (by pixel and coordinate) and sparse pixel sampling, allowing for efficient inspection of very large (larger than memory) images.

[ascl:2402.003] Rwcs: World coordinate system transforms in R

Rwcs offers access to all the projection and distortion systems of WCSLIB (ascl:1108.003) in R. This can be used directly for, for example, pixel lookups, or for higher level general distortion and projection.

[ascl:2402.004] CCBH-Numerics: Cosmologically-coupled-black-holes formation mass numerics

CCBH-Numerics (previously called CCBH-PLPP) computes the probability of the existence of a single cosmologically coupled black hole (BH) with a formation mass below a specified threshold for given observational data of binary black holes (BBHs) from gravitational waves. The code uses the unbiased population of BBHs, as given by the power-law-plus-peak (PLPP) profile, as the observational input, and assumes that the detected BBHs are formed from stellar evolution, not primordial BHs. CCBH-Numerics also works with individual data from BBHs and for NSBH pairs as well.

[ascl:2402.005] MGPT: Modified Gravity Perturbation Theory code

MGPT (Modified Gravity Perturbation Theory) computes 2-point statistics for LCDM model, DGP and Hu-Sawicky f(R) gravity. Written in C, the code can be easily modified to include other models. Specifically, it computes the SPT matter power spectrum, SPT Lagrangian-biased tracers power spectrum, and the CLPT matter correlation function. MGPT also computes the CLPT Lagrangian-biased tracers correlation function and a set of Q and R functionsfrom which other statistics, as leading order bispectrum, can be constructed.

[ascl:2402.006] polarizationtools: Polarization analysis and simulation tools in python

polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.

[ascl:2402.007] ECLIPSR: Automatically find individual eclipses in light curves, determine ephemerides, and more

ECLIPSR fully and automatically analyzes space based light curves to find eclipsing binaries and provide some first order measurements, such as the binary star period and eclipse depths. It provides a recipe to find individual eclipses using the time derivatives of the light curves, including eclipses in light curves of stars where the dominating variability is, for example, pulsations. Since the algorithm detects each eclipse individually, even light curves containing only one eclipse can (in principle) be successfully analyzed and classified. ECLIPSR can find eclipsing binaries among both pulsating and non-pulsating stars in a homogeneous and quick manner and process large amounts of light curves in reasonable amounts of time. The output includes, among other things, the individual eclipse markers, the period and time of first (primary) eclipse, and a score between 0 and 1 indicating the likelihood that the analyzed light curve is that of an eclipsing binary.

[ascl:2402.008] star_shadow: Analyze eclipsing binary light curves, find eccentricity, and more

star_shadow automatically analyzes space based light curves of eclipsing binaries and provide a measurement of eccentricity, among other parameters. It measures the timings of eclipses using the time derivatives of the light curves, using a model of orbital harmonics obtained from an initial iterative prewhitening of sinusoids. Since the algorithm extracts the harmonics from the rest of the sinusoidal variability eclipse timings can be measured even in the presence of other (astrophysical) signals, thus determining the orbital eccentricity automatically from the light curve along with information about the other variability present in the light curve. The output includes, but is not limited to, a sinusoid plus linear model of the light curve, the orbital period, the eccentricity, argument of periastron, and inclination.

[ascl:2402.009] SkyLine: Generate mock line-intensity maps

SkyLine generates mock line-intensity maps (both in 3D and 2D) in a lightcone from a halo catalog, accounting for the evolution of clustering and astrophysical properties, and observational effects such as spectral and angular resolutions, line-interlopers, and galactic foregrounds. Using a given astrophysical model for the luminosity of each line, the code paints the signal for each emitter and generates the map, adding coherently all contributions of interest. In addition, SkyLine can generate maps with the distribution of Luminous Red Galaxies and Emitting Line Galaxies.

[ascl:2402.010] 2cosmos: Monte Python modification for two independent instances of CLASS

2cosmos is a modification of Monte Python (ascl:1307.002) and allows the user to write likelihood modules that can request two independent instances of CLASS (ascl:1106.020) and separate dictionaries and structures for all cosmological and nuisance parameters. The intention is to be able to evaluate two independent cosmological calculations and their respective parameters within the same likelihood. This is useful for evaluating a likelihood using correlated datasets (e.g. mutually exclusive subsets of the same dataset for which one wants to take into account all correlations between the subsets).

[ascl:2403.001] Pynkowski: Minkowski functionals and other higher order statistics

Pynkowski computes Minkowski Functionals and other higher order statistics of input fields, as well as their expected values for different kinds of fields. This package supports Minkowski functionals, and maxima and minima distributions. Supported input formats include scalar HEALPix maps such as those used by healpy (ascl:2008.022) and polarization HEALPix maps in the SO(3) formalism. Pynkowski also supports various theoretical fields, including Gaussian (e.g., CMB Temperature or the initial density field), Chi squared (e.g., CMB polarization intensity), and spin 2 maps in the SO(3) formalism.

[ascl:2403.002] DistClassiPy: Distance-based light curve classification

DistClassiPy uses different distance metrics to classify objects such as light curves. It provides state-of-the-art performance for time-domain astronomy, and offers lower computational requirements and improved interpretability over traditional methods such as Random Forests, making it suitable for large datasets. DistClassiPy allows fine-tuning based on scientific objectives by selecting appropriate distance metrics and features, which enhances its performance and improves classification interpretability.

[ascl:2403.003] kinematic_scaleheight: Infer the vertical distribution of clouds in the solar neighborhood

kinematic_scaleheight uses MCMC methods to kinematically estimate the vertical distribution of clouds in the Galactic plane, including the least squares analysis of Crovisier (1978), an updated least squares analysis using a modern Galactic rotation model, and a Bayesian model sampled via MCMC as described in Wenger et al. (2024).

[ascl:2403.004] BTSbot: Automated identification of supernovae with multi-modal deep learning

BTSbot automates real-time identification of bright extragalactic transients in Zwicky Transient Facility (ZTF) data. A multi-modal convolutional neural network, BTSbot provides a bright transient score to individual ZTF detections using their image data and 25 extracted features. The package eliminates the need for daily visual inspection of new transients by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates. BTSbot recovers all bright transients in our test split and performs on par with human experts in terms of identification speed (on average, ∼1 hour quicker than scanners).

[ascl:2403.005] Poke: Polarization ray tracing and Gaussian beamlet module for Python

Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.

[ascl:2403.006] fkpt: Compute LCDM and modified gravity perturbation theory using fk-kernels

fkpt computes the 1-loop redshift space power spectrum for tracers using perturbation theory for LCDM and Modified Gravity theories using "fk"-Kernels. Though implemented for the Hu-Sawicky f(R) modified gravity model, it is straightforward to use it for other models.

[ascl:2403.007] MINDS: Hybrid pipeline for the reduction of JWST/MIRI-MRS data

The MINDS hybrid pipeline is based on the JWST pipeline and routines from the VIP package (ascl:1603.003) for the reduction of JWST MIRI-MRS data. The pipeline compensates for some of the known weaknesses of the official JWST pipeline to improve the quality of spectrum extracted from MIRI-MRS data. This is done by leveraging the capabilities of VIP, another large data reduction package used in the field of high-contrast imaging.

The front end of the pipeline is a highly automated Jupyter notebook. Parameters are typically set in one cell at the beginning of the notebook, and the rest of the notebook can be run without any further modification. The Jupyter notebook format provides flexibility, enhanced visibility of intermediate and final results, more straightforward troubleshooting, and the possibility to easily incorporate additional codes by the user to further analyze or exploit their results.

[ascl:2403.008] s4cmb: Systematics For Cosmic Microwave Background

s4cmb (Systematics For Cosmic Microwave Background) studies the impact of instrumental systematic effects on measurements of CMB experiments based on bolometric detector technology. s4cmb provides a unified framework to simulate raw data streams in the time domain (TODs) acquired by CMB experiments scanning the sky, and to inject in these realistic instrumental systematics effect.

[ascl:2403.009] pycorr: Two-point correlation function estimation

pycorr wraps two-point counter engines such as Corrfunc (ascl:1703.003) to estimate the correlation function. It supports theta (angular), s, s-mu, rp-pi binning schemes, analytical two-point counts with periodic boundary conditions, and inverse bitwise weights (in any integer format) and (angular) upweighting. It also provides MPI parallelization and jackknife estimate of the correlation function covariance matrix.

[ascl:2403.010] FitCov: Fitted Covariance generation

FitCov estimates the covariance of two-point correlation functions in a way that requires fewer mocks than the standard mock-based covariance. Rather than using an analytically fixed correction to some terms that enter the jackknife covariance matrix, the code fits the correction to a mock-based covariance obtained from a small number of mocks. The fitted jackknife covariance remains unbiased, an improvement over other methods, performs well both in terms of precision (unbiased constraints) and accuracy (similar uncertainties), and requires significant less computational power. In addition, FitCov can be easily implemented on top of the standard jackknife covariance computation.

[ascl:2403.011] LtU-ILI: Robust machine learning in astro

LtU-ILI (Learning the Universe Implicit Likelihood Inference) performs machine learning parameter inference. Given labeled training data or a stochastic simulator, the LtU-ILI piepline automatically trains state-of-the-art neural networks to learn the data-parameter relationship and produces robust, well-calibrated posterior inference. The package comes with a wide range of customizable complexity, including posterior-, likelihood-, and ratio-estimation methods for ILI, including sequential learning analogs, and various neural density estimators, including mixture density networks, conditional normalizing flows, and ResNet-like ratio classifiers. It offers fully-customizable, exotic embedding networks, including CNNs and Graph Neural Networks, and a unified interface for multiple ILI backends such as sbi, pydelfi, and lampe. LtU-ILI also handles multiple marginal and multivariate posterior coverage metrics, and offers Jupyter and command-line interfaces and a parallelizable configuration framework for efficient hyperparameter tuning and production runs.

[ascl:2403.012] Pylians3: Libraries to analyze numerical simulations in Python 3

Pylians3 (Python3 libraries for the analysis of numerical simulations) provides a Python 3 version of Pylians (ascl:1811.008), which analyzes numerical simulations (both N-body and hydrodynamic); parts of the codebase are also written in cython and C. It computes density fields, power spectra, bispectra, and correlation functions, identifies voids, and populates halos with galaxies using an HOD. Pylians3 also applies HI+H2 corrections to the output of hydrodynamic simulations, make 21cm maps, computes DLAs column density distribution functions, and can plot density fields and make movies.

[ascl:2403.013] URecon: Reconstruct initial conditions of N-Body simulations

URecon reconstructs the initial conditions of N-body simulations from late time (e.g., z=0) density fields. This simple UNET architecture is implemented in TensorFlow and requires Pylians3 (ascl:2403.012) for measuring power spectrum of density fields. The package includes weights trained on Quijote fiducial cosmology simulations.

[ascl:2403.014] OneLoopBispectrum: Computation of the one-loop bispectrum of galaxies in redshift space

OneLoopBispectrum computes the one-loop bispectrum of galaxies in redshift space. It computes and simplifies the bispectrum kernels using Mathematica; this is cosmology-independent. The code also computes the full and flattened bispectrum templates, given the pre-computed integration kernels. OneLoopBispectrum uses Mathematica to read in and combine the bispectrum templates, and Python to interpolate and extract the one-loop bispectrum.

[ascl:2403.015] CLASS-PT: Nonlinear perturbation theory extension of the Boltzmann code CLASS

CLASS-PT modifies the CLASS (ascl:1106.020) code to compute the non-linear power spectra of dark matter and biased tracers in one-loop cosmological perturbation theory, for both Gaussian and non-Gaussian initial conditions. CLASS-PT can be interfaced with the MCMC sampler MontePython (ascl:1805.027) using the (new and improved) custom-built likelihoods found here.

[ascl:2403.016] DensityFieldTools: Manipulating density fields and measuring power spectra and bispectra

The DensityFieldTools toolset manipulates density fields and measures power spectra and bispectra using a very simple interface. After loading a density field, it computes the power spectrum and the bispectrum for a desired binning. The bispectrum estimator also automatically computes the power spectrum for the chosen binning, to facilitate, for example, shot-noise subtraction. DensityFieldTools also provides a quick way to measure (cross-)power spectra directly from density fields.

[submitted] obsplanning - a set of python utilities to aid in planning astronomical observations

Obsplanning is a suite of tools to help plan astronomical observations from ground-based observatories, for traditional single-site as well as multi-station (VLBI) observing. Conveniently determine observability of objects in the sky from your observatory, and produce plots to help you prepare for your observations over the course of a session. Celestial source coordinates (including solar system objects) can be queried or created, and transformed. Calibrator or reference sources can be selected by proximity, and slew order can be optimized to save valuable telescope time. Plots and visualizations can be easily made to chart source elevation and transits, source proximity to the Sun and Moon, concurrent 'up time' of sources at multiple sites (for VLBI or tandem observations), 'dark time' at a telescope site for a given year, finder plots made from real images (with options to query online databases), and more.

[submitted] pysymlog - Symmetric (signed) logarithm scale for your python plots

This package provides some utilities for binning, normalizing colors, wrangling tick marks, and more, in symmetric logarithm space. That is, for numbers spanning positive and negative values, working in log scale with a transition through zero, down to some threshold. This can be quite useful for representing data that span many scales like standard log-space, but that include values of zero (that might be returned by physical measurement) or even negative values (for example offsets from some reference, or things like temperatures). This package provides convenient functions for creating 1D and 2D histograms and symmetric log bins, generating logspace-like arrays through zero and managing matplotlib major and minor ticks in symlog space, as well as bringing symmetric log scaling functionality to plotly.

[ascl:2404.001] cbeam: Coupled-mode propagator for slowly-varying waveguides

cbeam models the propagation of guided light through slowly-varying few-mode waveguides using the coupled-mode theory (CMT). When compared with more general numerical methods for waveguide simulation, such as the finite-differences beam propagation method (FD-BPM), numerical implementations of the CMT can be much more computationally efficient. Written in Python and Julia, the package provides a Pythonic class structure to define waveguides, with simple classes for directional couplers and photonic lanterns already provided. cbeam also doubles as a finite-element eigenmode solver.

[ascl:2404.002] PIPE: Extracting PSF photometry from CHEOPS data

PIPE (PSF Imagette Photometric Extraction) extracts PSF (point-spread function) photometry from data acquired by the space telescope CHEOPS (CHaracterisation of ExOPlanetS). Advantages of PSF photometry over standard aperture photometry include reduced sensitivity to contaminants such as background stars, cosmic ray hits, and hot/bad pixels. For CHEOPS, an additional advantage is that photometry can be extracted from an imagette, a small window around the target that is downlinked at a shorter cadence than the larger-sized subarray used for aperture photometry. These advantages make PIPE particularly well suited for targets brighter or fainter than the nominal G = 7-11 mag range of CHEOPS, i.e., where short-cadence imagettes are available (bright end) or when contamination becomes a problem (faint end). Within the nominal range, PIPE usually offers no advantage over the standard aperture photometry.

[ascl:2404.003] KCWIKit: KCWI Post-Processing and Improvements

KCWIKit extends the official KCWI DRP (ascl:2301.019) with a variety of stacking tools and DRP improvements. The software offers masking and median filtering scripts to be used while running the KCWI DRP, and a step-by-step KCWI_DRP implementation for finer control over the reduction process. Once the DRP has finished, KCWIKit can be used to stack the output cubes via the Montage package. Various functions cross-correlate and mosaic the constituent cubes and the final stacked cubes are WCS corrected. Helper functions can then be used to deproject the stacked cube into lower-dimensional representations should the user desire.

[ascl:2404.004] TAT: Timing Analysis Toolkit for high-energy pulsar astrophysics

TAT-pulsar (Timing Analysis Toolkit for Pulsars) analyzes, processes, and visualizes pulsar data, thus handling the scientific intricacies of pulsar timing. By leveraging observational data from pulsars, along with the associated physical processes and statistical characteristics, the package integrates a suite of Python-based tools and data analysis scripts specifically developed for both isolated pulsars and binary systems. This enables swift analysis and the detailed presentation of timing properties in the high-energy pulsar field. Developed and implemented completely independently from other pulsar timing software such as Stingray (ascl:1608.001) and PINT (ascl:1902.007), TAT-pulsar serves as a valuable cross-checking and supplementary tool for data analysis.

[ascl:2404.005] GalMOSS: GPU-accelerated galaxy surface brightness fitting via gradient descent

GalMOSS performs two-dimensional fitting of galaxy profiles. This Python-based, Torch-powered tool seamlessly enables GPU parallelization and meets the high computational demands of large-scale galaxy surveys. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on over 8,000 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, GalMOSS completed classical Sérsic profile fitting in about 10 minutes. Benchmark tests show that GalMOSS achieves computational speeds that are significantly faster than those of default implementations.

[ascl:2404.006] PolyBin3D: Binned polyspectrum estimation for 3D large-scale structure

PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.

[ascl:2404.007] WignerFamilies: Compute families of wigner symbols with recurrence relations

WignerFamilies generates families of Wigner 3j and 6j symbols by recurrence relation. These exact methods are orders of magnitude more efficient than strategies such as prime factorization for problems which require every non-trivial symbol in a family, and are very useful for large quantum numbers. WignerFamilies is thread-safe and very fast, beating the standard Fortran routine DRC3JJ from SLATEC by a factor of 2-4.

[ascl:2404.008] LensIt: CMB lensing delensing tools

LensIt enables CMB lensing and CMB delensing using the flat-sky approximation. The package can find the maximum posterior estimation of CMB lensing deflection maps from temperature and/or polarization maps and perform Wiener filtering of masked CMB data and allow for inhomogenous noise, including lensing deflections, using a multigrid preconditioner. It contains fast and accurate simulation libraries for lensed CMB skies, and standard quadratic estimator lensing reconstruction tools. LensIt also includes CMB internal delensing tools, including internal delensing biases calculation for temperature and/or polarization maps.

[ascl:2404.009] superABC: Cosmological constraints from SN light curves using Approximate Bayesian Computation

The superABC sampling method obtains cosmological constraints from supernova light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. It provides an interface to two forward model simulations, SNCosmo (ascl:1611.017) and SNANA (ascl:1010.027), for supernova cosmology.

[ascl:2404.010] Panphasia: Create cosmological and resimulation initial conditions

Panphasia computes a very large realization of a Gaussian white noise field. The field has a hierarchical structure based on an octree geometry with 50 octree levels fully populated. The code sets up Gaussian initial conditions for cosmological simulations and resimulations of structure formation. Panphasia provides an easy way to publish the linear phases used to set up cosmological simulation initial conditions; publishing phases enriches the literature and makes it easier to reproduce and extend published simulation work.

[ascl:2404.011] BayeSN: NumPyro implementation of BayeSN

BayeSN performs hierarchical Bayesian SED modeling of type Ia supernova light curves. This probabilistic optical-NIR SED model analyzes the population distribution of physical properties as well as cosmology-independent distance estimation for individual SNe. BayeSN is built with NumPyro and Jax (ascl:2111.002) and provides support for GPU acceleration.

[ascl:2404.012] EffectiveHalos: Matter power spectrum and cluster counts covariance modeler

EffectiveHalos provides models of the real-space matter power spectrum, based on a combination of the Halo Model and Effective Field Theory, which are 1% accurate up to k = 1 h/Mpc, across a range of cosmologies, including those with massive neutrinos. It can additionally compute accurate halo count covariances (including a model of halo exclusion), both alone and in combination with the matter power spectrum.

[ascl:2404.013] Meanoffset: Photometric image alignment with row and column means

Meanoffset performs astronomical image alignment. The code uses the means of the rows and columns of an original image for alignment and finds the optimal offset corresponding to the maximum similarity by comparing different offsets between images. The similarity is evaluated by the standard deviation of the quotient divided by the means. The code is fast and robust.

[ascl:2404.014] astroNN: Deep learning for astronomers with Tensorflow

astroNN creates neural networks for deep learning using Keras for model and training prototyping while taking advantage of Tensorflow's flexibility. It contains tools for use with APOGEE, Gaia and LAMOST data, though is primarily designed to apply neural nets on APOGEE spectra analysis and predict luminosity from spectra using data from Gaia parallax with reasonable uncertainty from Bayesian Neural Net. astroNN can handle 2D and 2D colored images, and the package contains custom loss functions and layers compatible with Tensorflow or Keras with Tensorflow backend to deal with incomplete labels. The code contains demo for implementing Bayesian Neural Net with Dropout Variational Inference for reasonable uncertainty estimation and other neural nets.

[ascl:2404.015] EBWeyl: Compute the electric and magnetic parts of the Weyl tensor

EBWeyl computes the electric and magnetic parts of the Weyl tensor, Eαβ and Bαβ, using a 3+1 slicing formulation. The module provides a Finite Differencing class with 4th (default) and 6th order backward, centered, and forward schemes. Periodic boundary conditions are used by default; otherwise, a combination of the 3 schemes is available. It also includes a Weyl class that computes for a given metric the variables of the 3+1 formalism, the spatial Christoffel symbols, spatial Ricci tensor, electric and magnetic parts of the Weyl tensor projected along the normal to the hypersurface and fluid flow, the Weyl scalars and invariant scalars. EBWeyl can also compute the determinant and inverse of a 3x3 or 4x4 matrice in every position of a data box.

[ascl:2404.016] MLTPC: Machine Learning Telescope Pointing Correction

The Machine Learning Telescope Pointing Correction code trains and tests machine learning models for correcting telescope pointing. Using historical APEX data from 2022, including pointing corrections, and other data such as weather conditions, position and rotation of the secondary mirror, pointing offsets observed during pointing scans, and the position of the sun, among other data, the code treats the data in two different ways to test which factors are the most likely to account for pointing errors.

[ascl:2404.017] pyilc: Needlet ILC in Python

pyilc implements the needlet internal linear combination (NILC) algorithm for CMB component separation in pure Python; it also implements harmonic-space ILC. The code can also perform Cross-ILC, where the covariance matrices are computed only from independent splits of the maps. In addition, pyilc includes an inpainting code, diffusive_inpaint, that diffusively inpaints a masked region with the mean of the unmasked neighboring pixels.

[ascl:2404.018] GPUniverse: Quantum fields in finite dimensional Hilbert spaces modeler

GPUniverse models quantum fields in finite dimensional Hilbert spaces with Generalised Pauli Operators (GPOs) and overlapping degrees of freedom. In addition, the package can simulate sets of qubits that are only quasi independent (i.e., the Pauli algebras of different qubits have small, but non-zero anti-commutator), which is useful for validating analytical results for holographic versions of the Weyl field.

[ascl:2404.019] PySSED: Python Stellar Spectral Energy Distributions

PySSED (Python Stellar Spectral Energy Distributions) downloads and extracts data on multi-wavelength catalogs of astronomical objects and regions of interest and automatically proceses photometry into one or more stellar SEDs. It then fits those SEDs with stellar parameters. PySSED can be run directly from the command line or as a module within a Python environment. The package offers a wide variety plots, including Hertzsprung–Russell diagrams of analyzed objects, angular separation between sources in specific catalogs, and two-dimensional offset between cross-matches.

[ascl:2404.020] NbodyIMRI: N-body solver for intermediate-mass ratio inspirals of black holes and dark matter spikes

NbodyIMRI uses N-body simulations to study Dark Matter-dressed intermediate-mass ratio inspirals (IMRI) and extreme mass ratio inspiral (EMRI) systems. The code calculates all BH-BH forces and BH-DM forces directly while neglecting DM-DM pairwise interactions. This allows the code to scale up to very large numbers of DM particles in order to study stochastic processes like dynamical friction.

[ascl:2404.021] cudisc: CUDA-accelerated 2D code for protoplanetary disc evolution simulations

cuDisc simulates the evolution of protoplanetary discs in both the radial and vertical dimensions, assuming axisymmetry. The code performs 2D dust advection-diffusion, dust coagulation/fragmentation, and radiative transfer. A 1D evolution model is also included, with the 2D gas structure calculated via vertical hydrostatic equilibrium. cuDisc requires a NVIDIA GPU.

[ascl:2404.022] jetsimpy: Hydrodynamic model of gamma-ray burst jet and afterglow

jetsimpy creates hydrodynamic simulations of relativistic blastwaves with tabulated angular energy and Lorentz factor profiles and efficiently models Gamma-Ray Burst afterglows. It supports tabulated angular energy and tabulated angular Lorentz factor profiles. jetsimpy also supports ISM, wind, and mixed external density profile, including synthetic afterglow light curves, apparent superluminal motion, and sky map and Gaussian equivalent image sizes. Additionally, you can add your own emissivity model by defining a lambda function in a c++ source file, allowing the package to be used for more complicated models such as Synchrotron self-absorption.

[ascl:2404.023] mhealpy: Object-oriented healpy wrapper with support for multi-resolution maps

mhealpy extends the functionalities of the HEALPix (ascl:1107.018) wrapper healpy (ascl:2008.022) to handle single and multi-resolution maps (a.k.a. multi-order coverage maps or MOC maps). In addition to creating and analyzes MOC maps, it supports arithmetic operations, adaptive grids, resampling of existing multi-resolution maps, and plotting, among other functions, and reads and writes to FITS, which enables sharing spatial information for multiwavelength and multimessenger analyses.

[ascl:2404.024] pAGN: AGN disk model equations solver

Written in Python, pAGN solves AGN disk model equations. The code is highly customizable and, with the correct inputs, provides a fully evolved AGN disk model through parametric 1D curves for key disk parameters such as temperature and density. pAGN can be used to study migration torques in AGN disks, simulations of compact object formation inside gas disks, and comparisons with new, more complex models of AGN disks.

[ascl:2404.025] stringgen: Scattering based cosmic string emulation

stringgen creates emulations of cosmic string maps with statistics similar to those of a single (or small ensemble) of reference simulations. It uses wavelet phase harmonics to calculate a compressed representation of these reference simulations, which may then be used to synthesize new realizations with accurate statistical properties, e.g., 2 and 3 point correlations, skewness, kurtosis, and Minkowski functionals.

[ascl:2404.026] LEO-vetter: Automated vetting for TESS planet candidates

LEO-vetter automatically vets transit signals found in light curve data. Inspired by the Kepler Robovetter (ascl:2012.006), LEO-vetter computes vetting metrics to be compared to a series of pass-fail thresholds. If a signal passes all tests, it is considered a planet candidate (PC). If a signal fails at least one test, it may be either an astrophysical false positive (FP; e.g., eclipsing binary, nearby eclipsing signal) or false alarm (FA; e.g., systematic, stellar variability). Pass-fail thresholds can be changed to suit individual research purposes, and LEO-vetter produces vetting reports for manual inspection of signals. Flux-level vetting can be applied to any light curve dataset (such as Kepler, K2, and TESS), including light curves with mixes of cadences, while pixel-level vetting has been implemented for TESS.

[ascl:2404.027] s2fft: Differentiable and accelerated spherical transforms

S2FFT computes Fourier transforms on the sphere and rotation group using JAX (ascl:2111.002) or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g., GPUs and TPUs). More specifically, S2FFT provides support for spin spherical harmonic and Wigner transforms (for both real and complex signals), with support for adjoint transformations where needed, and comes with different optimisations (precompute or not) that one may select depending on available resources and desired angular resolution L.

[ascl:2404.028] binary_precursor: Light curve model of supernova precursors powered by compact object companions

binary_precursor models light curves of supernova (SN) precursors powered by a pre-SN outburst accompanying accretion onto a compact object companion. Though it is only one of the possible models, it is useful for interpretations of (bright) SN precursors highly exceeding the Eddington limit of massive stars, which are observed in a fraction of SNe with dense circumstellar matter (CSM) around the progenitor. It offers a number of editable parameters, including compact object mass, progenitor mass, progenitor radii, and opacity. Initial CSM velocity can be normalized by the progenitor escape velocity (xi parameter), and the CSM mass, ionization temperature, and binary separation can also be specified.

[ascl:2404.029] ExoPlex: Thermodynamically self-consistent mass-radius-composition calculator

ExoPlex is a thermodynamically self-consistent mass-radius-composition calculator. Users input a bulk molar composition and a mass or radius, and ExoPlex will calculate the resulting radius or mass. Additionally, it will produce the planet's core mass fraction, interior mineralogy and the pressure, adiabatic temperature, gravity and density profiles as a function of depth.

[ascl:2404.030] RhoPop: Small-planet populations identifier

RhoPop identifies compositionally distinct populations of small planets (R≲2R). It employs mixture models in a hierarchical framework and the dynesty (ascl:1809.013) nested sampler for parameter and evidence estimates. RhoPop includes a density-mass grid of water-rich compositions from water mass fraction (WMF) 0-1.0 and a grid of volatile-free rocky compositions over a core mass fraction (CMF) range of 0.006-0.95. Both grids were calculated using the ExoPlex mass-radius-composition calculator (ascl:2404.029).

[submitted] BFast

A fast GPU-based bispectrum estimator implemented using JAX.

[submitted] PypeIt-NIRSPEC: A PypeIt Module for Reducing Keck/NIRSPEC High Resolution Spectra

We present a module built into the PypeIt Python package to reduce high resolution Y, J, H, K, and L band spectra from the W. M. Keck Observatory NIRSPEC spectrograph. This data reduction pipeline is capable of spectral extraction, wavelength calibration, and telluric correction of data taken before and after the 2018 detector upgrade, all in a single package. The procedure for reducing data is thoroughly documented in an expansive tutorial.

[submitted] Swiftest

Swiftest is a software package designed to model the long-term dynamics of system of bodies in orbit around a dominant central body, such a planetary system around a star, or a satellite system around a planet. The main body of the program is written in Modern Fortran, taking advantage of the object-oriented capabilities included with Fortran 2003 and the parallel capabilities included with Fortran 2008 and Fortran 2018. Swiftest also includes a Python package that allows the user to quickly generate input, run simulations, and process output from the simulations. Swiftest uses a NetCDF output file format which makes data analysis with the Swiftest Python package a streamlined and flexible process for the user. Building off a strong legacy, including its predecessors Swifter and Swift, Swiftest takes the next step in modeling the dynamics of planetary systems by improving the performance and ease of use of software, and by introducing a new collisional fragmentation model. Currently, Swiftest includes the four main symplectic integrators included in its predecessors: WHM, RMVS, HELIO, and SyMBA. In addition, Swiftest also contains the Fraggle model for generating products of collisional fragmentation.

[ascl:2405.001] SPEDAS: Space Physics Environment Data Analysis System

The SPEDAS (Space Physics Environment Data Analysis Software) framework supports multi-mission data ingestion, analysis and visualization for the Space Physics community. It standardizes the retrieval of data from distributed repositories, the scientific processing with a powerful set of legacy routines, the quick visualization with full output control and the graph creation for use in papers and presentations. SPEDAS includes a GUI for ease of use by novice users, works on multiple platforms, and though based on IDL, can be used with or without an IDL license. The framework supports plugin modules for multiple projects such as THEMIS, MMS, and WIND, and provides interfaces for software modules developed by the individual teams of those missions. A Python implementation of the framework, PySPEDAS (ascl:2405.005), is also available.

[ascl:2405.002] nessai: Nested sampling with artificial intelligence

nessai performs nested sampling for Bayesian Inference and incorporates normalizing flows. It is designed for applications where the Bayesian likelihood is computationally expensive. nessai uses PyTorch and also supports the use of bilby (ascl:1901.011).

[ascl:2405.003] raynest: Parallel nested sampling based on ray

raynest, written in Python, computes Bayesian evidences and probability distributions using parallel chains.

[ascl:2405.004] pyADfit: Nested sampling approach to quasi-stellar object (QSO) accretion disc fitting

pyADfit models accretion discs around astrophysical objects. The code provides functions to calculate physical quantities related to accretion disks and perform parameter estimation using observational data. The accretion disc model is the alpha-disc model while the parameter estimation can be performed with Nessai (ascl:2405.002), Raynest (ascl:2405.003), or CPnest (ascl:2205.021).

[ascl:2405.005] pySPEDAS: Python-based Space Physics Environment Data Analysis Software

pySPEDAS (Python-based Space Physics Environment Data Analysis Software) supports multi-mission, multi-instrument retrieval, analysis, and visualization of heliophysics time series data. A Python implementation of SPEDAS (ascl:2405.001), it supports most of the capabilities of SPEDAS; it can load heliophysics data sets from more than 30 space-based and ground-based missions, coordinate transforms, interpolation routines, and unit conversions, and provide interactive access to numerous data sets. pySPEDAS also creates multi-mission, multi-instrument figures, includes field and wave analysis tools, and performs magnetic field modeling, among other functions.

[ascl:2405.006] ICPertFLRW: Cactus Code thorn for initial conditions

ICPertFLRW, a Cactus code (ascl:1102.013) thorn, provides as initial conditions an FLRW metric perturbed with the comoving curvature perturbation Rc in the synchronous comoving gauge. Rc is defined as a sum of sinusoidals (20 in each x, y, and z direction) whose amplitude, wavelength, and phase shift are all parameters in param.ccl. While the metric and extrinsic curvature only have first order scalar perturbations, the energy density is computed exactly in full from the Hamiltonian constraint, hence vector and tensor perturbations are initially present at higher order. These are then passed to the CT_Dust thorn to be evolved.

[ascl:2405.007] GauPro: R package for Gaussian process modeling

GauPro fits a Gaussian process regression model to a dataset. A Gaussian process (GP) is a commonly used model in computer simulation. It assumes that the distribution of any set of points is multivariate normal. A major benefit of GP models is that they provide uncertainty estimates along with their predictions.

[ascl:2405.008] i-SPin: Multicomponent Schrodinger-Poisson systems with self-interactions

i-SPin simulates 3-component Schrodinger systems with and without gravity and with and without self-interactions while obeying SO(3) symmetry. The code allows the user to input desired parameters, along with initial conditions for the Schrodinger fields. Its three function modules then perform the main (drift-kick-drift) steps of the algorithm, track the fractional changes in total mass and spin in the system, and then plot results. The default plots are mass and spin density projections along with total mass and spin fractional changes.

[ascl:2405.009] morphen: Astronomical image analysis and processing functions

morphen performs image analysis, multi-Sersic image fitting decomposition, and radio interferometric self-calibration, thus measuring basic image morphology and photometry. The code provides a state-of-the-art Python-based image fitting implementation based on the Sersic function. Geared, though not exclusively, toward radio astronomy, morphen's tools involve pure python, but also are integrated with CASA (ascl:1107.013) in order to work with common casatasks as well as WSClean (ascl:1408.023).

[ascl:2405.010] riddler: Type Ia supernovae spectral time series fitter

riddler automates fitting of type Ia supernovae spectral time series. The code is comprised of a series of neural networks trained to emulate radiative transfer simulations from TARDIS (ascl:1402.018). Emulated spectra are then fit to observations using nested sampling implemented in UltraNest (ascl:1611.001) to estimate the posterior distributions of model parameters and evidences.

[submitted] Estimating photo-z of quasars based on a cross-modal contrastive learning method

MMLPhoto-z is a cross-modal contrastive learning approach for estimating photo-z of quasars. This method employs adversarial training and contrastive loss functions to promote the mutual conversion between multi-band photometric data features (magnitude, color) and photometric image features, while extracting modality-invariant features.

[ascl:2405.011] DirectSHT: Direct spherical harmonic transform

DirectSHT performs direct spherical harmonic transforms for point sets on the sphere. Given a set of points, defined by arrays of theta and phi (in radians) and weights, it provides the spherical harmonic transform coefficients alm. JAX (ascl:2111.002) can be used to speed up the computation; the code will automatically fall back to numpy if JAX is not present. The code is much faster when run on GPUs. When they are available and JAX is installed, the code automatically distributes computation and memory across them.

[ascl:2405.012] fitramp: Likelihood-based jump detection

fitramp fits a ramp to a series of nondestructive reads and detects and rejects jumps. The software performs likelihood-based jump detection for detectors read out up-the-ramp; it uses the entire set of reads to compute likelihoods. The code compares the χ2 value of a fit with and without a jump for every possible jump location. fitramp can fit ramps with and without fitting the reset value (the pedestal), and fit and mask jumps within or between groups of reads. It can also compute the bias of ramp fitting.

[ascl:2405.013] LTdwarfIndices: Variable brown dwarf identifier

LTdwarfIndices studies spectral indices to determine whether one or more brown dwarfs are photometric variable candidates. For a single brown dwarf, it analyzes a given set of indices and outputs the number of graphs the object appears in in the variable area, whether it is a variable or non-variable candidate, and, optionally, an index-index or histogram plot. Using another code module, LTdwarftIndices can also analyze a set of sample indices for many brown dwarfs.

[ascl:2405.014] EF-TIGRE: Effective Field Theory of Interacting dark energy with Gravitational REdshift

EF-TIGRE (Effective Field Theory of Interacting dark energy with Gravitational REdshift) constrains interacting Dark Energy/Dark Matter models in the Effective Field Theory framework through Large Scale Structures observables. In particular, the observables include the effect of gravitational redshift, a distortion of time from galaxy clustering. This generates a dipole in the correlation function which is detectable with two distinct populations of galaxies, thus making it possible to break degeneracies among parameters of the EFT description.

[ascl:2405.015] sunbather: Escaping exoplanet atmospheres and transit spectra simulator

sunbather simulates the upper atmospheres of exoplanets and their observational signatures. The code constructs 1D Parker wind profiles using p-winds (ascl:2111.011) to simulate these with Cloudy (ascl:9910.001), and postprocesses the output with a custom radiative transfer module to predict the transmission spectra of exoplanets.

[ascl:2405.016] ABBHI: Autoregressive binary black hole inference

autoregressive-bbh-inference, written in Python, models the distributions of binary black hole masses, spins, and redshifts to identify physical features appearing in these distributions without the need for strongly-parametrized population models. This allows not only agnostic study of the “known unknowns” of the black hole population but also reveals the “unknown unknowns," the unexpected and impactful features that may otherwise be missed by the standard building-block method.

[ascl:2405.017] AFINO: Automated Flare Inference of Oscillations

AFINO (Automated Flare Inference of Oscillations) finds oscillations in time series data using a Fourier-based model comparison approach. The code analyzes the date and generates a results file in either JSON or Pickle format, which contains numerous properties of the data and analysis, and a summary plot.

[ascl:2405.018] coronagraph_noise: Coronagraph noise modeling routines

coronagraph_noise simulates coronagraph noise. Written in IDL, the code includes a generalized coronagraph routine and simulators for the WFIRST Shaped Pupil Coronagraph in both spectroscopy and imaging modes. Functions available include stellar and planetary flux functions, planet photon and zodiacal light count rates, planet-star flux ratio, and clock induced charge count rate, among others. coronagraph_noise also includes routines to smooth a plot by convolving with a Gaussian profile to convolve a spectrum with a given instrument resolution and to take a spectrum that is specified at high spectral resolution and degrade it to a lower resolution. A Python implementation of coronagraph_noise, coronagraph (ascl:2405.019), is also available.

[ascl:2405.019] coronagraph: Python noise model for directly imaging exoplanets

coronagraph provides a Python noise model for directly imaging exoplanets with a coronagraph-equipped telescope. Based on the original IDL code for this coronagraph model, coronograph_noise (ascl:2405.018), the Python version has been expanded in a few key ways. Most notably, the Telescope, Planet, and Star objects used for reflected light coronagraph noise modeling can now be used for transmission and emission spectroscopy noise modeling, making this model a general purpose exoplanet noise model for many different types of observations.

[ascl:2405.020] tapify: Multitaper spectrum for time-series analysis

tapify implements a suite of multitaper spectral estimation techniques for analyzing time series data. It supports analysis of both evenly and unevenly sampled time series data. The multitaper statistic tackles the problems of bias and consistency, which makes it an improvement over the classical periodogram for evenly sampled data and the Lomb-Scargle periodogram for uneven sampling. In basic statistical terms, this estimator provides a confident look at the properties of a time series in the frequency or Fourier domain.

[ascl:2405.021] PALpy: Python positional astronomy library interface

PALpy provides a Python interface to PAL, the positional Astronomy Library (ascl:1606.002), which is written in C. All arguments modified by the C API are returned and none are modified. The one routine that is different is palObs, which returns a simple dict that can be searched using standard Python. The keys to the dict are the short names and the values are another dict with keys name, long, lat and height.

[ascl:2405.022] blackthorn: Spectra from right-handed neutrino decays

blackthorn generates spectra of dark matter annihilations into right-handed (RH) neutrinos or into particles that result from their decay. These spectra include photons, positrons, and neutrinos. The code provides support for varied RH-neutrino masses ranging from MeV to TeV by incorporating hazma, PPPC4DMID, and HDMSpectra models to compute dark matter annihilation cross sections and mediator decay widths. blackthorn also computes decay branching fractions and partial decay widths.

[ascl:2405.023] raccoon: Radial velocities and Activity indicators from Cross-COrrelatiON with masks

raccoon implements the cross-correlation function (CCF) method. It builds weighted binary masks from a stellar spectrum template, computes the CCF of stellar spectra with a mask, and derives radial velocities (RVs) and activity indicators from the CCF. raccoon is mainly implemented in Python 3; it also uses some Fortran subroutines that are called from Python.

[ascl:2405.024] ndcube: Multi-dimensional contiguous and non-contiguous coordinate-aware arrays

ndcube manipulates, inspects, and visualizes multi-dimensional contiguous and non-contiguous coordinate-aware data arrays. A sunpy (ascl:1401.010) affiliated package, it combines data, uncertainties, units, metadata, masking, and coordinate transformations into classes with unified slicing and generic coordinate transformations and plotting and animation capabilities. ndcube handles data of any number of dimensions and axis types (e.g., spatial, temporal, and spectral) whose relationship between the array elements and the real world can be described by World Coordinate System (WCS) translations.

[ascl:2405.025] CosmoPower: Machine learning-accelerated Bayesian inference

CosmoPower develops Bayesian inference pipelines that leverage machine learning to solve inverse problems in science. While the emphasis is on building algorithms to accelerate Bayesian inference in cosmology, the implemented methods allow for their application across a wide range of scientific fields. CosmoPower provides neural network emulators of matter and Cosmic Microwave Background power spectra, which can replace Boltzmann codes such as CAMB (ascl:1102.026) or CLASS (ascl:1106.020) in cosmological inference pipelines, to source the power spectra needed for two-point statistics analyses. This provides orders-of-magnitude acceleration to the inference pipeline and integrates naturally with efficient techniques for sampling very high-dimensional parameter spaces.

[ascl:2406.001] GAStimator: Python MCMC gibbs-sampler with adaptive stepping

GAStimator implements a Python MCMC Gibbs-sampler with adaptive stepping. The code is simple, robust, and stable and well suited to high dimensional problems with many degrees of freedom and very sharp likelihood features. It has been used extensively for kinematic modeling of molecular gas in galaxies, but is fully general and may be used for any problem MCMC methods can tackle.

[ascl:2406.002] SRF: Scaling Relations Finder

Scaling Relations Finder finds the scaling relations between magnetic field properties and observables for a model of galactic magnetic fields. It uses observable quantities as input: the galaxy rotation curve, the surface densities of the gas, stars and star formation rate, and the gas temperature to create galactic dynamo models. These models can be used to estimate parameters of the random and mean components of the magnetic field, as well as the gas scale height, root-mean-square velocity and the correlation length and time of the interstellar turbulence, in terms of the observables.

[ascl:2406.003] SMART: Spectral energy distribution (SED) fitter

SMART (Spectral energy distributions Markov chain Analysis with Radiative Transfer models) implements a Bayesian Markov chain Monte Carlo (MCMC) method to fit the ultraviolet to millimeter spectral energy distributions (SEDs) of galaxies exclusively with radiative transfer models. The models constitute four types of pre-computed libraries, which describe the starburst, active galactic nucleus (AGN) torus, host galaxy and polar dust components.

[ascl:2406.004] candl: Differentiable likelihood framework for analyzing CMB power spectrum measurements

candl (CMB Analysis With A Differentiable Likelihood) analyzes CMB power spectrum measurements using a differentiable likelihood framework. It is compatible with JAX (ascl:2111.002), though JAX is optional, allowing for fast and easy computation of gradients and Hessians of the likelihoods, and candl provides interface tools for working with other cosmology software packages, including Cobaya (ascl:1910.019) and MontePython (ascl:1805.027). The package also provides auxiliary tools for common analysis tasks, such as generating mock data, and supports the analysis of primary CMB and lensing power spectrum data.

[ascl:2406.005] Lenser: Measure weak gravitational flexion

Lenser estimates weak gravitational lensing signals, particularly flexion, from real survey data or realistically simulated images. Lenser employs a hybrid of image moment analysis and an Analytic Image Modeling (AIM) analysis. In addition to extracting flexion measurements by fitting a (modified Sérsic) model to a single image of a galaxy, Lenser can do multi-band, multi-epoch fitting. In multi-band mode, Lenser fits a single model to multiple postage stamps, each representing an exposure of a single galaxy in a particular band.

[ascl:2406.006] anzu: Measurements and emulation of Lagrangian bias models for clustering and lensing cross-correlations

The anzu package offers two independent codes for hybrid Lagrangian bias models in large-scale structure. The first code measures the hybrid "basis functions"; the second takes measurements of these basis functions and constructs an emulator to obtain predictions from them at any cosmology (within the bounds of the training set). anzu is self-contained; given a set of N-body simulations used to build emulators, it measures the basis functions. Alternatively, given measurements of the basis functions, anzu should in principle be useful for constructing a custom emulator.

[ascl:2406.007] CARDiAC: Anisotropic Redshift Distributions in Angular Clustering

CARDiAC (Code for Anisotropic Redshift Distributions in Angular Clustering) computes the impact of anisotropic redshift distributions on a wide class of angular clustering observables. It supports auto- and cross-correlations of galaxy samples and cosmic shear maps, including galaxy-galaxy lensing. The anisotropy can be present in the mean redshift and/or width of Gaussian distributions, as well as in the fraction of galaxies in each component of multi-modal distributions. Templates of these variations can be provided by the user or simulated internally within the code.

[ascl:2406.008] sphereint: Integrate data on a grid within a sphere

sphereint calculates the numerical volume in a sphere. It provides a weight for each grid position based on whether or not it is in (weight = 1), out (weight = 0), or partially in (weight in between 0 and 1) a sphere of a given radius. A cubic cell is placed around each grid position and the volume of the cell in the sphere (assuming a flat surface in the cell) is calculated and normalized by the cell volume to obtain the weight.

[ascl:2406.009] CBiRd: Bias tracers In Redshift space

CBiRd (Code for Bias tracers In Redshift space) provides correlators in the Effective Field Theory of Large-Scale Structure (EFTofLSS) in a ready-to-use pipeline for cosmological analysis of galaxy-redshift surveys data. It provides a core calculation package (C++BiRd), a Python implementation of a Taylor expansion of the power spectrum around a reference cosmology for efficient evaluation (TBiRd), and libraries to correct for observational systematics. CBiRd also provides MCMC samplers (MCBiRd) for a power spectrum and bispectrum analysis of galaxy-redshift surveys data based on emcee (ascl:1303.002), and can provide an earlybird pass to explore the cosmos with LSS surveys.

[ascl:2406.010] PRyMordial: Precise computations of BBN within and beyond the Standard Model

PRyMordial offers fast and precise evaluation of both the Big Bang Nucleosynthesis (BBN) light-element abundances and the effective number of relativistic degrees of freedom. It can be used within and beyond the Standard Model. The package calculates Neff and helium-4, deuterium, helium-3 and lithium-7 abundances. PRyMordial corrects for QED plasma effects, neutron lifetime, and incomplete neutrino decoupling, and includes an optional module that re-elaborates all the ODE systems of the code in Julia.

[ascl:2406.011] CTC: Color transformations calculator

Color transformations calculator determines the magnitude of a galaxy in a needed photometric band, given its color and magnitude in the original band. It supports various optical and near intrared surveys, including SDSS, DECaLS, DELVE, UKIDSS, VHS, and VIKING, and provides conversions for both total and aperture magnitudes with apertures of 1.5", 2" or 3" diameters. The source code, useful for performing bulk calculations, is available in Python and IDL; the calculator is also offered as a web service.

[ascl:2406.012] QMC: Quadratic Monte Carlo

Quadratic Monte Carlo generates ensembles of models and confines fitness landscapes without relying on linear stretch moves; it works very efficiently for ring potential and Rosenbrock density. The method is general and can be implemented into any existing MC software, requiring only a few lines of code.

[ascl:2406.013] AAD: ALeRCE Anomaly Detector

The ALeRCE anomaly detector cross-validates six anomaly detection algorithms for three classes (transient, periodic, and stochastic) of anomalous sources within the Zwicky Transient Facility (ZTF) data stream using the ALeRCE light curve features. A machine and deep learning-based framework is used for anomaly detection. For each class, a distinct anomaly detection model is constructed using only information about the known objects (i.e., inliers) for training. An anomaly score is computed using the probabilities to determine whether the light curve corresponds to a transient, stochastic, or periodic nature.

[ascl:2406.014] EVA: Excess Variability-based Age

EVA (Excess Variability-based Age) computes the VarX values and VarX90 ages for a given list of stars. The package retrieves information from Gaia, performs basic var90 calculations, then calculates the age of the group in a given band or overall (by combining all three bands). EVA then analyzes and plots the results.

[ascl:2406.015] FLORAH: Galaxy merger tree generator with machine learning

FLORAH generates the assembly history of halos using a recurrent neural network and normalizing flow model. The machine-learning framework can be used to combine multiple generated networks that are trained on a suite of simulations with different redshift ranges and mass resolutions. Depending on the training, the code recovers key properties, including the time evolution of mass and concentration, and galaxy stellar mass versus halo mass relation and its residuals. FLORAH also reproduces the dependence of clustering on properties other than mass, and is a step towards a machine learning-based framework for planting full merger trees.

[ascl:2406.016] BiaPy: Bioimage analysis pipeline builder

BiaPy provides deep-learning workflows for a large variety of image analysis tasks, including 2D and 3D semantic segmentation, instance segmentation, object detection, image denoising, single image super-resolution, self-supervised learning and image classification. Though developed specifically for bioimages, it can be used for watershed-based instance segmentation for friends-of-friends proto-haloes.

[ascl:2406.017] ytree: yt-based merger-tree code

ytree reads and works with merger tree data from multiple formats. An extension of yt (ascl:1011.022), which can analyze snapshots from cosmological simulations, ytree can be thought of as the yt of merger trees. ytree's online documentation lists supported formats; support for additional formats can be added, as in principle, any type of tree-like data where an object has one or more ancestors and a single descendant can be supported.

[ascl:2406.018] SuperLite: Spectral synthesis code for interacting transients

SuperLite produces synthetic spectra for astrophysical transient phenomena affected by circumstellar interaction. It uses Monte Carlo methods and multigroup structured opacity calculations for semi-implicit, semirelativistic radiation transport in high-velocity shocked outflows, and can reproduce spectra of typical Type Ia, Type IIP, and Type IIn supernovae. SuperLite also generates high-quality spectra that can be compared with observations of transient events, including superluminous supernovae, pulsational pair-instability supernovae, and other peculiar transients.

[ascl:2406.019] MBE: Magnification bias estimation

Magnification bias estimation estimates magnification bias for a galaxy sample with a complex photometric selection for the example of SDSS BOSS. The code works for CMASS and the LOWZ, z1 and z3 samples. A template for applying the approach to other surveys is included; requirements include a galaxy catalog that provides magnitudes (used for photometric selection) and the exact conditions used for the photometric selection.

[ascl:2406.020] LeHaMoC: Leptonic-Hadronic Modeling Code for high-energy astrophysical sources

LeHaMoC simulates high-energy astrophysical sources. It simulates the behavior of relativistic pairs, protons interacting with magnetic fields, and photons in a spherical region. The package contains numerous physical processes, including synchrotron emission and self-absorption, inverse Compton scattering, photon-photon pair production, and adiabatic losses. It also includes proton-photon pion production, proton-photon (Bethe-Heitler) pair production, and proton-proton collisions. LeHaMoC can model expanding spherical sources with a variable magnetic field strength. In addition, three types of external radiation fields can be defined: grey body or black body, power-law, and tabulated.

[ascl:2406.021] photochem: Chemical model of planetary atmospheres

Photochem models the photochemical and climate composition of a planet's atmosphere. It takes inputs such as the stellar UV flux and atmospheric temperature structure to find the steady-state chemical composition of an atmosphere, or evolve atmospheres through time. Photochem also contains 1-D climate models and a chemical equilibrium solver.

[ascl:2406.022] phazap: Low-latency identification of strongly lensed signals

Phazap post-processes gravitational-wave (GW) parameter estimation data to obtain the phases and polarization state of the signal at a given detector and frequency. It is used for low-latency identification of strongly lensed gravitational waves via their phase consistency by measuring their distance in the detector phase space. Phazap builds on top of the IGWN conda enviroment which includes the standard GW packages LALSuite (ascl:2012.021) and bilby (ascl:1901.011), and can be applied beyond lensing to test possible deviations in the phase evolution from modified theories of gravity and constrain GW birefringence.

[ascl:2406.023] AARD: Automatic detection of solar active regions

This python code automatically detects solar active regions (AR). Based on morphological operation and region growing, it uses synoptic magnetograms from SOHO/MDI and SDO/HMI and calculates the parameters that characterize each AR, including the latitude and longitude of the flux-weighted centroid of two polarities and the whole AR, the area, and the flux of each polarity, and the initial and final dipole moments.

[ascl:2406.024] GRINN: Gravity Informed Neural Network for studying hydrodynamical systems

GRINN (Gravity Informed Neural Network) solves the coupled set of time-dependent partial differential equations describing the evolution of self-gravitating flows in one, two, and three spatial dimensions. It is based on physics informed neural networks (PINNs), which are mesh-free and offer a fundamentally different approach to solving such partial differential equations. GRINN has solved for the evolution of self-gravitating, small-amplitude perturbations and long-wavelength perturbations and, when modeling 3D astrophysical flows, provides accuracy on par with finite difference (FD) codes with an improvement in computational speed.

[ascl:2406.025] PowerSpecCovFFT: FFTLog-based computation of non-Gaussian analytic covariance of galaxy power spectrum multipoles

PowerSpecCovFFT computes the non-Gaussian (regular trispectrum and its shot noise) part of the analytic covariance matrix of the redshift-space galaxy power spectrum multipoles using an FFTLog-based method. The galaxy trispectrum is based on a tree-level standard perturbation theory but with a slightly different galaxy bias expansion. The code computes the non-Gaussian covariance of the power spectrum monopole, quadrupole, hexadecapole, and their cross-covariance up to kmax ~ 0.4 h/Mpc.

[ascl:2406.026] Faceted-HyperSARA: Parallel faceted imaging in radio interferometry

Faceted-HyperSARA images radio-interferometric wideband intensity data. Written in MATLAB, the library offers a collection of utility functions and scripts from data extraction from an RI measurement set MS Table to the reconstruction of a wideband intensity image over the field of view and frequency range of interest. The code achieves high precision imaging from large data volumes and supports data dimensionality reduction via visibility gridding and estimation of the effective noise level when reliable noise estimates are not available. Faceted-HyperSASA also corrects the w-term via w-projection and incorporates available compact Fourier models of the direction dependent effects (DDEs) in the measurement operator.

[ascl:2406.027] phi-GPU: Parallel Hermite Integration on GPU

The phi-GPU (Parallel Hermite Integration on GPU) high-order N-body parallel dynamic code uses the fourth-order Hermite integration scheme with hierarchical individual block time-steps and incorporates external gravity. The software works directly with GPU, using only NVIDIA GPU and CUDA code. It creates numerical simulations and can be used to study galaxy and star cluster evolution.

[ascl:2406.028] Redback: Bayesian inference package for fitting electromagnetic transients

Redback provides end-to-end interpretation and parameter estimation of electromagnetic transients. Using data downloaded by the code or provided by the user, the code processes the data into a homogeneous transient object. Redback implements several different types of electromagnetic transients models, ranging from simple analytical models to numerical surrogates, fits models implemented in the package or provided by the user, and plots lightcurves. The code can also be used as a tool to simulate realistic populations without having to fit anything, as models are implemented as functions and can be used to simulate populations. Redback uses Bilby (ascl:1901.011) for sampling and can easily switch samplers and likelihoods.

[ascl:2406.030] AutoPhOT: Rapid publication-quality photometry of transients

AutoPhOT (AUTOmated Photometry Of Transients) produces publication-quality photometry of transients quickly. Written in Python 3, this automated pipeline's capabilities include aperture and PSF-fitting photometry, template subtraction, and calculation of limiting magnitudes through artificial source injection. AutoPhOT is also capable of calibrating photometry against either survey catalogs (e.g., SDSS, PanSTARRS) or using a custom set of local photometric standards.

[submitted] Exovetter

Exovetter is an open-source, pip-installable python package which calculates metrics on high cadence time series photometry to distinguish between exoplanet transit signals and false positives. The package standardizes the implementation of metrics developed for the TESS, Kepler, and K2 missions such as Odd-Even, Multiple Event Statistic, and Centroid Offset (see “Planetary Candidates Observed by Kepler. VIII.”, Thompson et al. 2018.). Metrics can be run individually or together as part of a pipeline. Exovetter also includes several visualizations to further evaluate the transits and metrics.

[ascl:2406.029] WinNet: Flexible, multi-purpose, single-zone nuclear reaction network

WinNet, a single zone nuclear reaction network, calculates many different nucleosynthesis processes, including r-process, nup-process, and explosive nucleosynthesis, and many more). It reads in a user-defined file with runtime parameters, then chooses the evolution mode, which is dependent on temperature. The temperature, density, and neutrino quantities are updated, after which the reaction network equations are solved numerically. If convergence is not achieved, the step size is halved and the iteration is repeated. Once convergence is reached, the output is generated and the time is evolved; the final output such as the final abundances and mass fractions are written.

[ascl:2407.001] MAKEE: MAuna Kea Echelle Extraction

MAKEE (MAuna Kea Echelle Extraction) reduces data from the HIRES and ESI instruments at Keck Observatory. It is optimized for the spectral extraction of single, unresolved point sources and is designed to run non-interactively using a set of default parameters. Taking the raw HIRES FITS files as input, the code determines the position (or trace) of each echelle order, defines the object and background extraction boundaries, optimally extracts a spectrum for each order, and computes wavelength calibrations. MAKEE produces FITS format "spectral images" (each row is a separate echelle order spectrum) and the data values are in arbitrary (relative) flux units. MAKEE will reduce data from all HIRES formats, including the single CCD format, the single CCD with Red and UV cross dispersers, and the current 3 CCD system. It can handle a variety of pixel binnings, including 1x1, 1x2, 1x4 (column x row).

[ascl:2407.002] pyFAT: Python Fully Automated TiRiFiC

Python Fully Automated TiRiFiC (pyFAT) wraps around the tilted ring fitting code (TiRiFiC, ascl:1208.008) to fully automate the process of fitting simple tilted ring models to line emission cubes. pyFAT is the successor to the IDL/GDL FAT (ascl:1507.011) code and offers improved handling and fitting as well as several new features. PyFAT fits simple rotationally symmetric discs with asymmetric warps and surface brightness distributions, providing a base model that can can be used in TiRiFiC to explore large scale motions. pyFAT delivers much more control over the fitting procedure, which is made possible by the new modular setup and the use of omegaconf for the input and default settings.

[ascl:2407.003] pycosie: Python analysis code used on Technicolor Dawn

pycosie is analysis code used for Technicolor Dawn (TD), a Gadget-3 derived cosmological radiative SPH simulation suite. The target analyses are to complement what is done with TD and other analysis software in its suite. pycosie creates power spectrum from generated Lyman-alpha forests spectra, links absorbers to potential host galaxies, grids gas information for each galaxy, and reads specific output files from software such as Rockstar (ascl:1210.008) and SKID (ascl:1102.020).

[ascl:2407.004] Forklens: Deep learning weak lensing shear

Forklens measures weak gravitational lensing signal using a deep-learning methoe. It measures galaxy shapes (shear) and corrects the smearing of the point spread function (PSF, an effect from either/both the atmosphere and optical instrument). It contains a custom CNN architecture with two input branches, fed with the observed galaxy image and PSF image, and predicts several features of the galaxy, including shape, magnitude, and size. Simulation in the code is built directly upon GalSim (ascl:1402.009).

[ascl:2407.005] BaCoN: BAyesian COsmological Network

BaCoN (BAyesian COsmological Network) trains and tests Bayesian Convolutional Neural Networks in order to classify dark matter power spectra as being representative of different cosmologies, as well as to compute the classification confidence. It supports the following theories: LCDM, wCDM, f(R), DGP, and a randomly generated class. Additional cosmologies can be easily added.

[ascl:2407.006] provabgs: SED modeling tools for PROVABGS

provabgs infers full posterior distributions of galaxy properties for galaxies in the DESI Bright Galaxy Survey using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and photometry. provabgs includes a state-of-the-art stellar population synthesis (SPS) model based on non-parametric prescription for star formation history, a metallicity history that varies over the age of the galaxy, and a flexible dust prescription. It has a neural network emulator for the SPS model that enables accelerated inference. Full posteriors of the 12 SPS parameters can be derived in ~10 minutes. The emulator is currently designed for galaxies from 0 < z < 0.6. provabgs also includes a Bayesian inference pipeline that is based on zeus (ascl:2008.010).

[ascl:2407.007] GRDzhadzha: Evolve matter on curved spacetimes

GRDzhadzha evolves matter on curved spacetimes with an analytic time and space dependence. Written in C++14, it uses hybrid MPI/OpenMP parallelism to achieve good performance. The code is based on publicly available 3+1D numerical relativity code GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which uses the Chombo library for adaptive mesh refinement.

[ascl:2407.008] RealSim: Statistical observational realism for synthetic images from galaxy simulations

RealSim generates survey-realistic synthetic images of galaxies from hydrodynamical simulations of galaxy formation and evolution. The main functionality of this code inserts "idealized" simulated galaxies into Sloan Digital Sky Survey (SDSS) images in such a way that the statistics of sky brightness, resolution, and crowding are matched between simulated galaxies and observed galaxies in the SDSS. The suite accepts idealized synthetic images in calibrated AB surface brightnesses and rebins them to the desired redshift and CCD angular scale; RealSim can add Poisson noise, if desired, by adopting generic values of photometric calibrations in survey fields. Images produced by the suite can be inserted into real image fields to incorporate real skies, PSF degradation, and contamination by neighboring sources in the field of view. The RealSim methodology can be applied to any existing galaxy imaging survey.

[ascl:2407.009] ATM: Asteroid Thermal Modeling

ATM (Asteroid Thermal Modeling) models asteroid flux measurements to estimate an asteroid's size, surface temperature distribution, and emissivity, and creates model spectral energy distributions for the different thermal models. After downloading lookup tables for relevant models, it can also fit observations of asteroids.

[ascl:2407.010] UFalcon: Ultra Fast Lightcone

UFalcon rapidly post-processes N-body code output into signal maps for many different cosmological probes. The package is able to produce maps of weak-lensing convergence, linear-bias galaxy over-density, cosmic microwave background (CMB) lensing convergence and the integrated Sachs-Wolfe temperature perturbation given a set of N-body lightcones. It offers high flexibility for lightcone construction, such as user-specific survey-redshift ranges, redshift distributions and single-source redshifts. UFalcon also computes the galaxy intrinsic alignment signal, which can be treated as an additive component to the cosmological signal.

[ascl:2407.011] bigfile: A reproducible massively parallel IO library for hierarchical data

bigfile stores data from cosmology simulations from HPC systems and beyond. It provides a hierarchical structure of data columns via File, Dataset and Column. A Column stores a two dimensional table. Numerical typed columns are supported; attributes can be attached to a Column and both numerical attributes and string attributes are supported. Type casting is performed on-the-fly if read/write operations request a different data type than the file has stored.

[ascl:2407.012] Fof: Friends-of-friends code to find groups

Fof uses the friends-of-friends method to find groups. A particle belongs to a friends-of-friends group if it is within some linking length of any other particle in the group. After all such groups are found, those with less than a specified minimum number of group members are rejected. The program takes input files in the TIPSY (ascl:1111.015) binary format and produces a single ASCII output file called fof.grp. This output file is in the TIPSY array format and contains the group number to which each particle belongs. A group number of zero means that the particle does not belong to a group. The fof.grp file can be read in by TIPSY and used to color each particle by group number to visualize the groups. Simulations with periodic boundary conditions can also be handled by fof by specifying the period in each dimension on the command line.

[ascl:2407.013] cola_halo: Parallel cosmological N-body simulator

cola_halo generates hundreds of realizations on the fly. This parallel cosmological N-body simulation code generates random Gaussian initial condition using 2LPTIC (ascl:1201.005), time evolves N-body particles with colacode (ascl:1602.021), and finds dark-matter halos with the Friends-of-Friends code (ascl:2407.012).

[ascl:2407.014] PFFT: Parallel fast Fourier transforms

PFFT computes massively parallel, fast Fourier transformations on distributed memory architectures. PFFT can be understood as a generalization of FFTW-MPI (ascl:1201.015) to multidimensional data decomposition; in fact, using PFFT is very similar to FFTW. The library is written in C and MPI; a Fortran interface is also available.

[ascl:2407.015] AstroCLIP: Multimodal contrastive pretraining for astronomical data

AstroCLIP performs contrastive pre-training between two different kinds of astronomical data modalities (multi-band imaging and optical spectra) to yield a meaningful embedding space which captures physical information about galaxies and is shared between both modalities. The embeddings can be used as the basis for competitive zero- and few-shot learning on a variety of downstream tasks, including similarity search, redshift estimation, galaxy property prediction, and morphology classification.

[submitted] Flash-X: A Performance Portable, Multiphysics Simulation Software Instrument

Flash-X simulates physical phenomena in several scientific domains, primarily those involving compressible or incompressible reactive flows, using Eulerian adaptive mesh and particle techniques. It derives some of its solvers from and is a descendant of FLASH (ascl:1010.082). Flash-X has a new framework that relies on abstractions and asynchronous communications for performance portability across a range of heterogeneous hardware platforms, including exascale machines. It also includes new physics capabilities, such as the Spark general relativistic magnetohydrodynamics (GRMHD) solver, and supports interoperation with the AMReX mesh framework, the HYPRE linear solver package, and the Thornado neutrino radiation hydrodynamics package, among others.

[ascl:2407.016] Heimdall: GPU accelerated transient detection pipeline for radio astronomy

Heimdall uses direct, tree, and sub-band dedispersion algorithms on massively parallel computing architectures (GPUs) to speed up real-time detection of radio pulsar and other transient events.

[submitted] ELISA: Efficient Library for Spectral Analysis in High-Energy Astrophysics

ELISA is a Python library designed for efficient spectral modeling and robust statistical inference. With user-friendly interface, ELISA streamlines the spectral analysis workflow.

The modeling framework of ELISA is flexible, allowing users to construct complex models by combining models of ELISA and XSPEC, as well as custom models. Parameters across different model components can also be linked. The models can be fitted to the spectral datasets using either Bayesian or maximum likelihood approaches. For Bayesian fitting, ELISA incorporates advanced Markov Chain Monte Carlo (MCMC) algorithms, including the No-U-Turn Sampler (NUTS), nested sampling, and affine-invariant ensemble sampling, to tackle the posterior sampling problem. For maximum likelihood estimation (MLE), ELISA includes two robust algorithms: the Levenberg-Marquardt algorithm and the Migrad algorithm from Minuit. The computation backend is based on Google's JAX, a high-performance numerical computing library, which can reduce the runtime for fitting procedures like MCMC, thereby enhancing the efficiency of analysis.

After fitting, goodness-of-fit assessment can be done with a single function call, which automatically conducts posterior predictive checks and leave-one-out cross-validation for Bayesian models, or parametric bootstrap for MLE. These methods offer greater accuracy and reliability than traditional fit-statistic/dof measures, and thus better model discovery capability. For comparing multiple candidate models, ELISA provides robust Bayesian tools such as the Widely Applicable Information Criterion (WAIC) and the Leave-One-Out Information Criterion (LOOIC), which are more reliable than AIC or BIC. Thanks to the object-oriented design, collecting the analysis results should be simple. ELISA also provide visualization tools to generate ready-for-publication figures.

ELISA is an open-source project and community contributions are welcome and greatly appreciated.

[ascl:2407.017] photGalIMF: Stellar mass and luminosity evolution calculator

The photGalIMF code calculates the evolution of stellar mass and luminosity for a galaxy model, based on the PARSEC stellar evolution model (ascl:1502.005). It requires input lists specifying the age, mass, metallicity, and initial mass function (IMF) of single stellar populations. These input parameters can be provided by the companion galaxy chemical simulation code GalIMF (ascl:1903.010), which generates realistic sets of inputs.

[ascl:2407.018] pony3d: Efficient island-finding tool for radio spectral line imaging

pony3d statistically identifies islands of contiguous emission inside a three-dimensional volume. The primary functionality is the rapid and reliable creation of masks for the deconvolution of radio interferometric radio spectral line emission. It has been designed to run on the output of the wsclean imager (ascl:1408.023) whereby the individual FITS image per frequency plane enables a high degree of parallelism, but can work on any image set providing this criterion is met. Single channel island rejection is offered, along with 3D mask dilation and boxcar averaging. pony3d is also a prototype source-finding and extraction tool.

[ascl:2407.019] hipipe: VLT/HiRISE reduction pipeline

The High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) instrument at the Very Large Telescope (VLT) combines the exoplanet imager SPHERE with the high-resolution spectrograph CRIRES using single-mode fibers. HiRISE has been designed to enable the characterization of known, directly-imaged planetary companions in the H band at a spectral resolution on the order of R = λ/∆λ = 140 000. The hipipe package is a custom python pipeline used to reduce the HiRISE data and produce high-level science products that can be used for astrophysical interpretation.

[ascl:2407.020] Package-X: Calculate Feynman loop integrals

Package‑X instantly solves one loop Feynman integrals in full generality. Written in Mathematica and extensively tested and adopted, the package computes dimensionally regulated one-loop integrals with up to four distinct propagators of arbitrarily high rank, calculates traces of Dirac matrices in d dimensions for closed fermion loops, or carries out Dirac algebra for open fermion lines. Package‑X also generates analytic results for any kinematic configuration (e.g., at zero external momentum or physical threshold) for real masses and external invariants, provides analytic expressions for UV-divergent, IR-divergent and finite parts either separately or all together, and computes discontinuities across cuts of one-loop integrals, among other tasks.

[ascl:2408.001] SDR: Sharpened Dimensionality Reduction

Sharpened dimensionality reduction (SDR) sharpens original data before dimensionality reduction to create visually segregrated sample clusters. user-guided labeling. Each distinct cluster can then be labeled and used to further analyze an otherwise unlabeled data set. Written in C++, SDR scales well with large high-dimensional data.

[ascl:2408.002] pySDR: Wrapper for sharpened dimensionality reduction code

pySDR performs local gradient clustering-based sharpened dimensionality reduction (SDR). The library uses the C++ LGCDR_v1 code as its backend.

[ascl:2408.003] SHARC: SHArpened Dimensionality Reduction and Classification

SHARC (SHArpened Dimensionality Reduction and Classification) performs local gradient clustering-based sharpened dimensionality reduction (SDR) using neural network projections and uses these projections to make classifications. The library also contains functions for finding the optimal SDR parameters and for consolidating classification results obtained through multiple classifiers. It requires pySDR (ascl:2408.002). SHARC provides accurate and physically insightful classification of astronomical objects based on their broadband colors.

[submitted] AntabGMVA: A Python tool for managing GMVA metadata

Global mm-VLBI Array (GMVA) observations are accompanied by a lot of metadata (i.e., the so-called 'ANTAB' files) that contain the system temperature (Tsys) and the gain values of the individual GMVA antennas. These data are required for the amplitude calibration of GMVA data which is an essential part in the data reduction. Unfortunately, Tsys measurements in the ANTAB files are not perfect and there are almost always erroneous values in some of the ANTAB files (particularly in the VLBA data). This could lead to incorrect results in the amplitude calibration and thus need to be corrected with proper data inspection/treatment. However, every GMVA station provides the ANTAB file in their own data format which makes the examination tricky. AntabGMVA was designed to resolve these issues and allows GMVA users to manage the GMVA ANTAB files easily and efficiently. Using AntabGMVA, one can perform extraction/inspection/visualization/correction of the Tsys data from the ANTAB files and finally generate one single ANTAB file which includes all the final products.

[ascl:2408.004] Sailfish: GPU-accelerated grid-based astrophysics gas dynamics code

Sailfish simulates accreting binary systems, including binary protostars, post-AGN stellar binaries, mass-transferring X-ray binaries, and double black hole systems. The binary components are "on the grid" rather than excised, and are evolved according to the Kepler two-body problem, modified to account for gravitational wave losses or self-consistent forcing from the orbiting gas. The solvers are shock-capturing and are second order accurate in space and time. Gravity is fully Newtonian. Thermodynamics can be treated using a gamma-law equation of state with a blackbody cooling term, or in the locally isothermal approximation, in which the gas temperature is set to a constant times the local free-fall speed. Sailfish is fully Cartesian and has extensive diagnostic capabilities to facilitate accurate calculations of gas-driven orbital evolution or the extraction of electromagnetic disk signatures. The code is extremely efficient, reaching more than one billion zone updates per second on an NVIDIA A100 GPU, enabling extremely high resolution of complex flows around the binary components.

[ascl:2408.005] Astronify: Astronomical data sonification

Astronify contains tools for sonifying astronomical data, specifically data series. Data series sonification takes a data table and maps one column to time, and one column to pitch. This technique is commonly used to sonify light curves, where observation time is scaled to listening time and flux is mapped to pitch. While Astronify’s sonification uses the columns “time” and “flux” by default, any two columns can be supplied and a sonification created.

[ascl:2408.006] SonAD: Sonification of astronomical data

Sonification extends the Astronify software (ascl:2408.005) to sonify a spatially distributed dataset. The package contains scripts to convert images into scatterplots and sonifications. The reproduce_image.py script takes an image file and reproduces it as a scatterplot by converting the input image to grayscale, extracting pixel values and generating scatter data based on these values, and then plotting the scatter data to create a visual representation of the image. The sonifications script converts the scatterplot data into an audio series and adjusts the note spacing and sonification range to customize an auditory representation. Sonification accepts images in PNG and JPG formats.

[ascl:2408.007] LADDER: Learning Algorithm for Deep Distance Estimation and Reconstruction

LADDER (Learning Algorithm for Deep Distance Estimation and Reconstruction) reconstructs the “cosmic distance ladder” by analyzing sequential cosmological data; it can also be applied to other sequential datasets with associated covariance information. It uses the apparent magnitude data from the Pantheon Type Ia supernovae compilation, fully incorporating covariance information to accurately predict mean values and uncertainties. It offers model-independent consistency checks for datasets such as Baryon Acoustic Oscillations (BAO) and can calibrate high-redshift datasets such as Gamma Ray Bursts (GRBs) without assuming any underlying cosmological model. Additionally, LADDER serves as a model-independent mock catalog generator for forecast-based cosmological studies.

[ascl:2408.008] HaloFlow: Simulation-Based Inference (SBI) using forward modeled galaxy photometry

HaloFlow uses a machine learning approach to infer Mh and stellar mass, M∗, using grizy band magnitudes, morphological properties quantifying characteristic size, concentration, and asymmetry, total measured satellite luminosity, and number of satellites.

[ascl:2408.009] Cue: Nebular emission modeling

Cue interprets nebular emission across a wide range of ionizing conditions of galaxies. The software, based on Cloudy (ascl:9910.001), emulates a neural net. It does not require a specific ionizing spectrum as a source, instead approximating the ionizing spectrum with a 4-part piece-wise power-law. Along with the flexible ionizing spectra, Cue allows freedom in [O/H], [N/O], [C/O], gas density, and total ionizing photon budget.

[ascl:2408.010] BELTCROSS2: Calculate the closest approaches of asteroids to meteoroid streams

BELTCROSS2 calculates the closest approaches of asteroid to the mean orbits of meteoroid streams. It is especially useful to check if an asteroid, which was observed to become active, passed through a meteoroid stream, and through which stream, a short time before the beginning of the activity. The basic characteristics of the closest encounter of the asteroid with the stream are provided by BELTCROSS2.

[ascl:2408.011] M_SMiLe: Magnification Statistics of Micro-Lensing

M_SMiLe computes an approximation of the probability of magnification for a lens system consisting of microlensing by compact objects within a galaxy cluster. It specifically focuses on the scenario where the galaxy cluster is strongly lensing a background galaxy and the compact objects, such as stars, are sensitive to this microlensing effect. The microlenses responsible for this effect are stars and stellar remnants, though exotic objects such as compact dark matter candidates (including PBHs and axion mini-halos) can contribute to this effect.

[ascl:2408.012] RadioSED: Radio SED fitting for AGN

RadioSED uses nested sampling to perform a Bayesian analysis of radio SEDs constructed from radio flux density measurements obtained as part of large area surveys (or in some limited cases, as part of targeted followup campaigns). It is a pure Python implementation, and is essentially a wrapper around Bilby (ascl:1901.011), the Bayesian inference library. RadioSED uses dynesty (ascl:1809.013) to perform the sampling steps, though other samplers could also be used. Users can make use of a pre-defined set of models and surveys from which to draw flux density measurements, or they can define their own models and provide their own input flux density measurements. All flux density measurements are referenced against the RACS-LOW survey, and source names and IDs from the survey catalogue are used as identifiers.

[ascl:2408.013] GRBoondi: AMR-based code to evolve generalized Proca fields on arbitrary fixed backgrounds

GRBoondi simulates generalized Proca fields on arbitrary analytic fixed backgrounds; it is based on the publicly available 3+1D numerical relativity code GRChombo (ascl:2306.039). GRBoondi reduces the prerequisite knowledge of numerical relativity and GRChombo in the numerical studies of generalized Proca theories. The main steps to perform a study are inputting the additions to the equations of motion beyond the base Proca theory; GRBoondi can then automatically incorporate the higher-order terms in the simulation. The code is written entirely in C++14 and uses hybrid MPI/OpenMP parallelism. GRBoondi inherits all of the capabilities of the main GRChombo code, which makes use of the Chombo library (ascl:1202.008) for adaptive mesh refinement.

[ascl:2408.014] 21cmFirstCLASS: Generate initial conditions at recombination

21cmFirstCLASS extends 21cmFAST (ascl:1102.023) and interfaces with CLASS (ascl:1106.020) to generate initial conditions at recombination that are consistent with the input cosmological model. These initial conditions can be set during the time of recombination, allowing one to compute the 21cm signal (and its spatial fluctuations) throughout the dark ages, as well as in the proceeding cosmic dawn and reionization epochs, just as in the standard 21cmFAST. 21cmFirstCLASS tracks both the CDM density field δc as well as the baryons density field δb. In addition, the user interface in 21cmFirstCLASS has been improved and allows one to easily plot the 21cm power spectrum while including noise from the output of 21cmSense (ascl:1609.013).

[ascl:2408.015] SAQQARA: Stochastic gravitational wave background analysis

SAQQARA analyzes stochastic gravitational wave background signals. This Simulation-based Inference (SBI) library is built on top of the swyft code (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Simulation-based inference combined with implicit marginalization (over nuisance parameters) has been shown to be well suited for SGWB data analysis.

Previous12
Next

Would you like to view a random code?