ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2002.019] ExoRT: Two-stream radiative transfer code

ExoRT is a flexible, two-stream radiative transfer code that interfaces with CAM/CESM (http://www.cesm.ucar.edu/models/current.html) or 1D offline; it is also used with ExoCAM (ascl:2002.020). Quadrature is used for shortwave and hemispheric mean is used for longwave. The gas phase optical depths are calculate using a correlated K-distribution method, with overlapping bands treated using an amount weighted scheme. Cloud optics are treated using mie scattering for both liquid and ice clouds, and cloud overlap is treated using Monte Carlo Independent Column Approximation.

[ascl:2002.008] ExoSim: Simulator for predicting signal and noise in transit spectroscopy observations

ExoSim models host star and planet transit events, simulating the temporal change in stellar flux due to the light curve. It is wavelength-dependent, using an input planet spectrum to determine the light curve depth for any given wavelength and can capture temporal effects, such as correlated noise. ExoSim's star spot simulator produces simulated observations that include spot and facula contamination. The code is flexible and can be generically applied to different instruments that simulate specific time-dependent processes.

[ascl:1706.010] EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[ascl:1708.023] ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox

ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.

[ascl:2001.011] ExoTETHyS: Exoplanetary transits and eclipsing binaries modeler

ExoTETHyS models exoplanetary transits, eclipsing binaries, and related phenomena. The package calculates stellar limb-darkening coefficients down to <10 parts per million (ppm) and generates an exact transit light-curve based on the entire stellar intensity profile rather than limb-darkening coefficients.

[ascl:2302.009] EXOTIC: EXOplanet Transit Interpretation Code

EXOTIC (EXOplanet Transit Interpretation Code) analyzes photometric data of transiting exoplanets into lightcurves and retrieves transit epochs and planetary radii. The software reduces images of a transiting exoplanet into a lightcurve, and fits a model to the data to extract planetary information crucial to increasing the efficiency of larger observational platforms. EXOTIC is written in Python and supports the citizen science project Exoplanet Watch. The software runs on Windows, Macintosh, and Linux/Unix computer, and can also be used via Google Colab.

[ascl:1706.001] Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:2203.002] exoVista: Planetary systems generator

exoVista generates a "universe" of planetary systems, creating thousands of models of quasi-self-consistent planetary systems around known nearby stars at scattered light wavelengths. It efficiently records the position, velocity, spectrum, and physical parameters of all bodies as functions of time. exoVista models can be used for simulating surveys using the direct imaging, transit, astrometric, and radial velocity techniques.

[ascl:1902.009] ExPRES: Exoplanetary and Planetary Radio Emissions Simulator

ExPRES (Exoplanetary and Planetary Radio Emission Simulator) reproduces the occurrence of CMI-generated radio emissions from planetary magnetospheres, exoplanets or star-planet interacting systems in time-frequency plane, with special attention given to computation of the radio emission beaming at and near its source. Physical information drawn from such radio observations may include the location and dynamics of the radio sources, the type of current system leading to electron acceleration and their energy and, for exoplanetary systems, the magnetic field strength, the orbital period of the emitting body and the rotation period, tilt and offset of the planetary magnetic field. Most of these parameters can be remotely measured only via radio observations. ExPRES code provides the proper framework of analysis and interpretation for past (Cassini, Voyager, Galileo), current (Juno, ground-based radio telescopes) and future (BepiColombo, Juice) observations of planetary radio emissions, as well as for future detection of radio emissions from exoplanetary systems.

[ascl:1212.013] EXSdetect: Extended X-ray Source Detection

EXSdetect is a python implementation of an X-ray source detection algorithm which is optimally designed to detected faint extended sources and makes use of Voronoi tessellation and Friend-of-Friend technique. It is a flexible tool capable of detecting extended sources down to the lowest flux levels attainable within instrumental limitations while maintaining robust photometry, high completeness, and low contamination, regardless of source morphology. EXSdetect was developed mainly to exploit the ever-increasing wealth of archival X-ray data, but is also ideally suited to explore the scientific capabilities of future X-ray facilities, with a strong focus on investigations of distant groups and clusters of galaxies.

[ascl:9906.002] EXTINCT: A computerized model of large-scale visual interstellar extinction

The program EXTINCT.FOR is a FORTRAN subroutine summarizing a three-dimensional visual Galactic extinction model, based on a number of published studies. INPUTS: Galactic latitude (degrees), Galactic longitude (degrees), and source distance (kpc). OUTPUTS (magnitudes): Extinction, extinction error, a statistical correction term, and an array containing extinction and extinction error from each subroutine. The model is useful for correcting visual magnitudes of Galactic sources (particularly in statistical models), and has been used to find Galactic extinction of extragalactic sources. The model's limited angular resolution (subroutine-dependent, but with a minimum resolution of roughly 2 degrees) is necessitated by its ability to describe three-dimensional structure.

[ascl:1708.025] extinction-distances: Estimating distances to dark clouds

Extinction-distances uses the number of foreground stars and a Galactic model of the stellar distribution to estimate the distance to dark clouds. It exploits the relatively narrow range of intrinsic near-infrared colors of stars to separate foreground from background stars. An advantage of this method is that the distribution of stellar colors in the Galactic model need not be precisely correct, only the number density as a function of distance from the Sun.

[ascl:2102.026] extinction: Dust extinction laws

extinction is an implementation of fast interstellar dust extinction laws in Python. It contains Cython-optimized implementations of empirical dust extinction laws found in the literature. Flux values can be reddened or dereddened using included functions, and all extinction laws accept a unit keyword to change the interpretation of the wavelength array from Angstroms to inverse microns. Part of this code originated in the specutils package (ascl:1902.012).

[ascl:1803.011] ExtLaw_H18: Extinction law code

ExtLaw_H18 generates the extinction law between 0.8 - 2.2 microns. The law is derived using the Westerlund 1 (Wd1) main sequence (A_Ks ~ 0.6 mag) and Arches cluster field Red Clump at the Galactic Center (A_Ks ~ 2.7 mag). To derive the law a Wd1 cluster age of 5 Myr is assumed, though changing the cluster age between 4 Myr -- 7 Myr has no effect on the law. This extinction law can be applied to highly reddened stellar populations that have similar foreground material as Wd1 and the Arches RC, namely dust from the spiral arms of the Milky Way in the Galactic Plane.

[ascl:2305.003] extrapops: Fast simulation and analysis of extra-galactic binary GW sources

extrapops simulates extra-galactic populations of gravitational waves sources and models their emission during the inspiral phase. The code approximately assesses the detectability of individual sources by LISA and computes the background due to unresolved sources in the LISA band using different methods. The simulated populations can be saved in a format compatible with LISA LDC. Simulations are well calibrated to produce accurate background calculations and fair random generation at the tails of the distributions, which is important for accurate probability of detectable events. extrapops uses a number of ad-hoc techniques for rapid simulation and allows room for further optimization up to almost 1 order of magnitude.

[ascl:1010.032] Extreme Deconvolution: Density Estimation using Gaussian Mixtures in the Presence of Noisy, Heterogeneous and Incomplete Data

Extreme-deconvolution is a general algorithm to infer a d-dimensional distribution function from a set of heterogeneous, noisy observations or samples. It is fast, flexible, and treats the data's individual uncertainties properly, to get the best description possible for the underlying distribution. It performs well over the full range of density estimation, from small data sets with only tens of samples per dimension, to large data sets with hundreds of thousands of data points.

[ascl:1010.061] EyE: Enhance Your Extraction

In EyE (Enhance Your Extraction) an artificial neural network connected to pixels of a moving window (retina) is trained to associate these input stimuli to the corresponding response in one or several output image(s). The resulting filter can be loaded in SExtractor (ascl:1010.064) to operate complex, wildly non-linear filters on astronomical images. Typical applications of EyE include adaptive filtering, feature detection and cosmetic corrections.

[ascl:1407.019] EZ_Ages: Stellar population age calculator

EZ_Ages is an IDL code package that computes the mean, light-weighted stellar population age, [Fe/H], and abundance enhancements [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for unresolved stellar populations. This is accomplished by comparing Lick index line strengths between the data and the stellar population models of Schiavon (2007), using a method described in Graves & Schiavon (2008). The algorithm uses the inversion of index-index model grids to determine ages and abundances, and exploits the sensitivities of the various Lick indices to measure Mg, C, N, and Ca enhancements over their solar abundances with respect to Fe.

[ascl:1210.004] EZ: A Tool For Automatic Redshift Measurement

EZ (Easy-Z) estimates redshifts for extragalactic objects. It compares the observed spectrum with a set of (user given) spectral templates to find out the best value for the redshift. To accomplish this task, it uses a highly configurable set of algorithms. EZ is easily extendible with new algorithms. It is implemented as a set of C programs and a number of python classes. It can be used as a standalone program, or the python classes can be directly imported by other applications.

[ascl:1208.021] EzGal: A Flexible Interface for Stellar Population Synthesis Models

EzGal is a flexible Python program which generates observable parameters (magnitudes, colors, and mass-to-light ratios) for arbitrary input stellar population synthesis (SPS) models; it enables simple, direct comparison of different model sets so that the uncertainty introduced by choice of model set can be quantified. EzGal is also capable of generating composite stellar population models (CSPs) for arbitrary input star-formation histories and reddening laws, and can be used to interpolate between metallicities for a given model set.

[ascl:2201.001] EzTao: Easier CARMA Modeling

EzTao models time series as a continuous-time autoregressive moving-average (CARMA) process. EzTao utilizes celerite (ascl:1709.008), a fast and scalable Gaussian Process Regression library, to evaluate the likelihood function. On average, EzTao is ten times faster than other tools relying on a Kalman filter for likelihood computation.

[ascl:1705.006] f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:2307.062] FABADA: Non-parametric noise reduction using Bayesian inference

FABADA (Fully Adaptive Bayesian Algorithm for Data Analysis) performs non-parametric noise reduction using Bayesian inference. It iteratively evaluates possible smoothed models of the data to estimate the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence E and the χ2 statistic of the last smooth model, and the expected value of the signal is computed as a weighted average of the smooth models. Though FABADA was written for astronomical data, such as spectra (1D) or images (2D), it can be used as a general noise reduction algorithm for any one- or two-dimensional data; the only requisite of the input data is an estimation of its associated variance.

[ascl:1802.001] FAC: Flexible Atomic Code

FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

[ascl:2306.038] FacetClumps: Molecular clump detection algorithm based on Facet model

FacetClumps extracts and analyses clumpy structure in molecular clouds. Written in Python and based on the Gaussian Facet model, FacetClumps extracts signal regions using morphology, and segments the signal regions into local regions with a gradient-based method. It then applies a connectivity-based minimum distance clustering method to cluster the local regions to the clump centers. FacetClumps automatically adjusts its parameters to local situations to improve adaptability, and is optimized to detect faint and overlapping clumps.

[ascl:2210.024] Faiss: Similarity search and clustering of dense vectors library

The Faiss library performs efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU.

[ascl:2001.005] FAKEOBS: Model visibilities generator

The CASA (1107.013) task FAKEOBS generates model visibilities from already-existing measurement sets. This task can be used to substitute all the visibilities of the target with simulations computed from any model image. The measurement can either be with real or simulated data, the target can have been observed in mosaic mode, and there can be several sources (e.g., bandpass calibrator, flux/phase calibrator, and target).

[ascl:2304.004] FALCO: Fast Linearized Coronagraph Optimizer in MATLAB

FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A Python 3 implementation of FALCO (ascl:2304.005) is also available.

[ascl:2304.005] FALCO: Fast Linearized Coronagraph Optimizer in Python

FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A MATLAB implementation of FALCO (ascl:2304.004) is also available.

[ascl:2205.004] FAlCon-DNS: Framework of time schemes for direct numerical simulation of annular convection

FAlCon-DNS (Framework of time schemes for direct numerical simulation of annular convection) solves for 2-D convection in an annulus and analyzes different time integration schemes. The framework contains a suite of IMEX, IMEXRK and RK time integration schemes. The code uses a pseudospectral method for spatial discretization. The governing equations contain both numerically stiff (diffusive) and non-stiff (advective) components for time discretization. The software offers OpenMP for parallelization.

[ascl:1509.004] FalconIC: Initial conditions generator for cosmological N-body simulations in Newtonian, Relativistic and Modified theories

FalconIC generates discrete particle positions, velocities, masses and pressures based on linear Boltzmann solutions that are computed by libraries such as CLASS and CAMB. FalconIC generates these initial conditions for any species included in the selection, including Baryons, Cold Dark Matter and Dark Energy fluids. Any species can be set in Eulerian (on a fixed grid) or Lagrangian (particle motion) representation, depending on the gauge and reality chosen. That is, for relativistic initial conditions in the synchronous comoving gauge, Dark Matter can only be described in an Eulerian representation. For all other choices (Relativistic in Longitudinal gauge, Newtonian with relativistic expansion rates, Newtonian without any notion of radiation), all species can be treated in all representations. The code also computes spectra. FalconIC is useful for comparative studies on initial conditions.

[ascl:1402.016] FAMA: Fast Automatic MOOG Analysis

FAMA (Fast Automatic MOOG Analysis), written in Perl, computes the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) automatically and independently of any subjective approach. Based on the widely-used MOOG code, it simultaneously searches for three equilibria, excitation equilibrium, ionization balance, and the relationship between logn(FeI) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. Convergence criteria are not fixed "a priori" but instead are based on the quality of the spectra.

[ascl:2006.021] FAMED: Extraction and mode identification of oscillation frequencies for solar-like pulsators

The FAMED (Fast and AutoMated pEak bagging with Diamonds) pipeline is a multi-platform parallelized software that performs and automates extraction and mode identification of oscillation frequencies for solar-like pulsators. The pipeline can be applied to a large variety of stars, ranging from hot F-type main sequence, up to stars evolving along the red giant branch, settled into the core-Helium-burning main sequence, and even evolved beyond towards the early asymptotic giant branch. FAMED is based on DIAMONDS (ascl:1410.001), a Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm.

[ascl:1209.014] FAMIAS: Frequency Analysis and Mode Identification for AsteroSeismology

FAMIAS (Frequency Analysis and Mode Identification for Asteroseismology) is a package of software tools programmed in C++ for the analysis of photometric and spectroscopic time-series data. FAMIAS provides analysis tools that are required for the steps between the data reduction and the seismic modeling. Two main sets of tools are incorporated in FAMIAS. The first set permits to search for periodicities in the data using Fourier and non-linear least-squares fitting techniques. The other set permits to carry out a mode identification for the detected pulsation frequencies to determine their harmonic degree l, and azimuthal order m. FAMIAS is applicable to main-sequence pulsators hotter than the Sun. This includes Gamma Dor, Delta Sct stars, slowly pulsating B (SPB)-stars and Beta Cep stars - basically all stars for which empirical mode identification is required to successfully carry out asteroseismology.

[ascl:1102.017] FARGO: Fast Advection in Rotating Gaseous Objects

FARGO is an efficient and simple modification of the standard transport algorithm used in explicit eulerian fixed polar grid codes, aimed at getting rid of the average azimuthal velocity when applying the Courant condition. This results in a much larger timestep than the usual procedure, and it is particularly well-suited to the description of a Keplerian disk where one is traditionally limited by the very demanding Courant condition on the fast orbital motion at the inner boundary. In this modified algorithm, the timestep is limited by the perturbed velocity and by the shear arising from the differential rotation. The speed-up resulting from the use of the FARGO algorithm is problem dependent. In the example presented in the code paper below, which shows the evolution of a Jupiter sized protoplanet embedded in a minimum mass protoplanetary nebula, the FARGO algorithm is about an order of magnitude faster than a traditional transport scheme, with a much smaller numerical diffusivity.

[ascl:1509.006] FARGO3D: Hydrodynamics/magnetohydrodynamics code

A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.

[ascl:2311.014] FASMA: Stellar spectral analysis package

FASMA delivers the atmospheric stellar parameters (effective temperature, surface gravity, metallicity, microturbulence, macroturbulence, and rotational velocity) based on the spectral synthesis technique. This technique relies on the comparison of synthetic spectra with observations to yield the best-fit parameters under a χ2 minimization process. FASMA also delivers chemical abundances of 13 elements. Written in Python, the code is wrapped around MOOG (ascl:1202.009) which calculates the synthetic spectra. FASMA includes two grids of models in MOOG readable format, Kurucz and marcs, that cover the parameter space for both dwarf and giant stars with metallicity limit of -5.0 dex.

[ascl:1010.010] Fast WMAP Likelihood Code and GSR PC Functions

We place functional constraints on the shape of the inflaton potential from the cosmic microwave background through a variant of the generalized slow roll approximation that allows large amplitude, rapidly changing deviations from scale-free conditions. Employing a principal component decomposition of the source function G'~3(V'/V)^2 - 2V''/V and keeping only those measured to better than 10% results in 5 nearly independent Gaussian constraints that maybe used to test any single-field inflationary model where such deviations are expected. The first component implies < 3% variations at the 100 Mpc scale. One component shows a 95% CL preference for deviations around the 300 Mpc scale at the ~10% level but the global significance is reduced considering the 5 components examined. This deviation also requires a change in the cold dark matter density which in a flat LCDM model is disfavored by current supernova and Hubble constant data and can be tested with future polarization or high multipole temperature data. Its impact resembles a local running of the tilt from multipoles 30-800 but is only marginally consistent with a constant running beyond this range. For this analysis, we have implemented a ~40x faster WMAP7 likelihood method which we have made publicly available.

[ascl:1603.006] FAST-PT: Convolution integrals in cosmological perturbation theory calculator

FAST-PT calculates 1-loop corrections to the matter power spectrum in cosmology. The code utilizes Fourier methods combined with analytic expressions to reduce the computation time down to scale as N log N, where N is the number of grid point in the input linear power spectrum. FAST-PT is extremely fast, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation.

[ascl:1803.008] FAST: Fitting and Assessment of Synthetic Templates

FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.

[ascl:2301.010] Fastcc: Broadband radio telescope receiver fast color corrections

Fastcc returns color corrections for different spectra for various Cosmic Microwave Background experiments. Available in both Python and IDL, the script is easy to use when analyzing radio spectra of sources with data from multiple wide-survey CMB experiments in a consistent way across multiple experiments.

[ascl:1804.025] FastChem: An ultra-fast equilibrium chemistry

FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach and is optimized for extremely fast and accurate calculations.

[ascl:1010.037] FastChi: A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

The Fast Chi-Squared Algorithm is a fast, powerful technique for detecting periodicity. It was developed for analyzing variable stars, but is applicable to many of the other applications where the Fast Fourier Transforms (FFTs) or other periodograms (such as Lomb-Scargle) are currently used. The Fast Chi-squared technique takes a data set (e.g. the brightness of a star measured at many different times during a series of observations) and finds the periodic function that has the best frequency and shape (to an arbitrary number of harmonics) to fit the data. Among its advantages are:

  • Statistical efficiency: all of the data are used, weighted by their individual error bars, giving a result with a significance calibrated in well-understood Chi-squared statistics.
  • Sensitivity to harmonic content: many conventional techniques look only at the significance (or the amplitude) of the fundamental sinusoid and discard the power of the higher harmonics.
  • Insensitivity to the sample timing: you won't find a period of 24 hours just because you take your observations at night. You do not need to window your data.
  • The frequency search is gridded more tightly than the traditional "integer number of cycles over the span of observations", eliminating power loss from peaks that fall between the grid points.
  • Computational speed: The complexity of the algorithm is O(NlogN), where N is the number of frequencies searched, due to its use of the FFT.

[ascl:1908.025] FastCSWT: Fast directional Continuous Spherical Wavelet Transform

FastCSWT performs a directional continuous wavelet transform on the sphere. The transform is based on the construction of the continuous spherical wavelet transform (CSWT) developed by Antoine and Vandergheynst (1999). A fast implementation of the CSWT (based on the fast spherical convolution developed by Wandelt and Gorski 2001) is also provided.

[ascl:2212.004] FastDF: Integrating neutrino geodesics in linear theory

FastDF (Fast Distribution Function) integrates relativistic particles along geodesics in a comoving periodic volume with forces determined by cosmological linear perturbation theory. Its main application is to set up accurate particle realizations of the linear phase-space distribution of massive relic neutrinos by starting with an analytical solution deep in radiation domination. Such particle realizations are useful for Monte Carlo experiments and provide consistent initial conditions for cosmological N-body simulations. Gravitational forces are calculated from three-dimensional potential grids, which are obtained by convolving random phases with linear transfer functions using Fast Fourier Transforms. The equations of motion are solved using a symplectic leapfrog integration scheme to conserve phase-space density and prevent the build-up of errors. Particles can be exported in different gauges and snapshots are provided in the HDF5 format, compatible with N-body codes like SWIFT (ascl:1805.020) and Gadget-4 (ascl:2204.014). The code has an interface with CLASS (ascl:1106.020) for calculating transfer functions and with monofonIC (ascl:2008.024) for setting up initial conditions with dark matter, baryons, and neutrinos.

[ascl:9910.003] FASTELL: Fast calculation of a family of elliptical mass gravitational lens models

Because of their simplicity, axisymmetric mass distributions are often used to model gravitational lenses. Since galaxies are usually observed to have elliptical light distributions, mass distributions with elliptical density contours offer more general and realistic lens models. They are difficult to use, however, since previous studies have shown that the deflection angle (and magnification) in this case can only be obtained by rather expensive numerical integrations. We present a family of lens models for which the deflection can be calculated to high relative accuracy (10-5) with a greatly reduced numerical effort, for small and large ellipticity alike. This makes it easier to use these distributions for modeling individual lenses as well as for applications requiring larger computing times, such as statistical lensing studies. FASTELL is a code to calculate quickly and accurately the lensing deflection and magnification matrix for the softened power-law elliptical mass distribution (SPEMD) lens galaxy model. The SPEMD consists of a softened power-law radial distribution with elliptical isodensity contours.

[ascl:2303.013] FastJet: Jet finding in pp and e+e− collisions

The FastJet package provides fast native implementations of many sequential recombination algorithms, including the longitudinally invariant kt longitudinally invariant inclusive Cambridge/Aachen and anti-kt jet finders. It also provides a uniform interface to external jet finders via a plugin mechanism. FastJet also includes tools for calculating jet areas and performing background (pileup/UE) subtraction and for jet substructure analyses.

[ascl:1010.041] FASTLens (FAst STatistics for weak Lensing): Fast Method for Weak Lensing Statistics and Map Making

The analysis of weak lensing data requires to account for missing data such as masking out of bright stars. To date, the majority of lensing analyses uses the two point-statistics of the cosmic shear field. These can either be studied directly using the two-point correlation function, or in Fourier space, using the power spectrum. The two-point correlation function is unbiased by missing data but its direct calculation will soon become a burden with the exponential growth of astronomical data sets. The power spectrum is fast to estimate but a mask correction should be estimated. Other statistics can be used but these are strongly sensitive to missing data. The solution that is proposed by FASTLens is to properly fill-in the gaps with only NlogN operations, leading to a complete weak lensing mass map from which one can compute straight forwardly and with a very good accuracy any kind of statistics like power spectrum or bispectrum.

[ascl:1302.008] FASTPHOT: A simple and quick IDL PSF-fitting routine

PSF fitting photometry allows a simultaneously fit of a PSF profile on the sources. Many routines use PSF fitting photometry, including IRAF/allstar, Strarfinder, and Convphot. These routines are in general complex to use and slow. FASTPHOT is optimized for prior extraction (the position of the sources is known) and is very fast and simple.

[ascl:1905.010] FastPM: Scaling N-body Particle Mesh solver

FastPM solves the gravity Possion equation with a boosted particle mesh. Arbitrary time steps can be used. The code is intended to study the formation of large scale structure and supports plain PM and Comoving-Lagranian (COLA) solvers. A broadband correction enforces the linear theory model growth factor at large scale. FastPM scales extremely well to hundred thousand MPI ranks, which is possible through the use of the PFFT Fourier Transform library. The size of mesh in FastPM can vary with time, allowing one to use coarse force mesh at high redshift with increase temporal resolution for accurate large scale modes. The code supports a variety of Greens function and differentiation kernels, though for most practical simulations the choice of kernels does not make a difference. A parameter file interpreter is provided to validate and execute the configuration files without running the simulation, allowing creative usages of the configuration files.

Would you like to view a random code?