Results 1901-1950 of 3596 (3502 ASCL, 94 submitted)
The Mechanic package is a numerical framework for dynamical astronomy, designed to help in massive numerical simulations by efficient task management and unified data storage. The code is built on top of the Message Passing Interface (MPI) and Hierarchical Data Format (HDF5) standards and uses the Task Farm approach to manage numerical tasks. It relies on the core-module approach. The numerical problem implemented in the user-supplied module is separated from the host code (core). The core is designed to handle basic setup, data storage and communication between nodes in a computing pool. It has been tested on large CPU-clusters, as well as desktop computers. The Mechanic may be used in computing dynamical maps, data optimization or numerical integration.
We describe an automated method for assigning the most probable physical parameters to the components of an eclipsing binary, using only its photometric light curve and combined colors. With traditional methods, one attempts to optimize a multi-parameter model over many iterations, so as to minimize the chi-squared value. We suggest an alternative method, where one selects pairs of coeval stars from a set of theoretical stellar models, and compares their simulated light curves and combined colors with the observations. This approach greatly reduces the parameter space over which one needs to search, and allows one to estimate the components' masses, radii and absolute magnitudes, without spectroscopic data. We have implemented this method in an automated program using published theoretical isochrones and limb-darkening coefficients. Since it is easy to automate, this method lends itself to systematic analyses of datasets consisting of photometric time series of large numbers of stars, such as those produced by OGLE, MACHO, TrES, HAT, and many others surveys.
MeerCRAB (MeerLICHT Classification of Real and Bogus Transients using Deep Learning) filters out false detections of transients from true astrophysical sources in the transient detection pipeline of the MeerLICHT telescope. It uses a deep learning model based on Convolutional Neural Network.
The Medium Energy Gamma-ray Astronomy library (MEGAlib) simulates, calibrates, and analyzes data of hard X-ray and gamma-ray detectors, with a specialization on Compton telescopes. The library comprises all necessary data analysis steps for these telescopes, from simulation/measurements via calibration, event reconstruction to image reconstruction.
MEGAlib contains a geometry and detector description tool for the detailed modeling of different detector types and characteristics, and provides an easy to use simulation program based on Geant4 (ascl:1010.079). For different Compton telescope detector types (electron tracking, multiple Compton or time of flight based), specialized Compton event reconstruction algorithms are implemented in different approaches (Chi-square and Bayesian). The high level data analysis tools calculate response matrices, perform image deconvolution (specialized in list-mode-likelihood-based Compton image reconstruction), determine detector resolutions and sensitivities, retrieve spectra, and determine polarization modulations.
MegaLUT is a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and builds a lookup table of ellipticity corrections by supervised learning. This new method has been applied to the GREAT10 image analysis challenge, and demonstrates a refined solution that obtains the highly competitive quality factor of Q = 142, without any power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU.
megaman is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. It is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.
Menura simulates the interaction between a fully turbulent solar wind and various bodies of the solar system using a novel two-step approach. It is an advanced numerical tool for self-consistent modeling that bridges planetary science and plasma physics. Menura is built around a hybrid Particle-In-Cell solver, treating electrons as a charge-neutralising fluid, and ions as massive particles. It solves iteratively the particles’ dynamics, gathers particle moments at the nodes of a grid, at which the magnetic field is also computed, and then solves the Maxwell equations. This solver uses the popular Current Advance Method (CAM).
MEPSA (Multiple Excess Peak Search Algorithm) identifies peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. MEPSA scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena whose activity is recorded through different surveys. MEPSA's high flexibility permits the mask of excess patterns it uses to be tailored and optimized without modifying the code.
MeqTrees is a software package for implementing Measurement Equations. This makes it uniquely suited for simulation and calibration of radioastronomical data, especially that involving new radiotelescopes and observational regimes. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code.
MeqTrees includes a highly capable FITS viewer and sky model manager called Tigger, which can also work as a standalone tool.
MERA works with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations such as those produced by the hydrodynamic code RAMSES (ascl:1011.007) and is written entirely in the Julia language. The package provides essential functions for efficient and memory lightweight data loading and analysis. The core of MERA is a database framework.
Mercury-T calculates the evolution of semi-major axis, eccentricity, inclination, rotation period and obliquity of the planets as well as the rotation period evolution of the host body; it is based on the N-body code Mercury (Chambers 1999, ascl:1201.008). It is flexible, allowing computation of the tidal evolution of systems orbiting any non-evolving object (if its mass, radius, dissipation factor and rotation period are known), but also evolving brown dwarfs (BDs) of mass between 0.01 and 0.08 M⊙, an evolving M-dwarf of 0.1 M⊙, an evolving Sun-like star, and an evolving Jupiter.
Mercury is a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in "cometary" or "asteroidal" format, with different epochs of osculation for different objects. Output from an integration consists of osculating elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another.
During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modeled. The package supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations.
Merger Trees uses a Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes; the algorithm is implemented in Fortran. The algorithm is a modification of the algorithm of Cole et al. used in the GALFORM semi-analytic galaxy formation model (ascl:1510.005) based on the Extended Press–Schechter theory. It should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the Λ cold dark matter Millennium N-body simulation. The code should be a useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general.
Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source libraries for a wide range of applications in computational stellar astrophysics. A newly designed 1-D stellar evolution module, MESA star, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very-low mass to massive stars, including advanced evolutionary phases. MESA star solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. Independently usable modules provide equation of state, opacity, nuclear reaction rates, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own public interface. Examples include comparisons to other codes and show evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets; the complete evolution of a 1 Msun star from the pre-main sequence to a cooling white dwarf; the Solar sound speed profile; the evolution of intermediate mass stars through the thermal pulses on the He-shell burning AGB phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; evolutionary tracks of massive stars from the pre-main sequence to the onset of core collapse; stars undergoing Roche lobe overflow; and accretion onto a neutron star.
MeshLab processes and edits 3D triangular meshes. It includes tools for editing, cleaning, healing, inspecting, rendering, texturing and converting meshes, and offers features for processing raw data produced by 3D digitization tools and devices and for preparing models for 3D printing.
Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community jointly developed by the Laboratoire d'Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France). Meso-NH incorporates a non-hydrostatic system of equations for dealing with scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets and has a complete set of physical parameterizations for the representation of clouds and precipitation. It is coupled to the surface model SURFEX for representation of surface atmosphere interactions by considering different surface types (vegetation, city, ocean, lake) and allows a multi-scale approach through a grid-nesting technique. Meso-NH is versatile, vectorized, parallelized, and operates in 1D, 2D or 3D; it is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module, and has observation operators that compare model output directly with satellite observations, radar, lidar and GPS.
MESS is a Monte Carlo simulation IDL code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. It can be used to probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planets. A Python version of this code, Exo-DMC (ascl:2010.008), is available.
MeSsI performs an automatic classification between merging and relaxed clusters. This method was calibrated using mock catalogues constructed from the millennium simulation, and performs the classification using some machine learning techniques, namely random forest for classification and mixture of gaussians for the substructure identification.
The Meudon PDR code computes the atomic and molecular structure of interstellar clouds. It can be used to study the physics and chemistry of diffuse clouds, photodissociation regions (PDRs), dark clouds, or circumstellar regions. The model computes the thermal balance of a stationary plane-parallel slab of gas and dust illuminated by a radiation field and takes into account heating processes such as the photoelectric effect on dust, chemistry, cosmic rays, etc. and cooling resulting from infrared and millimeter emission of the abundant species. Chemistry is solved for any number of species and reactions. Once abundances of atoms and molecules and level excitation of the most important species have been computed at each point, line intensities and column densities can be deduced.
MG-MAMPOSSt extends the MAMPOSSt code (ascl:2203.020), which performs Bayesian fits of models of mass and velocity anisotropy profiles to the distribution of tracers in projected phase space, to handle modified gravity models and constrain its parameters. It implements two distinct types of gravity modifications: general chameleon (including $f(\mathcal{R})$ models), and beyond Horndeski gravity (Vainshtein screening). MG-MAMPOSSt efficently explores the parameter space either by computing the likelihood over a multi-dimensional grid of points or by performing a simple Metropolis-Hastings MCMC. The code requires a Fortran90 compiler or higher and makes use of the getdist package (ascl:1910.018) to plot the marginalized distributions in the MCMC mode.
MG-PICOLA is a modified version of L-PICOLA (ascl:1507.004) that extends the COLA approach for simulating cosmological structure formation to theories that exhibit scale-dependent growth. It can compute matter power-spectra (CDM and total), redshift-space multipole power-spectra P0,P2,P4 and do halofinding on the fly.
MGB (Marxist Ghost Buster) attacks spectral classification by using an interactive comparison with spectral libraries. It allows the user to move along the two traditional dimensions of spectral classification (spectral subtype and luminosity classification) plus the two additional ones of rotation index and spectral peculiarities. Double-lined spectroscopic binaries can also be fitted using a combination of two standards. The code includes OB2500 v2.0, a standard grid of blue-violet R ~ 2500 spectra of O stars from the Galactic O-Star Spectroscopic Survey, but other grids can be added to MGB.
CAMB is a public Fortran 90 code written by Antony Lewis and Anthony Challinor for evaluating cosmological observables. MGCAMB is a modified version of CAMB in which the linearized Einstein equations of General Relativity (GR) are modified. MGCAMB can also be used in CosmoMC to fit different modified-gravity (MG) models to data.
mgcnn is a Convolutional Neural Network (CNN) architecture for classifying standard and modified gravity (MG) cosmological models based on the weak-lensing convergence maps they produce. It is implemented in Keras using TensorFlow as the backend. The code offers three options for the noise flag, which correspond to noise standard deviations, and additional options for the number of training iterations and epochs. Confusion matrices and evaluation metrics (loss function and validation accuracy) are saved as numpy arrays in the generated output/ directory after each iteration.
MGCosmoPop implements a hierarchical Bayesian inference method for constraining the background cosmological history, in particular the Hubble constant, together with modified gravitational-wave propagation and binary black holes population models (mass, redshift and spin distributions) with gravitational-wave data. It includes support for loading and analyzing data from the GWTC-3 catalog as well as for generating injections to evaluate selection effects, and features a module to run in parallel on clusters.
MGE_FIT_SECTORS performs Multi-Gaussian Expansion (MGE) fits to galaxy images. The MGE parameterizations are useful in the construction of realistic dynamical models of galaxies, PSF deconvolution of images, the correction and estimation of dust absorption effects, and galaxy photometry. The algorithm is well suited for use with multiple-resolution images (e.g. Hubble Space Telescope (HST) and ground-based images).
We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package. The MGGPOD Monte Carlo suite and documentation are publicly available for download. MGGPOD is an ideal tool for supporting the various stages of gamma-ray astronomy missions, ranging from the design, development, and performance prediction through calibration and response generation to data reduction. In particular, MGGPOD is capable of simulating ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds.
MGHalofit is a modified gravity extension of the fitting formula for the matter power spectrum of HALOFIT and its improvement by Takahashi et al. MGHalofit is implemented in MGCAMB, which is based on CAMB. MGHalofit calculates the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. Comparing MGHalofit predictions at various redshifts (z<=1) to the f(R) simulations, the accuracy on P(k) is 6% at k<1 h/Mpc and 12% at 1<k<10 h/Mpc respectively.
MGPT (Modified Gravity Perturbation Theory) computes 2-point statistics for LCDM model, DGP and Hu-Sawicky f(R) gravity. Written in C, the code can be easily modified to include other models. Specifically, it computes the SPT matter power spectrum, SPT Lagrangian-biased tracers power spectrum, and the CLPT matter correlation function. MGPT also computes the CLPT Lagrangian-biased tracers correlation function and a set of Q and R functionsfrom which other statistics, as leading order bispectrum, can be constructed.
The 2-D wavelet transformation code MGwave detects kinematic moving groups in astronomical data; it can also investigate underdensities which can eventually provide further information about the MW's non-axisymmetric features. The code creates a histogram of the input data, then performs the wavelet transformation at the specified scales, returning the wavelet coefficients across the entire histogram in addition to information about the detected extrema. MGwave can also run Monte Carlo simulations to propagate uncertainties. It runs the wavelet transformation on simulated data (pulled from Gaussian distributions) many times and tracks the percentage of the simulations in which a given extrema is detected. This quantifies whether a detected overdensity or underdensity is robust to variations of the data within the provided errors.
mhealpy extends the functionalities of the HEALPix (ascl:1107.018) wrapper healpy (ascl:2008.022) to handle single and multi-resolution maps (a.k.a. multi-order coverage maps or MOC maps). In addition to creating and analyzes MOC maps, it supports arithmetic operations, adaptive grids, resampling of existing multi-resolution maps, and plotting, among other functions, and reads and writes to FITS, which enables sharing spatial information for multiwavelength and multimessenger analyses.
MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.
MIA+EWS is a package of two data reduction tools for MIDI data which uses power-spectrum analysis or the information contained in the spectrally-dispersed fringe measurements in order to estimate the correlated flux and the visibility as function of wavelength in the N-band. MIA, which stands for MIDI Interactive Analysis, uses a Fast Fourier Transformation to calculate the Fourier amplitudes of the fringe packets to calculate the correlated flux and visibility. EWS stands for Expert Work-Station, which is a collection of IDL tools to apply coherent visibility analysis to reduce MIDI data. The EWS package allows the user to control and examine almost every aspect of MIDI data and its reduction. The usual data products are the correlated fluxes, total fluxes and differential phase.
michi2 fits combinations of arbitrary numbers of libraries/components to a given observational data. Written in C++ and Python, this chi-square fitting tool can fit a galaxy's spectral energy distribution (SED) with stellar, active galactic nuclear, dust and radio SED templates, and fit a galaxy's spectral line energy distribution (SLED) with one or more gas components using radiative transfer LVG model grid libraries.
michi2 first samples the high-dimensional parameter space (N1*N2*N3*..., where N is the number of independent templates in each library, and 1/2/3 is the ID of components) in an optimized way for a few thousand or tens of thousand times to compute the chi-square to the input observational data, then uses Python scripts to analyze the chi-square distribution and derive the best-fit, median, lower and higher 1-sigma values for each parameter in each library/component. This tool is useful for fitting larger number of templates and arbitrary combinations of libraries/components, including some constraining of one library/component onto another.
Occultation and microlensing are different limits of the same phenomena of one body passing in front of another body. We derive a general exact analytic expression which describes both microlensing and occultation in the case of spherical bodies with a source of uniform brightness and a non-relativistic foreground body. We also compute numerically the case of a source with quadratic limb-darkening. In the limit that the gravitational deflection angle is comparable to the angular size of the foreground body, both microlensing and occultation occur as the objects align. Such events may be used to constrain the size ratio of the lens and source stars, the limb-darkening coefficients of the source star, and the surface gravity of the lens star (if the lens and source distances are known). Application of these results to microlensing during transits in binaries and giant-star microlensing are discussed. These results unify the microlensing and occultation limits and should be useful for rapid model fitting of microlensing, eclipse, and "microccultation" events.
micrOMEGAs calculates the properties of cold dark matter in a generic model of particle physics. First developed to compute the relic density of dark matter, the code also computes the rates for dark matter direct and indirect detection. The code provides the mass spectrum, cross-sections, relic density and exotic fluxes of gamma rays, positrons and antiprotons. The propagation of charged particles in the Galactic halo is handled with a module that allows to easily modify the propagation parameters. The cross-sections for both spin dependent and spin independent interactions of WIMPS on protons are computed automatically as well as the rates for WIMP scattering on nuclei in a large detector. Annihilation cross-sections of the dark matter candidate at zero velocity, relevant for indirect detection of dark matter, are computed automatically, and the propagation of charged particles in the Galactic halo is also handled.
midIR_sensitivity is IDL code that calculates the sensitivity of a ground-based mid-infrared instrument for astronomy. The code was written for the Phase A study of the instrument METIS (http://www.strw.leidenuniv.nl/metis), the Mid-Infrared E-ELT Imager and Spectrograph, for the 42-m European Extremely Large Telescope. The model uses a detailed set of input parameters for site characteristics and atmospheric profiles, optical design, and thermal background. The code and all input parameters are highly tailored for the particular design parameters of the E-ELT and METIS, however, the program is structured in such a way that the parameters can easily be adjusted for a different system, or alternative input files used.
The Markwardt IDL Library contains routines for curve fitting and function minimization, including MPFIT (ascl:1208.019), statistical tests, and non-linear optimization (TNMIN); graphics programs including plotting three-dimensional data as a cube and fixed- or variable-width histograms; adaptive numerical integration (Quadpack), Chebyshev approximation and interpolation, and other mathematical tools; many ephemeris and timing routines; and array and set operations, such as computing the fast product of a large array, efficiently inserting or deleting elements in an array, and performing set operations on numbers and strings; and many other useful and varied routines.
Miex calculates Mie scattering coefficients and efficiency factors for broad grain size distributions and a very wide wavelength range (λ ≈ 10-10-10-2m) of the interacting radiation and incorporates standard solutions of the scattering amplitude functions. The code handles arbitrary size parameters, and single scattering by particle ensembles is calculated by proper averaging of the respective parameters.
This triggering code calculates the correlation function between two astrophysical data catalogs using the Landy-Szalay approximator generalized for heterogeneous datasets (Landy & Szalay, 1993; Bradshaw et al, 2011) or the auto-correlation function of one dataset. It assumes that one catalog has positional information as well as an object size (effective radius), and the other only positional information.
MillCgs clusters galaxies from the semi-analytic models run on top of the Millennium Simulation to identify Compact Groups. MillCgs uses a machine learning clustering algorithm to find the groups and then runs analytics to filter out the groups that do not fit the user specified criteria. The package downloads the data, processes it, and then creates graphs of the data.
millennium-tap-query is a simple wrapper for the Python package requests to deal with connections to the Millennium TAP Web Client. With this tool you can perform basic or advanced queries to the Millennium Simulation database and download the data products. millennium-tap-query is similar to the TAP query tool in the German Astrophysical Virtual Observatory (GAVO) VOtables package.
The millisearch.for code was used to generate a new search for the gravitational lens effects of a significant cosmological density of supermassive compact objects (SCOs) on gamma-ray bursts. No signal attributable to millilensing was found. We inspected the timing data of 774 BATSE-triggered GRBs for evidence of millilensing: repeated peaks similar in light-curve shape and spectra. Our null detection leads us to conclude that, in all candidate universes simulated, OmegaSCO < 0.1 is favored for 105 < MSCO/Modot < 109, while in some universes and mass ranges the density limits are as much as 10 times lower. Therefore, a cosmologically significant population of SCOs near globular cluster mass neither came out of the primordial universe, nor condensed at recombination.
miluphcuda is the CUDA port of the original miluph code; it runs on single Nvidia GPUs with compute capability 5.0 and higher and provides fast and efficient computation. The code can be used for hydrodynamical simulations and collision and impact physics, and features self-gravity via Barnes-Hut trees and porosity models such as P-alpha and epsilon-alpha. It can model solid bodies, including ductile and brittle materials, as well as non-viscous fluids, granular media, and porous continua.
Min-CaLM performs automated mineral compositional analysis on debris disk spectra. The user inputs the debris disk spectrum, and using Min-CaLM's built-in mineralogical library, Min-CaLM calculates the relative mineral abundances within the disk. To do this calculation, Min-CaLM converts the debris disk spectrum and the mineralogical library spectra into a system of linear equations, which it then solves using non-negative least square minimization. This code comes with a GitHub tutorial on how to use the Min-CaLM package.
The MINDS hybrid pipeline is based on the JWST pipeline and routines from the VIP package (ascl:1603.003) for the reduction of JWST MIRI-MRS data. The pipeline compensates for some of the known weaknesses of the official JWST pipeline to improve the quality of spectrum extracted from MIRI-MRS data. This is done by leveraging the capabilities of VIP, another large data reduction package used in the field of high-contrast imaging.
The front end of the pipeline is a highly automated Jupyter notebook. Parameters are typically set in one cell at the beginning of the notebook, and the rest of the notebook can be run without any further modification. The Jupyter notebook format provides flexibility, enhanced visibility of intermediate and final results, more straightforward troubleshooting, and the possibility to easily incorporate additional codes by the user to further analyze or exploit their results.
Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.
minot (Modeling of the ICM (Non-)thermal content and Observables prediction Tools) provides a self-consistent modeling framework for the thermal and non-thermal diffuse components in galaxy clusters and predictions multi-wavelength observables. The framework sets or modifies the cluster object according to set parameters and defines the physical and observational properties, which can include thermal gas and CR physics, tSZ, inverse Compton, and radio synchotron. minot then generates outputs, including model parameters, plots, and relationships between models.
MIRaGe creates simulated exposures for NIRCam’s imaging and wide field slitless spectroscopy (WFSS) modes, NIRISS’s imaging, WFSS, and aperture masking interferometery (AMI) modes, and FGS’s imaging mode. It supports sidereal as well as non-sidereal tracking; for example, sources can be made to move across the field of view within an observation.
MiraPy is a Python package for problem-solving in astronomy using Deep Learning for astrophysicist, researchers and students. Current applications of MiraPy are X-Ray Binary classification, ATLAS variable star feature classification, OGLE variable star light-curve classification, HTRU1 dataset classification and Astronomical image reconstruction using encoder-decoder network. It also contains modules for loading various datasets, curve-fitting, visualization and other utilities. It is built using Keras for developing ML models to run on CPU and GPU seamlessly.
Would you like to view a random code?