ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2203.008] MIRaGe: Multi Instrument Ramp Generator

MIRaGe creates simulated exposures for NIRCam’s imaging and wide field slitless spectroscopy (WFSS) modes, NIRISS’s imaging, WFSS, and aperture masking interferometery (AMI) modes, and FGS’s imaging mode. It supports sidereal as well as non-sidereal tracking; for example, sources can be made to move across the field of view within an observation.

[submitted] MiraPy: Python package for Deep Learning in Astronomy

MiraPy is a Python package for problem-solving in astronomy using Deep Learning for astrophysicist, researchers and students. Current applications of MiraPy are X-Ray Binary classification, ATLAS variable star feature classification, OGLE variable star light-curve classification, HTRU1 dataset classification and Astronomical image reconstruction using encoder-decoder network. It also contains modules for loading various datasets, curve-fitting, visualization and other utilities. It is built using Keras for developing ML models to run on CPU and GPU seamlessly.

[ascl:1106.007] MIRIAD: Multi-channel Image Reconstruction, Image Analysis, and Display

MIRIAD is a radio interferometry data-reduction package, designed for taking raw visibility data through calibration to the image analysis stage. It has been designed to handle any interferometric array, with working examples for BIMA, CARMA, SMA, WSRT, and ATCA. A separate version for ATCA is available, which differs in a few minor ways from the CARMA version.

[ascl:2102.017] mirkwood: SED modeling using machine learning

mirkwood uses supervised machine learning to model non-linearly mapping galaxy fluxes to their properties. Multiple models are stacked to mitigate poor performance by any individual model in a given region of the parameter space. The code accounts for uncertainties arising both from intrinsic noise in observations and from finite training data and incorrect modeling assumptions, and provides highly accurate physical properties from observations of galaxies as compared to traditional SED fitting.

[ascl:1110.025] MIS: A Miriad Interferometry Singledish Toolkit

MIS is a pipeline toolkit using the package MIRIAD to combine Interferometric and Single Dish data. This was prompted by our observations made with the Combined Array For Research in Millimeter-wave Astronomy (CARMA) interferometer of the star-forming region NGC 1333, a large survey highlighting the new 23-element and singledish observing modes. The project consists of 20 CARMA datasets each containing interferometric as well as simultaneously obtained single dish data, for 3 molecular spectral lines and continuum, in 527 different pointings, covering an area of about 8 by 11 arcminutes. A small group of collaborators then shared this toolkit and their parameters via CVS, and scripts were developed to ensure uniform data reduction across the group. The pipeline was run end-to-end each night that new observations were obtained, producing maps that contained all the data to date. This approach could serve as a model for repeated calibration and mapping of large mixed-mode correlation datasets from ALMA.

[ascl:1010.062] MissFITS: Basic Maintenance and Packaging Tasks on FITS Files

MissFITS is a program that performs basic maintenance and packaging tasks on FITS files using an optimized FITS library. MissFITS can:

- add, edit, and remove FITS header keywords;
- split and join Multi-Extension-FITS (MEF) files;
- unpile and pile FITS data-cubes; and,
- create, check, and update FITS checksums, using R. Seaman’s protocol.

[ascl:1505.011] missForest: Nonparametric missing value imputation using random forest

missForest imputes missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation and can be run in parallel to save computation time. missForest has been used to, among other things, impute variable star colors in an All-Sky Automated Survey (ASAS) dataset of variable stars with no NOMAD match.

[ascl:1910.016] MiSTree: Construct and analyze Minimum Spanning Tree graphs

MiSTree quickly constructs minimum spanning tree graphs for various coordinate systems, including Celestial coordinates, by using a k-nearest neighbor graph (k NN, rather than a matrix of pairwise distances) which is then fed to Kruskal's algorithm to create the graph. MiSTree bins the MST statistics into histograms and plots the distributions; enabling the inclusion of high-order statistics information from the cosmic web to provide additional information that improves cosmological parameter constraints. Though MiSTree was designed for use in cosmology, it can be used in any field requiring extracting non-Gaussian information from point distributions.

[ascl:2112.008] MISTTBORN: MCMC Interface for Synthesis of Transits, Tomography, Binaries, and Others of a Relevant Nature

MISTTBORN can simultaneously fit multiple types of data within an MCMC framework. It handles photometric transit/eclipse, radial velocity, Doppler tomographic, or individual line profile data, for an arbitrary number of datasets in an arbitrary number of photometric bands for an arbitrary number of planets and allows the use of Gaussian process regression to handle correlated noise in photometric or Doppler tomographic data. The code can include dilution due to a nearby unresolved star in the transit fits, and an additional line component due to another star or scattered sun/moonlight in Doppler tomographic or line profile fits. It can also be used for eclipsing binary fits, including a secondary eclipse and radial velocities for both stars. MISTTBORN produces diagnostic plots showing the data and best-fit models and the associated code MISTTBORNPLOTTER produces publication-quality plots and tables.

[ascl:2306.029] Mixclask: Mixing Cloudy and SKIRT

Mixclask combines Cloudy (ascl:9910.001) and SKIRT (ascl:1109.003) to predict spectra and gas properties in astrophysical contexts, such as galaxies and HII regions. The main output is the mean intensity of a region filled with stars, gas and dust at different positions, assuming axial symmetry. The inputs for Mixclask are the stellar and ISM data for each region and an file for the positions (x,y,z) that will be output.

[ascl:1409.001] mixT: single-temperature fit for a multi-component thermal plasma

mixT accurately predicts T derived from a single-temperature fit for a multi-component thermal plasma. It can be applied in the deprojection analysis of objects with the temperature and metallicity gradients, for correction of the PSF effects, for consistent comparison of numerical simulations of galaxy clusters and groups with the X-ray observations, and for estimating how emission from undetected components can bias the global X-ray spectral analysis.

[ascl:1206.010] mkj_libs: Helper routines for plane-fitting & analysis tools

mkj_libs provides a set of helper routines (vector operations, astrometry, statistical analysis of spherical data) for the main plane-fitting and analysis tools.

[ascl:0104.001] MLAPM: Simulating Structure Formation from Collisionless Matter

MLAPM simulates structure formation from collisionless matter. The code, written in C, is purely grid-based and uses a recursively refined Cartesian grid to solve Poisson's equation for the potential, rather than obtaining the potential from a Green's function. Refinements can have arbitrary shapes and in practice closely follow the complex morphology of the density field that evolves. The timestep shortens by a factor two with each successive refinement. It is argued that an appropriate choice of softening length is of great importance and that the softening should be at all points an appropriate multiple of the local inter-particle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this requirement.

[ascl:2012.005] MLC_ELGs: Machine Learning Classifiers for intermediate redshift Emission Line Galaxies

MLC_EPGs classifies intermediate redshift (z = 0.3–0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGN), or low-ionization nuclear emission regions (LINERs). It uses four supervised machine learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multi-layer perceptron (MLP) neural network. For input features, it uses properties that can be measured from optical galaxy spectra out to z < 0.8—[O III]/Hβ, [O II]/Hβ, [O III] line width, and stellar velocity dispersion—and four colors (u−g, g−r, r−i, and i−z) corrected to z = 0.1.

[ascl:2009.010] MLG: Microlensing with Gaia

MLG simulates Gaia measurements for predicted astrometric microlensing events. It fits the motion of the lens and source simultaneously and reconstructs the 11 parameters of the lensing event. For lenses passing by multiple background sources, it also fits the motion of all background sources and the lens simultaneously. A Monte-Carlo simulation is used to determine the achievable precision of the mass determination.

[ascl:2404.016] MLTPC: Machine Learning Telescope Pointing Correction

The Machine Learning Telescope Pointing Correction code trains and tests machine learning models for correcting telescope pointing. Using historical APEX data from 2022, including pointing corrections, and other data such as weather conditions, position and rotation of the secondary mirror, pointing offsets observed during pointing scans, and the position of the sun, among other data, the code treats the data in two different ways to test which factors are the most likely to account for pointing errors.

[ascl:1403.003] MLZ: Machine Learning for photo-Z

The parallel Python framework MLZ (Machine Learning and photo-Z) computes fast and robust photometric redshift PDFs using Machine Learning algorithms. It uses a supervised technique with prediction trees and random forest through TPZ that can be used for a regression or a classification problem, or a unsupervised methods with self organizing maps and random atlas called SOMz. These machine learning implementations can be efficiently combined into a more powerful one resulting in robust and accurate probability distributions for photometric redshifts.

[ascl:2205.024] MM-LSD: Multi-Mask Least-Squares Deconvolution

MM-LSD (Multi-Mask Least-Squares Deconvolution) performs continuum normalization of 2D spectra (echelle order spectra). It also masks and partially corrects telluric lines and extracts RVs from spectra. The code requires RASSINE (ascl:2102.022) and uses spectral line data from VALD3.

[ascl:1412.010] MMAS: Make Me A Star

Make Me A Star (MMAS) quickly generates stellar collision remnants and can be used in combination with realistic dynamical simulations of star clusters that include stellar collisions. The code approximates the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These simple models agree very well with those from SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of these models also matches closely that of the more accurate hydrodynamic models.

[ascl:1905.005] MMIRS-DRP: MMIRS Data Reduction Pipeline

The MMIRS data reduction pipeline provides complete and flexible data reduction for long-slit and multi-slit spectroscopic observations collected using the MMT and Magellan Infrared Spectrograph (MMIRS). Written in IDL, it offers sky subtraction, correction for telluric absorpition, and is fast enough to permit real-time data reduction for quality control.

[ascl:2411.011] MMLPhoto-z: Cross-modal contrastive learning method for estimating photo-z of quasars

MMLPhoto-z estimates the photo-z of quasars using a cross-modal contrastive learning approach. This method employs adversarial training and contrastive loss functions to promote the mutual conversion between multi-band photometric data features (magnitude, color) and photometric image features, while extracting modality-invariant features. MMLPhoto-z can also be applied to tasks like photo-z estimation for galaxies with missing magnitudes. Overall, this method proves effective in enhancing the photo-z estimation across diverse datasets and conditions.

[ascl:2307.012] mnms: Map-based Noise ModelS

mnms (Map-based Noise ModelS) creates map-based models of Simons Observatory Atacama Cosmology Telescope (ACT) data. Each model supports drawing map-based simulations from data splits with independent realizations of the noise or equivalent, similar to an independent set of time-domain sims. In addition to the ability to create on-the-fly simulations, mnms also includes ready-made scripts for writing a large batch of products to disk in a dedicated SLURM job.

[ascl:2104.012] Mo'Astro: MongoDB framework for observational astronomy

Mo’Astro is a MongoDB framework for observational astronomy pipelines. Mo'Astro sets up a MongoDB collection of a survey's image set, keeping FITS metadata readily available, and providing a place in the reduction pipeline to persist metadata. Mo’Astro also provides facilities for batch processing images with the Astromatic tool suite, and for hosting a local 2MASS star catalog with spatial-search built-in.

[ascl:2306.010] MOBSE: Massive Objects in Binary Stellar Evolution

MOBSE investigates the demography of merging BHBs. A customized version of the binary stellar evolution code BSE (ascl:1303.014), MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars and upgrades for the evolution of single and binary massive stars.

[ascl:1110.010] MOCASSIN: MOnte CArlo SimulationS of Ionized Nebulae

MOCASSIN is a fully 3D or 2D photoionisation and dust radiative transfer code which employs a Monte Carlo approach to the transfer of radiation through media of arbitrary geometry and density distribution. Written in Fortran, it was originally developed for the modelling of photoionised regions like HII regions and planetary nebulae and has since expanded and been applied to a variety of astrophysical problems, including modelling clumpy dusty supernova envelopes, star forming galaxies, protoplanetary disks and inner shell fluorence emission in the photospheres of stars and disk atmospheres. The code can deal with arbitrary Cartesian grids of variable resolution, it has successfully been used to model complex density fields from SPH calculations and can deal with ionising radiation extending from Lyman edge to the X-ray. The dust and gas microphysics is fully coupled both in the radiation transfer and in the thermal balance.

[ascl:2411.023] mochi_class: Modelling Optimization to Compute Horndeski in CLASS

mochi_class extends the hi_class code (ascl:1808.010), itself a patch to the Einstein-Boltzmann solver CLASS (ascl:1106.020). It replaces α-functions by stable basis to ensure stability and takes general functions of time as input, including the dark energy equation of state or its normalized background energy-density. mochi_class provides stability test checking for mathematical (classical) instabilities in the scalar field fluctuations, and also includes a GR approximation scheme, among other new capabilities.

[ascl:2306.020] mockFRBhosts: Limiting the visibility and follow-up of FRB host galaxies

mockFRBhosts estimates the fraction of FRB hosts that can be cataloged with redshifts by existing and future optical surveys. The package uses frbpoppy (ascl:1911.009) to generate a population of FRBs for a given radio telescope. For each FRB, a host galaxy is drawn from a data base generated by GALFORM (ascl:1510.005). The galaxies' magnitudes in different photometric surveys are calculated as are the number of bands in which they are detected. mockFRBhosts also calculates the follow-up time in a 10-m optical telescope required to do photometry or spectroscopy and provides a simple interface to Bayesian inference methods via MCMC simulations provided in the FRB package (ascl:2306.018).

[ascl:2106.025] ModeChord: Primordial scalar and tensor power spectra solver

ModeChord computes the primordial scalar and tensor power spectra for single field inflationary models. The code solves the inflationary mode equations numerically, avoiding the slow roll approximation. It provides an efficient and robust numerical evaluation of the inflationary perturbation spectrum, and allows the free parameters in the inflationary potential to be estimated. ModeChord also allows the estimation of reheating uncertainties once a potential has been specified.

[ascl:1010.009] ModeCode: Bayesian Parameter Estimation for Inflation

ModeCode is a publicly available code that computes the primordial scalar and tensor power spectra for single field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It provides an efficient and robust numerical evaluation of the inflationary perturbation spectrum, and allows the free parameters in the inflationary potential to be estimated within an MCMC computation. ModeCode also allows the estimation of reheating uncertainties once a potential has been specified. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. It can be run as a standalone code as well. Errors in the results from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments.

[ascl:1109.023] MOKA: A New Tool for Strong Lensing Studies

MOKA simulates the gravitational lensing signal from cluster-sized haloes. This algorithm implements recent results from numerical simulations to create realistic lenses with properties independent of numerical resolution and can be used for studies of the strong lensing cross section in dependence of halo structure.

[ascl:1501.013] Molecfit: Telluric absorption correction tool

Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.

[ascl:1212.004] MOLIERE-5: Forward and inversion model for sub-mm wavelengths

MOLIERE-5 (Microwave Observation LIne Estimation and REtrieval) is a versatile forward and inversion model for the millimeter and submillimeter wavelengths range and includes an inversion model. The MOLIERE-5 forward model includes modules for the calculation of absorption coefficients, radiative transfer, and instrumental characteristics. The radiative transfer model is supplemented by a sensitivity module for estimating the contribution to the spectrum of each catalog line at its center frequency enabling the model to effectively filter for small spectral lines. The instrument model consists of several independent modules, including the calculation of the convolution of spectra and weighting functions with the spectrometer response functions. The instrument module also provides several options for modeling of frequency-switched observations. The MOLIERE-5 inversion model calculates linear Optimal Estimation, a least-squares retrieval method which uses statistical apriori knowledge on the retrieved parameters for the regularization of ill-posed inversion problems and computes diagnostics such as the measurement and smoothing error covariance matrices along with contribution and averaging kernel functions.

[ascl:1907.012] molly: 1D astronomical spectra analyzer

molly analyzes 1D astronomical spectra. Its prime purpose is for handling large numbers of similar spectra (e.g., time series spectroscopy), but it contains many of the standard operations used for normal spectrum analysis as well. It overlaps with the various similar programs such as dipso (ascl:1405.016) and has strengths (particularly for time series spectra) and weaknesses compared to them.

[ascl:2502.004] MOLPOP-CEP: Exact solution of radiative transfer problems in multi-level atomic systems

MOLPOP-CEP calculates the exact solution of radiative transfer problems in multi-level atomic systems. The radiative transfer equations are analytically integrated to reduce the final problem to the solution of a non-linear algebraic system of equations in the level populations. The code uses Coupled Escape Probability formalism to analytically solve the radiative transfer. Written in Fortran 90, MOLPOP-CEP is limited to plane-parallel slabs that can present arbitrary spatial variations of the physical conditions.

[ascl:1206.004] MOLSCAT: MOLecular SCATtering v. 14

MOLSCAT version 14 is a FORTRAN code for quantum mechanical (coupled channel) solution of the nonreactive molecular scattering problem and was developed to obtain collision rates for molecules in the interstellar gas which are needed to understand microwave and infrared astronomical observations. The code is implemented for various types of collision partners. In addition to the essentially exact close coupling method several approximate methods, including the Coupled States and Infinite Order Sudden approximations, are provided. This version of the code has been superseded by MOLSCAT 2020 (ascl:2010.001).

[ascl:1908.002] Molsoft: Molonglo Telescope Observing Software

Molsoft operates, monitors and schedules observations, both through predetermined schedule files and fully dynamically, at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST). It was developed as part of the UTMOST upgrade of the facility. The software runs a large-scale pulsar timing program; the autonomous observing system and the dynamic scheduler have increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.

[ascl:2311.006] MONDPMesh: Particle-mesh code for Milgromian dynamics

MONDPMesh provides a particle-mesh method to calculate the time evolution of an system of point masses under modified gravity, namely the AQUAL formalism. This is done by transforming the Poisson equation for the potential into a system of four linear PDEs, and solving these using fast Fourier transforms. The accelerations on the point masses are calculated from this potential, and the system is propagated using Leapfrog integration. The time complexity of the code is O(N⋅p⋅log(p)) for p pixels and N particles, which is the same as for a Newtonian particle-mesh code.

[ascl:2204.020] MonoTools: Planets of uncertain periods detector and modeler

MonoTools detects, vets, and models transiting exoplanets, with a specific emphasis on monotransiting planets and those with unknown periods. It includes scripts specifically for searching and assessing a lightcurve for the presence of monotransits. MonoTools can also performing a best-fit transit model, determine whether transits are linked to any detected multi-transiting planet candidate or with each other, and can fit planets in a Bayesian way to account for uncertain periods, lightcurve gaps, and stellar variability, among other things.

[ascl:1010.036] Montage: An Astronomical Image Mosaicking Toolkit

Montage is an open source code toolkit for assembling Flexible Image Transport System (FITS) images into custom mosaics. It runs on all common Linux/Unix platforms, on desktops, clusters and computational grids, and supports all World Coordinate System (WCS) projections and common coordinate systems. Montage preserves spatial and calibration fidelity of input images, processes 40 million pixels in up to 32 minutes on 128 nodes on a Linux cluster, and provides independent engines for analyzing the geometry of images on the sky, re-projecting images, rectifying background emission to a common level, and co-adding images. It offers convenient tools for managing and manipulating large image files.

[ascl:1502.006] Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single X2 value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

[ascl:1307.002] Monte Python: Monte Carlo code for CLASS in Python

Monte Python is a parameter inference code which combines the flexibility of the python language and the robustness of the cosmological code CLASS (ascl:1106.020) into a simple and easy to manipulate Monte Carlo Markov Chain code.

This version has been archived and replaced by MontePython 3 (ascl:1805.027).

[ascl:1805.027] MontePython 3: Parameter inference code for cosmology

MontePython 3 provides numerous ways to explore parameter space using Monte Carlo Markov Chain (MCMC) sampling, including Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a Fisher sampling method. This improved version of the Monte Python (ascl:1307.002) parameter inference code for cosmology offers new ingredients that improve the performance of Metropolis-Hastings sampling, speeding up convergence and offering significant time improvement in difficult runs. Additional likelihoods and plotting options are available, as are post-processing algorithms such as Importance Sampling and Adding Derived Parameter.

[ascl:2308.001] MOOG_SCAT: Scattering version of the MOOG Line Transfer Code

MOOG_SCAT, a redevelopment of the LTE radiative transfer code MOOG (ascl:1202.009), contains modifications that allow for the treatment of isotropic, coherent scattering in stars. MOOG_SCAT employs a modified form of the source function and solves radiative transfer with a short charactersitics approach and an acclerated lambda iteration scheme.

[ascl:1202.009] MOOG: LTE line analysis and spectrum synthesis

MOOG performs a variety of LTE line analysis and spectrum synthesis tasks. The typical use of MOOG is to assist in the determination of the chemical composition of a star. The basic equations of LTE stellar line analysis are followed. The coding is in various subroutines that are called from a few driver routines; these routines are written in standard FORTRAN. The standard MOOG version has been developed on unix, linux and macintosh computers.

One of the chief assets of MOOG is its ability to do on-line graphics. The plotting commands are given within the FORTRAN code. MOOG uses the graphics package SM, chosen for its ease of implementation in FORTRAN codes. Plotting calls are concentrated in just a few routines, and it should be possible for users of other graphics packages to substitute other appropriate FORTRAN commands.

[ascl:1308.018] MoogStokes: Zeeman polarized radiative transfer

MOOGStokes is a version of the MOOG one-dimensional local thermodynamic equilibrium radiative transfer code that incorporates a Stokes vector treatment of polarized radiation through a magnetic medium. It consists of three complementary programs that together can synthesize the disk-averaged emergent spectrum of a star with a magnetic field. The MOOGStokes package synthesizes emergent spectra of stars with magnetic fields in a familiar computational framework and produces disk-averaged spectra for all Stokes vectors ( I, Q, U, V ), normalized by the continuum.

[ascl:1111.006] MOPEX: MOsaicker and Point source EXtractor

MOPEX (MOsaicker and Point source EXtractor) is a package for reducing and analyzing imaging data, as well as MIPS SED data. MOPEX includes the point source extraction package, APEX.
MOPEX is designed to allow the user to:

  • perform sophisticated background matching of individual data frames
  • mosaic the individual frames downloaded from the Spitzer archive
  • perform both temporal and spatial outlier rejection during mosaicking
  • apply offline pointing refinement for MIPS data (refinement is already applied to IRAC data)
  • perform source detection on the mosaics using APEX
  • compute aperture photometry or PRF-fitting photometry for point sources
  • perform interpolation, coaddition, and spectrum extraction of MIPS SED images.
MOPEX comes in two different interfaces (GUI and command-line), both of which come packaged together. We recommend that all new users start with the GUI, which is more user-friendly than the command-line interface

[ascl:1303.011] MOPSIC: Extended Version of MOPSI

MOPSIC was created to analyze bolometer data but can be used for much more versatile tasks. It is an extension of MOPSI; this software had been merged with the command interpreter of GILDAS (ascl:1305.010). For data reduction, MOPSIC uses a special method to calculate the chopped signal. This gives much better results than the straight difference of the signals obtained at both chopper positions. In addition there are also scripts to reduce pointings, skydips, and to calculate the RCPs (Receiver Channel Parameters) from calibration maps. MOPSIC offers a much broader range of applications including advanced planning functions for mapping and onoff observations, post-reduction data analysis and processing and even reduction of non-bolometer data (optical, IR, spectroscopy).

[ascl:1911.014] MORDI: Massively-Overlapped Ring-Diagram Inversion

MORDI (Massively-Overlapped Ring-Diagram Inversion) performs three-dimensional ring-diagram inversions. The code reads in frequency shift measurements and their associated sensitivity kernels and outputs two-dimensional slices of the subsurface flow field at a constant depth and (optionally) the associated averaging kernels. It relies on both distributed-memory (MPI) and shared-memory (OpenMP) parallelism to scale efficiently up to a few thousand processors, but can also run reasonably well on small machines (1-4 cpus). The actions of the code are modified by command-line parameters, which enable a significant amount of flexibility when setting up an inversion.

[ascl:2405.009] morphen: Astronomical image analysis and processing functions

morphen performs image analysis, multi-Sersic image fitting decomposition, and radio interferometric self-calibration, thus measuring basic image morphology and photometry. The code provides a state-of-the-art Python-based image fitting implementation based on the Sersic function. Geared, though not exclusively, toward radio astronomy, morphen's tools involve pure python, but also are integrated with CASA (ascl:1107.013) in order to work with common casatasks as well as WSClean (ascl:1408.023).

[ascl:1906.013] MORPHEUS: A 3D Eulerian Godunov MPI-OpenMP hydrodynamics code with multiple grid geometries

MORPHEUS (Manchester Omni-geometRical Program for Hydrodynamical EUlerian Simulations) is a 3D hydrodynamical code used to simulate astrophysical fluid flows. It has three different grid geometries (cartesian, spherical, and cylindrical) and uses a second-order Godunov method to solve the equations of hydrodynamics. Physical modules also include radiative cooling and gravity, and a hybrid MPI-OpenMP parallelization allows computations to be run on large-scale architectures. MORPHEUS is written in Fortran90 and does not require any libraries (apart from MPI) to run.

Would you like to view a random code?