ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2504.012] Turbospectrum_NLTE: Turbospectrum 2020 with NLTE capability

Turbospectrum_NLTE updates the spectral synthesis code Turbospectrum (ascl:1205.004) with NLTE capabilities. The code takes a 1D model atmosphere, one or several line lists, and computes the emergent spectrum (flux and/or intensities at various angles), with a prescribed chemical composition. Various parameters can be adjusted, such as microturbulence (vmicro), individual abundances, and isotopic ratios. Turbospectrum_NLTE can also handle the computation for a single chunk of spectrum with a constant wavelength step, or for a number of smaller windows, e.g., around lines of interest. Calculations can also be done for plane-parallel or spherically symmetric models.

[ascl:1205.004] Turbospectrum: Code for spectral synthesis

Turbospectrum is a 1D LTE spectrum synthesis code which covers 600 molecules, is fast with many lines, and uses the treatment of line broadening described by Barklem & O’Mara (1998).

An updated NLTE version of Turbospectrum, Turbospectrum_NLTE (ascl:2504.012), is available.

[ascl:1907.015] TurbuStat: Turbulence statistics in spectral-line data cubes

TurbuStat implements a variety of turbulence-based statistics described in the astronomical literature and defines distance metrics for each statistic to quantitatively compare spectral-line data cubes, as well as column density, integrated intensity, or other moment maps. The software can simulate observations of fractional Brownian Motion fields, including 2-D images and optically thin H I data cubes. TurbuStat also offers multicore fast-Fourier-transform support and provides a segmented linear model for fitting lines with a break point.

[ascl:1304.015] TVD: Total Variation Diminishing code

TVD solves the magnetohydrodynamic (MHD) equations by updating the fluid variables along each direction using the flux-conservative, second-order, total variation diminishing (TVD), upwind scheme of Jin & Xin. The magnetic field is updated separately in two-dimensional advection-constraint steps. The electromotive force (EMF) is computed in the advection step using the TVD scheme, and this same EMF is used immediately in the constraint step in order to preserve ∇˙B=0 without the need to store intermediate fluxes. The code is extended to three dimensions using operator splitting, and Runge-Kutta is used to get second-order accuracy in time. TVD offers high-resolution per grid cell, second-order accuracy in space and time, and enforcement of the ∇˙B=0 constraint to machine precision. Written in Fortran, It has no memory overhead and is fast. It is also available in a fully scalable message-passing parallel MPI implementation.

[ascl:2210.025] tvguide: Observability by TESS

tvguide determines whether stars and galaxies are observable by TESS. It uses an object's right ascension and declination and estimates the pointing of TESS's cameras using predicted spacecraft ephemerides to determine whether and for how long the object is observable with TESS. tvguide returns a file with two columns, the first the minimum number of sectors the target is observable for and the second the maximum.

[ascl:2412.001] Twinkle: Calculate and plot spectral energy distribution of main-sequence stars

Twinkle calculates and plots the stellar spectral energy distribution (SED) using empirical photometric data and stellar model grids. The code was originally created to help calculate the excess infrared (IR) flux from a star; the presence of an IR excess indicates dust orbiting the star. This dust likely results from the grinding and collisions of asteroids, influenced by a larger planetary object—pointing to the potential for finding planets. Twinkle quickly calculates the temperature and location of the dust to first order by fitting the assumed blackbody or modified blackbody function to the broadband excess emission.

[ascl:1708.015] TWO-POP-PY: Two-population dust evolution model

TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

[ascl:1407.002] TWODSPEC: Long-slit and optical fiber array spectra extensions for FIGARO

TWODSPEC offers programs for the reduction and analysis of long-slit and optical fiber array spectra, implemented as extensions to the FIGARO package (ascl:1203.013). The software are currently distributed as part of the Starlink software collection (ascl:1110.012). These programs are designed to do as much as possible for the user, to assist quick reduction and analysis of data; for example, LONGSLIT can fit multiple Gaussians to line profiles in batch and decides how many components to fit.

[ascl:1210.025] TwoDSSM: Self-gravitating 2D shearing sheet

TwoDSSM solves the equations of self-gravitating hydrodynamics in the shearing sheet, with cooling. TwoDSSM is configured to use a simple, exponential cooling model, although it contains code for a more complicated (and perhaps more realistic) cooling model based on a one-zone vertical model. The complicated cooling model can be switched on using a flag.

[ascl:1303.008] TYCHO: Stellar evolution code

TYCHO is a general, one dimensional (spherically symmetric) stellar evolution code written in structured Fortran 77; it is designed for hydrostatic and hydrodynamic stages including mass loss, accretion, pulsations and explosions. Mixing and convection algorithms are based on 3D time-dependent simulations. It offers extensive on-line graphics using Tim Pearson's PGPLOT (ascl:1103.002) with X-windows and runs effectively on Linux and Mac OS X laptop and desktop computers.
NOTE: This code is no longer being supported.

[submitted] U.S. Naval Observatory Ephemerides of the Largest Asteroids (USNO/AE98)

USNO/AE98 contains ephemerides for fifteen of the largest asteroids that The Astronomical Almanac has used since its 2000 edition. These ephemerides are based on the Jet Propulsion Laboratory (JPL) planetary ephemeris DE405 and, thus, aligned to the International Celestial Reference System (ICRS). The data cover the period from 1799 November 16 (JD 2378450.5) through 2100 February 1 (JD 2488100.5). The internal uncertainty in the mean longitude at epoch, 1997 December 18, ranges from 0.05 arcseconds for 7 Iris through 0.22 arcseconds for 65 Cybele, and the uncertainty in the mean motion varies from 0.02 arcseconds per century for 4 Vesta to 0.14 arcseconds per century for 511 Davida.

The Astronomical Almanac has published ephemerides for 1 Ceres, 2 Pallas, 3 Juno, and 4 Vesta since its 1953 edition. Historically, these four asteroids have been observed more than any of the others. Ceres, Pallas, and Vesta deserve such attention because as they are the three most massive asteroids, the source of significant perturbations of the planets, the largest in linear size, and among the brightest main belt asteroids. Studying asteroids may provide clues to the origin and primordial composition of the solar system, data for modeling the chaotic dynamics of small solar system bodies, and assessments of potential collisions. Therefore, USNO/AE98 includes more than the traditional four asteroids.

The following criteria were used to select main belt asteroids for USNO/AE98:

Diameter greater than 300 km, presumably among the most massive asteroids
Excellent observing history and discovered before 1850
Largest in their taxonomic class
The massive asteroids included may be studied for their perturbing effects on the planets while those with detailed observing histories may be used to evaluate the accuracy limits of asteroid ephemerides. The fifteen asteroids that met at least one of these criteria are

1 Ceres (new mass determination)
2 Pallas (new mass determination)
3 Juno
4 Vesta (new mass determination)
6 Hebe
7 Iris
8 Flora
9 Metis
10 Hygiea
15 Eunomia
16 Psyche
52 Europa
65 Cybele
511 Davida
704 Interamnia
The refereed paper by Hilton (1999, Astron. J. 117, 1077) describes the USNO/AE98 asteroid ephemerides in detail. The associated USNO/AA Tech Note 1998-12 includes residual plots for all fifteen asteroids and a comparison between these ephemerides and those used in The Astronomical Almanac through 1999.

Software to compact, read, and interpolate the USNO/AE98 asteroid ephemerides is also available. It is written in C and designed to work with the C edition of the Naval Observatory Vector Astrometry Software (NOVAS). The programs could be used with tabular ephemerides of other asteroids as well. The associated README file provides the details of this system.

[ascl:2302.020] UBER: Universal Boltzmann Equation Solver

UBER (Universal Boltzmann Equation Solver) solves the general form of Fokker-Planck equation and Boltzmann equation, diffusive or non-diffusive, that appear in modeling planetary radiation belts. Users can freely specify the coordinate system, boundary geometry and boundary conditions, and the equation terms and coefficients. The solver works for problems in one to three spatial dimensions. The solver is based upon the mathematical theory of stochastic differential equations. By its nature, the solver scheme is intrinsically Monte Carlo, and the solutions thus contain stochastic uncertainty, though the user may dictate an arbitrarily small relative tolerance of the stochastic uncertainty at the cost of longer Monte Carlo iterations.

[ascl:2309.002] UBHM: Uncertainty quantification of black hole mass estimation

Uncertain_blackholemass predicts virial black hole masses using a neural network model and quantifies their uncertainties. The scripts retrieve data and run feature extraction and uncertainty quantification for regression. They can be used separately or deployed to existing machine learning methods to generate prediction intervals for the black hole mass predictions.

[ascl:1303.004] UCL_PDR: Time dependent photon-dissociation regions model

UCL_PDR is a time dependent photon-dissociation regions model that calculates self consistently the thermal balance. It can be used with gas phase only species as well as with surface species. It is very modular, has the possibility of accounting for density and pressure gradients and can be coupled with UCL_CHEM as well as with SMMOL. It has been used to model small scale (e.g. knots in proto-planetary nebulae) to large scale regions (high redshift galaxies).

[ascl:1303.006] UCLCHEM: Time and depth dependent gas-grain chemical model

UCLCHEM is a time and depth dependent gas-grain chemical model that can be used to estimate the fractional abundances (with respect to hydrogen) of gas and surface species in every environment where molecules are present. The model includes both gas and surface reactions. The code starts from the most diffuse state where all the gas is in atomic form and evolve sthe gas to its final density. Depending on the temperature, atoms and molecules from the gas freeze on to the grains and they hydrogenate where possible. The advantage of this approach is that the ice composition is not assumed but it is derived by a time-dependent computation of the chemical evolution of the gas-dust interaction process. The code is very modular, has been used to model a variety of regions and can be coupled with the UCL_PDR and SMMOL codes.

[ascl:1704.002] UDAT: A multi-purpose data analysis tool

UDAT is a pattern recognition tool for mass analysis of various types of data, including image and audio. Based on its WND-CHARM (ascl:1312.002) prototype, UDAT computed a large set of numerical content descriptors from each file it analyzes, and selects the most informative features using statistical analysis. The tool can perform automatic classification of galaxy images by training with annotated galaxy images. It also has unsupervised learning capabilities, such as query-by-example of galaxies based on morphology. That is, given an input galaxy image of interest, the tool can search through a large database of images to retrieve the galaxies that are the most similar to the query image. The downside of the tool is its computational complexity, which in most cases will require a small or medium cluster.

[ascl:2407.010] UFalcon: Ultra Fast Lightcone

UFalcon rapidly post-processes N-body code output into signal maps for many different cosmological probes. The package is able to produce maps of weak-lensing convergence, linear-bias galaxy over-density, cosmic microwave background (CMB) lensing convergence and the integrated Sachs-Wolfe temperature perturbation given a set of N-body lightcones. It offers high flexibility for lightcone construction, such as user-specific survey-redshift ranges, redshift distributions and single-source redshifts. UFalcon also computes the galaxy intrinsic alignment signal, which can be treated as an additive component to the cosmological signal.

[ascl:2008.012] Ujti: Geodesics in general relativity

Ujti calculates geodesics, gravitational lenses and gravitational redshift in principle, for any metric. Special attention has been given to compact objects, so the current implementation considers only metrics in spherical coordinates.

[ascl:2409.002] UltraDark: Cosmological scalar fields simulator

UltraDark.jl simulates cosmological scalar fields. Written in Julia, it is inspired by PyUltraLight (ascl:1810.009) and designed to be simple to use and extend. It solves a non-interacting scalar field Gross-Pitaevskii equation coupled to Poisson's equation for gravitational potential. The scalar field describes scalar dark matter in models including ultralight dark matter, fuzzy dark matter, axion-like particles and the like. It also describes an inflaton field in the reheating epoch of the early universe.

[ascl:1611.001] UltraNest: Pythonic Nested Sampling Development Framework and UltraNest

This three-component package provides a Pythonic implementation of the Nested Sampling integration algorithm for Bayesian model comparison and parameter estimation. It offers multiple implementations for constrained drawing functions and a test suite to evaluate the correctness, accuracy and efficiency of various implementations. The three components are:

- a modular framework for nested sampling algorithms (nested_sampling) and their development;
- a test framework to evaluate the performance and accuracy of algorithms (testsuite); and
- UltraNest, a fast C implementation of a mixed RadFriends/MCMC nested sampling algorithm.

[submitted] Ulula: a lightweight 2D hydro code for teaching

Ulula is an ultra-lightweight 2D hydro code for teaching purposes. The code is written in pure python and is designed to be as short and easy to understand as possible, while not compromising on performance. The latter is achieved with a simple Godunov solver and by using numpy for all array operations.

[ascl:1104.007] ULySS: A Full Spectrum Fitting Package

ULySS (University of Lyon Spectroscopic Analysis Software) is an open-source software package written in the GDL/IDL language to analyze astronomical data. ULySS fits a spectrum with a linear combination of non-linear components convolved with a line-of-sight velocity distribution (LOSVD) and multiplied by a polynomial continuum. ULySS is used to study stellar populations of galaxies and star clusters and atmospheric parameters of stars.

[ascl:2008.006] Umbrella: Asteroid detection, validation, and identification

Umbrella detects, validates, and identifies asteroids. The core of this software suite, Umbrella2, includes algorithms and interfaces for all steps of the processing pipeline, including a novel detection algorithm for faint trails. A detection pipeline accessible as a desktop program (ViaNearby) builds on the library to provide near real-time data reduction of asteroid surveys on the Wide Field Camera of the Isaac Newton Telescope. Umbrella can read and write MPC optical reports, supports SkyBoT and VizieR querying, and can be extended by user image processing functions to take advantage of the algorithms framework as a multi-threaded CPU scheduler for easy algorithm parallelization.

[submitted] UMIST

Astrochemistry database of chemical species.

[ascl:2411.019] unicorn: Full 3D-HST grism pipeline

The Unicorn pipeline produces data products from the 3D-HST grism survey of four CANDELS fields. It extracts interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. It then fits the 2D spectra and multi-band photometry to determine redshifts and emission line strengths. Unicorn is built on threedhst (ascl:2411.018) and has been superseded by grizli (ascl:1905.001).

[ascl:1804.022] UniDAM: Unified tool to estimate Distances, Ages, and Masses

UniDAM obtains a homogenized set of stellar parameters from spectrophotometric data of different surveys. Parallax and extinction data can be incorporated into the isochrone fitting method used in UniDAM to reduce distance and age estimate uncertainties for TGAS stars for distances up to 1 kpc and decrease distance Gaia end-of-mission parallax uncertainties by about a factor of 20 and age uncertainties by a factor of two for stars up to 10 kpc away from the Sun.

[ascl:2111.014] UniMAP: Unicorn Multi-window Anomaly Detection Pipeline

The data analysis UniMAP (Unicorn Multi-window Anomaly Detection Pipeline) leverages the Temporal Outlier Factor (TOF) method to find anomalies in LVC data. The pipeline requires a target detector and a start and stop GPS time describing a time interval to analyze, and has three outputs: 1.) an array of GPS times corresponding to TOF detections; 2.) a long q-transform of the entire data interval with visualizations of the TOF detections in the time series; and 3.) q-transforms of the data windows that triggered TOF detections.

[ascl:1503.007] UniPOPS: Unified data reduction suite

UniPOPS, a suite of programs and utilities developed at the National Radio Astronomy Observatory (NRAO), reduced data from the observatory's single-dish telescopes: the Tucson 12-m, the Green Bank 140-ft, and archived data from the Green Bank 300-ft. The primary reduction programs, 'line' (for spectral-line reduction) and 'condar' (for continuum reduction), used the People-Oriented Parsing Service (POPS) as the command line interpreter. UniPOPS unified previous analysis packages and provided new capabilities; development of UniPOPS continued within the NRAO until 2004 when the 12-m was turned over to the Arizona Radio Observatory (ARO). The submitted code is version 3.5 from 2004, the last supported by the NRAO.

[ascl:2302.011] UniverseMachine: Empirical model for galaxy formation

The UniverseMachine applies simple empirical models of galaxy formation to dark matter halo merger trees. For each model, it generates an entire mock universe, which it then observes in the same way as the real Universe to calculate a likelihood function. It includes an advanced MCMC algorithm to explore the allowed parameter space of empirical models that are consistent with observations.

[ascl:1110.021] Univiewer: Visualisation Program for HEALPix Maps

Univiewer is a visualisation program for HEALPix maps. It is written in C++ and uses OpenGL and the wxWidgets library for cross-platform portability. Using it you can:

- Rotate and zoom maps on the sphere in 3D
- Create high-resolution views of square patches of the map
- Change maximum and minimum values of the colourmap interactively
- Calculate the power spectrum of the full-sky map or a patch
- Display any column of a HEALPix map FITS file on the sphere

Since Univiewer uses OpenGL for 3D graphics, its performance is dependent your video card. It has been tested successfully on computers with as little as 8Mb video memory, but it is recommended to have at least 32Mb to get good performance.

In the 3D view, a HEALPix map is projected onto a ECP pixelation to create a texture which is wrapped around the sphere. In calculating the power spectrum, the spherical harmonic transforms are computed using the same ECP pixelation. This inevitably leads to some discrepancies at small scales due to repixelation effects, but they are reasonably small.

[ascl:2109.015] unpopular: Using CPM detrending to obtain TESS light curves

unpopular is an implementation of the Causal Pixel Model (CPM) de-trending method to obtain TESS Full-Frame Image (FFI) light curves. The code, written in Python, models the systematics in the light curves of individual pixels as a linear combination of light curves from many other distant pixels and removes shared flux variations. unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data.

[ascl:2211.005] unTimely_Catalog_explorer: A search and visualization tool for the unTimely Catalog

unTimely Catalog Explorer searches for and visualizes detections in the unTimely Catalog, a full-sky, time-domain catalog of detections based on WISE and NEOWISE image data acquired between 2010 and 2020. The tool searches the catalog by coordinates to create finder charts for each epoch with overplotted catalog positions and light curves using the unTimely photometry, to overplot these light curves with AllWISE multi-epoch and NEOWISE-R single exposure (L1b) photometry, and to create image blinks with overlaid catalog positions in GIF format.

[ascl:1901.004] unwise_psf: PSF models for unWISE coadds

The unwise_psf Python module renders point spread function (PSF) models appropriate for use in modeling of unWISE coadd images. unwise_psf translates highly detailed single-exposure WISE PSF models in detector coordinates to the corresponding pixelized PSF models in coadd space, accounting for subtleties including the WISE scan direction and its considerable variation near the ecliptic poles. Applications of the unwise_psf module include performing forced photometry on unWISE coadds, constructing WISE-selected source catalogs based on unWISE coadds and masking unWISE coadd regions contaminated by bright stars.

[submitted] unWISE-verse: An Integrated WiseView and Zooniverse Data Pipeline

unWISE-verse is an integrated Python pipeline for downloading sets of unWISE time-resolved coadd cutouts from the WiseView image service and uploading subjects to Zooniverse.org for use in astronomical citizen science research. This software was initially designed for the Backyard Worlds: Cool Neighbors research project and is optimized for target sets containing low luminosity brown dwarf candidates. However, unWISE-verse can be applied to other future astronomical research projects that seek to make use of unWISE infrared sky maps, such as studies of infrared variable/transient sources.

[ascl:1504.001] UPMASK: Unsupervised Photometric Membership Assignment in Stellar Clusters

UPMASK, written in R, performs membership assignment in stellar clusters. It uses photometry and spatial positions, but can take into account other types of data. UPMASK takes into account arbitrary error models; the code is unsupervised, data-driven, physical-model-free and relies on as few assumptions as possible. The approach followed for membership assessment is based on an iterative process, principal component analysis, a clustering algorithm and a kernel density estimation.

[ascl:1512.019] UPSILoN: AUtomated Classification of Periodic Variable Stars using MachIne LearNing

UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing) classifies periodic variable stars such as Delta Scuti stars, RR Lyraes, Cepheids, Type II Cepheids, eclipsing binaries, and long-period variables (i.e. superclasses), and their subclasses (e.g. RR Lyrae ab, c, d, and e types) using well-sampled light curves from any astronomical time-series surveys in optical bands regardless of their survey-specific characteristics such as color, magnitude, and sampling rate. UPSILoN consists of two parts, one which extracts variability features from a light curve, and another which classifies a light curve, and returns extracted features, a predicted class, and a class probability. In principle, UPSILoN can classify any light curves having arbitrary number of data points, but using light curves with more than ~80 data points provides the best classification quality.

[ascl:1412.009] URCHIN: Reverse ray tracer

URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.

[ascl:2403.013] URecon: Reconstruct initial conditions of N-Body simulations

URecon reconstructs the initial conditions of N-body simulations from late time (e.g., z=0) density fields. This simple UNET architecture is implemented in TensorFlow and requires Pylians3 (ascl:2403.012) for measuring power spectrum of density fields. The package includes weights trained on Quijote fiducial cosmology simulations.

[ascl:2209.012] URILIGHT: Time-dependent Monte-Carlo radiative-transfer

The time dependent Monte-Carlo code URILIGHT, written in Fortran 90, assumes homologous expansion. Energy deposition resulting from the decay of radioactive isotopes is calculated by a Monte-Carlo solution of the γ-ray transport, for which interaction with matter is included through Compton scattering and photoelectric absorption. The temperature is iteratively solved for in each cell by requiring that the total emissivity equals the total absorbed energy.

[ascl:1411.012] util_2comp: Planck-based two-component dust model utilities

The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

[ascl:1412.003] UTM: Universal Transit Modeller

The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

[ascl:2208.014] uvcombine: Combine images with different resolutions

uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.

[ascl:1606.006] uvmcmcfit: Parametric models to interferometric data fitter

Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

[ascl:1402.017] UVMULTIFIT: Fitting astronomical radio interferometric data

UVMULTIFIT, written in Python, is a versatile library for fitting models directly to visibility data. These models can depend on frequency and fitting parameters in an arbitrary algebraic way. The results from the fit to the visibilities of sources with sizes smaller than the diffraction limit of the interferometer are superior to the output obtained from a mere analysis of the deconvolved images. Though UVMULTIFIT is based on the CASA package, it can be easily adapted to other analysis packages that have a Python API.

[ascl:1410.004] UVOTPY: Swift UVOT grism data reduction

The two Swift UVOT grisms provide uv (170.0-500.0 nm) and visible (285.0-660.0 nm) spectra with a resolution of R~100 and 75. To reduce the grism data, UVOTPY extracts a spectrum given source sky position, and outputs a flux calibrated spectrum. UVOTPY is a replacement for the UVOTIMGRISM FTOOL (ascl:9912.002) in the HEADAS Swift package. Its extraction uses a curved aperture for the uv spectra, accounts the coincidence losses in the detector, provides more accurate anchor positions for the wavelength scale, and is valid for the whole detector.

[ascl:1911.002] uvplot: Interferometric visibilities plotter

uvplot makes nice plots of deprojected interferometric visibilities (often called uvplots). It implements plotting functionality, handles MS tables with spectral windows with different number of channels, and can import visibilities from ASCII to MS Table. It also allows export of specific channels. uvplot can be installed inside the NRAO CASA package (ascl:1107.013).

[ascl:1207.003] VAC: Versatile Advection Code

The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

[ascl:1406.009] VADER: Viscous Accretion Disk Evolution Resource

VADER is a flexible, general code that simulates the time evolution of thin axisymmetric accretion disks in time-steady potentials. VADER handles arbitrary viscosities, equations of state, boundary conditions, and source and sink terms for both mass and energy.

[ascl:1810.004] VaeX: Visualization and eXploration of Out-of-Core DataFrames

VaeX (Visualization and eXploration) interactively visualizes and explores big tabular datasets. It can calculate statistics such as mean, sum, count, and standard deviation on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots, and 3d volume rendering, allowing interactive exploration of big data. VaeX uses memory mapping, zero memory copy policy and lazy computations for best performance, and integrates well with the Jupyter/IPython notebook/lab ecosystem.

[ascl:1702.004] Validation: Codes to compare simulation data to various observations

Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

Would you like to view a random code?