Results 2251-2300 of 3449 (3361 ASCL, 88 submitted)

[ascl:2208.011]
POIS: Python Optical Interferometry Simulation

POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.

[ascl:2403.005]
Poke: Polarization ray tracing and Gaussian beamlet module for Python

Ashcraft, Jaren N.; Mulhal, Kenji; Douglas, Ewan S.; Kim, Daewook; Riggs, A.J. E.; Anche, Ramya M.; Brendel, Trent; Derby, Kevin Z.; Dube, Brandon D.; Jarecki, Quinn; Jenkins, Emory; Milani, Kian

Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.

[ascl:1505.018]
POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1807.001]
POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:2402.006]
polarizationtools: Polarization analysis and simulation tools in python

polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.

[ascl:2102.011]
polgraw-allsky: All-sky almost-monochromatic gravitational-wave pipeline

Astone, Pia; Bejger, Michał; Bolek, Jan; Ciecieląg, Paweł; Dorosh, Orest; Garus, Aleksander; Królak, Andrzej; Nagy-Egri, Máté Ferenc; Piętka, Maciej; Pisarski, Andrzej; Poghosyan, Gevorg; Sieniawska, Magdalena; Skrzypiec, Rafał

polgraw-allsky searches for almost monochromatic gravitational wave signals. This pipeline searches for continuous gravitational wave signals in time-domain data using the F-statistic on data from a network of detectors. The software generates a parameter space grid, conducts a coherent search for candidate signals in narrowband time segments, and searches for coincidences among different time segments. The pipeline also estimates the false alarm probability of coincidences and follows up on interesting outliers.

[ascl:1406.012]
POLMAP: Interactive data analysis package for linear spectropolarimetry

POLMAP provides routines for displaying and analyzing spectropolarimetry data that are not available in the complementary TSP package. Commands are provided to read and write TSP (ascl:1406.011) polarization spectrum format files from within POLMAP. This code is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.014]
POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1603.018]
PolRadTran: Polarized Radiative Transfer Model Distribution

PolRadTran is a plane-parallel polarized radiative transfer model. It is used to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly-oriented particles. Both solar and thermal sources of radiation are considered. A direct method of incorporating the polarized scattering information is combined with the doubling and adding method to produce a relatively simple formulation.

[ascl:1109.005]
PolSpice: Spatially Inhomogeneous Correlation Estimator for Temperature and Polarisation

PolSpice (aka Spice) is a tool to statistically analyze Cosmic Microwave Background (CMB) data, as well as any other diffuse data pixelized on the sphere.

This Fortran90 program measures the 2 point auto (or cross-) correlation functions w(θ) and the angular auto- (or cross-) power spectra C(l) from one or (two) sky map(s) of Stokes parameters (intensity I and linear polarisation Q and U). It is based on the fast Spherical Harmonic Transforms allowed by isolatitude pixelisations such as Healpix [for Npix pixels over the whole sky, and a C(l) computed up to l=lmax, PolSpice complexity scales like Npix1/2 lmax2 instead of Npix lmax2]. It corrects for the effects of the masks and can deal with inhomogeneous weights given to the pixels of the map. In the case of polarised data, the mixing of the E and B modes due to the cut sky and pixel weights can be corrected for to provide an unbiased estimate of the "magnetic" (B) component of the polarisation power spectrum. Most of the code is parallelized for shared memory (SMP) architecture using OpenMP.

[ascl:2307.020]
PolyBin: Binned polyspectrum estimation on the full sky

PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.

[ascl:1502.011]
PolyChord: Nested sampling for cosmology

PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.

[ascl:2007.009]
polyMV: Multipolar coefficients converter

polyMV converts multipolar coefficients (alms in healpix order) into Multipole Vectors (MVs) and also Fréchet Vectors (FVs) given a specific multipole. The code uses MPSolve (ascl:2007.008) and is order of magnitudes faster than other existing public codes at high multipoles.

[ascl:1912.001]
Polyspectrum: Computing polyspectra using an FFT estimator

Polyspectrum computes the polyspectrum from 3D grids using a fast Fourier transformation (FFT) estimator. The code, written in C and MPI-parallelized, support the computation of power- and bispectra; it also supports higher-order polyspectra, but streamlining the input data is required.

[ascl:2012.016]
Pomegranate: Probabilistic model builder

Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.

[ascl:1805.011]
PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:2007.006]
PoPE: Population Profile Estimator

PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.

[ascl:1602.018]
POPPY: Physical Optics Propagation in PYthon

Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine; and others

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[ascl:0202.001]
PopRatio: A program to calculate atomic level populations in astrophysical plasmas

PopRatio is a Fortran 90 code to calculate atomic level populations in astrophysical plasmas. The program solves the equations of statistical equilibrium considering all possible bound-bound processes: spontaneous, collisional or radiation induced (the later either directly or by fluorescence). There is no limit on the number of levels or in the number of processes that may be taken into account. The program may find a wide range of applicability in astronomical problems, such as interpreting fine-structure absorption lines or collisionally excited emission lines and also in calculating the cooling rates due to collisional excitation.

[ascl:1912.008]
PopSyCLE: Population Synthesis for Compact object Lensing Events

PopSyCLE performs compact object population synthesis while taking photometric and astrometric microlensing effects into consideration. It uses Galaxia (ascl:1101.007) to produces a synthetic survey, injects compact objects into the resulting survey, and then produces a list of microlensing events, enabling the discovery of black holes with microlensing. It can be used to examine historical microlensing events from photometric surveys to statistically constrain the abundance of black holes in our galaxy, and to forward model microlensing survey results to constrain, for example, the properties of compact objects, Galactic structure, and the initial-final mass relation.

[ascl:2202.021]
popsynth: Observed surveys from latent population models

Popsynth provides an abstract way to generate survey populations from arbitrary luminosity functions and redshift distributions. Additionally, auxiliary quantities can be sampled and stored. Populations can be saved and restored via an HDF5 files for later use, and population synthesis routines can be created via classes or structured YAML files. Users can construct their own classes for spatial, luminosity, and other distributions, all of which can be connected to arbitrarily complex selection functions.

[ascl:2106.037]
PORTA: POlarized Radiative TrAnsfer

PORTA solves three-dimensional non-equilibrium radiative transfer problems with massively parallel computers. The code can be used for modeling the spectral line polarization produced by the scattering of anisotropic radiation and the Hanle and Zeeman effects assuming complete frequency redistribution, either using two-level or multilevel atomic models. The numerical method of solution used to find the self-consistent values of the atomic density matrix at each point of the model’s Cartesian grid is based on Jacobi iterative scheme and on a short-characteristics formal solver of the Stokes-vector transfer equation that uses monotonic Bézier interpolation. The code can also be used to compute the linear polarization of the continuum radiation caused by Rayleigh and Thomson scattering in 3D models of stellar atmospheres, and to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems. PORTA accepts/produces HDF5 input/output and offers an advanced graphical user interface.

[ascl:2003.006]
PORTAL: POlarized Radiative Transfer Adapted to Lines

PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes

[ascl:2104.031]
Posidonius: N-Body simulator for planetary and/or binary systems

Posidonius is a N-body code based on the tidal model used in Mercury-T (ascl:1511.020). It uses the REBOUND (ascl:1110.016) symplectic integrator WHFast to compute the evolution of positions and velocities, which is also combined with a midpoint integrator to calculate the spin evolution in a consistent way. As Mercury-T, Posidonius takes into account tidal forces, rotational-flattening effects and general relativity corrections. It also includes different evolution models for FGKML stars and gaseous planets. The N-Body code is written in Rust; a Python package is provided to easily define simulation cases in JSON format, which is readable by the Posidonius integrator.

[ascl:1411.021]
POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:2210.019]
POSYDON: Single and binary star population synthesis code

Fragos, Tassos; Andrews, Jeff J.; Bavera, Simone S.; Berry, Christopher P. L.; Coughlin, Scott; Dotter, Aaron; Giri, Prabin; Kalogera, Vicky; Katsaggelos, Aggelos; Kovlakas, Konstantinos; Lalvani, Shamal; Misra, Devina; Srivastava, Philipp M.; Qin, Ying; Rocha, Kyle A.; Roman-Garza, Jaime; Serra, Juan Gabriel; Stahle, Petter; Sun, Meng; Teng, Xu; Trajcevski, Goce; Hai Tran, Nam; Xing, Zepei; Zapartas, Emmanouil; Zevin, Michael

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2006.018]
Powderday: Dust radiative transfer package

Narayanan, Desika; Turk, Matthew J.; Robitaille, Thomas; Kelly, Ashley J.; Connor McClellan, B.; Sharma, Ray S.; Garg, Prerak; Abruzzo, Matthew; Choi, Ena; Conroy, Charlie; Johnson, Benjamin D.; Kimock, Benjamin; Li, Qi; Lovell, Christopher C.; Lower, Sidney; Privon, George C.; Roberts, Jonathan; Sethuram, Snigdaa; Snyder, Gregory F.; Thompson, Robert; Wise, John H.

The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).

[ascl:1807.021]
POWER: Python Open-source Waveform ExtractoR

POWER (Python Open-source Waveform ExtractoR) monitors the status and progress of numerical relativity simulations and post-processes the data products of these simulations to compute the gravitational wave strain at future null infinity.

[ascl:1805.001]
powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

[ascl:1110.017]
POWMES: Measuring the Power Spectrum in an N-body Simulation

POWMES is a F90 program to measure very accurately the power spectrum in a N-body simulation, using Taylor expansion of some order on the cosine and sine transforms. It can read GADGET format and requires FFTW2 to be installed.

[ascl:2301.023]
PoWR: Potsdam Wolf-Rayet Models

Hamann, W. R.; Gräfener, G.; Koesterke, L.; Sander, A.; Shenar, T.; Hainich, R.; Gímenez-García, A.; Todt, H.

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2212.017]
powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:1401.009]
PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1507.009]
PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:2004.008]
PPMAP: Column density mapping with extra dimensions

PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.

[ascl:1210.002]
pPXF: Penalized Pixel-Fitting stellar kinematics extraction

pPXF extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include:

- Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.
- Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.
- Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.
- Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

The code is available in IDL and in Python versions.

[ascl:1611.004]
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:2004.016]
PRECISION: Astronomical infrared observations data reduction

PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.

[ascl:1710.024]
pred_loggs: Predicting individual galaxy G/S probability distributions

Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1112.016]
PREDICT: Satellite tracking and orbital prediction

PREDICT is an open-source, multi-user satellite tracking and orbital prediction program written under the Linux operating system. PREDICT provides real-time satellite tracking and orbital prediction information to users and client applications through:

- the system console
- the command line
- a network socket
- the generation of audio speech

[ascl:1910.002]
PreProFit: Pressure Profile Fitter for galaxy clusters in Python

PreProFit fits the pressure profile of galaxy clusters using Markov chain Monte Carlo (MCMC). The software can analyze data from different sources and offers flexible parametrization for the pressure profile. PreProFit accounts for Abel integral, beam smearing, and transfer function filtering when fitting data and returns χ2, model parameters and uncertainties in addition to marginal and joint probability contours, diagnostic plots, and surface brightness radial profiles. The code can be used for analytic approximations for the beam and transfer functions for feasibility studies.

[ascl:1305.006]
Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1107.017]
PRESTO: PulsaR Exploration and Search TOolkit

PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python.

Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats:

- PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)

- SPIGOT at the GBT

- Most Wideband Arecibo Pulsar Processor (WAPP) at Arecibo

- The Parkes and Jodrell Bank 1-bit filterbank formats

- Berkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)

- 8-bit filterbank format from SIGPROC (other formats will be added if required)

- A time series composed of single precision (i.e. 4-byte) floating point data

- Photon arrival times (or events) in ASCII or double-precision binary formats

[submitted]
PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:1903.009]
PRF: Probabilistic Random Forest

PRF (Probabilistic Random Forest) is a machine learning algorithm for noisy datasets. The PRF is a modification of the long-established Random Forest (RF) algorithm, and takes into account uncertainties in the measurements (i.e., features) as well as in the assigned classes (i.e., labels). To do so, the Probabilistic Random Forest (PRF) algorithm treats the features and labels as probability distribution functions, rather than as deterministic quantities.

[ascl:2006.002]
PRIISM: Python module for Radio Interferometry Imaging with Sparse Modeling

PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.

[ascl:2006.010]
PRISim: Precision Radio Interferometer Simulator

PRISim is a modular radio interferometer array simulator, including the radio sky and instrumental effects, and generates a transit dataset in HD5 format.

[ascl:1907.021]
PRISM: Probabilistic Regression Instrument for Simulating Models

PRISM analyzes scientific models using the Bayes linear approach, the emulation technique, and history matching to construct an approximation ('emulator') of any given model. The software facilitates and enhances existing MCMC methods by restricting plausible regions and exploring parameter space efficiently and can be used as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific models. PRISM stores results in HDF5-files and can be executed in serial or MPI on any number of processes. It accepts any type of model and comparison data and can reduce relevant parameter space by factors over 100,000 using only a few thousand model evaluations.

[ascl:1601.020]
ProC: Process Coordinator

Hovest, Wolfgang; Knoche, Jörg; Hell, Reinhard; Doerl, Uwe; Riller, Thomas; Matthai, Frank; Ensslin, Torsten A.; Rachen, Jörg; Robbers, Georg; Adorf, Hans-Martin; Reinecke, Martin; Bartelmann, Matthias

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[submitted]
prodimopy: Python tools for the radiation thermo-chemical code ProDiMo.

Rab, Christian; Arabhavi, Aditya M.; Chaparro Molano, G.; Backs, Frank; Kamp, Inga; Thi, Wing-Fai; Woitke , Peter

prodimopy is an open-source Python package to read, analyze and plot modelling results of the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel, https://prodimo.iwf.oeaw.ac.at). It also includes tools to run ProDiMo in 1D slap model mode, to run simple ProDimo model grids and to interface ProDiMo with 1D and 2D disk codes (i.e. use input structure from hydrodynamic models).

prodimopy can also be used independently of ProDiMo (no ProDiMo installation is required) and hence is also useful to extract information from already available ProDiMo models (e.g. as input for other codes) or for model comparison.

Previous123456789101112131415161718192021222324252627282930313233343536373839404142434445**46**4748495051525354555657585960616263646566676869Next

Would you like to view a random code?