Results 2301-2350 of 3572 (3481 ASCL, 91 submitted)

[ascl:1305.005]
PkdGRAV2: Parallel fast-multipole cosmological code

PkdGRAV2 is a high performance N-body treecode for self-gravitating astrophysical simulations. It is designed to run efficiently in serial and on a wide variety of parallel computers including both shared memory and message passing architectures. It can spatially adapt to large ranges in particle densities, and temporally adapt to large ranges in dynamical timescales. The code uses a non-standard data structure for efficiently calculating the gravitational forces, a variant on the k-D tree, and a novel method for treating periodic boundary conditions.

[ascl:1609.016]
PKDGRAV3: Parallel gravity code

Pkdgrav3 is an 𝒪(*N*) gravity calculation method; it uses a binary tree algorithm with fifth order fast multipole expansion of the gravitational potential, using cell-cell interactions. Periodic boundaries conditions require very little data movement and allow a high degree of parallelism; the code includes GPU acceleration for all force calculations, leading to a significant speed-up with respect to previous versions (ascl:1305.005). Pkdgrav3 also has a sophisticated time-stepping criterion based on an estimation of the local dynamical time.

[ascl:2307.055]
plan-net: Bayesian neural networks for exoplanetary atmospheric retrieval

Cobb, Adam D.; Himes, Michael D.; Soboczenski, Frank; Zorzan, Simone; O'Beirne, Molly D.; Güneş Baydin, Atılım; Gal, Yarin; Domagal-Goldman, Shawn D.; Arney, Giada N.; Angerhausen, Daniel

plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.

[ascl:1911.001]
PLAN: A Clump-finder for Planetesimal Formation Simulations

PLAN (PLanetesimal ANalyzer) identifies and characterizes planetesimals produced in numerical simulations of the Streaming Instability that includes particle self-gravity with code Athena (ascl:1010.014). PLAN works with the 3D particle output of Athena and finds gravitationally bound clumps robustly and efficiently. PLAN — written in C++ with OpenMP/MPI — is massively parallelized, memory-efficient, and scalable to analyze billions of particles and multiple snapshots simultaneously. The approach of PLAN is based on the dark matter halo finder HOP (ascl:1102.019), but with many customizations for planetesimal formation. PLAN can be easily adapted to analyze other object formation simulations that use Lagrangian particles (e.g., Athena++ simulations). PLAN is also equipped with a toolkit to analyze the grid-based hydro data (VTK dumps of primitive variables) from Athena, which requires the Boost MultiDimensional Array Library.

[ascl:1505.032]
Planck Level-S: Planck Simulation Package

The Planck simulation package takes a cosmological model specified by the user and calculates a potential CMB sky consistent with this model, including astrophysical foregrounds, and then performs a simulated observation of this sky. This Simulation embraces many instrumental effects such as beam convolution and noise. Alternatively, the package can simulate the observation of a provided sky model, generated by another program such as the Planck Sky Model software. The Planck simulation package does not only provide Planck-like data, it can also be easily adopted to mimic the properties of other existing and upcoming CMB experiments.

[ascl:2010.009]
plancklens: Planck 2018 lensing pipeline

plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).

[ascl:1607.005]
Planetary3br: Three massive body resonance calculator

Given two planets P1 and P2 with arbitrary orbits, planetary3br calculates all possible semimajor axes that a third planet P0 can have in order for the system to be in a three body resonance; these are identified by the combination k0*P0 + k1*P1 + k2*P2. P1 and P2 are assumed to be not in an exact two-body resonance. The program also calculates three "strengths" of the resonance, one for each planet, which are only indicators of the dynamical relevance of the resonance on each planet. Sample input data are available along with the Fortran77 source code.

[ascl:1311.004]
PlanetPack: Radial-velocity time-series analysis tool

PlanetPack facilitates and standardizes the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter that can run either in an interactive mode or in a batch mode of automatic script interpretation.

[ascl:1911.007]
planetplanet: General photodynamical code for exoplanet light curves

planetplanet models exoplanet transits, secondary eclipses, phase curves, and exomoons, as well as eclipsing binaries, circumbinary planets, and more. The code was originally developed to model planet-planet occultation (PPO) light curves for the TRAPPIST-1 system, but it is generally applicable to any exoplanet system. During a PPO, a planet occults (transits) the disk of another planet in the same planetary system, blocking its thermal (and reflected) light, which can be measured photometrically by a distant observer. planetplanet is coded in C and wrapped in a user-friendly Python interface.

[ascl:2309.020]
PlanetSlicer: Orange-slice algorithm for fitting brightness maps to phase curves

PlanetSlicer fits brightness maps to phase curves using the "orange-slice" method and works both for self-luminous objects and those that diffuse reflected light assuming Lambertian reflectance. In both cases, the model supposes that a spherical object can be divided into slices of constant brightness (or albedo) which may be integrated to yield the total flux observed, given the angles of observation. The package contains two key functions: toPhaseCurve and fromPhaseCurve; the former integrates the brightness for each slice to calculate the observed total flux from the object, given the longitude of observation. The latter does the opposite, estimating the brightness of the slices from a set of observed total flux (the phase curve).

[ascl:2107.019]
PlaSim: Planet Simulator

Lunkeit, Frank; Blessing, Simon; Friedrich, Klaus; Jansen, Heiko; Kirk, Edilbert; Luksch, Ute; Sielmann, Frank

PlaSim is a climate model of intermediate complexity for Earth, Mars and other planets. It is written for a university environment, to be used to train the next GCM (general circulation model) developers, to support scientists in understanding climate processes, and to do fundamental research. In addition to an atmospheric GCM of medium complexity, PlaSim includes other compartments of the climate system such as, for example, an ocean with sea ice and a land surface with a biosphere. These other compartments are reduced to linear systems. In other words, PlaSim consists of a GCM with a linear ocean/sea-ice module formulated in terms of a mixed layer energy balance. The soil/biosphere module is introduced analoguously. Thus, working with PlaSim is like testing the performance of an atmospheric or oceanic GCM interacting with various linear processes, which parameterize the variability of the subsystems in terms of their energy (and mass) balances.

[ascl:1906.019]
PlasmaPy: Core Python package for plasma physics

PlasmaPy Community; Murphy, Nicholas A.; Stańczak, Dominik; Kozlowski, Pawel M.; Langendorf, Samuel J.; Leonard, Andrew J.; Beckers, Jasper P.; Haggerty, Colby C.; Mumford, Stuart J.; Malhotra, Ritiek; Bessi, Ludovico; Carroll, Sean; Choubey, Apoorv; Díaz Pérez, Roberto; Einhorn, Leah; Fan, Thomas; Goudeau, Graham; Guidoni, Silvina; Hillairet, Julien; How, Poh Zi; Huang, Yi-Min; Humphrey, Nabil; Isupova, Maria; Kulshrestha, Siddharth; Kuszaj, Piotr; Munn, Joshua; Parashar, Tulasi; Patel, Neil; Raj, Raajit; Sherpa, Dawa Nurbu; Stansby, David; Tavant, Antoine; Xu, Sixue

PlasmaPy provides core functionality and a common framework for data visualization and analysis for plasma physics. It has modules for basic plasma physics calculations, running desktop-scale simulations to test preliminary ideas such as one-dimensional MHD/PIC or test particles, or comparing data from two different sources, such as simulations and spacecraft.

[ascl:1506.003]
PLATO Simulator: Realistic simulations of expected observations

Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

PLATO Simulator is an end-to-end simulation software tool designed for the performance of realistic simulations of the expected observations of the PLATO mission but easily adaptable to similar types of missions. It models and simulates photometric time-series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources.

[ascl:1903.014]
PLATON: PLanetary Atmospheric Transmission for Observer Noobs

PLATON (PLanetary Atmospheric Transmission for Observer Noobs) calculates transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra; it is based on ExoTransmit (ascl:1611.005). PLATON supports the most common atmospheric parameters, such as temperature, metallicity, C/O ratio, cloud-top pressure, and scattering slope. It also has less commonly included features, such as a Mie scattering cloud model and unocculted starspot corrections.

[ascl:1907.009]
Plonk: Smoothed particle hydrodynamics data analysis and visualization

Plonk analyzes and visualizes smoothed particle hydrodynamics simulation data, focusing on astrophysical applications. It calculates extra quantities on the particles, calculates and plots radial profiles, accesses subsets of particles, and provides visualization of any quantity defined on the particles via kernel density estimation. Plock's visualization module uses Splash (ascl:1103.004) to produce images using smoothed particle hydrodynamics interpolation. The code is modular and extendible, and can be scripted or used interactively.

[ascl:1106.003]
PLplot: Cross-platform Software Package for Scientific Plots

Irwin, Alan W.; Ross, Andrew; Furnish, Geoffrey; Babcock, Hazen; Tomé, António; Markus, Arjen; Roach, Andrew; Carty, Hezekiah M.; Hunt, Doug; Dishaw, James; Bauck, Jerry; LeBrun, Maurice; Rosenberg, Phil; Smekal, Werner

PLplot is a cross-platform software package for creating scientific plots. To help accomplish that task it is organized as a core C library, language bindings for that library, and device drivers which control how the plots are presented in non-interactive and interactive plotting contexts. The PLplot core library can be used to create standard x-y plots, semi-log plots, log-log plots, contour plots, 3D surface plots, mesh plots, bar charts and pie charts. Multiple graphs (of the same or different sizes) may be placed on a single page, and multiple pages are allowed for those device formats that support them. PLplot has core support for Unicode. This means for our many Unicode-aware devices that plots can be labelled using the enormous selection of Unicode mathematical symbols. A large subset of our Unicode-aware devices also support complex text layout (CTL) languages such as Arabic, Hebrew, and Indic and Indic-derived CTL scripts such as Devanagari, Thai, Lao, and Tibetan. PLplot device drivers support a number of different file formats for non-interactive plotting and a number of different platforms that are suitable for interactive plotting. It is easy to add new device drivers to PLplot by writing a small number of device dependent routines.

[ascl:1206.007]
Plumix: Generating mass segregated star clusters

Plumix is a small package for generating mass segregated star clusters. Its output can be directly used as input initial conditions for NBODY4 or NBODY6 code. Mass segregation stands as one of the most robust features of the dynamical evolution of self-gravitating star clusters. We formulate parametrized models of mass segregated star clusters in virial equilibrium. To this purpose we introduce mean inter-particle potentials for statistically described unsegregated systems and suggest a single-parameter generalization of its form which gives a mass-segregated state. Plumix is a numerical C-code generating the cluster according the algorithm given for construction of appropriate star cluster models. Their stability over several crossing-times is verified by following the evolution by means of direct N-body integration.

[ascl:1010.045]
PLUTO: A Code for Flows in Multiple Spatial Dimensions

PLUTO is a modular Godunov-type code intended mainly for astrophysical applications and high Mach number flows in multiple spatial dimensions. The code embeds different hydrodynamic modules and multiple algorithms to solve the equations describing Newtonian, relativistic, MHD, or relativistic MHD fluids in Cartesian or curvilinear coordinates. PLUTO is entirely written in the C programming language and can run on either single processor machines or large parallel clusters through the MPI library. A simple user-interface based on the Python scripting language is available to setup a physical problem in a quick and self-explanatory way. Computations may be carried on either static or adaptive (structured) grids, the latter functionality being provided through the Chombo adaptive mesh refinement library.

[ascl:2211.008]
pmclib: Population Monte Carlo library

Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Kilbinger, Martin; Prunet, Simon; Robert, Christian P.; Wraith, Darren

The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.

[ascl:9909.001]
PMCode: Particle-Mesh Code for Cosmological Simulations

Particle-Mesh (PM) codes are still very useful tools for testing predictions of cosmological models in cases when extra high resolution is not very important. We release for public use a cosmological PM N-body code. The code is very fast and simple. We provide a complete package of routines needed to set initial conditions, to run the code, and to analyze the results. The package allows you to simulate models with numerous combinations of parameters: open/flat/closed background, with or without the cosmological constant, different values of the Hubble constant, with or without hot neutrinos, tilted or non-tilted initial spectra, different amount of baryons.

[ascl:1102.008]
PMFAST: Towards Optimal Parallel PM N-body Codes

The parallel PM N-body code PMFAST is cost-effective and memory-efficient. PMFAST is based on a two-level mesh gravity solver where the gravitational forces are separated into long and short range components. The decomposition scheme minimizes communication costs and allows tolerance for slow networks. The code approaches optimality in several dimensions. The force computations are local and exploit highly optimized vendor FFT libraries. It features minimal memory overhead, with the particle positions and velocities being the main cost. The code features support for distributed and shared memory parallelization through the use of MPI and OpenMP, respectively.

The current release version uses two grid levels on a slab decomposition, with periodic boundary conditions for cosmological applications. Open boundary conditions could be added with little computational overhead. Timing information and results from a recent cosmological production run of the code using a 3712^3 mesh with 6.4 x 10^9 particles are available.

[ascl:1102.015]
PMFASTIC: Initial condition generator for PMFAST

PMFASTIC is a parallel initial condition generator, a slab decomposition Fortran 90 parallel cosmological initial condition generator for use with PMFAST (ascl:1102.008). Files required for generating initial dark matter particle distributions and instructions are included, however one would require CMBFAST (ascl:9909.004) to create alternative transfer functions.

[ascl:2107.003]
PMN-body: Particle Mesh N-body code

PMN-body computes the non-linear evolution of the cosmological matter density contrast. It is based on the Particle Mesh (PM) technique. Written in C, the code is parallelized for shared-memory machines using Open Multi-Processing (OpenMP).

[ascl:2205.001]
PMOIRED: Parametric Modeling of Optical Interferometric Data

PMOIRED models astronomical spectro-interferometric data stored in the OIFITS format. Parametric modeling is used to describe the observed scene as blocks such as disks, rings and Gaussians which can be combined and their parameters linked. It includes plotting, least-square fitting and bootstrapping estimation of uncertainties. For spectroscopic instruments (such as GRAVITY), tools are provided to model spectral lines and correct spectra for telluric lines.

[ascl:1010.065]
PN: Higher Post Newtonian Gravity Calculations

Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski spacetime to O[(v/c)^4] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2 body problem, the major efforts underway to measure gravitational waves produced by in-spiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c)^7]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c)^6] beyond Newton are derived.

[ascl:2307.009]
pnautilus: Three-phase chemical code

The three-phase pnautilus chemical code finds the abundance of each species by solving rate equations for gas-phase and grain surface chemistries. It performs gas–grain simulations in which both the icy mantle and the surface are considered active, taking into account mantle photodissociation, diffusion, and reactions; the code also considers the competition among reaction, diffusion and evaporation.

[ascl:1302.004]
pNbody: A python parallelized N-body reduction toolbox

pNbody is a parallelized python module toolbox designed to manipulate and interactively display very large N-body systems. It allows the user to perform complicated manipulations with only very few commands and to load an N-body system and explore it interactively using the python interpreter. pNbody may also be used in python scripts. pNbody contains graphical facilities for creating maps of physical values of the system, such as density, temperature, and velocities maps. Stereo capabilities are also implemented. pNbody is not limited by file format; the user may use a parameter file to redefine how to read a preferred format.

[ascl:2011.025]
PNICER: Extinction estimator

PNICER estimates extinction for individual sources and creates extinction maps using unsupervised machine learning algorithms. Extinction towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field observations. PNICER also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps including the NICEST correction for cloud substructure.

[ascl:2207.018]
pocoMC: Preconditioned Monte Carlo method for accelerated Bayesian inference

pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.

[ascl:1907.006]
POCS: PANOPTES Observatory Control System

PANOPTES (Panoptic Astronomical Networked Observatories for a Public Transiting Exoplanets Survey) is a citizen science project for low cost, robotic detection of transiting exoplanets. POCS (PANOPTES Observatory Control System) is the main software driver for the PANOPTES telescope system, responsible for high-level control of the unit. POCS defines an Observatory class that automatically controls a commercially available equatorial mount, including image analysis and corresponding mount adjustment to obtain a percent-level photometric precision.

[ascl:1408.005]
POET: Planetary Orbital Evolution due to Tides

POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

[ascl:2208.011]
POIS: Python Optical Interferometry Simulation

POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.

[ascl:2403.005]
Poke: Polarization ray tracing and Gaussian beamlet module for Python

Ashcraft, Jaren N.; Mulhal, Kenji; Douglas, Ewan S.; Kim, Daewook; Riggs, A.J. E.; Anche, Ramya M.; Brendel, Trent; Derby, Kevin Z.; Dube, Brandon D.; Jarecki, Quinn; Jenkins, Emory; Milani, Kian

Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.

[ascl:1505.018]
POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1807.001]
POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:2402.006]
polarizationtools: Polarization analysis and simulation tools in python

polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.

[ascl:2102.011]
polgraw-allsky: All-sky almost-monochromatic gravitational-wave pipeline

Astone, Pia; Bejger, Michał; Bolek, Jan; Ciecieląg, Paweł; Dorosh, Orest; Garus, Aleksander; Królak, Andrzej; Nagy-Egri, Máté Ferenc; Piętka, Maciej; Pisarski, Andrzej; Poghosyan, Gevorg; Sieniawska, Magdalena; Skrzypiec, Rafał

polgraw-allsky searches for almost monochromatic gravitational wave signals. This pipeline searches for continuous gravitational wave signals in time-domain data using the F-statistic on data from a network of detectors. The software generates a parameter space grid, conducts a coherent search for candidate signals in narrowband time segments, and searches for coincidences among different time segments. The pipeline also estimates the false alarm probability of coincidences and follows up on interesting outliers.

[ascl:1406.012]
POLMAP: Interactive data analysis package for linear spectropolarimetry

POLMAP provides routines for displaying and analyzing spectropolarimetry data that are not available in the complementary TSP package. Commands are provided to read and write TSP (ascl:1406.011) polarization spectrum format files from within POLMAP. This code is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.014]
POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1603.018]
PolRadTran: Polarized Radiative Transfer Model Distribution

PolRadTran is a plane-parallel polarized radiative transfer model. It is used to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly-oriented particles. Both solar and thermal sources of radiation are considered. A direct method of incorporating the polarized scattering information is combined with the doubling and adding method to produce a relatively simple formulation.

[ascl:1109.005]
PolSpice: Spatially Inhomogeneous Correlation Estimator for Temperature and Polarisation

PolSpice (aka Spice) is a tool to statistically analyze Cosmic Microwave Background (CMB) data, as well as any other diffuse data pixelized on the sphere.

This Fortran90 program measures the 2 point auto (or cross-) correlation functions w(θ) and the angular auto- (or cross-) power spectra C(l) from one or (two) sky map(s) of Stokes parameters (intensity I and linear polarisation Q and U). It is based on the fast Spherical Harmonic Transforms allowed by isolatitude pixelisations such as Healpix [for Npix pixels over the whole sky, and a C(l) computed up to l=lmax, PolSpice complexity scales like Npix1/2 lmax2 instead of Npix lmax2]. It corrects for the effects of the masks and can deal with inhomogeneous weights given to the pixels of the map. In the case of polarised data, the mixing of the E and B modes due to the cut sky and pixel weights can be corrected for to provide an unbiased estimate of the "magnetic" (B) component of the polarisation power spectrum. Most of the code is parallelized for shared memory (SMP) architecture using OpenMP.

[ascl:2307.020]
PolyBin: Binned polyspectrum estimation on the full sky

PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.

[ascl:2404.006]
PolyBin3D: Binned polyspectrum estimation for 3D large-scale structure

PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.

[ascl:1502.011]
PolyChord: Nested sampling for cosmology

PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.

[ascl:2007.009]
polyMV: Multipolar coefficients converter

polyMV converts multipolar coefficients (alms in healpix order) into Multipole Vectors (MVs) and also Fréchet Vectors (FVs) given a specific multipole. The code uses MPSolve (ascl:2007.008) and is order of magnitudes faster than other existing public codes at high multipoles.

[ascl:1912.001]
Polyspectrum: Computing polyspectra using an FFT estimator

Polyspectrum computes the polyspectrum from 3D grids using a fast Fourier transformation (FFT) estimator. The code, written in C and MPI-parallelized, support the computation of power- and bispectra; it also supports higher-order polyspectra, but streamlining the input data is required.

[ascl:2012.016]
Pomegranate: Probabilistic model builder

Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.

[ascl:1805.011]
PoMiN: A Post-Minkowskian N-Body Solver

PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

[ascl:2407.018]
pony3d: Efficient island-finding tool for radio spectral line imaging

pony3d statistically identifies islands of contiguous emission inside a three-dimensional volume. The primary functionality is the rapid and reliable creation of masks for the deconvolution of radio interferometric radio spectral line emission. It has been designed to run on the output of the wsclean imager (ascl:1408.023) whereby the individual FITS image per frequency plane enables a high degree of parallelism, but can work on any image set providing this criterion is met. Single channel island rejection is offered, along with 3D mask dilation and boxcar averaging. pony3d is also a prototype source-finding and extraction tool.

[ascl:2007.006]
PoPE: Population Profile Estimator

PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.

Previous12345678910111213141516171819202122232425262728293031323334353637383940414243444546**47**48495051525354555657585960616263646566676869707172Next

Would you like to view a random code?