Results 2351-2400 of 3450 (3361 ASCL, 89 submitted)

[ascl:1704.001]
pwkit: Astronomical utilities in Python

pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

[ascl:1806.032]
pwv_kpno: Modeling atmospheric absorption

pwv_kpno provides models for the atmospheric transmission due to precipitable water vapor (PWV) at user specified sites. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column density along the line of sight. The pwv_kpno package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission between 3,000 and 12,000 Å. By default, models are provided for Kitt Peak National Observatory (KPNO). Additional locations can be added by the user for any of the hundreds of SuomiNet locations worldwide.

[ascl:2006.012]
pxf_kin_err: Radial velocity and velocity dispersion uncertainties estimator

pxf_kin_err estimates the radial velocity and velocity dispersion uncertainties based solely on the shape of a template spectrum used in the fitting procedure and signal-to-noise information. This method can be used for exposure time calculators, in the design of observational programs and estimates on expected uncertainties for spectral surveys of galaxies and star clusters, and as an accurate substitute for Monte-Carlo simulations when running them for large samples of thousands of spectra is unfeasible.

[submitted]
Py-PDM: A Python wrapper of the Phase Dispersion Minimization (PDM)

Phase Dispersion Minimization (PDM) is a periodical signal detection method, and it is originally implemented by Stellingwerf with C (https://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34). With the help of Cython, Py-PDM is much faster than other Python implementations.

[ascl:1808.009]
py-sdm: Support Distribution Machines

py-sdm (Support Distribution Machines) is a Python implementation of nonparametric nearest-neighbor-based estimators for divergences between distributions for machine learning on sets of data rather than individual data points. It treats points of sets of data as samples from some unknown probability distribution and then statistically estimates the distance between those distributions, such as the KL divergence, the closely related Rényi divergence, L2 distance, or other similar distances.

[ascl:1712.003]
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

[ascl:1905.002]
Py4CAtS: PYthon for Computational ATmospheric Spectroscopy

Py4CAtS (PYthon scripts for Computational ATmospheric Spectroscopy) implements the individual steps of an infrared or microwave radiative transfer computation in separate scripts (and corresponding functions) to extract lines of relevant molecules in the spectral range of interest, compute line-by-line cross sections for given pressure(s) and temperature(s), combine cross sections to absorption coefficients and optical depths, and integrate along the line-of-sight to transmission and radiance/intensity. The code is a Python re-implementation of the Fortran code GARLIC (Generic Atmospheric Radiation Line-by-line Code) and uses the Numeric/Scientific Python modules for computationally-intensive highly optimized array-processing. Py4CAtS can be used in the console/terminal, inside the (I)Python interpreter, and in Jupyter notebooks.

[ascl:1906.010]
PyA: Python astronomy-related packages

Czesla, Stefan; Schröter, Sebastian; Schneider, Christian P.; Huber, Klaus F.; Pfeifer, Fabian; Andreasen, Daniel T.; Zechmeister, Mathias

The PyA (PyAstronomy) suite of astronomy-related packages includes a convenient fitting package that provides support for minimization and MCMC sampling, a set of astrophysical models (*e.g.*, transit light-curve modeling), and algorithms for timing analysis such as the Lomb-Scargle and the Generalized Lomb-Scargle periodograms.

[ascl:1806.007]
PyAMOR: AMmOnia data Reduction

PyAMOR models spectra of low level ammonia transitions (between (J,K)=(1,1) and (5,5)) and derives parameters such as intrinsic linewidth, optical depth, and rotation temperature. For low S/N or low spectral resolution data, the code uses cross-correlation between a model and a regridded spectrum (e.g. 10 times smaller channel width) to find the velocity, then fixes it and runs the minimization process. For high S/N data, PyAMOR runs with the velocity as a free parameter.

[ascl:1707.003]
pyaneti: Multi-planet radial velocity and transit fitting

Pyaneti is a multi-planet radial velocity and transit fit software. The code uses Markov chain Monte Carlo (MCMC) methods with a Bayesian approach and a parallelized ensemble sampler algorithm in Fortran which makes the code fast. It creates posteriors, correlations, and ready-to-publish plots automatically, and handles circular and eccentric orbits. It is capable of multi-planet fitting and handles stellar limb darkening, systemic velocities for multiple instruments, and short and long cadence data, and offers additional capabilities.

[ascl:2102.028]
PyAutoFit: Classy probabilistic programming

PyAutoFit supports advanced statistical methods such as massively parallel non-linear search grid-searches, chaining together model-fits and sensitivity mapping. It is a Python-based probabilistic programming language which composes and fits models using a range of Bayesian inference libraries, such as emcee (ascl:1303.002) and dynesty (ascl:1809.013). It performs model composition and customization, outputting results, model-specific visualization and posterior analysis. Built for big-data analysis, results are output as a database which can be loaded after model-fitting is complete.

[ascl:1807.003]
PyAutoLens: Strong lens modeling

PyAutoLens models and analyzes galaxy-scale strong gravitational lenses. This automated module suite simultaneously models the lens galaxy's light and mass while reconstructing the extended source galaxy on an adaptive pixel-grid. Source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing PyAutoLens to cleanly deblend its light from the source. Bayesian model comparison is used to automatically chose the complexity of the light and mass models. PyAutoLens provides accurate light, mass, and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

[ascl:1502.007]
PyBDSF: Python Blob Detection and Source Finder

PyBDSF (Python Blob Detector and Source Finder, formerly PyBDSM) decomposes radio interferometry images into sources and makes their properties available for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA (ascl:1107.013); PyBDSF may also be used in Python scripts.

[ascl:2104.023]
PyBird: Python code for biased tracers in redshift space

PyBird evaluates the multipoles of the power spectrum of biased tracers in redshift space. In general, PyBird can evaluate the power spectrum of matter or biased tracers in real or redshift space. The code uses FFTLog (ascl:1512.017) to evaluate the one-loop power spectrum and the IR resummation. PyBird is designed for a fast evaluation of the power spectra, and can be easily inserted in a data analysis pipeline. It is a standalone tool whose input is the linear matter power spectrum which can be obtained from any Boltzmann code, such as CAMB (ascl:1102.026) or CLASS (ascl:1106.020). The Pybird output can be used in a likelihood code which can be part of the routine of a standard MCMC sampler. The design is modular and concise, such that parts of the code can be easily adapted to other case uses (e.g., power spectrum at two loops or bispectrum). PyBird can evaluate the power spectrum either given one set of EFT parameters, or independently of the EFT parameters. If the former option is faster, the latter is useful for subsampling or partial marginalization over the EFT parameters, or to Taylor expand around a fiducial cosmology for efficient parameter exploration.

[ascl:1204.002]
pyBLoCXS: Bayesian Low-Count X-ray Spectral analysis

Siemiginowska, Aneta; Kashyap, Vinay; Refsdal, Brian; van Dyk, David; Connors, Alanna; Park, Taeyoung

pyBLoCXS is a sophisticated Markov chain Monte Carlo (MCMC) based algorithm designed to carry out Bayesian Low-Count X-ray Spectral (BLoCXS) analysis in the Sherpa environment. The code is a Python extension to Sherpa that explores parameter space at a suspected minimum using a predefined Sherpa model to high-energy X-ray spectral data. pyBLoCXS includes a flexible definition of priors and allows for variations in the calibration information. It can be used to compute posterior predictive p-values for the likelihood ratio test. The pyBLoCXS code has been tested with a number of simple single-component spectral models; it should be used with great care in more complex settings.

[ascl:2306.057]
pybranch: Calculate experimental branching fractions and transition probabilities from atomic spectra

pybranch calculates experimental branching fractions and transition probabilities from measurements of atomic spectra. Though the program is usually used with spectral line lists from intensity-calibrated spectra from Fourier transform spectrometers, it can in principle be used with any calibrated spectra that meet the input requirements. pybranch takes a set of linelists, computes a weighted average branching fraction (Fki) for each line, combines these branching fractions with the level lifetime to obtain the transition probability, and then prints the calibrated intensities and S/N ratios for all the lines observed from a particular upper level in each spectrum. One line can be chosen to use as a reference to put all of the intensities on the same scale. pybranch can use calculated transition probabilities to calculate a residual from lines that have not been observed.

[ascl:2312.025]
pyC^{2}Ray: Python interface to C^{2}Ray with GPU acceleration

Hirling, Patrick; Bianco, Michele; Giri, Sambit K.; Iliev, Ilian T.; Mellema, Garrelt; Kneib, Jean-Paul

pyC^{2}Ray updates C^{2}-Ray (ascl:2312.022), an astrophysical radiative transfer code used to simulate the Epoch of Reionization (EoR). pyC^{2}Ray includes a new raytracing method, ASORA, developed for GPUs, and provides a Python interface for customizable use of the code. The core features of C^{2}-Ray, written in Fortran90, are wrapped using f2py as a Python extension module, while the raytracing library ASORA is implemented in C++ using CUDA. Both are native Python C-extensions and can be directly accessed from any Python script.

[ascl:2107.017]
PyCactus: Post-processing tools for Cactus computational toolkit simulation data

PyCactus contains tools for postprocessing data from numerical simulations performed with the Einstein Toolkit, based on the Cactus computational toolkit. The main package is PostCactus, which provides a high-level Python interface to the various data formats in a simulation folder. Further, the package SimRep allows the automatic creation of html reports for a simulation, and the SimVideo package allows the creation of movies visualizing simulation data.

[ascl:2206.021]
PyCASSO2: Stellar population and emission line fits in integral field spectra

de Amorim, André Luiz; Vale Asari, Natalia; Cid Fernandes, Roberto; García-Benito, Rubén; Werle, Ariel

PyCASSO runs the STARLIGHT code (ascl:1108.006) in integral field spectra (IFS). Cubes from various instruments are supported, including PMAS/PPAK (CALIFA), MaNGA, GMOS and MUSE. Emission lines can be measured using DOBBY, which is included in the package. The package also includes tools for IFS cubes analysis and plotting.

[ascl:1805.030]
PyCBC: Gravitational-wave data analysis toolkit

PyCBC analyzes data from gravitational-wave laser interferometer detectors, finds signals, and studies their parameters. It contains algorithms that can detect coalescing compact binaries and measure the astrophysical parameters of detected sources. PyCBC was used in the first direct detection of gravitational waves by LIGO and is used in the ongoing analysis of LIGO and Virgo data.

[ascl:1805.032]
PyCCF: Python Cross Correlation Function for reverberation mapping studies

PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.

[ascl:2112.001]
pycelp: Python package for Coronal Emission Line Polarization

pyCELP (aka "pi-KELP") calculates Coronal Emission Line Polarization. It forward synthesizes the polarized emission of ionized atoms formed in the solar corona and calculates the atomic density matrix elements for a single ion under coronal equilibrium conditions and excited by a prescribed radiation field and thermal collisions. pyCELP solves a set of statistical equilibrium equations in the spherical statistical tensor representation for a multi-level atom for the no-coherence case. This approximation is useful in the case of forbidden line emission by visible and infrared lines, such as Fe XIII 1074.7 nm and Si X 3934 nm.

[submitted]
pycf3 - Cosmicflows-3 Distance-Velocity Calculator client for Python

The project is a simple Python client for Cosmicflows-3 Distance-Velocity Calculator at distances less than 400 Mpc (http://edd.ifa.hawaii.edu/CF3calculator/)

Compute expectation distances or velocities based on smoothed velocity field from the Wiener filter model of https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5438G/abstract.

[ascl:2312.034]
pycheops: Light curve analysis for ESA CHEOPS data

Maxted, P. F. L.; Ehrenreich, D.; Wilson, T. G.; Alibert, Y.; Cameron, A. Collier; Hoyer, S.; Sousa, S. G.; Olofsson, G.; Bekkelien, A.; Deline, A.; Delrez, L.; Bonfanti, A.; Borsato, L.; Alonso, R.; Anglada Escudé, G.; Barrado, D.; Barros, S. C. C.; Baumjohann, W.; Beck, M.; Beck, T.; Benz, W.; Billot, N.; Biondi, F.; Bonfils, X.; Brandeker, A.; Broeg, C.; Bárczy, T.; Cabrera, J.; Charnoz, S.; Corral Van Damme, C.; Csizmadia, Sz; Davies, M. B.; Deleuil, M.; Demangeon, O. D. S.; Demory, B. -O.; Erikson, A.; Florén, H. G.; Fortier, A.; Fossati, L.; Fridlund, M.; Futyan, D.; Gandolfi, D.; Gillon, M.; Guedel, M.; Guterman, P.; Heng, K.; Isaak, K. G.; Kiss, L.; Laskar, J.; Lecavelier des Etangs, A.; Lendl, M.; Lovis, C.; Magrin, D.; Nascimbeni, V.; Ottensamer, R.; Pagano, I.; Pallé, E.; Peter, G.; Piotto, G.; Pollacco, D.; Pozuelos, F. J.; Queloz, D.; Ragazzoni, R.; Rando, N.; Rauer, H.; Reimers, C.; Ribas, I.; Salmon, S.; Santos, N. C.; Scandariato, G.; Simon, A. E.; Smith, A. M. S.; Steller, M.; Swayne, M. I.; Szabó, Gy M.; Ségransan, D.; Thomas, N.; Udry, S.; Van Grootel, V.; Walton, N. A.

pycheops analyzes CHEOPS light curve data. The models in the package can also be applied to other types of data. pycheops includes a "cook book" and examples; in addition, it provides a command-line tool that aids in the preparation of observing requests for CHEOPS observers.

[submitted]
Pyckles

A super lightweight interface in Python to load spectra from the Pickles 1998 (stellar) and Brown 2014 (galactic) spectral catalogues

[ascl:1304.020]
pyCloudy: Tools to manage astronomical Cloudy photoionization code

PyCloudy is a Python library that handles input and output files of the Cloudy photoionization code (Gary Ferland). It can also generate 3D nebula from various runs of the 1D Cloudy code. pyCloudy allows you to:

- define and write input file(s) for Cloudy code. As you can have it in a code, you may generate automatically sets of input files, changing parameters from one to the other.<

- read the Cloudy output files and play with the data: you will be able to plot line emissivity ratio vs. the radius of the nebula, the electron temperature, or any Cloudy output.

- build pseudo-3D models, a la Cloudy_3D, by running a set of models, changing parameters (e.g. inner radius, density) following angular laws, reading the outputs of the set of models and interpolating the results (Te, ne, line emissivities) in a 3D cube.

[ascl:1509.007]
pycola: N-body COLA method code

pycola is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains, which trades accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing. The COLA method achieves its speed by calculating the large-scale dynamics exactly using LPT while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos.

[ascl:2303.007]
PyCom: Interstellar communication

PyCom provides function calls for deriving the optimal communication scheme to maximize the data rate between a remote probe and home-base. It includes models for the loss of photons from diffraction, technological limitations, interstellar extinction and atmospheric transmission, and manages major atmospheric, zodiacal, stellar and instrumental noise sources. It also includes scripts for creating figures appearing in the referenced paper.

[ascl:1311.002]
PyCOOL: Cosmological Object-Oriented Lattice code

PyCOOL is a Python + CUDA program that solves the evolution of interacting scalar fields in an expanding universe. PyCOOL uses modern GPUs to solve this evolution and to make the computation much faster. The code includes numerous post-processing functions that provide useful information about the cosmological model, including various spectra and statistics of the fields.

[ascl:2403.009]
pycorr: Two-point correlation function estimation

pycorr wraps two-point counter engines such as Corrfunc (ascl:1703.003) to estimate the correlation function. It supports theta (angular), s, s-mu, rp-pi binning schemes, analytical two-point counts with periodic boundary conditions, and inverse bitwise weights (in any integer format) and (angular) upweighting. It also provides MPI parallelization and jackknife estimate of the correlation function covariance matrix.

[ascl:1210.027]
PyCosmic: Detecting cosmics in CALIFA and other fiber-fed integral-field spectroscopy datasets

The detection of cosmic ray hits (cosmics) in fiber-fed integral-field spectroscopy (IFS) data of single exposures is a challenging task because of the complex signal recorded by IFS instruments. Existing detection algorithms are commonly found to be unreliable in the case of IFS data, and the optimal parameter settings are usually unknown a priori for a given dataset. The Calar Alto legacy integral field area (CALIFA) survey generates hundreds of IFS datasets for which a reliable and robust detection algorithm for cosmics is required as an important part of the fully automatic CALIFA data reduction pipeline. PyCosmic combines the edge-detection algorithm of L.A.Cosmic with a point-spread function convolution scheme. PyCosmic is the only algorithm that achieves an acceptable detection performance for CALIFA data. Only for strongly undersampled IFS data does L.A.Cosmic exceed the performance of PyCosmic by a few percent. Thus, PyCosmic appears to be the most versatile cosmics detection algorithm for IFS data.

[ascl:2004.007]
PyCosmo: Multi-purpose cosmology calculation tool

Tarsitano, Federica; Schmitt, Uwe; Refregier, Alexandre; Akeret, Joel; Amara, Adam; Gamper, Lukas; Nicola, Andrina

PyCosmo provides accurate predictions for cosmological observables including background quantities, power spectra and Limber and beyond-Limber angular power spectra. The software is designed to be interactive and user-friendly. It is available for download and is also offered on an interactive platform (PyCosmo Hub), which allows users to perform their own computations using Jupyter Notebooks without installing any software.

[ascl:1810.008]
pycraf: Spectrum-management compatibility

The pycraf Python package provides functions and procedures for spectrum-management compatibility studies, such as calculating the interference levels at a radio telescope produced from a radio broadcasting tower. It includes an implementation of ITU-R Recommendation P.452-16 for calculating path attenuation for the distance between an interferer and the victim service. It supports NASA's Shuttle Radar Topography Mission (SRTM) data for height-profile generation, includes a full implementation of ITU-R Rec. P.676-10, which provides two atmospheric models to calculate the attenuation for paths through Earth's atmosphere, and provides various antenna patterns necessary for compatibility studies (e.g., RAS, IMT, fixed-service links). The package can also convert power flux densities, field strengths, transmitted and received powers at certain distances and frequencies into each other.

[ascl:2307.040]
pycrires: Data reduction pipeline for VLT/CRIRES+

pycrires runs the CRIRES+ recipes of EsoRex. The pipeline organizes the raw data, creates SOF and configuration files, runs the calibration and science recipes, and creates plots of the images and extracted spectra. Additionally, it corrects remaining inaccuracies in the wavelength solution and the spectrum curvature. pycrires also provides dedicated routines for the extraction, calibration, and detection of spatially-resolved objects such as directly imaged planets.

[ascl:1509.010]
PyCS : Python Curve Shifting

PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.

[submitted]
pydftools: Distribution function fitting in Python

pydftools is a pure-python port of the dftools R package (ascl:1805.002), which finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a MF (P=1), a mass-size distribution (P=2) or the mass-spin-morphology distribution (P=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions. Though this package imitates the dftools package quite closely while being as Pythonic as possible, it has not implemented 2D+ nor non-parametric.

[ascl:2106.003]
PyDoppler: Wrapper for Doppler tomography software

PyDoppler is a python-based wrapper for the Spruit Doppler tomography software dopmap (ascl:2106.002). PyDoppler is designed to study time-resolved spectroscopic datasets of accreting compact binaries. This code can produce a trail spectra of a dataset and create Doppler tomography maps. It is intended to be a light-weight code for single emission line datasets.

[ascl:1401.005]
PyDrizzle: Python version of Drizzle

PyDrizzle provides a semi-automated interface for computing the parameters necessary for running Drizzle (ascl:1212.011). PyDrizzle performs the task of determining the parameters necessary for aligning images based on the WCS information in the input image headers, as well as any supplemental alignment information provided in shift files, and combines the images onto the same WCS. Though it does not identify cosmic rays, it has the ability to ignore pixels flagged as bad, such as pixels identified by other programs as affected by cosmic rays.

[ascl:2103.008]
Pyedra: Python implementation for asteroid phase curve fitting

Pyedra performs asteroid phase curve fitting. From a simple table containing the asteroid MPC number, phase angle and reduced magnitude, Pyedra estimates the parameters of the phase function using the least squares method. The user can choose from three different models for the phase curve fit: H-G model, H-G1-G2 model and the Shevchenko model. The output in all cases is a table containing the adjusted parameters and their corresponding errors. This package allows carrying out phase function analysis for a few asteroids as well as to process large volumes of data such as those released by current large surveys.

[ascl:1112.014]
PyEphem: Astronomical Ephemeris for Python

PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day.

The numerical routines that lie behind PyEphem are those from the XEphem astronomy application (ascl:1112.013), whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.

[ascl:1609.025]
PYESSENCE: Generalized Coupled Quintessence Linear Perturbation Python Code

PYESSENCE evolves linearly perturbed coupled quintessence models with multiple (cold dark matter) CDM fluid species and multiple DE (dark energy) scalar fields, and can be used to generate quantities such as the growth factor of large scale structure for any coupled quintessence model with an arbitrary number of fields and fluids and arbitrary couplings.

[ascl:2301.013]
pyExoRaMa: An interactive tool to investigate the radius-mass diagram for exoplanets

pyExoRaMa visualizes and manipulates data related to exoplanets and their host stars in a multi-dimensional parameter space. It enables statistical studies based on the large and constantly increasing number of detected exoplanets, identifies possible interdependence among several physical parameters, and compares observables with theoretical models describing the exoplanet composition and structure.

[ascl:1403.002]
pyExtinction: Atmospheric extinction

The Python script/package pyExtinction computes and plots total atmospheric extinction from decomposition into physical components (Rayleigh attenuation, ozone absorption, aerosol extinction). Its default extinction parameters are adapted to mean Mauna Kea summit conditions.

[ascl:2109.009]
pyFFTW: Python wrapper around FFTW

pyFFTW is a pythonic wrapper around FFTW (ascl:1201.015), the speedy FFT library. Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft. Additionally, it supports the clongdouble dtype, which numpy.fft does not, and operating FFTW in multithreaded mode.

[ascl:1207.009]
PyFITS: Python FITS Module

Barrett, Paul; Hsu, J. C.; Hanley, Chris; Taylor, James; Droettboom, Michael; Bray, Erik M.; Hack, Warren; Greenfield, Perry; Wyckoff, Eric; Jedrzejewski, Robert; De La Pena, Michele; Hodge, Phil

PyFITS provides an interface to FITS formatted files in the Python scripting language and PyRAF, the Python-based interface to IRAF. It is useful both for interactive data analysis and for writing analysis scripts in Python using FITS files as either input or output. PyFITS is a development project of the Science Software Branch at the Space Telescope Science Institute.

**PyFITS has been deprecated. Please see Astropy**.

[ascl:1103.012]
Pyflation: Second Order Perturbations During Inflation Beyond Slow-roll

Pyflation calculates cosmological perturbations during an inflationary expansion of the universe. The modules in the pyflation Python package can be used to run simulations of different scalar field models of the early universe. The main classes are contained in the cosmomodels module and include simulations of background fields and first order and second order perturbations. The sourceterm package contains modules required for the computation of the term required for the evolution of second order perturbations.

Alongside the Python package, the bin directory contains Python scripts which can run first and second order simulations. A helper script called pyflation-qsubstart.py sets up a full second order run (including background, first order and source calculations) to be used on queueing system which contains the qsub executable (e.g. a Rocks cluster).

[submitted]
PyFOSC: a pipeline toolbox for BFOSC/YFOSC long-slit spectroscopy data reduction

PyFOSC is a pipeline toolbox for long-slit spectroscopy data reduction written in Python. It can be used for FOSC (Faint Object Spectrograph and Camera) data from Xinglong/Lijiang 2-meter telescopes in China. This pipeline privodes a neat way for data pre-processing, including updating missing header fileds for BFOSC data, reducing fits file extension for YFOSC data, etc. And it makes the data reduction procedure efficient by using previously identified lamp spectra as re-identification references during wavelength calibration, and applying multiprocessing in some modules. PyFOSC also enables customization for any other long-slit spectroscopy data.

[ascl:2102.027]
PyFstat: Continuous gravitational-wave data analysis

PyFstat performs F-statistic-based continuous gravitational wave (CW) searches and other CW data analysis tasks. It is built on top of the LALSuite library (ascl:2012.021), making that library's functionality more accessible through a Python interface; it also provides MCMC-based followup of promising candidates from wide-parameter-space searches.

[ascl:2203.005]
pygacs: Toolkit to manipulate Gaia catalog tables

pygacs manipulates Gaia catalog tables hosted at ESA's Gaia Archive Core Systems (GACS). It provides python modules for the access and manipulation of tables in GACS, such as a basic query on a single table or crossmatch between two tables. It employs the TAP command line access tools described in the Help section of the GACS web pages. Both public and authenticated access have been implemented.

[ascl:1811.014]
pygad: Analyzing Gadget Simulations with Python

pygad provides a framework for dealing with Gadget snapshots. The code reads any of the many different Gadget (ascl:0003.001) formats, allows easy masking snapshots to particles of interest, decorates the data blocks with units, allows to add automatically updating derived blocks, and provides several binning and plotting routines, among other tasks, to provide convenient, intuitive handling of the Gadget data without the need to worry about technical details. pygad provides access to single stellar population (SSP) models, has an interface to Rockstar (ascl:1210.008) output files, provides its own friends-of-friends (FoF) finder, calculates spherical overdensities, and has a sub-module to generate mock absorption lines.

Previous1234567891011121314151617181920212223242526272829303132333435363738394041424344454647**48**495051525354555657585960616263646566676869Next

Would you like to view a random code?