Results 501-550 of 3572 (3481 ASCL, 91 submitted)
ChromaStar (formerly GrayStar) is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.
ChromaStarServer (formerly GrayStarServer) is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.
Chrono is a physics-based modelling and simulation infrastructure implemented in C++. It can handle multibody dynamics, collision detection, and granular flows, among many other physical processes. Though the applications for which Chrono has been used most often are vehicle dynamics, robotics, and machine design, it has been used to simulate asteroid aggregation and granular systems for astrophysics research. Chrono is written in C++; a Python version, PyChrono, is also available.
CIAO is a data analysis system written for the needs of users of the Chandra X-ray Observatory. Because Chandra data is 4-dimensional (2 spatial, time, energy) and each dimension has many independent elements, CIAO was built to handle N-dimensional data without concern about which particular axes were being analyzed. Apart from a few Chandra instrument tools, CIAO is mission independent. CIAO tools read and write several formats, including FITS images and tables (which includes event files) and IRAF imh files. CIAO is a powerful system for the analysis of many types of data.
CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.
The CIGALE code has been developed to study the evolution of galaxies by comparing modelled galaxy spectral energy distributions (SEDs) to observed ones from the far ultraviolet to the far infrared. It extends the SED fitting algorithm written by Burgarella et al. (2005, MNRAS 360, 1411). While the previous code was designed to fit SEDs in the optical and near infrared, CIGALE is able to fit SEDs up to the far infrared using Dale & Helou (2002, ApJ 576, 159). CIGALE Bayesian and CIGALE Monte Carlo Markov Chain are available.
CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
CircleCraters is a projection independent crater counting plugin for QGIS. It has the flexibility to crater count in a GIS environment on Windows, OS X, or Linux, and uses three-click input to define crater rims as a circle.
CISM_DX is a community-developed suite of integrated data, models, and data and model explorers, for research and education. The data and model explorers are based on code written for OpenDX and Octave; OpenDX provides the visualization infrastructures as well as the process for creating user interfaces to the model and data, and Octave allows for extensive data manipulation and reduction operations. The CISM-DX package extends the capabilities of the core software programs to meet the needs of space physics researchers.
Citlalicue allows you to create synthetic stellar light curves (transits, stellar variability and white noise) and detrend light curves using Gaussian Processes (GPs). Transits are implemented using PyTransit (ascl:1505.024). Python notebooks are provided to demonstrate using Citlalicue for both functions.
CJAM calculates first and second velocity moments using the Jeans Anisotropic MGE (JAM) models of Cappellari (2008) and Cappellari (2012). These models have been extended to calculate all three (x, y, z) first moments and all six (xx, yy, zz, xy, xz, yz) second moments. CJAM, written in C, is based on the IDL implementation of the line-of-sight calculations by Michele Cappellari.
Cloud Killer recovers surface albedo maps by using reflected light photometry to map the clouds and surface of unresolved exoplanets. For light curves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo at a location is a good estimate of its surface albedo. On synthetic data, it shows little bias, good precision, and accuracy, but slightly underestimated uncertainties; exoplanets with large, changing cloud structures observed near quadrature phases are good candidates for Cloud Killer cloud removal.
ClaRAN (Classifying Radio sources Automatically with Neural networks) classifies radio source morphology based upon the Faster Region-based Convolutional Neutral Network (Faster R-CNN). It is capable of associating discrete and extended components of radio sources in an automated fashion. ClaRAN demonstrates the feasibility of applying deep learning methods for cross-matching complex radio sources of multiple components with infrared maps. The promising results from ClaRAN have implications for the further development of efficient cross-wavelength source identification, matching, and morphology classifications for future radio surveys.
CLASS-PT modifies the CLASS (ascl:1106.020) code to compute the non-linear power spectra of dark matter and biased tracers in one-loop cosmological perturbation theory, for both Gaussian and non-Gaussian initial conditions. CLASS-PT can be interfaced with the MCMC sampler MontePython (ascl:1805.027) using the (new and improved) custom-built likelihoods found here.
Boltzmann codes are used extensively by several groups for constraining cosmological parameters with Cosmic Microwave Background and Large Scale Structure data. This activity is computationally expensive, since a typical project requires from 10'000 to 100'000 Boltzmann code executions. The code CLASS (Cosmic Linear Anisotropy Solving System) incorporates improved approximation schemes leading to a simultaneous gain in speed and precision. We describe here the three approximations used by CLASS for basic LambdaCDM models, namely: a baryon-photon tight-coupling approximation which can be set to first order, second order or to a compromise between the two; an ultra-relativistic fluid approximation which had not been implemented in public distributions before; and finally a radiation streaming approximation taking reionisation into account.
CLASSgal computes large scale structure observables; it includes all relativistic corrections and computes both the power spectrum Cl(z1,z2) and the corresponding correlation function ξ(θ, z1, z2) of the matter density and the galaxy number fluctuations in linear perturbation theory. These quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory for Gaussian initial perturbations. CLASSgal is a modified version of CLASS (ascl:1106.020).
CLE, written in Fortran 77, synthesizes Stokes profiles of forbidden lines such as Fe XIII 1074.7nm, formed in magnetic dipole transitions under coronal conditions. The lines are assumed to be optically thin, excited by (anisotropic) photospheric radiation and thermal particle collisions.
The CLEAR pipeline and library performs various tasks for the CANDELS Ly-alpha Emission at Reionization (CLEAR) experiment of deep Hubble grism observations of high-z galaxies. It interlaces images, models contamination of overlapping grism spectra, extracts source spectra, stacks the extracted source spectra, and estimates fits for sources redshifts and emission lines.
clfd (clean folded data) implements GPU-accelerated smart interference removal algorithms to be used on folded pulsar search and pulsar timing data. The code converts each source profile to a small set of representative features, flagging outliers in the resulting feature space. clfd further visualizes the outlier flagging process, as well as the resulting two-dimensional time-frequency mask that is applied to the clean archive. The code provides access to cleaning algorithms that were initially developed for the High Time Resolution Universe (HTRU) survey which found several pulsars.
CLOC computes cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.
CloudFlex models observational signatures associated with the small-scale structure of the circumgalactic medium. It populates cool gas structures in the CGM as a complex of cloudlets using a Monte Carlo method. Various parameters can be set to describe the structure of the cloudlet complexes, including cloudlet mass, density, velocity, and size. Functionality exists for generating the observational signatures of sightlines piercing these cloudlet complexes, borrowing heavily from the Trident code (ascl:1612.019).
We developed a new quick pseudo-3D photoionization code based on Cloudy (G. Ferland) and IDL (RSI) tools. The code is running the 1D photoionization code Cloudy various times, changing at each run the input parameters (e.g. inner radius, density law) according to an angular law describing the morphology of the object. Then a cube is generated by interpolating the outputs of Cloudy. In each cell of the cube, the physical conditions (electron temperature and density, ionic fractions) and the emissivities of lines are determined. Associated tools (VISNEB and VELNEB_3D) are used to rotate the nebula and to compute surface brightness maps and emission line profiles, given a velocity law and taking into account the effect of the thermal broadening and eventually the turbulence. Integrated emission line profiles are computed, given aperture shapes and positions (seeing and instrumental width effects are included). The main advantage of this tool is the short time needed to compute a model (a few tens minutes).
Cloudy_3D has been superseded by pycloudy (ascl:1304.020).
Cloudy is a large-scale spectral synthesis code designed to simulate fully physical conditions within an astronomical plasma and then predict the emitted spectrum. The code is freely available and is widely used in the analysis and interpretation of emission-line spectra.
CLOVER (Convnet Line-fitting Of Velocities in Emission-line Regions) is a convolutional neural network (ConvNet) trained to identify spectra with two velocity components along the line of sight and predict their kinematics. It works with Gaussian emission lines (e.g., CO) and lines with hyperfine structure (e.g., NH3). CLOVER has two prediction steps, classification and parameter prediction. For the first step, CLOVER segments the pixels in an input data cube into one of three classes: noise (i.e., no emission), one-component (emission line with single velocity component), and two-component (emission line with two velocity components). For the pixels identified as two-components in the first step, a second regression ConvNet is used to predict centroid velocity, velocity dispersion, and peak intensity for each velocity component.
We describe an automatic, objective routine for analyzing the clumpy structure in a spectral line position-position-velocity data cube. The algorithm works by first contouring the data at a multiple of the rms noise of the observations, then searches for peaks of emission which locate the clumps, and then follows them down to lower intensities. No a proiri clump profile is assumed. By creating simulated data, we test the performance of the algorithm and show that a contour map most accurately depicts internal structure at a contouring interval equal to twice the rms noise of the map. Blending of clump emission leads to small errors in mass and size determinations and in severe cases can result in a number of clumps being misidentified as a single unit, flattening the measured clump mass spectrum. The algorithm is applied to two real data sets as an example of its use. The Rosette molecular cloud is a 'typical' star-forming cloud, but in the Maddalena molecular cloud high-mass star formation is completely absent. Comparison of the two clump lists generated by the algorithm show that on a one-to-one basis the clumps in the star-forming cloud have higher peak temperatures, higher average densities, and are more gravitationally bound than in the non-star-forming cloud. Collective properties of the clumps, such as temperature-size-line-width-mass relations appear very similar, however. Contrary to the initial results reported in a previous paper (Williams & Blitz 1993), we find that the current, more thoroughly tested analysis finds no significant difference in the clump mass spectrum of the two clouds.
CLUMPY is a public code for semi-analytical calculation of the gamma-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, antiprotons) will be included in a second release.
clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.
Cluster Toolkit calculates weak lensing signals from galaxy clusters and cluster cosmology. It offers 3D density and correlation functions, halo bias models, projected density and differential profiles, and radially averaged profiles. It also calculates halo mass functions, mass-concentration relations, Sunyaev-Zel’dovich (SZ) cluster signals, and cluster magnification. Cluster Toolkit consists of a Python front end wrapped around a well optimized back end in C.
Cluster-in-a-box provides a statistical model of sub-millimeter emission from embedded protostellar clusters and consists of three modules grouped in two scripts. The first (cluster_distribution) generates the cluster based on the number of stars, input initial mass function, spatial distribution and age distribution. The second (cluster_emission) takes an input file of observations, determines the mass-intensity correlation and generates outflow emission for all low-mass Class 0 and I sources. The output is stored as a FITS image where the flux density is determined by the desired resolution, pixel scale and cluster distance.
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
CLUSTEREASY is a parallel programming extension of the simulation program LATTICEEASY (ascl:1911.015); running the program in parallel greatly extends the range of scales and times that can be simulated. The program is particularly useful for the study of reheating and thermalization after inflation.
Clustering is a modified version of the single-pulse sifting algorithm RRATrap (ascl:2011.017) combined with DBSCAN codes to cluster single pulse events.
ClusterPyXT (Cluster Pypeline for X-ray Temperature maps) creates X-ray temperature maps, pressure maps, surface brightness maps, and density maps from X-ray observations of galaxy clusters to show turbulence, shock fronts, nonthermal phenomena, and the overall dynamics of cluster mergers. It requires CIAO (ascl:1311.006) and CALDB. The code analyzes archival data and provides capability for integrating additional observations into the analysis. The ClusterPyXT code is general enough to analyze data from other sources, such as galaxies, active galactic nuclei, and supernovae, though minor modifications may be necessary.
CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.
CMasher provides a curated collection of scientific colormaps that are perceptually uniform sequential using the viscm package (ascl:2102.007). Most of them are color-vision deficiency friendly; they cover a wide range of different color combinations to accommodate for most applications. The package provides several alternatives to commonly used colormaps, such as chroma and rainforest for jet, sunburst for hot, neutral for binary, and fusion and redshift for coolwarm.
This code is a quick and exact calculator of B-mode angular spectrum due to Faraday rotation by stochastic magnetic fields. Faraday rotation induced B-modes can provide a distinctive signature of primordial magnetic fields because of their characteristic frequency dependence and because they are only weakly damped on small scales, allowing them to dominate B-modes from other sources. By numerically solving the full CMB radiative transport equations, we study the B-mode power spectrum induced by stochastic magnetic fields that have significant power on scales smaller than the thickness of the last scattering surface. Constraints on the magnetic field energy density and inertial scale are derived from WMAP 7-year data, and are stronger than the big bang nucleosynthesis (BBN) bound for a range of parameters. Observations of the CMB polarization at smaller angular scales are crucial to provide tighter constraints or a detection.
This code is based on the cosmic string model described in this paper by Pogosian and Vachaspati, as well as on the CMBFAST code (ascl:9909.004) created by Uros Seljak and Matias Zaldarriaga. It contains an integrator for the vector contribution to the CMB temperature and polarization. The code is reconfigured to make it easier to use with or without active sources. To produce inflationary CMB spectra one simply sets the string tension to zero (gmu=0.0d0). For a non-zero value of tension only the string contribution is calculated.
An option is added to randomize the directions of velocities of consolidated segments as they evolve in time. In the original segment model, which is still the default version (irandomv=0), each segment is given a random velocity initially, but then continues to move in a straight line for the rest of its life. The new option (irandomv=1) allows to additionally randomize velocities of each segment at roughly each Hubble time. However, the merits of this new option are still under investigation. The default version (irandomv=0) is strongly recommended, since it actually gives reasonable unequal time correlators. For each Fourier mode, k, the string stress-energy components are now evaluated on a time grid sufficiently fine for that k.
CMBEASY is a software package for calculating the evolution of density fluctuations in the universe. Most notably, the Cosmic Microwave Background temperature anisotropies. It features a Markov Chain Monte Carlo driver and many routines to compute likelihoods of any given model. It is based on the CMBFAST package by Uros Seljak and Matias Zaldarriaga.
CMBFAST is the most extensively used code for computing cosmic microwave background anisotropy, polarization and matter power spectra. This package contains cosmological linear perturbation theory code to compute the evolution of various cosmological matter and radiation components, both today and at high redshift. The code has been tested over a wide range of cosmological parameters.
This code is no longer supported; please investigate using CAMB (ascl:1102.026) instead.
cmblensplus reconstructs lensing potential, cosmic bi-refringence, and patchy reionization from cosmic microwave background anisotropies (CMB) in full and flat sky. This Fortran wrapper for Python also includes modules for delensing and bi-spectrum calculations. cmblensplus contains a module of basic routines such as analytic calculation of delensed B-mode spectrum and lensing bispectrum. Two additional main modules are for curved sky and flat sky analyses, and measure lensing, bi-refringence, patchy tau, bias-hardening, bi-spectrum, delensing and analytic reconstruction normalization. The package also contains simple Python utility and demonstration scripts. cmblensplus uses FFTW (ascl:1201.015), HEALPix (ascl:1107.018), LAPACK (ascl:2104.020), CFITSIO (ascl:1010.001), and LensPix (ascl:1102.025).
CMBquick is a package for Mathematica in which tools are provided to compute the spectrum and bispectrum of Cosmic Microwave Background (CMB). It is unavoidably slow, but the main goal is not to design a tool which can be used for systematic exploration of parameters in cosmology, but rather a toy CMB code which is transparent and easily modified. Considering this, the name chosen is nothing but a joke which refers to the widely spread and used softwares CMBFAST, CAMB or CMBeasy (ascl:1007.004), which should be used for serious and heavy first order CMB computations, and which are indeed very fast.
The package CMBquick is unavoidably slow when it comes to compute the multipoles Cls, and most of it is due to the access time for variables which in Mathematica is approximately ten times slower than in C or Fortran. CMBquick is thus approximately 10 times slower than CAMB and cannot be used for the same reasons. It uses the same method as CAMB for computing the CMB spectrum, which is based on the line of sight approach. However the integration is performed in a different gauge with different time steps and k-spacing. It benefits from the power of Mathematica on numerical resolution of stiff differential systems, and the transfer functions can be obtained with exquisite accuracy.
The purpose of CMBquick is thus twofold. First, CMBquick is a slow but precise and pedagogical, tool which can be used to explore and modify the physical content of the linear and non-linear dynamics. Second, it is a tool which can help developing templates for nonlinear computations, which could then be hard coded once their correctness is checked. The number of equations for non-linear dynamics is quite sizable and CMBquick makes it easy (but slow) to manipulate the non-linear equations, to solve them precisely, and to plot them.
CMBview is a viewer for FITS files containing HEALPix sky maps. Sky maps are projected onto a 3d sphere which can be rotated and zoomed interactively with the mouse. Features include:
CMC-COSMIC models dense star clusters using Hénon's method using orbit-averaging collisional stellar dynamics. It includes all the relevant physics for modeling dense spherical star clusters, such as strong dynamical encounters, single and binary stellar evolution, central massive black holes, three-body binary formation, and relativistic dynamics, among others. CMC is parallelized using the Message Passing Interface (MPI), and is pinned to the COSMIC (ascl:2108.022) package for binary population synthesis, which itself was originally based on the version of BSE (ascl:1303.014). COSMIC is currently a submodule within CMC, ensuring that any cluster simulations or binary populations are integrated with the same physics.
The Caitlin M. Casey Infra Red Spectral Energy Distribution model (CMCIRSED) provides a simple SED fitting technique suitable for a wide range of IR data, from sources which have only three IR photometric points to sources with >10 photometric points. These SED fits produce accurate estimates to a source's integrated IR luminosity, dust temperature and dust mass. CMCIRSED is based on a single dust temperature greybody fit linked to a MIR power law, fitted simultaneously to data across ∼5–2000 μm.
CMD Plot Tool calculates and plots Color Magnitude Diagrams (CMDs) from astronomical photometric data, e.g. of a star cluster observed in two filter bandpasses. It handles multiple file formats (plain text, DAOPHOT .mag files, ACS Survey of Galactic Globular Clusters .zpt files) to generate professional and customized plots without a steep learning curve. It works “out of the box” and does not require any installation of development environments, additional libraries, or resetting of system paths. The tool is available as a single application/executable file with the source code. Sample data is also bundled for demonstration. CMD Plot Tool can also convert DAOPHOT magnitude files to CSV format.
CMEchaser looks for the occultation of background astronomical sources by CMEs to enable measurement of effects such as variations in the ionized content and the associated Faraday rotation of polarized signals along the line of sight to the background source. The code transforms a given Galactic coordinate to its concordant point in the Helioprojective, Sun-centered plane and estimates the point at which the line of sight from the source to the Earth passes through it. It then searches a user selected database to detect if any CMEs which launched before the observation date would have crossed the line of sight at the epoch of observation, and produces a number of useful plots. CMEchaser can run as a flat script orcan be installed as a package.
A radiative transfer code designed to solve the radiative transfer and statistical equilibrium equations in spherical geometry. It has been designed for application to W-R stars, O stars, and Luminous Blue-Variables. CMFGEN allows fundamental parameters such as effective temperatures, stellar radii and stellar luminosities to be determined. It can provide constraints on mass-loss rates, and allow abundance determinations for a wide range of atomic species. Further it can provide accurate energy distributions, and hence ionizing fluxes, which can be used as input for codes which model the spectra of HII regions and ring nebular.
CMHOG (Connection Machine Higher Order Godunov) is a code for ideal compressible hydrodynamics based on the Lagrange-plus-remap version of the piecewise parabolic method (PPM) of Colella & Woodward (1984, J. Comp. Phys., 74, 1). It works in one-, two- or three-dimensional Cartesian coordinates with either an adiabatic or isothermal equation of state. A limited amount of extra physics has been added using operator splitting, including optically-thin radiative cooling, and chemistry for combustion simulations.
CO5BOLD - nickname COBOLD - is the short form of "COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions with l=2,3''.
It is used to model solar and stellar surface convection. For solar-type stars only a small fraction of the stellar surface layers are included in the computational domain. In the case of red supergiants the computational box contains the entire star. Recently, the model range has been extended to sub-stellar objects (brown dwarfs).
CO5BOLD solves the coupled non-linear equations of compressible hydrodynamics in an external gravity field together with non-local frequency-dependent radiation transport. Operator splitting is applied to solve the equations of hydrodynamics (including gravity), the radiative energy transfer (with a long-characteristics or a short-characteristics ray scheme), and possibly additional 3D (turbulent) diffusion in individual sub steps. The 3D hydrodynamics step is further simplified with directional splitting (usually). The 1D sub steps are performed with a Roe solver, accounting for an external gravity field and an arbitrary equation of state from a table.
The radiation transport is computed with either one of three modules:
CO5BOLD is written in Fortran90. The parallelization is done with OpenMP directives.
CoastGuard reduces Effelsberg data; it is written in python and based on PSRCHIVE (ascl:1105.014). Though primarily designed for Effelsberg PSRIX data, it contains components sufficiently general for use with psrchive-compatible data files from other observing systems. In particular, the radio frequency interference (RFI) removal algorithm has been applied to data from the Parkes Telescope and has also been adopted by the LOFAR pulsar timing data reduction pipeline.
Would you like to view a random code?