ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 501-750 of 3784 (3685 ASCL, 99 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2307.060] MBASC: Multi-Band AGN-SFG Classifier

MBASC (Multi-Band AGN-SFG Classifier) classifies sources as Active Galactic Nuclei (AGNs) and Star Forming Galaxies (SFGs). The algorithm is based on the light gradient-boosting machine ML technique. MBASC can use a wide range of multi-wavelength data and redshifts to predict a classification for sources.

[ascl:2307.059] orbitN: Symplectic integrator for near-Keplerian planetary systems

orbitN generates accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems with a dominant mass M0. The code focuses on hierarchical systems without close encounters but can be extended to include additional features. Among other features, the package includes M0's quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due to M0 (fast symplectic implementation). To reduce numerical roundoff errors, orbitN features Kahan compensated summation.

[ascl:2307.058] APOLLO: Radiative transfer and atmosphere spectroscopic retrieval for exoplanets

APOLLO forward models the radiative transfer of light through a planetary (or brown dwarf) atmosphere; it also forward models transit and emission spectra and retrieves atmospheric properties of extrasolar planets. The code has two operational modes: one to compute a planetary spectrum given a set of parameters, and one to retrieve those parameters based on an observed spectrum. The package uses emcee (ascl:1303.002) to find the best fit to a spectrum for a given parameter set. APOLLO is modular and offers many options that may be turned on and off, including the type of observations, a flexible molecular composition, multiple cloud prescriptions, multiple temperature-pressure profile prescriptions, multiple priors, and continuum normalization.

[ascl:2307.057] species: Atmospheric characterization of directly imaged exoplanets

species (spectral characterization and inference for exoplanet science) provides a coherent framework for spectral and photometric analysis of directly imaged exoplanets and brown dwarfs which builds on publicly-available data and models from various resources. species contains tools for grid and free retrievals using Bayesian inference, synthetic photometry, interpolating a variety atmospheric and evolutionary model grids (including the possibility to add a custom grid), color-magnitude and color-color diagrams, empirical spectral analysis, spectral and photometric calibration, and analysis of emission lines.

[ascl:2307.056] HELA: Random Forest retrieval for exoplanet atmospheres

HELA performs atmospheric retrieval on exoplanet atmospheres using a Random Forest algorithm. The code has two stages: training (which includes testing), and predicting. It requires a training set that matches the format of the data to be analyzed, with the same number of points and a sample spectrum for each parameter. The number of trees used and the number of jobs are editable. The HELA package includes a training set and data as examples.

[ascl:2307.055] plan-net: Bayesian neural networks for exoplanetary atmospheric retrieval

plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.

[ascl:2307.054] LEFTfield: Forward modeling of cosmological density fields

LEFTfield forward models cosmological matter density fields and biased tracers of large-scale structure. The model, written in C++ code, is centered around classes encapsulating scalar, vector, and tensor grids. It includes the complete bias expansion at any order in perturbations and captures general expansion histories without relying on the EdS approximation; however, the latter is also implemented and results in substantially smaller computational demands. LEFTfield includes a subset of the nonlinear higher-derivative terms in the bias expansion of general tracers.

[submitted] backtrack: fit relative motion of candidate direct imaging sources with background proper motion and parallax

Directly imaged planet candidates (high contrast point sources near bright stars) are often validated, among other supporting lines of evidence, by comparing their observed motion against the projected motion of a background source due to the proper motion of the bright star and the parallax motion due to the Earth's orbit. Often, the "background track" is constructed assuming an interloping point source is at infinity and has no proper motion itself, but this assumption can fail, producing false positive results, for crowded fields or insufficient observing time-baselines (e.g. Nielsen et al. 2017). `backtrack` is a tool for constructing background proper motion and parallax tracks for validation of high contrast candidates. It can produce classical infinite distance, stationary background tracks, but was constructed in order to fit finite distance, non-stationary tracks using nested sampling (and can be used on clusters). The code sets priors on parallax based on the relations in Bailer-Jones et al. 2021 that are fit to Gaia eDR3 data, and are therefore representative of the galactic stellar density. The public example currently reproduces the results of Nielsen et al. 2017 and Wagner et al. 2022, demonstrating that the motion of HD 131399A "b" is fit by a finite distance, non-stationary background star, but the code has been tested and validated on proprietary datasets. The code is open source, available on github, and additional contributions are welcome.

[ascl:2307.053] EVolve: Growth and evolution of volcanically-derived atmospheres

EVolve calculates the chemical composition and surface pressure of a ID atmosphere on a rocky planet that is being produced by volcanic activity, as it grows over time. Once the initial volatile content of the planet's mantle and the composition and resultant surface pressure of any pre-existing atmosphere is set, the volcanic degassing model EVo (ascl:2307.052) calculates the amount and speciation of any volcanic gases released into the atmosphere over each time step. Atmospheric processing is calculated using FastChem (ascl:1804.025); thermochemical equilibrium is assumed so the final chemical composition of the atmosphere is calculated according to the pre-set surface temperature.

[ascl:2307.052] EVo: Thermodynamic magma degassing model

EVo calculates the speciation and volume of a volcanic gas phase erupting in equilibrium with its parent magma. Models can be run to calculate the gas phase in equilibrium with a melt at a single pressure, or the melt can be decompressed from depth rising to the surface as a closed-system case. Single pressure and decompression can be run for OH, COH, SOH, COHS and COHSN systems. EVo can calculate gas phase weight and volume fraction within the system, gas phase speciation as mole fraction or weight fraction across numerous compounds, and the volatile content of the melt at each pressure. It also calculates melt density, f02 of the system, and more. EVo can be set up using either melt volatile contents, or for a set amount of atomic volatile which is preferable for conducting experiments over a wide range of fO2 values.

[ascl:2307.051] WeakLensingQML: Quadratic Maximum Likelihood estimator applied to Weak Lensing

WeakLensingQML implements the Quadratic Maximum Likelihood (QML) estimator and applies it to simulated cosmic shear data and compares the results to a Pseudo-Cl implementation. The package computes and saves relevant data files for later processes, such as the fiduciary cosmic shear power spectrum used in the analysis, the sky mask, and computing an analytic version of the QML's covariance matrix. The core of the package implements a conjugate-gradient approach for the quadratic estimator, and is parallelized for maximum performance. The code relies on the Eigen linear algebra package and the HealPix spherical harmonic transform library. A post-processing script analyzes the results and compares the QML's estimates with those from the Pseudo-Cl estimator; it then produces an array of plots highlighting the results.

[ascl:2307.050] νHawkHunter: Forecasting of PBH neutrinos

νHawkHunter explores the prospects of detecting neutrinos produced by the evaporation of primordial black holes in ground-based experiments. It makes use of neutrino fluxes from Hawking radiation computed with BlackHawk (ascl:2012.020). νHawkHunter is also be used for Diffuse Supernova Neutrino Background or similar studies by replacing the signal fluxes by the proper ones.

[ascl:2307.049] reMASTERed: Calculate contributions to pseudo-Cl for maps with correlated masks

reMASTERed reconstructs ensemble-averaged pseudo-$C_\ell$ to effectively exact precision, with significant improvements over traditional estimators for cases where the map and mask are correlated. The code can compute the results given an arbitrary map and mask; it can also compute the results in the ensemble average for certain types of threshold masks.

[ascl:2307.048] NaMaster: Unified pseudo-Cl framework

NaMaster computes full-sky angular cross-power spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a pseudo-Cl (aka MASTER) approach. The code also implements E/B-mode purification and offers both full-sky and flat-sky modes. NaMaster is available as a C library, Python module, and standalone program.

[ascl:2307.047] GWDALI: Gravitational wave parameter estimation

GWDALI focuses on parameter estimations of gravitational waves generated by compact object coalescence (CBC). This software employs both Gaussian (Fisher Matrix) and Beyond-Gaussian methods to approximate the likelihood of gravitational wave events. GWDALI also addresses the challenges posed by Fisher Matrices with zero determinants. Additionally, the Beyond-Gaussian approach incorporates the Derivative Approximation for Likelihoods (DALI) algorithm, enabling a more reliable estimation process.

[ascl:2307.046] HAYASHI: Halo-level AnalYsis of the Absorption Signal in HI

HAYASHI (Halo-level AnalYsis of the Absorption Signal in HI) computes the number of absorption features of the 21cm forest using a semianalytic formalism. It includes the enhancement of the signal due to the presence of substructures within minihalos and supports non-standard cosmologies with impact in the large scale structure, such as warm dark matter and primordial black holes. HAYASHI is written in Python3 and uses the cosmological computations package Colossus (ascl:1501.016).

[ascl:2307.045] NAVanalysis: Normalized Additional Velocity analysis

NAVanalysis studies the non-baryonic, or non-Newtonian, contribution to galaxy rotation curves straight from a given data sample. Conclusions on the radial profile of a given model can be drawn without individual galaxy fits to provide an efficient sample comparison. The method can be used to eliminate model parameter regions, find the most probable parameter regions, and uncover trends not easy to find from standard fits. Further, NAVanalysis can compare different approaches and models.

[ascl:2307.044] RUBIS: Fast centrifugal deformation program for stellar and planetary models

The centrifugal deformation program RUBIS (Rotation code Using Barotropy conservation over Isopotential Surfaces) takes an input 1D model (with spherical symmetry) and returns its deformed version by applying a conservative rotation profile specified by the user. The code needs only the density as a function of radial distance from the reference model in addition to the surface pressure to be imposed to perform the deformation; preserving the relation between density and pressure when going from the 1D to the 2D structure makes this lightness possible. By solving Poisson's equation in spheroidal rather than spherical coordinates whenever a discontinuity is present, RUBIS can deform both stellar and planetary models, thereby dealing with potential discontinuities in the density profile.

[ascl:2307.043] EAGLES: Estimating AGes from Lithium Equivalent widthS

EAGLES (Estimating AGes from Lithium Equivalent widthS) implements an empirical model that predicts the lithium equivalent width (EW) of a star as a function of its age and effective temperature. The code computes the age probability distribution for a star with a given EW and Teff, subject to an age probability prior that may be flat in age or flat in log age. Data for more than one star can be entered; EAGLES then treats these as a cluster and determines the age probability distribution for the ensemble. The code produces estimates of the most probable age, uncertainties and the median age; output files consisting of probability plots, best-fit isochrone plots, and tables of the posterior age probability distribution(s).

[ascl:2307.042] LIMpy: Line Intensity Mapping in Python

LIMpy models and analyzes multi-line intensity maps of CII (158 µ), OIII (88 µ), and CO (1-0) to CO (13-12) transitions. It can be used as an analytic model for star formation rate, to simulate line intensity maps based on halo catalogs, and to calculate the power spectrum from simulated maps and the cross-correlated signal between two separate lines. Among other things, LIMpy can also create multi-line luminosity models and determine the multi-line intensity power spectrum.

[ascl:2307.041] EFTCAMB: Effective Field Theory with CAMB

EFTCAMB patches the public Einstein-Boltzmann solver CAMB (ascl:1102.026) to implement the Effective Field Theory approach to cosmic acceleration. It can be used to investigate the effect of different EFT operators on linear perturbations and to study perturbations in any specific DE/MG model that can be cast into EFT framework. To interface EFTCAMB with cosmological data sets, it is equipped with a modified version of CosmoMC (ascl:1106.025), EFTCosmoMC, to create a bridge between the EFT parametrization of the dynamics of perturbations and observations.

[ascl:2307.040] pycrires: Data reduction pipeline for VLT/CRIRES+

pycrires runs the CRIRES+ recipes of EsoRex. The pipeline organizes the raw data, creates SOF and configuration files, runs the calibration and science recipes, and creates plots of the images and extracted spectra. Additionally, it corrects remaining inaccuracies in the wavelength solution and the spectrum curvature. pycrires also provides dedicated routines for the extraction, calibration, and detection of spatially-resolved objects such as directly imaged planets.

[ascl:2307.039] adiabatic-tides: Tidal stripping of dark matter (sub)haloes

adiabatic-tides evaluates the tidal stripping of dark matter (sub)haloes in the adiabatic limit. It exactly reproduces the remnant of an NFW halo that is exposed to a slowly increasing isotropic tidal field and approximately reproduces the remnant for an anisotropic tidal field. adiabatic-tides also predicts the asymptotic mass loss limit for orbiting subhaloes and differently concentrated host-haloes with and without baryonic components, and can be used to improve predictions of dark matter annihilation.

[ascl:2307.038] WarpX: Time-based electromagnetic and electrostatic Particle-In-Cell code

WarpX is an advanced electromagnetic & electrostatic Particle-In-Cell code. It supports many features including Perfectly-Matched Layers (PML), mesh refinement, and the boosted-frame technique. A highly-parallel and highly-optimized code, WarpX can run on GPUs and multi-core CPUs, includes load balancing capabilities, and scales to the largest supercomputers.

[ascl:2307.037] WDMWaveletTransforms: Fast forward and inverse WDM wavelet transforms

WDMWaveletTransforms implements the fast forward and inverse WDM wavelet transforms in Python from both the time and frequency domains. The frequency domain transforms are inherently faster and more accurate. The wavelet domain->frequency domain and frequency domain->wavelet domain transforms are nearly exact numerical inverses of each other for a variety of inputs tested, including Gaussian random noise. WDMWaveletTransforms has both command line and Python interfaces.

[ascl:2307.036] binary_c-python: Stellar population synthesis tool and interface to binary_c

binary_c-python provides a manager for and interface to the binary_c framework (ascl:2307.035), and rapidly evolves individual systems and populations of stars. It provides functions such as data processing tools and initial distribution functions for stellar properties. binary_c-python also includes tools to run large grids of (binary) stellar systems on servers or distributed systems.

[ascl:2307.035] binary_c: Stellar population synthesis software framework

The binary_c software framework models the evolution of single, binary and multiple stars, including stellar evolution and nucleosynthesis. Stellar evolution includes wind mass loss, rotation, thermal pulses, magnetic braking, pre-main sequence evolution, supernovae and kicks, and neutron stars; binary-star evolution includes mass transfer, gravitational-wave losses, tides, novae, circumbinary discs, and merging stars. binary_c natively includes nucleosynthesis, and, as it is designed for stellar population calculations, it is lightweight and versatile. binary_c works in standalone, virtual and HPC environments, and its support software contains tools for development and data analysis. A version in Python, binary_c-python (ascl:2307.036), is also available.

[ascl:2307.034] Guacho: 3D uniform mesh parallel HD/MHD code for astrophysics

Guacho is a 3D hydrodynamical/magnetohydrodynamical code suited for astrophysical fluids. The hydrodynamic equations are evolved with a number of approximate Riemann solvers. Gaucho includes various modules to deal with different cooling regimes, and a radiation transfer module based on a Monte Carlo ray tracing method. The code can run sequentially or in parallel with MPI.

[ascl:2307.033] Imber: Doppler imaging tool for modeling stellar and substellar surfaces

Imber simulates spectroscopic and photometric observations with both a gridded numerical simulation and analytical model. Written in Python, it is specifically designed to predict Extremely Large Telescope instrument (such as ELT/METIS and TMT/MODHIS) Doppler imaging performance, and has also been applied to existing, archival observations of spectroscopy and photometry.

[ascl:2307.032] AmpF: Amplification factor for solar lensing

AmpF numerically calculates the amplification factor for solar lensing. The import parameters are the gravitational-wave frequency and the source angular position with respect to the solar center; the code outputs are the amplification factor and its geometrical-optics limit. AmpF accepts variables for several attributes and the overall amplitude of the lensing potential can be changed as needed. The method has been implemented in both C and Python.

[ascl:2307.031] HilalPy: Analysis tool for lunar crescent visibility criterion

HilalPy analyzes lunar crescent visibility criteria. Written in Python, the code uses more than 8000 lunar crescent visibility records extracted from literature and websites of lunar crescent observation, descriptive statistics, contradiction rate percentage, and regression analysis in its analysis to predict the visibility of a lunar crescent.

[ascl:2307.030] SAMUS: Simulator of Asteroid Malformation Under Stress

SAMUS (Simulator of Asteroid Malformation Under Stress) simulates the deformation of minor bodies, assuming that they are homogenous incompressible fluid masses. They are initialized as ellipsoids and the Navier-Stokes equations are interatively solved to investigate the deformation of the body over time. The software is modular and allows for user-defined output functions, size, and trajectories. Structured as a single large class, SAMUS can store variables and handle arbitrary function calls, which eases debugging and investigation, especially for lengthy high-fidelity simulation runs.

[ascl:2307.029] SIMPLE: Intensity map generator

SIMPLE (Simple Intensity Map Producer for Line Emission) generates intensity maps that include observational effects such as noise, anisotropic smoothing, sky subtraction, and masking. Written in Python, it is based on a lognormal simulation of galaxies and random assignment of luminosities to these galaxies and generates mock intensity maps that can be used to study survey systematics and calculate covariance matrices of power spectra. The code is modular, allowing its components to be used independently.

[ascl:2307.028] TidalPy: Moon and exoplanet tidal heating and dynamics estimator

TidalPy performs semi-analytic calculations of tidal dissipation and subsequent orbit-spin evolution for rocky and icy worlds. It can be used as a black box, in which an Object-Oriented Programming (OOP) scheme performs many calculations with very little user input from the user, making it easy to get started with the package, or as a toolbox, as it contains many efficient functions to perform calculations relevant to tides and thermal-orbital coupling, which can be quickly imported and used in a custom scripts. In general, TidelPy's toolbox (functional) scheme provides much higher performance, flexibility, and extensibility than the OOP scheme. It also makes assumptions more visible to the user. The downside is the user may need to be more familiar with the underlying physics.

[ascl:2307.027] CosmicFish: Cosmology forecasting tool

CosmicFish obtains expected bounds on cosmological parameters for a wide range of models and observables for cosmological forecasting. The package includes a Fortran library to produce Fisher matrices, a Python library that performs operations on the produced Fisher matrices, and a full set of plotting utilities. It works with many models, including CAMB (ascl:1102.026) and MGCAMB (ascl:1106.013), and can interface with any Boltzmann solver. The user can choose within a wide range of possible cosmological observables, including cosmic microwave background, weak lensing tomography, galaxy clustering, and redshift drift. CosmicFish is easy to customize; it provides a flexible package system and users can produce their own analyses and plotting pipelines following the default Python apps.

[ascl:2307.026] gyrointerp: Gyrochronology via interpolation of open cluster rotation sequences

gyrointerp calculates gyrochronal ages by interpolating between open cluster rotation sequences. The framework, written in Python, can be used to find the gyrochronological age posterior of single or many stars. It can also produce a visual interpolation for a star’s age to determine where the star falls in the rotation-temperature plane in comparison to known reference clusters. gyrointerp models the ensemble evolution of rotation periods for main-sequence stars with temperatures of 3800-6200 K (masses of 0.5-1.2 solar) and is not applicable for subgiant or giant stars, and should be used cautiously with binary stars, as they can observationally bias temperature and rotation period measurements.

[ascl:2307.025] pyhalomodel: Halo-model implementation for power spectra

pyhalomodel computes halo-model power spectra for any desired tracer combination. The software requires only halo profiles for the tracers to be specified; these could be matter profiles, galaxy profiles, or something else, such as electron-pressure or HI profiles. pyhalomodel makes it easier to perform basic calculations using the halo model by reducing the changes of variables required to integrate halo profiles against halo mass functions, which can be confusing and tedious.

[ascl:2307.024] SHARK: Gas and dust hydrodynamics with dust coagulation/fragmentation

SHARK solves the hydrodynamic equations for gas and dust mixtures accounting for dust coagulation and fragmentation (among other things). The code is written in Fortran and is capable of handling both 1D and 2D Cartesian geometries; 1D simulations with spherical geometry are also possible. SHARK is versatile and can be used to model various astrophysical environments.

[ascl:2307.023] PyIMRPhenomD: Stellar origin black hole binaries population estimator

PyIMRPhenomD estimates the population of stellar origin black hole binaries for LISA observations using a Bayesian parameter estimation algorithm. The code reimplements IMRPhenomD (ascl:2307.019) in a pure Python code, compiled with the Numba just-in-time compiler. The module implements the analytic first and second derivatives necessary to compute t(f) and t'(f) rather than computing them numerically. Using the analytic derivatives increases the code complexity but produces faster and more numerically accurate results; the improvement in numerical accuracy is particularly significant for t'(f).

[ascl:2307.022] TOAST: Time Ordered Astrophysics Scalable Tools

The TOAST software framework simulates and processes timestream data collected by telescopes. The framework can distribute data among many processes and perform operations on the local pieces of the data, and has generic operators for common processing tasks such as filtering, pointing expansion, and map-making. In addition to offering I/O for a limited set of formats, it provides well-defined interfaces for adding custom I/O classes and processing operators. TOAST is written in C++ with a public Python interface, and contains utilities for controlling the runtime environment, logging, timing, streamed random number generation, quaternion operations, FFTs, and special function evaluation.

[ascl:2307.021] FGBuster: Parametric component separation for Cosmic Microwave Background observations

FGBuster (ForeGroundBuster) separates frequency maps into component maps and forecasts component separation both when the model is correct and when it is incorrect. FGBuster can be used for SED evaluation, intermediate component separation, multi-resolution separation, and forecasting, among other tasks.

[ascl:2307.020] PolyBin: Binned polyspectrum estimation on the full sky

PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.

[ascl:2307.019] IMRPhenomD: Phenomenological waveform model

The IMRPhenomD model generates gravitational wave signals for merging black hole binaries with non-precessing spins. The waveforms are produced in the frequency domain and include the inspiral, merger and ringdown parts for the dominant spherical harmonic mode of the signal. Part of LALSuite (ascl:2012.021) and also available as an independent code, IMRPhenomD is written in C and is calibrated against data from numerical relativity simulations. A re-implementation of IMRPhenomD in Python, PyIMRPhenomD (ascl:2307.023), is available.

[ascl:2307.018] IMRIpy: Intermediate Mass Ratio Inspirals simulator

IMRIpy simulates an Intermediate Mass Ratio Inspiral (IMRI) by gravitational wave emission with a Dark Matter(DM) halo or a (baryonic) Accretion Disk around the central Intermediate Mass Black Hole(IMBH). It can use different density profiles (such as DM spikes), and different interactions, such as dynamical friction with and without HaloFeedback models or accretion, to produce the simulation.

[ascl:2307.017] Veusz: Scientific plotting package

Veusz produces a wide variety of publication-ready 2D and 3D plots. Plots are created by building up plotting widgets with a consistent object-based interface, and the package provides many options for customizing plots. Veusz can import data from text, CSV, HDF5 and FITS files; datasets can also be entered within the program and new datasets created via the manipulation of existing datasets using mathematical expressions and more. The program can also be extended, by adding plugins supporting importing new data formats, different types of data manipulation or for automating tasks, and it supports vector and bitmap output, including PDF, Postscript, SVG and EMF.

[ascl:2307.016] DataComb: Combining data for better images

DataComb combines radio interferometric and single dish observations and obtains quantitative measures of how different techniques perform to obtain better fidelity images. The package relies on CASA (ascl:1107.013) for the combinations and on AstroPy (ascl:1304.002) for making quantitative
comparisons between different images produced by different methods. Model images and simulations are also used to assess the different combination methods.

[ascl:2307.015] BOWIE: Gravitational wave binary signal analysis

BOWIE (Binary Observability With Illustrative Exploration) performs graphical analysis of binary signals from gravitational waves. It takes gridded data sets and produces different types of plots in customized arrangements for detailed analysis of gravitational wave sensitivity curves and/or binary signals. BOWIE offers three main tools: a gridded data generator, a plotting tool, and a waveform generator for general use. The waveform generator creates PhenomD waveforms for binary black hole inspiral, merger, and ringdown. Gridded data sets are created using the PhenomD generator for signal-to-noise (SNR) analysis. Using the gridded data sets, customized configurations of plots are created with the plotting package.

[ascl:2307.014] Synthetic LISA: Simulator for LISA-like gravitational-wave observatories

Synthetic LISA simulates the LISA science process at the level of scientific and technical requirements. The code generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables, and provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI, including the motion of the LISA array, and the temporal and directional dependence of the armlengths.

[ascl:2307.013] SIRENA: Energy reconstruction of X-ray photons for Athena X-IFU

SIRENA (Software Ifca for Reconstruction of EveNts for Athena X-IFU) reconstructs the energy of incoming X-ray photons after their detection in the X-IFU TES detector. It is integrated in the SIXTE (ascl:1903.002) end-to-end simulations environment where it currently runs over SIXTE simulated data. This is done by means of a tool called tesreconstruction, which is mainly a wrapper to pass a data file to the SIRENA tasks.

[ascl:2307.012] mnms: Map-based Noise ModelS

mnms (Map-based Noise ModelS) creates map-based models of Simons Observatory Atacama Cosmology Telescope (ACT) data. Each model supports drawing map-based simulations from data splits with independent realizations of the noise or equivalent, similar to an independent set of time-domain sims. In addition to the ability to create on-the-fly simulations, mnms also includes ready-made scripts for writing a large batch of products to disk in a dedicated SLURM job.

[ascl:2307.011] DiscVerSt: Vertical structure calculator for accretion discs around neutron stars and black holes

DiscVerSt calculates the vertical structure of accretion discs around neutron stars and black holes. Different classes represent the vertical structure for different types of EoS and opacity, temperature gradient and irradiation scheme; the code includes an interface for initializing the chosen structure type. DiscVerSt also contains functions to calculate S-curves and the vertical and radial profile of a stationary disc.

[submitted] Coniferest: Python package for active anomaly detection

Coniferest is a Python package designed for implementing anomaly detection algorithms and interactive active learning tools. The centerpiece of the package is an Isolation Forest algorithm, known for its superior scoring performance and multi-threading evaluation. This robust anomaly detection algorithm operates by constructing random decision trees.

In addition to the Isolation Forest algorithm, Coniferest also offers two modified versions for active learning: AAD Forest and Pineforest. The AAD Forest modifies the Isolation Forest by reweighting its leaves based on responses from human experts, providing a faster alternative to the ad_examples package.

On the other hand, Pineforest, developed by the SNAD team, employs a filtering algorithm that builds and dismantles trees with each new human-machine iteration step.

Coniferest provides a user-friendly interface for conducting interactive human-machine sessions, facilitating the use of these active anomaly detection algorithms. The SNAD team maintains and utilizes this package primarily for anomaly detection in the field of astronomy, with a particular focus on light-curve data from large time-domain surveys.

[ascl:2307.010] baccoemu: Cosmological emulators for large-scale structure statistics

baccoemu provides a collection of emulators for large-scale structure statistics over a wide range of cosmologies. The emulators provide fast predictions for the linear cold- and total-matter power spectrum, the nonlinear cold-matter power spectrum, and the modifications to the cold-matter power spectrum caused by baryonic physics in a wide cosmological parameter space, including dynamical dark energy and massive neutrinos.

[ascl:2307.009] pnautilus: Three-phase chemical code

The three-phase pnautilus chemical code finds the abundance of each species by solving rate equations for gas-phase and grain surface chemistries. It performs gas–grain simulations in which both the icy mantle and the surface are considered active, taking into account mantle photodissociation, diffusion, and reactions; the code also considers the competition among reaction, diffusion and evaporation.

[ascl:2307.008] 21cmvFAST: Adding dark matter-baryon relative velocities to 21cmFAST

21cmvFAST demonstrates that including dark matter (DM)-baryon relative velocities produces velocity-induced acoustic oscillations (VAOs) in the 21-cm power spectrum. Based on 21cmFAST (ascl:1102.023) and 21CMMC (ascl:1608.017), 21cmvFAST accounts for molecular-cooling haloes, which are expected to drive star formation during cosmic dawn, as both relative velocities and Lyman-Werner feedback suppress halo formation. This yields accurate 21-cm predictions all the way to reionization (z>~10).

[ascl:2307.007] AGNvar: Model spectral timing properties in active galactic nuclei

AGNvar calculates the expected reverberation signal in any given energy band, for a given spectral energy distribution (SED), assuming variable X-ray emission. The code predicts the shape of the re-processed continuum by modeling the time-averaged SED according to input parameters, which include geometry, mass, and mass accretion rate; generally the input parameters are based off typical XSPEC (ascl:9910.005) models. It evaluates the SED response to an input driving light-curve (assumed to originate in the X-ray corona) and creates a set of time-dependent SEDs. It then takes the results from the set of time-dependent SEDs and extracts the light-curve in a given band pass.

[ascl:2307.006] pyPplusS: Modeling exoplanets with rings

pyPplusS calculates the light curves for ringed, oblate or spherical exoplanets in both the uniform and limb darkened cases. It can constrain the oblateness of planets using photometric data only. This code can be used to model light curves of more complicated configurations, including multiple planets, oblate planets, moons, rings, and combinations of these, while properly and efficiently taking into account overlapping areas and limb darkening.

[ascl:2307.005] axionHMcode: Non-linear power spectrum calculator

axionHMcode computes the non-linear matter power spectrum in a mixed dark matter cosmology with ultra-light axion (ULA) component of the dark matter. This model uses some of the fitting parameters and is inspired by HMcode (ascl:1508.001). axionHMcode uses the full expanded power spectrum to calculate the non-linear power spectrum; it splits the axion overdensity into a clustered and linear component to take the non clustering of axions on small scales due to free-streaming into account.

[ascl:2307.004] ALF: Absorption line fitter

alf fits the absorption line optical—NIR spectrum. Initially written to constrain the stellar IMF in old massive galaxies, the code now also offers theoretical age and metallicity-dependent response functions covering 19 elements, nuisance parameters to capture uncertainties in stellar evolution, and parameters to capture uncertainties in the data, including modeling telluric absorption and sky line residuals. alf can fit stellar populations with metallicities from approximately -2.0 to +0.3 and performs well when fitting stellar populations ranging from metal-poor globular clusters to brightest cluster galaxies. The software works in continuum-normalized space and so does not make any use of the shape of the continuum (nor of corresponding photometry). Fitting is handled with emcee (ascl:1303.002); the code is MPI parallelized and runs efficiently on many processors, though fitting data with alf is time intensive.

[ascl:2307.003] RelicFast: Fast scale-dependent halo bias

RelicFast computes the scale-dependent bias induced by relics of different masses, spins, and temperatures, through spherical collapse and the peak-background split. The code determines halo bias in under a second, making it possible to include this effect for different cosmologies, and light relics, at little computational cost.

[ascl:2307.002] BE-HaPPY: Bias emulator for halo power spectrum

BE-HaPPY (Bias Emulator for Halo Power spectrum Python) facilitates future large scale surveys analysis by providing an accurate, easy to use and computationally inexpensive method to compute the halo bias in the presence of massive neutrinos. Provided with a linear power spectrum, the package will compute a new power spectrum according to the chosen configuration. BE-HaPPY handles linear, polynomial, and perturbation theory bias models. The code also handles Kaiser and Scoccimarro redshifts; other available options include real or redshift space, the total neutrino mass, and a choice of mass bin or scale array, among others.

[ascl:2307.001] Jdaviz: JWST astronomical data analysis tools in the Jupyter platform

Jdaviz provides data viewers and analysis plugins that can be flexibly combined as desired to create interactive applications. It offers Specviz (ascl:1902.011) for visualization and quick-look analysis of 1D astronomical spectra; Mosviz for visualization of astronomical spectra, including 1D and 2D spectra as well as contextual information, and Cubeviz for visualization of spectroscopic data cubes (such as those produced by JWST MIRI). Imviz, which provides visualization and quick-look analysis for 2D astronomical images, is also included. Jdaviz is designed with instrument modes from the James Webb Space Telescope (JWST) in mind, but the tool is flexible enough to read in data from many astronomical telescopes, and the documentation provides a complete table of all supported modes.

[ascl:2306.060] SCF-FDPS: Disk-halo systems simulator

The fast N-body code SCF-FDPS (Self-Consistent Field-Framework for Developing Particle Simulators) simulates disk-halo systems. It combines a self-consistent field (SCF) code, which provides scalability, and a tree code that is parallelized using the Framework for Developing Particle Simulators (FDPS) (ascl:1604.011). SCF-FDPS handles a wide variety of halo profiles and can be used to study extensive dynamical problems of disk-halo systems.

[ascl:2306.059] BOXFIT: Gamma-ray burst afterglow light curve generator

BOXFIT calculates light curves and spectra for arbitrary observer times and frequencies and of performing (broadband) data fits using the downhill simplex method combined with simulated annealing. The flux value for a given observer time and frequency is a function of various variables that set the explosion physics (energy of the explosion, circumburst number density and jet collimation angle), the radiative process (magnetic field generation efficiency, electron shock-acceleration efficiency and synchrotron power slope for the electron energy distribution) and observer position (distance, redshift and angle). The code can be run both in parallel and on a single core. Because a data fit takes many iterations, this is best done in parallel. Single light curves and spectra can readily be done on a single core.

[ascl:2306.058] GER: Global Extinction Reduction

The Global Extinction Reduction IDL codes compare optical photometry from the twin Gemini North and South Multi-Object Spectrographs (GMOS-N and GMOS-S) against the expected worsening of atmospheric transparency due to global climate change. Data from the Gemini instruments are first reduced by DRAGONS (ascl:1811.002). GER then calibrates them against the Sloan Digital Sky Survey (SDSS) and Gaia G-band catalogs; image rotation and alignment is accomplished via identification of sufficiently-bright stars in Gaia. A simple model of Gemini and their site characteristics is generated, including meteorology, cloudy-fractions, number of reflections, dates of re-coatings modulated by rate of efficiency decay, together with response of detectors and associated zeropoints, and can be compared with the decline of transparency due to rising temperature and associated humidity increase.

[ascl:2306.057] pybranch: Calculate experimental branching fractions and transition probabilities from atomic spectra

pybranch calculates experimental branching fractions and transition probabilities from measurements of atomic spectra. Though the program is usually used with spectral line lists from intensity-calibrated spectra from Fourier transform spectrometers, it can in principle be used with any calibrated spectra that meet the input requirements. pybranch takes a set of linelists, computes a weighted average branching fraction (Fki) for each line, combines these branching fractions with the level lifetime to obtain the transition probability, and then prints the calibrated intensities and S/N ratios for all the lines observed from a particular upper level in each spectrum. One line can be chosen to use as a reference to put all of the intensities on the same scale. pybranch can use calculated transition probabilities to calculate a residual from lines that have not been observed.

[ascl:2306.056] PSFMachine: Toolkit for doing PSF photometry

PSFMachine creates models of instrument effective Point Spread Functions (ePSFs), also called Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. PSFMachine is able to quickly derive photometry from stacks of Kepler and TESS images and separate crowded sources.

[ascl:2306.055] ESSENCE: Evaluate spatially correlated noise in interferometric images

ESSENCE (Evaluating Statistical Significance undEr Noise CorrElation) evaluates the statistical significance of image analysis and signal detection under correlated noise in interferometric images (e.g., ALMA, NOEMA). It measures the noise autocorrelation function (ACF) to fully characterize the statistical properties of spatially correlated noise in the interferometric image, computes the noise in the spatially integrated quantities (e.g., flux, spectrum) with a given aperture, and simulates noise maps with the same correlation property. ESSENSE can also construct a covariance matrix from noise ACF, which can be used for a 2d image or 3d cube model fitting.

[ascl:2306.054] threepoint: Covariance of third-order aperture statistics

threepoint models the third-order aperture statistics, the natural components of the shear three-point correlation function and the covariance of third-order aperture statistics. Third-order weak lensing statistics extract cosmological information in the non-Gaussianity of the cosmic large-scale structure, making them a promising tool for cosmological analyses.

[ascl:2306.053] TiDE: Light curves and spectra of tidal disruption events

TiDE (TIdal Disruption Event) computes the light curves or spectrum of tidal disruption events. Written in C++, it can compute the monochromatic light curve without diffusion, including the total luminosity, wind luminosity and disk luminosity, and the monochromatic light curve with diffusion. TiDE can also model the bolometric luminosity and calculate the spectrum at a given time, including the wind luminosity and disk luminosity. This code can be used to explore the possible parameter space and reveal potential biases caused by the model assumptions, and can be extended with new models, allowing one to compare and test different prescriptions and model assumptions under the same circumstances.

[ascl:2306.052] kilopop: Binary neutron star population of optical kilonovae

kilopop produces binary neutron star kilonovae in the grey-body approximation. It can also create populations of these objects useful for forecasting detection and testing observing scenarios. Additionally, it uses an emulator for the grey-opacity of the material calibrated against a suite of numerical radiation transport simulations with the code SuperNu (ascl:2103.019).

[ascl:2306.051] Hitomi: Cosmological analysis of anisotropic galaxy distributions

Hitomi provides a comprehensive set of codes for cosmological analysis of anisotropic galaxy distributions using two- and three-point statistics: two-point correlation function (2PCF), power spectrum, three-point correlation function (3PCF), and bispectrum. The code can measure the Legendre-expanded 2PCF and power spectrum from an observed sample of galaxies, and can measure the 3PCF and bispectrum expanded using the Tripolar spherical harmonic (TripoSH) function. Hitomi is basically a serial code, but can also implement MPI parallelization. Hitomi uses MPI to read multiple different input parameters simultaneously.

[ascl:2306.050] SubgridClumping: Clumping factor for large low-resolution N-body simulations

SubgridClumping derives the parameters for the global, in-homogeneous and stochastic clumping model and then computes the clumping factor for large low-resolution N-body simulations smoothed on a regular grid. Written for the CUBEP3M simulation, the package contains two main modules. The first derives the three clumping model parameters for a given small high-resolution simulation; the second computes a clumping factor cube (same mesh-size as input) for the three models for the given density field of a large low-resolution simulation.

[ascl:2306.049] ARPACK-NG: Large scale eigenvalue problem solver

ARPACK-NG provides a common repository with maintained versions and a test suite for the ARPACK (ascl:1311.010) code, which is no longer updated; it is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. ARPACK-NG offers routines for banded matrices, singular value decomposition, single and double precision real arithmetic versions for symmetric, non-symmetric standard or generalized problems, and a reverse communication interface (RCI). It also provides example driver routines that may be used as templates to implement numerous shift-invert strategies for all problem types, data types and precision, in addition to other tools. The ARPACK-NG project, started by Debian, Octave, and Scilab, is now a community project maintained by volunteers.

[ascl:2306.048] MG-PICOLA: Simulating cosmological structure formation

MG-PICOLA is a modified version of L-PICOLA (ascl:1507.004) that extends the COLA approach for simulating cosmological structure formation to theories that exhibit scale-dependent growth. It can compute matter power-spectra (CDM and total), redshift-space multipole power-spectra P0,P2,P4 and do halofinding on the fly.

[ascl:2306.047] COLASolver: Particle-Mesh N-body code

COLASolver creates Particle-Mesh (PM) N-body simulations; the code is fast and very flexible, and can compute a wide range of models. For models with complex dynamics (screened models), it provides several options from doing it exactly to approximate but fast to just simulating linear theory equations. Every time-consuming operation is parallelized over MPI and OpenMP. It uses a slab-based parallelization that works well for fast approximate (COLA) simulations but does not perform as well for high resolution simulations. COLASolver can also be used as an analysis code for results from other simulations.

[ascl:2306.046] CHIPS: Circumstellar matter and light curves of interaction-powered transients simulator

CHIPS (Complete History of Interaction-Powered Supernovae) simulates the circumstellar matter and light curves of interaction-powered transients. Coupled with MESA (ascl:1010.083), the combined codes can obtain the circumstellar matter profile and light curves of the interaction-powered supernovae. CHIPS generates a realistic CSM from a model-agnostic mass eruption calculation, which can serve as a reference for observers to compare with various observations of the CSM. The code can also generate bolometric light curves from CSM interaction, which can be compared with observed light curves. The calculation of mass eruption and light curve typically takes respectively half a day and half an hour on modern CPUs.

[ascl:2306.045] nuPyProp: Propagate neutrinos through the earth

nuPyProp simulates tau neutrino and muon neutrino interactions in the Earth and predicts the spectrum of the τ-leptons and muons that emerge. The code produces tables of charged lepton exit probabilities and energies that can be used directly or as inputs to nuSpaceSim (ascl:2306.043), which is designed to simulate optical and radio signals from extensive air showers induced by the emerging charged leptons.

[ascl:2306.044] nuSpaceSim: Cosmic neutrino simulation

nuSpaceSim simulates upward-going extensive air showers caused by neutrino interactions with the atmosphere. It is an end-to-end, neutrino flux to space-based signal detection, modeling tool for the design of sub-orbital and space-based neutrino detection experiments. This comprehensive suite of modeling packages accepts an experimental design input and then models the experiment's sensitivity to both the diffuse, cosmogenic neutrino flux as well as astrophysical neutrino transient events, such as that postulated from binary neutron star (BNS) mergers. nuSpaceSim calculates the tau neutrino acceptance for the Optical Cherenkov technique; tau propagation is interpolated using included data tables from nupyprop (ascl:2306.044). The simulation is parameterized by an input XML configuration file, with settings for detector characteristics and global parameters; nuSpaceSim also provides a python API for programmatic access.

[ascl:2306.043] SHERLOCK: Explore Kepler, K2, and TESS data

The end-to-end SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers) pipeline allows users to explore data from space-based missions to search for planetary candidates. It can recover alerted candidates by the automatic pipelines such as SPOC and the QLP, Kepler objects of interest (KOIs) and TESS objects of interest (TOIs), and can search for candidates that remain unnoticed due to detection thresholds, lack of data exploration, or poor photometric quality. SHERLOCK has six different modules to perform its tasks; these modules can be executed by filling in an initial YAML file with some basic information and using a few lines of code sequentially to pass from one step to the next. Alternatively, the user may provide with the light curve in a csv file, where the time, normalized flux, and flux error are provided in columns in comma-separated format.

[ascl:2306.042] CONDUCT: Electron transport coefficients of magnetized stellar plasmas

CONDUCT calculates all components of kinetic tensors in fully ionized electron-ion plasmas at arbitrary magnetic field. It employs a thermal averaging with the Fermi distribution function and can be used when electrons are partially degenerate; it provides, along with the electrical and thermal conductivities, also thermopower (thermoelectric coefficient). CONDUCT takes into account collisions of the electrons with ions and (in solid phase) charged impurities as well as quantum effects on ionic motion in the solid phase. The code's outputs are the longitudinal, transverse, and off-diagonal (Hall) components of electrical and thermal conductivity tensors as well as the components of thermoelectric tensor.

[ascl:2306.041] COFFE: COrrelation Function Full-sky Estimator

COFFE (COrrelation Function Full-sky Estimator) computes quantities in linear perturbation theory. It computes the full-sky and flat-sky 2-point correlation function (2PCF) of galaxy number counts, taking into account all of the effects, including density, RSD, and lensing. It also determines the full-sky, flat-sky, and redshift-averaged multipoles of the 2PCF, and the flat-sky Gaussian covariance matrix of the multipoles of the 2PCF.

[ascl:2306.040] PEPITA: Prediction of Exoplanet Precisions using Information in Transit Analysis

PEPITA (Prediction of Exoplanet Precisions using Information in Transit Analysis) makes predictions for the precision of exoplanet parameters using transit light-curves. The code uses information analysis techniques to predict the best precision that can be obtained by fitting a light-curve without actually needing to perform the fit, thus allowing more efficient planning of observations or re-observations.

[ascl:2306.039] GRChombo: Numerical relativity simulator

GRChombo performs numerical relativity simulations. It uses Chombo (ascl:1202.008) for adaptive mesh refinement and can evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchies and massive parallelism and evolves the Einstein equation using the standard BSSN formalism. GRChombo is written in C++14 and uses hybrid MPI/OpenMP parallelism and vector intrinsics to achieve good performance.

[ascl:2306.038] FacetClumps: Molecular clump detection algorithm based on Facet model

FacetClumps extracts and analyses clumpy structure in molecular clouds. Written in Python and based on the Gaussian Facet model, FacetClumps extracts signal regions using morphology, and segments the signal regions into local regions with a gradient-based method. It then applies a connectivity-based minimum distance clustering method to cluster the local regions to the clump centers. FacetClumps automatically adjusts its parameters to local situations to improve adaptability, and is optimized to detect faint and overlapping clumps.

[ascl:2306.037] CADET: X-ray cavity detection tool

The machine learning pipeline CADET (CAvity DEtection Tool) finds and size-estimates arbitrary surface brightness depressions (X-ray cavities) on noisy Chandra images of galaxies. The pipeline is a self-standing Python script and inputs either raw Chandra images in units of counts (numbers of captured photons) or normalized background-subtracted and/or exposure-corrected images. CADET saves corresponding pixel-wise as well as decomposed cavity predictions in FITS format and also preserves the WCS coordinates; it also outputs a PNG file showing decomposed predictions for individual scales.

[ascl:2306.036] IDEFIX: Astrophysical fluid dynamics

Idefix solves non-relativistic HD and MHD equations on various grid geometries. Based on a Godunov finite-volume method, this astrophysical flows code includes a wide choice of solvers and several modules, including constrained transport, orbital advection, and non-ideal MHD, to address complex astrophysical and fluid dynamics applications. Written in C++, Idefix relies on the Kokkos meta-programming library to guarantee performance portability on a wide variety of architectures.

[ascl:2306.035] CONCEPT: COsmological N-body CodE in PyThon

CONCEPT (COsmological N-body CodE in PyThon) simulates cosmological structure formation. It can simulate matter particles evolving under self-gravity in an expanding background. The code offers multiple gravitational solvers and has adaptive time integration built in. In addition to particles, CONCEPT also evolves fluids at various levels of non-linearity, providing the means for the inclusion of more exotic species such as massive neutrinos, as well as for simulations consistent with general relativistic perturbation theory. Various non-standard species, such as decaying cold dark matter, are fully supported. CONCEPT includes a sophisticated initial condition generator and can output snapshots, power spectra, bispectra ,and several kinds of renders.

[ascl:2306.034] COLT: Monte Carlo radiative transfer and simulation analysis toolkit

COLT (Cosmic Lyman-alpha Transfer) is a Monte Carlo radiative transfer (MCRT) solver for post-processing hydrodynamical simulations on arbitrary grids. These include a plane parallel slabs, spherical geometry, 3D Cartesian grids, adaptive resolution octrees, unstructured Voronoi tessellations, and secondary outputs. COLT also includes several visualization and analysis tools that exploit the underlying ray-tracing algorithms or otherwise benefit from an efficient hybrid MPI + OpenMP parallelization strategy within a flexible C++ framework.

[ascl:2306.033] lasso_spectra: Predict properties from galaxy spectra using Lasso regression

lasso_spectra fits Lasso regression models to data, specifically galaxy spectra. It contains two classes for performing the actual model fitting. GeneralizedLasso is a tensorflow implementation of Lasso regression, which includes the ability to use link functions. SKLasso is a wrapper around the scikit-learn Lasso implementation intended to give the same syntax as GeneralizedLasso. It is much faster and more reliable, but does not support generalized linear models.

[ascl:2306.032] CosmoGraphNet: Cosmological parameters and galaxy power spectrum from galaxy catalogs

CosmoGraphNet infers cosmological parameters or the galaxy power spectrum. It creates a graph from a galaxy catalog with information the 3D position and intrinsic galactic properties. A Graph Neural Network is then applied to predict the cosmological parameters or the galaxy power spectrum.

[ascl:2306.031] ECLIPSE: Efficient Cmb poLarization and Intensity Power Spectra Estimator

ECLIPSE (Efficient Cmb poLarization and Intensity Power Spectra Estimator) implements an optimized version of the Quadratic Maximum Likelihood (QML) method for the estimation of the power spectra of the Cosmic Microwave Background (CMB) from masked skies. Written in Fortran, ECLIPSE can be used in a personal computer but also benefits from the capabilities of a supercomputer to tackle large scale problems; it is designed to run parallel on many MPI tasks. ECLIPSE analyzes masked CMB maps in which the signal can be affected by the beam and pixel window functions. The masks of intensity and polarization can be different and the noise can be isotropic or anisotropic. The program can estimate auto and cross-correlation power spectrum, that can be binned or unbinned.

[ascl:2306.030] Butterpy: Stellar butterfly diagram and rotational light curve simulator

Butterpy simulates star spot emergence, evolution, decay, and stellar rotational light curves. It tests the recovery of stellar rotation periods using different frequency analysis techniques. Butterpy can simulate light curves of stars with variable activity level, rotation period, spot lifetime, magnetic cycle duration and overlap, spot emergence latitudes, and latitudinal differential rotation shear.

[ascl:2306.029] Mixclask: Mixing Cloudy and SKIRT

Mixclask combines Cloudy (ascl:9910.001) and SKIRT (ascl:1109.003) to predict spectra and gas properties in astrophysical contexts, such as galaxies and HII regions. The main output is the mean intensity of a region filled with stars, gas and dust at different positions, assuming axial symmetry. The inputs for Mixclask are the stellar and ISM data for each region and an file for the positions (x,y,z) that will be output.

[ascl:2306.028] rfast: Planetary spectral forward and inverse modeling tool

rfast ingests tables of opacities and generates synthetic spectra of worlds and retrieves real or simulated spectral observations. It can add noise, perform inverse modeling, and plot results. The tool can be applied to simulated and real observations spanning reflected-light, thermal emission, and transit transmission. Retrieval parameters can be toggled and parameters can be retrieved in log or linear space and adopt a Gaussian or flat prior.

[ascl:2306.027] PEP: Planetary Ephemeris Program

Planetary Ephemeris Program (PEP) computes numerical ephemerides and simultaneously analyzes a heterogeneous collection of astrometric data. Written in Fortran, it is a general-purpose astrometric data-analysis program and models orbital motion in the solar system, determines orbital initial conditions and planetary masses, and has been used to, for example, measure general relativistic effects and test physics theories beyond the standard model. PEP also models pulsar motions and distant radio sources, and can solve for sky coordinates for radio sources, plasma densities, and the second harmonic of the Sun's gravitational field.

[ascl:2306.026] Parthenon: Portable block-structured adaptive mesh refinement framework

The Parthenon framework, derived from Athena++ (ascl:1912.005), handles massively-parallel, device-accelerated adaptive mesh refinement. It provides a device first/device resident approach, transparent packing of data across blocks (to reduce/hide kernel launch latency), and direct device-to-device communication via asynchronous, one-sided MPI communication to enable high performance. Parthenon uses an intermediate abstraction layer to hide complexity of device kernel launches, offers support for particles and abstract variable control via metadata tags, and has a flexible plug-in package system.

[ascl:2306.025] ALminer: ALMA archive mining and visualization toolkit

ALminer queries, analyzes, and visualizes the ALMA Science Archive. Users can programmatically query the archive for positions, target names, or other keywords in the archive metadata (such as proposal title, abstract, or scientific category). ALminer's plotting routines allow the query results to be visualized, and its analysis functions allow users to filter the results and check whether certain frequencies of interest are covered in the queried observations. The code also allows users to directly download ALMA data products in FITS format and/or the raw data that can be used for manual image processing. ALminer has been designed to make mining the ALMA archive as simple as possible, while being flexible to be customized according to the user's scientific interests. The code is released with a detailed tutorial Jupyter notebook, introducing ALminer's common functions as well as some of its more advanced options.

[ascl:2306.024] COpops: Compute CO sizes and fluxes

COpops computes semi-analytically the CO flux of a disc (given initial conditions and age) under the assumption of LTE and optically thick emission. It then runs disc population synthesis using observationally-informed initial conditions. CO fluxes is one of the most easily accessible observables for studying disc evolution; COpops is a faster alternative to running computationally-expensive thermochemical models for hundreds of discs and is accurate, recovering agreement within a factor of three.

[ascl:2306.023] RELAGN: AGN SEDs with full GR ray tracing

RELAGN creates spectral models for the calculation of AGN SEDs, ranging from the Optical/UV (outer accretion disc) to the Hard X-ray (Innermost X-ray Corona). The code is available in two languages, Python and Fortran. The Fortran version is written to be used with the spectral fitting software XSPEC (ascl:9910.005), and is the preferred version for analyzing X-ray spectral data. The Python version provides more flexibility for modeling. Whereas the Fortran version produces only a spectrum, the Python implementation can extract the physical properties of the system (such as the physical mass accretion rate, disc size, and efficiency parameters) since these are all stored as attributes within the model. Both versions require a working installation of HEASOFT (ascl:1408.004).

[ascl:2306.022] apollinaire: Helioseismic and asteroseismic peakbagging frameworks

apollinaire provides functions and a framework for helioseismic and asteroseismic instruments data managing and analysis, and includes all the tools necessary to analyze the acoustic oscillations of solar-like stars. The core of the package is the peakbagging library, which provides a full framework to extract oscillation modes parameters from solar and stellar power spectra.

[ascl:2306.021] pipes_vis: Interactive GUI and visualizer tool for SPS spectra

pipes_vis is an interactive graphical user interface for visualizing SPS spectra. Powered by Bagpipes (ascl:2104.017), it provides real-time manipulation of a model galaxy's star formation history, dust, and other relevant properties through sliders and text boxes.

[ascl:2306.020] mockFRBhosts: Limiting the visibility and follow-up of FRB host galaxies

mockFRBhosts estimates the fraction of FRB hosts that can be cataloged with redshifts by existing and future optical surveys. The package uses frbpoppy (ascl:1911.009) to generate a population of FRBs for a given radio telescope. For each FRB, a host galaxy is drawn from a data base generated by GALFORM (ascl:1510.005). The galaxies' magnitudes in different photometric surveys are calculated as are the number of bands in which they are detected. mockFRBhosts also calculates the follow-up time in a 10-m optical telescope required to do photometry or spectroscopy and provides a simple interface to Bayesian inference methods via MCMC simulations provided in the FRB package (ascl:2306.018).

[ascl:2306.019] realfast: Real-time interferometric data analysis for the VLA

The transient search pipeline realfast integrates with the real-time environment at the Very Large Array (VLA) to look for fast radio bursts, pulsars, and other rare astrophysical transients. The software monitors multicast messages, catches visibility data, and defines a fast transient search pipeline with rfpipe (ascl:1710.002). It indexes candidate transients and other metadata for the search interface, and writes and archives new visibility files for candidate transients. realfast provides support for GPU algorithms, manages distributed futures, and performs blind injection and management of mock transients, among other tasks, and rapidly distributes data products and transient alerts to the public.

[ascl:2306.018] FRB: Fast Radio Burst calculations, estimations, and analysis

FRB performs calculations, estimations, analysis, and Bayesian inferences for Fast Radio Bursts, including dispersion measure and emission measure calculations, derived properties and spectrums, and Galactic RM.

[ascl:2306.017] Zeus21: Simulations of 21-cm at cosmic dawn

Zeus21 (Zippy Early-Universe Solver for 21-cm) captures the nonlocal and nonlinear physics of cosmic dawn to create an effective model for the 21-cm power spectrum and global signal. The code takes advantage of the approximate log-normality of the star-formation rate density (SFRD) during cosmic dawn to compute the 21-cm power spectrum analytically. It agrees with more expensive semi-numerical simulations to roughly 10% precision, but has comparably negligible computational cost (~ s) and memory requirements. Zeus21 pairs well with data from HERA, but can be used for any 21-cm inference or prediction. Its capabilities include finding the 21-cm power spectrum (at a broad range of k and z), the global signal, IGM temperatures (Tk, Ts, Tcolor), neutral fraction xHI, Lyman-alpha fluxes, and the evolution of the SFRD; all across cosmic dawn z=5-35. It can also predict UVLFs for HST and JWST. Zeus21 can use three different astrophysical models, one of which emulates 21cmFAST (ascl:1102.023), and can vary the cosmology through CLASS (ascl:1106.020).

[ascl:2306.016] SuperRad: Black hole superradiance gravitational waveform modeler

SuperRad models ultralight boson clouds that arise through black hole superradiance. It uses numerical results in the relativistic regime combined with analytic estimates to describe the dynamics and gravitational wave signals of ultralight scalar or vector clouds. Written in Python, SuperRad includes a set of testing routines that check the internal consistency of the package; these tests mainly serve the purpose of ensuring functionality of the waveform model but can also be utilized to check that SuperRad works as intended.

[ascl:2306.015] Mangrove: Infer galaxy properties using dark matter merger trees

Mangrove uses Graph Neural Networks to regress baryonic properties directly from full dark matter merger trees to infer galaxy properties. The package includes code for preprocessing the merger tree, and training the model can be done either as single experiments or as a sweep. Mangrove provides loss functions, learning rate schedulers, models, and a script for doing the training on a GPU.

[ascl:2306.014] AIOLOS: Planetary atmosphere accretion and escape simulations

AIOLOS solves differential equations for hydrodynamics, friction, (thermal) radiation transport and (photo)chemistry for simulating accretion onto, and hydrodynamic escape from, planetary atmospheres. The 1-D multispecies, multiphysics hydrodynamics code, written in C++, compiles in a flexible mode that runs problems with any number of input species, and can be sped up by setting the number of species at compile time, and allows the user to provide initial conditions or boundary conditions if desired. AIOLOS provides output and diagnostic files that give snapshots in time of the state of the simulation. Output files are specific to each species, and diagnostic files contain summary as well as detailed information for, for example, the radiation transport, opacities for all species, and optical cell depths per band, in addition to other information.

[ascl:2306.013] SCONCE-SCMS: Spherical and conic cosmic web finders with extended SCMS algorithms

SCONCE-SCMS detects cosmic web structures, primarily cosmic filaments and the associated cosmic nodes, from a collection of discrete observations with the extended subspace constrained mean shift (SCMS) algorithms on the unit (hyper)sphere (in most cases, the 2D (RA,DEC) celestial sphere), and the directional-linear products space (most commonly, the 3D (RA,DEC,redshift) light cone).

The subspace constrained mean shift (SCMS) algorithm is a gradient ascent typed method dealing with the estimation of local principal curves, more widely known as density ridges. The one-dimensional density ridge traces over the curves where observational data are highly concentrated and thus serves as a natural model for cosmic filaments in our Universe. Modeling cosmic filaments as density ridges enables efficient estimation by the kernel density estimator (KDE) and the subsequent SCMS algorithm in a statistically consistent way. While the standard SCMS algorithm can identify the density ridges in any "flat" Euclidean space, it exhibits large bias in estimating the density ridges on the data space with a non-linear curvature. The extended SCMS algorithms used in SCONCE-SCMS are adaptive to the spherical and conic geometries and resolve the estimation bias of the standard SCMS algorithm on a 2D (RA,DEC) celestial sphere or 3D (RA,DEC,redshift) light cone.

[ascl:2306.012] ZodiPy: Zodiacal emission simulations in timestreams or HEALPix for solar system observers

ZodiPy simulates the zodiacal emission in intensity that an arbitrary solar system observer is predicted to see given an interplanetary dust model, either in the form of timestreams or full-sky HEALPix maps. Written in Python, the code makes zodiacal emission simulations more accessible by providing a simple interface to existing models.

[ascl:2306.011] margarine: Posterior sampling and marginal Bayesian statistics

Margarine computes marginal bayesian statistics given a set of samples from an MCMC or nested sampling run. Specifically, the code calculates marginal Kullback-Leibler divergences and Bayesian dimensionalities using Masked Autoregressive Flows and Kernel Density Estimators to learn and sample posterior distributions of signal subspaces in high dimensional data models, and determines the properties of cosmological subspaces, such as their log-probability densities and how well constrained they are, independent of nuisance parameters. Margarine thus allows for direct and specific comparison of the constraining ability of different experimental approaches, which can in turn lead to improvements in experimental design.

[ascl:2306.010] MOBSE: Massive Objects in Binary Stellar Evolution

MOBSE investigates the demography of merging BHBs. A customized version of the binary stellar evolution code BSE (ascl:1303.014), MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars and upgrades for the evolution of single and binary massive stars.

[ascl:2306.009] Albatross: Stellar stream parameter inference with neural ratio estimation

Albatross analyzes Milky Way stellar streams. This Simulation-Based Inference (SBI) library is built on top of swyft (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Using swyft for its internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and sstrax (ascl:2306.008) for fast simulation and modeling, Albatross provides a modular inference pipeline to support parameter inference on all relevant parts of stellar stream models.

[ascl:2306.008] sstrax: Fast stellar stream modelling in JAX

sstrax provides fast simulations of Milky Way stellar stream formation. Using JAX (ascl:2111.002) acceleration to support code compilation, sstrax forward models all aspects of stream formation, including evolution in gravitational potentials, tidal disruption and observational models, in a fully modular way. Although sstrax is a standalone python package, it was also developed to integrate directly with the Albatross (ascl:2306.009) inference pipeline, which performs inference on all relevant aspects of the stream model.

[ascl:2306.007] PhotoParallax: Data-driven photometric parallaxes built with Gaia and 2MASS

PhotoParallax calculates photometric parallaxes for distant stars in the Gaia TGAS catalog without any use of physical stellar models or stellar density models of the Milky Way. It uses the geometric parallaxes to calibrate a photometric model that is purely statistical, which is a model of the data rather than a model of stars per se.

[ascl:2306.006] β-SGP: Scaled Gradient Projection algorithm using β-divergence

β-SGP deconvolves an astronomical image with a known Point Spread Function, providing a means for restoration of telescopic images due to issues ranging from atmospheric turbulence to instrumental aberrations. The code supports improved astrometry, deblending of overlapping sources, faint source detection, and identification of point sources near bright extended objects, and other tasks. β-SGP generalizes the Scaled Gradient Projection (SGP) image deconvolution algorithm using β-divergence as a loss function to restore distorted stellar shapes.

[ascl:2306.005] Delight: Photometric redshift via Gaussian processes with physical kernels

Delight infers photometric redshifts in deep galaxy and quasar surveys. It uses a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift, thus leveraging the advantages of both machine- learning and template-fitting methods by building template SEDs directly from the training data. Delight obtains accurate redshift point estimates and probability distributions and can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts.

[ascl:2306.004] TIDYMESS: TIdal DYnamics of Multi-body ExtraSolar Systems

The N-body code TIDYMESS (TIdal DYnamics of Multi-body ExtraSolar Systems) can describe the mass distribution of each body its inertia tensor and directly and self-consistently integrates orbit, spin, and inertia tensors. It manages the deformation of a body follows the tidal Creep model and includes the centrifugal force and tidal force. Written in C++, TIDYMESS is available as a standalone package and also through the AMUSE framework (ascl:1107.007).

[ascl:2306.003] SAVED21cm: Global 21cm signal extraction pipeline

SAVED21cm extracts the 21cm signal from the simulated mock observation for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH). Though built for the REACH experiment, this 21cm signal extraction pipeline can in principle can be utilized for any global 21cm experiment. The toolkit is based on a pattern recognition framework using the Singular Value Decomposition (SVD) of the 21cm and foreground training set. SAVED21cm finds the patterns in the training sets and properly models the chromatic distortions with a better basis than the polynomials.

[ascl:2306.002] sbi: Simulation-based inference toolkit

Simulation-based inference is the process of finding parameters of a simulator from observations. The PyTorch package sbi performs simulation-based inference by taking a Bayesian approach to return a full posterior distribution over the parameters, conditional on the observations. This posterior can be amortized (i.e. useful for any observation) or focused (i.e.tailored to a particular observation), with different computational trade-offs. The code offers a simple interface for one-line posterior inference.

[ascl:2306.001] HAFFET: Supernovae photometric and spectroscopic data analyzer

HAFFET (Hybrid Analytic Flux FittEr for Transients) analyzes supernovae photometric and spectroscopic data. It handles observational data for a set of targets, estimates their physical parameters, and visualizes the population of inferred parameters. HAFFET defines two classes, snobject for data and fittings for one specific object, and snelist to organize the overall running for a list of objects. The HAFFET package includes utilities for downloading SN data from online sources, intepolating multi band lightcurves, characterizing the first light and rising of SNe with power law fits, and matching epochs of different bands. It can also calculate colors, and/or construct the spectral energy distribution (SED), estimate bolometric LCs and host galaxy extinction, fit the constructed bolometric lightcurves to different models, and identify and fit the absorption minima of spectral lines, in addition to performing other tasks. In addition to utilizing the built-in models, users can add their own models or import models from other python packages.

[ascl:2305.025] CELEBI: Precision localizations and polarimetric data for fast radio bursts

The Australian Square Kilometre Array Pathfinder (ASKAP) has been enabled by the Commensal Real-time ASKAP Fast Transients Collaboration (CRAFT) to detect Fast Radio Bursts (FRBs) in real-time and save raw antenna voltages containing FRB detections. CELEBI, the CRAFT Effortless Localization and Enhanced Burst Inspection pipeline, extends CRAFT’s existing software to process ASKAP voltages to produce sub-arcsecond precision localizations and polarimetric data at time resolutions as fine as 3 ns of FRB events. CELEBI uses Nextflow (ascl:2305.024) to link together Bash and Python code to perform software correlation, interferometric imaging, and beamforming, thereby making use of common astronomical software packages.

[ascl:2305.024] Nextflow: DSL for data-driven computational pipelines

Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and the deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow supports deploying workflows on a variety of execution platforms including local, HPC schedulers, AWS Batch, Google Cloud Life Sciences, and Kubernetes. Additionally, it provides support for workflow dependencies through built-in support for, for example, Conda, Spack, Docker, Podman, Singularity, and Modules.

[ascl:2305.023] GLASS: Cosmological simulations on the sphere

GLASS (Generator for Large Scale Structure) produces cosmological simulations on the sphere. The full, three-dimensional past light cone of the observer is discretized into a sequence of nested shells, which are further discretized in the angular dimensions into maps of the sphere. GLASS was originally designed to simulate cosmic matter, weak gravitational lensing, and galaxy positions, but its flexible design and open architecture allows it to be used for a wide range of cosmological and astrophysical simulations on the sphere.

[ascl:2305.022] GrGadget: Evolve metric perturbations in the weak field limit

GrGadget merges the Particle-Mesh (PM) relativistic GEVOLUTION code (ascl:1608.014) with the TreePM GADGET-4 code (ascl:2204.014) to create a TreePM simulation code that represents metric perturbations at the scales where they are relevant while resolving non-linear structures. The better resolution of the highly non-linear regime improves the representation of the relativistic fields sampled on the mesh with respect to PM-only simulations.

[ascl:2305.021] COLIBRI: Cosmological libraries in Python

COLIBRÌ (which roughly stands for “Cosmological Libraries”) computes cosmological quantities such as ages, distances, power spectra, and correlation functions. It supports Lambda-CDM cosmologies plus extensions including massive neutrinos, non-flat geometries, evolving dark energy (w0-wa) models, and numerical recipes for f(R) gravity. COLIBRÌ is built especially for large-scale structure purposes and can interact with the Boltzmann solvers CAMB (ascl:1102.026) and CLASS (ascl:1106.020).

[ascl:2305.020] JEDI: James's EVE Dimming Index

JEDI searches for and characterizes coronal dimming in light curves produced from the Solar Dynamics Observatory (SDO) Extreme Ultraviolet (EUV) Variability Experiment (EVE). The suite has a wrapper script that calls other functions, which can also be run independently assuming needed inputs from prior functions are provided. JEDI's functions fit light curves and return the best fit, compute precision for iron light curves, and find the biggest dimming depth and its time in a given light curve. JEDI also includes functions for finding the duration of the dimming, minimum, maximum, and mean slope of dimming of a light curve, and for identifying the biggest peak in two light curves, time shifting them so the peaks are concurrent, scaling them so the peaks are the same magnitude, and then subtracting them, among other useful functions.

[ascl:2305.019] sterile-dm: Sterile neutrino production

The sterile neutrino production code sterile-dm incorporates new elements to the calculations of the neutrino opacity at temperatures 10 MeV ≤ T ≤ 10 GeV and folds the asymmetry redistribution and opacity calculations into the sterile neutrino production computation, providing updated PSDs for the range of parameters relevant to the X-ray excess. The code requires several data files, which are included. With each run, sterile-dm creates a new output sub-directory that contains a parameter file listing the mass, mixing angle, initial lepton asymmetry and other information, a state file, which includes, among other states, the temperature and FRW coordinate time, and a set of snapshot files, one for each line in the state file.

[ascl:2305.018] GWSurrogate: Gravitational wave surrogate models

GWSurrogate provides an easy to use interface to gravitational wave surrogate models. Surrogates provide a fast and accurate evaluation mechanism for gravitational waveforms which would otherwise be found through solving differential equations. These equations must be solved in the “building” phase, which was performed using other codes.

[ascl:2305.017] simple-m2m: Extensions to the standard M2M algorithm for full modeling of observational data

Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (e.g., the inclination) or parameters describing an external potential.

[ascl:2305.016] gw_pta_emulator: Gravitational Waves via Pulsar Timing Arrays

The gw_pta_emulator reads in gravitational wave (GW) characteristic strain spectra from black-hole population simulations, re-bins for the user's observing baseline, and constructs new spectra. The user can train a Gaussian process to emulate the spectral behavior at all frequencies across the astrophysical parameter space of supermassive black-hole binary environments.

[ascl:2305.015] EIDOS: Modeling primary beams of radio astronomy antennas

EIDOS models the primary beam of radio astronomy antennas. The code can be used to create MeerKAT L-band beams from both holographic (AH) observations and EM simulations within a maximum diameter of 10 degrees. The beam model is less accurate at higher frequencies, and performs much better below 1400 MHz. The diagonal terms of the model beam Jones matrix are much better known than the off-diagonal terms. The performance of EIDOS is dependent on the quality of the given AH and EM datasets; as more accurate AH models and EM simulations become available, this pipeline can be used to create more accurate sparse representation of primary beams using Zernike polynomials.

[ascl:2305.014] DP3: Streaming processing pipeline for radio interferometric data

DP3 (the Default Preprocessing Pipeline) is the LOFAR data pipeline processing program and is the successor to DPPP (ascl:1804.003). It performs many kinds of operations on the data in a pipelined way so the data are read and written only once. DP3 preprocesses the data of a LOFAR observation by executing steps such as flagging or averaging. Such steps can be used for the raw data as well as the calibrated data by defining the data column to use. One or more of the following steps can be defined as a pipeline. DP3 has an implicit input and output step. It is also possible to have intermediate output steps. DP3 comes with predefined steps, but also allows the user to plug in arbitrary steps implemented in either C++ or Python.

[ascl:2305.013] aartfaac2ms: Aartfaac datasets converter

aartfaac2ms converts raw Aartfaac correlator files to the casacore (ascl:1912.002) measurement set format. It phase rotates the data to a common phase center, and (optionally) flags, averages, and compresses the data. The code includes a tool, afedit, to splice a raw Aartfaac set based on LST.

[ascl:2305.012] KERN: Radio telescope toolkit

KERN contains most of the standard tools needed to work with radio telescope data. The suite saves time and reduces frustration in setting up of scientific pipelines, and also improves scientific reproducibility. It includes a wide variety of packages, including 21cmfast (ascl:1102.023), BRATS (ascl:1806.025), CARTA (ascl:2103.031), casacore (ascl:1912.002), CubiCal (ascl:1805.031), DDFacet (ascl:2305.008), PyBDSF (ascl:1502.007),TiRiFiC (ascl:1208.008), WSClean (ascl:1408.023), and many others. KERN can be run on a supported platform such as Ubuntu, with Docker and Singularity, or in a virtual machine.

[ascl:2305.011] DarkMappy: Mapping the dark universe

DarkMappy reconstructs maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem in order to implement hybrid Bayesian dark-matter reconstruction techniques on the plane and on the celestial sphere. These convergence maps support principled uncertainty quantification and provide hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction.

[ascl:2305.010] FLAGLET: Fast and exact wavelet transform on the ball

FLAGLET computes flaglet transforms with arbitrary spin direction, probing the angular features of this generic wavelet transform for rapid analysis of signals from wavelet coefficients. The code enables the decomposition of a band-limited signal into a set of flaglet maps that capture all information contained in the initial band-limited map, and it can reconstruct the individual flaglets at varying resolutions. FLAGLET relies upon the SSHT (ascl:2207.034), S2LET (ascl:1211.001), and SO3 codes to provide angular transforms and sampling theorems, as well as the FFTW (ascl:1201.015) code to compute Fourier transforms.

[ascl:2305.009] breizorro: Image masking tool

Given a FITS image, breizorro creates a binary mask. The software allows the user control various parameters and functions, such as setting a sigma threshold for masking, merging in or subtracting one or more masks or region files, filling holes, applying dilation within a defined radius of pixels, and inverting the mask.

[ascl:2305.008] DDFacet: Facet-based radio imaging package

DDFacet provides a wideband wide-field spectral imaging and deconvolution framework that accounts for generic direction-dependent effects (DDEs). It implements a wide-field coplanar faceting scheme and uses nontrivial facet-dependent w-kernels to correct for noncoplanarity within the facets. In the imaging and deconvolution steps, DDFacet can handle generic, spatially discrete, time-frequency-baseline-direction-dependent full polarization Jones matrices, and computes a direction dependent PSF for use in the minor cycle of deconvolution for time-frequency-baseline dependent Mueller matrices. The code also allows for the effects of time and bandwidth averaging to be explicitly incorporated into deconvolution. DDFacet has been successfully tested with data diverse telescopes such as LOFAR, VLA, MeerKAT AR1, and ATCA.

[ascl:2305.007] Stimela: Containerized radio interferometry scripting framework

stimela provides a system-agnostic scripting framework for simulating, processing, and imaging radio interferometric data. The framework executes radio interferometry related tasks such as imaging, calibration, and data synthesis in Docker containers using Python modules. stimela offers a simple interface to packages that perform these tasks rather than doing any data processing, synthesis or analysis itself. stimela only requires Docker and Python. Moreover, because of Docker, a stimela script runs the same way (in the same iso­lated environment) regardless of the host machine’s settings, thus providing a user-friendly and modular scripting environment that gives general users easy access to novel radio interferometry calibration, imaging, and synthesis packages.

This package is no longer under active development and has been superseded by Stimela2 (ascl:2412.002).

[ascl:2305.006] QuartiCal: Fast radio interferometric calibration

QuartiCal is the successor to CubiCal (ascl:1805.031). It implements a suite of fast radio interferometric calibration routines exploiting complex optimization. Unlike CubiCal, QuartiCal allows for any available Jones terms to be combined. It can also be deployed on a cluster.

[ascl:2305.005] killMS: Direction-dependent radio interferometric calibration package

killMS implements two very efficient algorithms for solving the Direction-Dependent calibration problem (also known as third generation calibration). This problem naturally arises in the Radio Interferometry Measurement Equation (RIME), but only became overwhelmingly problematic with the construction of the SKA precursors and pathfinders. Solving for the DDE calibration problem basically consists in inverting a number of non-linear equations, while the system is very large and often subject to ill conditioning. The two algorithms killMS uses are based on complex optimization techniques and exploit algorithmic shortcuts; killMS also runs an extended Kalman filter.

[ascl:2305.004] katdal: MeerKAT Data Access Library

katdal interacts with the chunk stores and HDF5 files produced by the MeerKAT radio telescope and its predecessors (KAT-7 and Fringe Finder), which are collectively known as MeerKAT Visibility Format (MVF) data sets. The library uses memory carefully, allowing data sets to be inspected and partially loaded into memory. Data sets may be concatenated and split via a flexible selection mechanism. In addition, katdal provides a script to convert these data sets to CASA MeasurementSets.

[ascl:2305.003] extrapops: Fast simulation and analysis of extra-galactic binary GW sources

extrapops simulates extra-galactic populations of gravitational waves sources and models their emission during the inspiral phase. The code approximately assesses the detectability of individual sources by LISA and computes the background due to unresolved sources in the LISA band using different methods. The simulated populations can be saved in a format compatible with LISA LDC. Simulations are well calibrated to produce accurate background calculations and fair random generation at the tails of the distributions, which is important for accurate probability of detectable events. extrapops uses a number of ad-hoc techniques for rapid simulation and allows room for further optimization up to almost 1 order of magnitude.

[ascl:2305.002] Virtual Telescope: Next-Generation Space Telescope Simulator

Virtual Telescope predicts the signal-to-noise and other parameters of imaging and/or spectroscopic observations as a function of telescope size, detector noise, and other factors for the Next-Generation Space Telescope.

[ascl:2305.001] FRIDDA: Fisher foRecast code for combIned reDshift Drift and Alpha

FRIDDA forecasts the cosmological impact of measurements of the redshift drift and the fine-structure constant (alpha) as well as their combination. The code is based on Fisher Matrix Analysis techniques and works for various fiducial cosmological models. Though designed for the ArmazoNes high Dispersion Echelle Spectrograph (ANDES), it is easily adaptable to other fiducial cosmological models and to other instruments with similar scientific goals.

[ascl:2304.006] JET: JWST Exoplanet Targeting

JET (JWST Exoplanet Targeting) optimizes lists of exoplanet targets for atmospheric characterization by the James Webb Space Telescope (JWST). The software uses catalogs of planet detections, either simulated, or actual and categorizes targets by radius and equilibrium temperature; it also estimates planet masses and generates model spectra and simulated instrument spectra. JET then performs a statistical analysis to determine if the instrument spectra can confirm an atmospheric detection and finally ranks the targets within each category by observation time required for detection.

[ascl:2304.005] FALCO: Fast Linearized Coronagraph Optimizer in Python

FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A MATLAB implementation of FALCO (ascl:2304.004) is also available.

[ascl:2304.004] FALCO: Fast Linearized Coronagraph Optimizer in MATLAB

FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A Python 3 implementation of FALCO (ascl:2304.005) is also available.

[ascl:2304.003] BatAnalysis: HEASOFT wrapper for processing Swift-BAT data

BatAnalysis processes and analyzes Swift Burst Alert Telescope (BAT) survey data in a comprehensive computational pipeline. The code downloads BAT survey data, batch processes the survey observations, and extracts light curves and spectra for each survey observation for a given source. BatAnalysis allows for the use of BAT survey data in advanced analyses of astrophysical sources including pulsars, pulsar wind nebula, active galactic nuclei, and other known/unknown transient events that may be detected in the hard X-ray band. BatAnalysis can also create mosaicked images at different time bins and extract light curves and spectra from the mosaicked images for a given source.

[ascl:2304.002] Applefy: Robust detection limits for high-contrast imaging

Applefy calculates detection limits for exoplanet high contrast imaging (HCI) datasets. The package provides features and functionalities to improve the accuracy and robustness of contrast curve calculations. Applefy implements the classical approach based on the t-test, as well as the parametric boostrap test for non-Gaussian residual noise. Applefy enables the comparison of imaging results across instruments with different noise characteristics.

[ascl:2304.001] ASSIST: Solar system test particles trajectories integrator

ASSIST integrates test particle trajectories in the field of the Sun, Moon, planets, and massive asteroids, with the positions of the masses obtained from the JPL DE441 ephemeris and its associated asteroid perturber file. Using REBOUND's (ascl:1110.016) IAS15 integrator, ASSIST incorporates the most significant gravitational harmonics and general relativistic corrections and accounts for position- and velocity-dependent non-gravitational effects. The first-order variational equations are included for all terms to support orbit fitting and covariance mapping.

[ascl:2303.020] HaloGraphNet: Predict halo masses from simulations

HaloGraphNet predicts halo masses from simulations using Graph Neural Networks. Given a dark matter halo and its galaxies, this software creates a graph with information about the 3D position, stellar mass and other properties. It then trains a Graph Neural Network to predict the mass of the host halo. Data are taken from the CAMELS hydrodynamic simulations.

[ascl:2303.019] pulsar_spectra: Pulsar flux density measurements, spectral models fitting, and catalog

pulsar_spectra provides a pulsar flux density catalog and automated spectral fitting software for finding spectral models. The package can also produce publication-quality plots and allows users to add new spectral measurements to the catalog. The spectral fitting software uses robust statistical methods to determine the best-fitting model for individual pulsar spectra.

[ascl:2303.018] MORPHOFIT: Morphological analysis of galaxies

MORPHOFIT consists of a series of modules for estimating galaxy structural parameters. The package uses SEXTRACTOR (ascl:1010.064) in forced photometry mode to get an initial estimate of the galaxy structural parameters and create a multiband catalog. It also uses GALFIT (ascl:1010.064), running it on galaxy stamps and galaxy regions from the parent image and also on galaxies from the full image using SEXTRACTOR properties as input. MORPHOFIT has been optimized and tested in both low-density and crowded environments, and can recover the input structural parameters of galaxies with good accuracy.

[ascl:2303.017] bajes: Bayesian Jenaer software

bajes [baɪɛs] provides a user-friendly interface for setting up a Bayesian analysis for an arbitrary model, and is specialized for the analysis of gravitational-wave and multi-messenger transients. The code runs a parameter estimation job, inferring the properties of the input model. bajes is designed to be simple-to-use and light-weighted with minimal dependencies on external libraries. The user can set up a pipeline for parameters estimation of multi-messenger transients by writing a configuration file containing the information to be passed to the executables. The package also includes tools and methods for data analysis of multi-messenger signals. The pipeline incorporates an interface with reduced-order-quadratude (ROQ) interpolants. In particular, the ROQ pipeline relies on the output provided by PyROQ-refactored.

[ascl:2303.016] SatGen: Semi-analytical satellite galaxy and dark matter halo generator

SatGen generates satellite-galaxy populations for host halos of desired mass and redshift. It combines halo merger trees, empirical relations for galaxy-halo connection, and analytic prescriptions for tidal effects, dynamical friction, and ram-pressure stripping. It emulates zoom-in cosmological hydrosimulations in certain ways and outperforms simulations regarding statistical power and numerical resolution.

[ascl:2303.015] SIDM: Density profiles of self-interacting dark-matter halos with inhabitant galaxies

The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.

[ascl:2303.014] Delphes: Fast simulation of a generic collider experiment

Delphes simulates a fast multipurpose detector response. The simulation includes a tracking system, embedded into a magnetic field, calorimeters and a muon system. The Delphes framework is interfaced to standard file formats (e.g. Les Houches Event File or HepMC) and outputs observables such as isolated leptons, missing transverse energy and collection of jets that can be used for dedicated analyses. The simulation of the detector response takes into account the effect of magnetic field, the granularity of the calorimeters and sub-detector resolutions. Visualization of the final state particles is also built-in using the corresponding ROOT library.

[ascl:2303.013] FastJet: Jet finding in pp and e+e− collisions

The FastJet package provides fast native implementations of many sequential recombination algorithms, including the longitudinally invariant kt longitudinally invariant inclusive Cambridge/Aachen and anti-kt jet finders. It also provides a uniform interface to external jet finders via a plugin mechanism. FastJet also includes tools for calculating jet areas and performing background (pileup/UE) subtraction and for jet substructure analyses.

[ascl:2303.012] EvoEMD: Cosmic Evolution with an Early Matter-Dominated era

EvoEMD evaluates cosmic evolution with or without an early matter dominated (EMD) era. The framework includes global parameter, particle, and process systems, and different methods for Hubble parameter calculation. EvoEMD automatically builds up the Boltzmann equation according to the user's definition of particle and process,solves the Boltzmann equation using 4th order Runge-Kutta method with adaptive steps tailored to cosmology application, and caches the collision rate calculation results for fast evaluation.

[ascl:2303.011] Scri: Manipulate time-dependent functions of spin-weighted spherical harmonics

Scri manipulates time-dependent functions of spin-weighted spherical harmonics. It implements the BMS transformations of the most common gravitational waveforms, including the Newman-Penrose quantity ψ4, the Bondi news function, the shear spin coefficient σ, and the transverse-traceless metric perturbation h, as well as the remaining Newman-Penrose quantities ψ0 through ψ3.

[ascl:2303.010] spinsfast: Fast and exact spin-s spherical harmonic transforms

spinsfast is a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. It permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at π/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L^3), where L is the band limit of the function.

[ascl:2303.009] Pandora: Fast exomoon transit detection algorithm

Pandora searches for exomoons by employing an analytical photodynamical model that includes stellar limb darkening, full and partial planet-moon eclipses, and barycentric motion of planet and moon. The code can be used with nested samplers such as UltraNest (ascl:1611.001) or dynesty (ascl:1809.013). Pandora is fast, calculating 10,000 models and log-likelihood evaluation per second (give or take an order of magnitude, depending on parameters and data); this means that a retrieval with 250 Mio. evaluations until convergence takes about 5 hours on a single core. For searches in large amounts of data, it is most efficient to assign one core per light curve.

[ascl:2303.008] nd-redshift: Number Density Redshift Evolution Code

Comparing galaxies across redshifts via cumulative number densities is a popular way to estimate the evolution of specific galaxy populations. nd-redshift uses abundance matching in the ΛCDM paradigm to estimate the median change in number density with redshift. It also provides estimates for the 1σ range of number densities corresponding to galaxy progenitors and descendants.

[ascl:2303.007] PyCom: Interstellar communication

PyCom provides function calls for deriving the optimal communication scheme to maximize the data rate between a remote probe and home-base. It includes models for the loss of photons from diffraction, technological limitations, interstellar extinction and atmospheric transmission, and manages major atmospheric, zodiacal, stellar and instrumental noise sources. It also includes scripts for creating figures appearing in the referenced paper.

[ascl:2303.006] GPCC: Gaussian process cross-correlation for time delay estimation

Gaussian Process Cross-Correlation (GPCC) uses Gaussian processes to estimate time delays for reverberation mapping (RM) of Active Galactic Nuclei (AGN). This statistically principled model delivers a posterior distribution for the delay and accounts for observational noise and the non-uniform sampling of the light curves. Written in Julia, GPCC quantifies the uncertainty and propagates it to subsequent calculations of dependent physical quantities, such as black hole masses. The code delivers out-of-sample predictions, which enables model selection, and can calculate the joint posterior delay for more than two light curves. Though written for RM, the software can also be applied to other fields where cross-correlation analysis is performed.

[ascl:2303.005] Blobby3D: Bayesian inference for gas kinematics

Blobby3D performs Bayesian inference for gas kinematics on emission line observations of galaxies using Integral Field Spectroscopy. The code robustly infers gas kinematics for regularly rotating galaxies even if the gas profiles have significant substructure. Blobby3D also infers gas kinematic properties free from the effects of beam smearing (where beam smearing is the effect of the observational seeing spatially blurring the gas profiles), which has significant effects on the observed gas kinematic properties, particularly the observed velocity dispersion.

[ascl:2303.004] naif: Frequency analysis package

naif extracts frequencies and respective amplitudes from time-series, such as that of an orbital coordinate. Based on the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm and written in Python, naif offers some improvements, particularly in computation time. It also offers functions to plot the power-spectrum before extraction of each frequency, which can be useful for debugging particular orbits.

[ascl:2303.003] SeeKAT: Localizer for transients detected in tied-array beams

SeeKAT is a Python implementation of a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once to (sub-)arcsecond precision. It reads in list of detections (RA, Dec, S/N) and the beam PSF and computes a covariance matrix of the S/N value ratios, assuming 1-sigma Gaussian errors on each measurement. It models the aggregate beam response by arranging beam PSFs appropriately relative to each other and calculates a likelihood distribution of obtaining the observed S/N in each beam according to the modeled response. In addition, SeeKAT can plot the likelihood function over RA and Dec with 1-sigma uncertainty, overlaid on the beam coordinates and sizes.

[ascl:2303.002] line_selections: Automatic line detection for large spectroscopic surveys

The Python code line_selections reads synthetic "full" spectra and elemental spectra, automatically identifies the detectable lines at a given resolution (provided the linelist used to compute the spectra), and returns a table containing various properties of the lines (e.g., purity, central wavelength, and depth). The code then stores the information in a pandas DataFrame. line_selections demonstrates where chemical information is present in a stellar spectrum, and allows the user to optimize observational strategies, such as choosing resolution and spectra windows, as well as analysis codes with the application of high-quality masks.

[submitted] World Observatory

World Observatory visualizes S/N-versus-cost tradeoffs for large optical and near-infrared telescopes. Both mid-latitude and Arctic/Antarctic sites can be considered; the intent is a simple simulation to grow intuition for where major capital costs lie relative to key observatory design choices, and against expected scientific performance at various sites. User-defined unit costs for (a possibly "effective") roadway, enclosure, aperture, focal length, and adaptive optics can be scaled up for polar sites, and down for better seeing and lower sky brightness in K-band. Observatory models and results are immediately displayed side-by-side. Either point-source-detection S/N or recovery of bulge-to-total ratios in a simulated galaxy survey are divided by the total project cost, thus providing a universal metric.

[ascl:2303.001] cysgp4: Wrapper for C++ SGP4 satellite library

The cysgp4 Cython-powered package wraps the C++ SGP4 Library for computing satellite positions from two-line elements (TLE). It provides similar functionality as the sgp4 Python package, though also works well with arrays of TLEs and/or observing times and makes use of multi-core platforms (via OpenMP) to improve processing times.

[ascl:2302.026] HDMSpectra: Dark Matter Spectra from the electroweak to the Planck scale

HDMSpectra computes the decay spectrum for dark matter with masses above the scale of electroweak symmetry breaking, down to Planck scale and including all relevant electroweak interactions. The code determines the distribution of stable states for photons, neutrinos, positrons, and antiprotons.

[ascl:2302.025] Diffmah: Differentiable models of halo and galaxy formation history

Diffmah approximates the growth of individual halos as a simple power-law function of time, where the power-law index smoothly decreases as the halo transitions from the fast-accretion regime at early times to the slow-accretion regime at late times. The code has a typical accuracy of 0.1 dex for times greater than one billion years in halos of mass greater than 10e11 M_sun. Diffmah self-consistently captures the mean and variance of halo mass accretion rates across long time scales, and it generates Monte Carlo simulations of cosmologically-representative and differentiable halo histories.

[ascl:2302.024] DSPS: Differentiable Stellar Population Synthesis

DSPS synthesizes stellar populations, leading to fully-differentiable predictions for galaxy photometry and spectroscopy. The code implements an empirical model for stellar metallicity, and it also supports the Diffstar (ascl:2302.012) model of star formation and dark matter halo history. DSPS rapidly generates and simulates galaxy-halo histories on both CPU and GPU hardware.

[ascl:2302.023] AART: Adaptive Analytical Ray Tracing

AART (Adaptive Analytical Ray Tracing) exploits the integrability properties of the Kerr spacetime to compute high-resolution black hole images and their visibility amplitude on long interferometric baselines. It implements a non-uniform adaptive grid on the image plane suitable to study black hole photon rings (narrow ring-shaped features, predicted by general relativity but not yet observed). The code implements all the relevant equations required to compute the appearance of equatorial sources on the (far) observer's screen.

[ascl:2302.022] RALF: RADEX Line Fitter

The RADEX Line Fitter provides a Python 3 interface that calls RADEX (ascl:1010.075) to make a non-LTE fit to a set of observed lines and derive the column density of the molecule that produced the lines and optionally also the molecular hydrogen (H2) number density or the kinetic temperature of the molecule. This code requires RADEX to be installed locally.

[ascl:2302.021] AMICAL: Aperture Masking Interferometry Calibration and Analysis Library

AMICAL (Aperture Masking Interferometry Calibration and Analysis Library) processes Aperture Masking Interferometry (AMI) data from major existing facilities, such as NIRISS on the JWST, SPHERE and VISIR from the European Very Large Telescope (VLT) and VAMPIRES from SUBARU telescope. The library cleans the reduced datacube from the standard instrument pipelines, extracts the interferometrical quantities (visibilities and closure phases) using a Fourier sampling approach, and calibrates those quantities to remove the instrumental biases. In addition, two external packages (CANDID and Pymask) are included to analyze the final outputs obtained from a binary-like sources (star-star or star-planet); these stand-alone packages are interfaced with AMICAL to quickly estimate scientific results (e.g., separation, position angle, contrast ratio, and contrast limits) using different approaches.

[ascl:2302.020] UBER: Universal Boltzmann Equation Solver

UBER (Universal Boltzmann Equation Solver) solves the general form of Fokker-Planck equation and Boltzmann equation, diffusive or non-diffusive, that appear in modeling planetary radiation belts. Users can freely specify the coordinate system, boundary geometry and boundary conditions, and the equation terms and coefficients. The solver works for problems in one to three spatial dimensions. The solver is based upon the mathematical theory of stochastic differential equations. By its nature, the solver scheme is intrinsically Monte Carlo, and the solutions thus contain stochastic uncertainty, though the user may dictate an arbitrarily small relative tolerance of the stochastic uncertainty at the cost of longer Monte Carlo iterations.

[ascl:2302.019] MADCUBA: MAdrid Data CUBe Analysis

MADCUBA analyzes astronomical datacubes and multiple spectra from various astronomical facilities, including ALMA, Herschel, VLA, IRAM 30m, APEX, GBT, and others. These telescopes, and in particular ALMA, generate extremely large datacubes (spatial, spectral and polarization). This software combines a user-friendly interface and powerful data analysis system to derive the physical conditions of molecular gas, its chemical complexity and the kinematics from datacubes. Built using the ImageJ (ascl:1206.013) infrastructure, MADCUBA visualizes astronomical datacubes with thousands on spectral channels, and datasets with thousands of spectra; it also identifies molecular species using publicly available molecular catalogs. It can automatically derive the physical parameters of the molecular species: column density, excitation temperature, velocity and linewidths and provides the best non-linear least-squared fit using the Levenberg-Marquardt algorithm, among other tasks.

[ascl:2302.018] GCP: Automated GILDAS-CLASS Pipeline

This library of scripts provides a simple interface for running the CLASS software from GILDAS (ascl:1305.010) in a semi-automatic way. Using these scripts, one can extract and organize spectra from data files in CLASS format (for example, .30m and .40m), reduce them, and even combine or average them once they are reduced. The library contains five Python scripts and two optional Julia scripts.

[ascl:2302.017] RichValues: Managing numeric values with uncertainties and upper/lower limits

RichValues transforms numeric values with uncertainties and upper/lower limits to create "rich values" that can be written in plain text documents in an easily readable format and used to propagate uncertainties automatically. Rich values can also be exported in the same formatting style as the import. The RichValues library uses a specific formatting style to represent the different kinds of rich values with plain text; it can also be used to create rich values within a script. Individual rich values can be used in, for example, tuples, lists, and dictionaries, and also in arrays and tables.

[ascl:2302.016] swyft: Scientific simulation-based inference at scale

swyft implements Truncated Marginal Neural Radio Estimation (TMNRE), a Bayesian parameter inference technique for complex simulation data. The code improves performance by estimating low-dimensional marginal posteriors rather than the joint posteriors of distributions, while also targeting simulations to targets of observational interest via an indicator function. The use of local amortization permits statistical checks, enabling validation of parameters that cannot be performed using sampling-based methods. swyft is also based on stochastic simulations, mapping parameters to observational data, and incorporates a simulator manager.

[ascl:2302.015] FCFC: C toolkit for computing correlation functions from pair counts

FCFC (Fast Correlation Function Calculator) computes correlation functions from pair counts. It supports the isotropic 2-point correlation function, anisotropic 2PCF, 2-D 2PCF, and 2PCF Legendre multipoles, among others. Written in C, FCFC takes advantage of three parallelisms that can be used simultaneously, distributed-memory processes via Message Passing Interface (MPI), shared-memory threads via Open Multi-Processing (OpenMP), and single instruction, multiple data (SIMD).

[ascl:2302.014] kima: Exoplanet detection in RVs with DNest4 and GPs

kima fits Keplerian curves to a set of RV measurements, using the Diffusive Nested Sampling (ascl:1010.029) algorithm to sample the posterior distribution for the model parameters. Additionally, the code can calculate the fully marginalized likelihood of a model with a given number of Keplerians and also infer the number of Keplerian signals detected in a given dataset. kima implements dedicated models for different analyses of a given dataset. The models share a common organization, but each has its own parameters (and thus priors) and settings.

[ascl:2302.013] SASHIMI-C: Semi-Analytical SubHalo Inference ModelIng for Cold Dark Matter

SASHIMI-C calculates various subhalo properties efficiently using semi-analytical models for cold dark matter (CDM), providing a full catalog of dark matter subhalos in a host halo with arbitrary mass and redshift. Each subhalo is characterized by its mass and density profile both at accretion and at the redshift of interest, accretion redshift, and effective number (or weight) corresponding to that particular subhalo. SASHIMI-C computes the subhalo mass function without making any assumptions such as power-law functional forms; the only assumed power law is that for the primordial power spectrum predicted by inflation. The code is not limited to numerical resolution nor to Poisson shot noise, and its results are well in agreement with those from numerical N-body simulations.

[ascl:2302.012] Diffstar: Differentiable star formation histories

Diffstar fits the star formation history (SFH) of galaxies to a smooth parametric model. Diffstar differs from existing SFH models because the parameterization of the model is directly based on basic features of galaxy formation physics, including halo mass assembly history, accretion of gas into the dark matter halo, the fraction of gas that is converted into stars, the time scale over which star formation occurs, and the possibility of rejuvenated star formation. The SFHs of a large number of simulated galaxies can be fit in parallel using mpi4py.

[ascl:2302.011] UniverseMachine: Empirical model for galaxy formation

The UniverseMachine applies simple empirical models of galaxy formation to dark matter halo merger trees. For each model, it generates an entire mock universe, which it then observes in the same way as the real Universe to calculate a likelihood function. It includes an advanced MCMC algorithm to explore the allowed parameter space of empirical models that are consistent with observations.

[ascl:2302.010] SASHIMI-W: Semi-Analytical SubHalo Inference ModelIng for Warm Dark Matter

SASHIMI-W calculates various subhalo properties efficiently using semi-analytical models for warm dark matter (WDM); the code is based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. The calculated constraints are independent of physics of galaxy formation and free from numerical resolution and the Poisson noise, and its results are well in agreement with those from numerical N-body simulations.

[ascl:2302.009] EXOTIC: EXOplanet Transit Interpretation Code

EXOTIC (EXOplanet Transit Interpretation Code) analyzes photometric data of transiting exoplanets into lightcurves and retrieves transit epochs and planetary radii. The software reduces images of a transiting exoplanet into a lightcurve, and fits a model to the data to extract planetary information crucial to increasing the efficiency of larger observational platforms. EXOTIC is written in Python and supports the citizen science project Exoplanet Watch. The software runs on Windows, Macintosh, and Linux/Unix computer, and can also be used via Google Colab.

[ascl:2302.008] HawkingNet: Finding Hawking points in the Cosmic Microwave Background

HawkingNet searches for Hawking points in large Cosmic Microwave Background (CMB) data sets. It is based on the deep residual network ResNet18 and consists of eighteen neural layers. Written in Paython, HawkingNet inputs the CMB data, processes the data through its internal network trained for data classification, and outputs the result in a form of a classification score that indicates how confident it is that a Hawking point is contained in the image patch.

[ascl:2302.007] AnalyticLC: Dynamical modeling of planetary systems

AnalyticLC generates an analytic light-curve, and optionally RV and astrometry data, from a set of initial (free) orbital elements and simultaneously fits these data. Written in MATLAB, the code is fast and efficient, and provides insight into the motion of the orbital elements, which is difficult to obtain from numerical integration. A Python wrapper for AnalyticLC is available separately.

[ascl:2302.006] RCR: Robust Chauvenet Outlier Rejection

RCR provides advanced outlier rejection that is easy to use. Both sigma clipping, the simplest form of outlier rejection, and traditional Chauvenet rejection make use of non-robust quantities, the mean and standard deviation, which are sensitive to the outliers that they are being used to reject. This limits such techniques to samples with small contaminants or small contamination fractions. RCR instead first makes use of robust replacements for the mean, such as the median and the half-sample mode, and similar robust replacements for the standard deviation. RCR has been carefully calibrated and can be applied to samples with both large contaminants and large contaminant fractions (sometimes in excess of 90% contaminated).

[ascl:2302.005] celmech: Sandbox for celestial mechanics calculations

celmech provides a variety of analytical and semianalytical tools for celestial mechanics and dynamical astronomy. The package interfaces closely with the REBOUND N-body integrator (ascl:1110.016), thus facilitating comparisons between calculation results and direct N-body integrations. celmech can isolate the contribution of particular resonances to a system's dynamical evolution, and can develop simple analytical models with the minimum number of terms required to capture a particular dynamical phenomenon.

[ascl:2302.004] SFQEDtoolkit: Strong-field QED processes modeling for PIC and Monte Carlo codes

SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.

[ascl:2302.003] PHOTOe: Monte Carlo model for simulating the slowing down of photoelectrons

PHOTOe simulates the slowing down of photoelectrons in a gas with arbitrary amounts of H, He and O atoms, and thermal electrons, making PHOTOe useful for investigating the atmospheres of exoplanets. The multi-score scheme used in this code differs from other Monte Carlo approaches in that it efficiently handles rare collisional channels, as in the case of low-abundance excited atoms that undergo superelastic and inelastic collisions. PHOTOe outputs include production and energy yields, steady-state photoelectron flux, and estimates of the 'relaxation' time required by the photoelectrons to slow down from the injection energy to the cutoff energy. The model can also estimate the pathlength travelled by the photoelectrons while relaxing.

[ascl:2302.002] deconfuser: Fast orbit fitting to directly imaged multi-planetary systems

Deconfuser performs fast orbit fitting to directly imaged multi-planetary systems. It quickly fits orbits to planet detections in 2D images and ensures that all orbits within a certain tolerance are found. The code also tests all groupings of detections by planets (which detection belongs to which planet), and ranks partitions of detections by planets by deciding which assignment of detection-to-planet best fits the data.

[ascl:2302.001] nicaea: NumerIcal Cosmology And lEnsing cAlculations

nicaea calculates cosmology and weak-lensing quantities and functions from theoretical models of the large-scale structure. Written in C, it can compute the Hubble parameter, distances, and geometry for background cosmology, and linear perturbations, including growth factor, transfer function, cluster mass function, and linear 3D power spectra. It also calculates fitting formulae for non-linear power spectra, emulators, and halo model for Non-linear evolution, and the HOD model for galaxy clustering. In addition, nicaea can compute quantities for cosmic shear such as the convergence power spectrum, second-order correlation functions and derived second-order quantities, and third-order aperture mass moment; it can also calculate CMB anisotropies via CAMB (ascl:1102.026).

[submitted] PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:2301.030] HIPP: HIgh-Performance Package for scientific computation

HIPP (HIgh-Performance Package for scientific computation) provides elegant interfaces for some well-known HPC libraries. Some libraries are wrapped with full-OOP interfaces, and many new extensions based on those raw-interfaces are also provided. This C++ toolkit for HPC can significantly reduce the length of your code, making programming more productive.

[ascl:2301.029] ALMA3: plAnetary Love nuMbers cAlculator

ALMA3 computes loading and tidal Love numbers for a spherically symmetric, radially stratified planet. Both real (time-domain) and complex (frequency-domain) Love numbers can be computed. The planetary structure can include an arbitrary number of layers, and each layer can have a different rheological law. ALMA3 can model numerous linear rheologies, including Elastic, Maxwell visco-elastic, Newtonian viscous fluid, Kelvin-Voigt solid, Burgers and Andrade transient rheologies.

[ascl:2301.028] special: SPEctral Characterization of directly ImAged Low-mass companions

special (SPEctral Characterization of directly ImAged Low-mass companions) characterizes low-mass (M, L, T) dwarfs down to giant planets at optical/IR wavelengths. It can also be used more generally to characterize any type of object with a measured spectrum, provided a relevant input model grid, regardless of the observational method used to obtain the spectrum (direct imaging or not) and regardless of the format of the spectra (multi-band photometry, low-resolution or medium-resolution spectrum, or a combination thereof). It analyzes measured spectra, calculating the spectral correlation between channels of an IFS datacube and empirical spectral indices for MLT-dwarfs. It fits input spectra to either photo-/atmospheric model grids or a blackbody model, including additional parameters such as (extra) black body component(s), extinction and total-to-selective extinction ratio, and can use emcee (ascl:1303.002), nestle (ascl:2103.022), or UltraNest (ascl:1611.001) samplers infer posterior distributions on spectral model parameters in a Bayesian framework, among other tasks.

[ascl:2301.027] Puri-Psi: Radio interferometric imaging

Puri-Psi addresses radio interferometric imaging problems using state-of-the-art optimization algorithms and deep learning. It performs scalable monochromatic, wide-band, and polarized imaging. It also provide joint calibration and imaging, and scalable uncertainty quantification. A scalable framework for wide-field monochromatic intensity imaging is also available, which encompasses a pure optimization algorithm, as well as an AI-based method in the form of a plug-and-play algorithm propelled by Deep Neural Network denoisers.

[ascl:2301.026] MGwave: Detect kinematic moving groups in astronomical data

The 2-D wavelet transformation code MGwave detects kinematic moving groups in astronomical data; it can also investigate underdensities which can eventually provide further information about the MW's non-axisymmetric features. The code creates a histogram of the input data, then performs the wavelet transformation at the specified scales, returning the wavelet coefficients across the entire histogram in addition to information about the detected extrema. MGwave can also run Monte Carlo simulations to propagate uncertainties. It runs the wavelet transformation on simulated data (pulled from Gaussian distributions) many times and tracks the percentage of the simulations in which a given extrema is detected. This quantifies whether a detected overdensity or underdensity is robust to variations of the data within the provided errors.

[ascl:2301.025] desitarget: Selecting DESI targets from photometric catalogs

desitarget selects targets for spectroscopic follow-up by Dark Energy Spectroscopic Instrument (DESI). The pipeline uses bitmasks to record that a specific source has been selected by a particular targeting algorithm, setting bit-values in output data files in a number of different columns that indicate whether a particular target meets specific selection criteria. desitarget also outputs a unique TARGETID that allows each target to be tracked throughout the DESI survey. This TARGETID encodes information about each DESI target, such as the catalog the target was selected from, whether a target is a sky location or part of a random catalog, and whether a target is part of a secondary program.

[submitted] nFITSview: A simple and user-friendly FITS image viewer

nFITSview is a simple, user-friendly and open-source FITS image viewer available for Linux and Windows. One of the main concepts of nFITSview is to provide an intuitive user interface which may be helpful both for scientists and for amateur astronomers. nFITSview has different color mapping and manipulation schemes, supports different formats of FITS data files as well as exporting them to different popular image formats. It also supports command-line exporting (with some restrictions) of FITS files to other image formats.
The application is written in C++/Qt for achieving better performance, and with every next version the performance aspect is taken into account.
nFITSview uses its own libnfits library (can be used separately as well) for parsing the FITS files.

[ascl:2301.024] SOXS: Simulated Observations of X-ray Sources

SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.

[ascl:2301.023] PoWR: Potsdam Wolf-Rayet Models

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2301.022] GalCEM: GALactic Chemical Evolution Model

GalCEM (GALactic Chemical Evolution Model) tracks isotope masses as a function of time in a given galaxy. The list of tracked isotopes automatically adapts to the complete set provided by the input yields. The prescription includes massive stars, low-to-intermediate mass stars, and Type Ia supernovae as enrichment channels. Multi-dimensional interpolation curves are extracted from the input yield tables with a preprocessing tool; these interpolation curves improve the computation speeds of the full convolution integrals, which are computed for each isotope and for each enrichment channel. GalCEM also provides tools to track the mass rate change of individual isotopes on a typical spiral galaxy with a final baryonic mass of 5×1010M⊙.

[ascl:2301.021] WALDO: Waveform AnomaLy DetectOr

WALDO (Waveform AnomaLy DetectOr) flags possible anomalous Gravitational Waves from Numerical Relativity catalogs using deep learning. It uses a U-Net architecture to learn the waveform features of a dataset. After computing the mismatch between those waveforms and the neural predictions, WALDO isolates high mismatch evaluations for anomaly search.

[ascl:2301.020] VDA: Void Dwarf Analyzer

void-dwarf-analysis analyzes Keck Cosmic Web Imager datacubes to produce maps of kinematic properties (velocity and velocity dispersion), emission line fluxes, and gas-phase metallicities of void dwarf galaxies.

[ascl:2301.019] KCWI_DRP: Keck Cosmic Web Imager Data Reduction Pipeline in Python

KCWI_DRP, written in Python and based on kderp (ascl:2301.018), is the official DRP for the Keck Cosmic Web Imager at the W. M. Keck Observatory. It provides all of the functionality of the older pipeline and has three execution modes: multi-threading for CPU intensive tasks such as wavelength calibration, and multi-processing for large datasets. It offers vacuum to air and heliocentric or barycentric correction and the ability to use KOA file names or original file names. KCWI_DRP also improves the provenance and traceability of DRP versions and execution steps in the headers over kderp, and has versatile sky subtraction modes including using external sky frames and ability of masking regions.

[ascl:2301.018] kderp: Keck Cosmic Web Imager Data Extraction and Reduction Pipeline in IDL

kderp (KCWI Data Extraction and Reduction Pipeline) reduces data for the Keck Cosmic Web Imager. Written in IDL, it performs basic CCD reduction on raw images to produce bias and overscan subtracted, gain-corrected, trimmed and cosmic ray removed images; it can also subtract the sky. It defines the geometric transformations required to map each pixel in the 2d image into slice, postion, and wavelength, and performs flat field and illumination corrections. It generates cubes, applying the transformations previously solved to the object intensity, variance and mask images output from any of the previous stages, and uses a standard star observation to generate an inverse sensitivity curve which is applied to the corresponding observations to flux calibrate them.

This pipeline has been superseded by KCWI_DRP (ascl:2301.019).

[ascl:2301.017] ReACT: Calculation of non-linear power spectra from non-standard physics

ReACT extends the Copter (ascl:1304.022) and MG-Copter packages, which calculate redshift and real space large scale structure observables for a wide class of gravity and dark energy models. Additions to Copter include spherical collapse in modified gravity, halo model power spectrum for general theories, and real and redshift space LSS 2 point statistics for modified gravity and dark energy. ReACT also includes numerical perturbation theory kernel solvers, real space bispectra in modified gravity, and a numerical perturbation theory kernel solver up to 4th order for 1-loop bispectrum.

[ascl:2301.016] FERRE: Match physical models to measurements

FERRE matches physical models to observed data, taking a set of observations and identifying the model parameters that best reproduce the data, in a chi-squared sense. It solves the common problem of having numerical parametric models that are costly to evaluate and need to be used to interpret large data sets. FERRE provides flexibility to search for all model parameters, or hold constant some of them while searching for others. The code is written to be truly N-dimensional and fast. Model predictions are to be given as an array whose values are a function of the model parameters, i.e., numerically. FERRE holds this array in memory, or in a direct-access binary file, and interpolates in it. The code returns, in addition to the optimal set of parameters, their error covariance, and the corresponding model prediction. The code is written in FORTRAN90.

[ascl:2301.015] SOAP-GPU: Spectral time series simulations with GPU

SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.

[ascl:2301.014] LBL: Line-by-line velocity measurements

LBL derives velocity measurements from high-resolution (R>50 000) datasets by accounting for outliers in the spectra data. It is tailored for fiber-fed multi-order spectrographs, both in optical and near-infrared (up to 2.5µm) domains. The domain is split into individual units (lines) and the velocity and its associated uncertainty are measured within each line and combined through a mixture model to allow for the presence of spurious values. In addition to the velocity, other quantities are also derived, the most important being a value (dW) that can be understood (for a Gaussian line) as a change in the line FWHM. These values provide useful stellar activity indicators. LBL works on data from a variety of instruments, including SPIRou, NIRPS, HARPS, and ESPRESSO. The code's output is an rdb table that can be uploaded to the online DACE pRV analysis tool.

[ascl:2301.013] pyExoRaMa: An interactive tool to investigate the radius-mass diagram for exoplanets

pyExoRaMa visualizes and manipulates data related to exoplanets and their host stars in a multi-dimensional parameter space. It enables statistical studies based on the large and constantly increasing number of detected exoplanets, identifies possible interdependence among several physical parameters, and compares observables with theoretical models describing the exoplanet composition and structure.

[ascl:2301.012] XGA: Efficient analysis of XMM observations

XGA (X-ray: Generate and Analyse) analyzes X-ray sources observed by the XMM-Newton Space telescope. It is based around declaring different types of source and sample objects which correspond to real X-ray sources, finding all available data, and then insulating the user from the tedious generation and basic analysis of X-ray data products. XGA generates photometric products and spectra for individual sources, or whole samples, with just a few lines of code. Though not a pipeline, pipelines for complex analysis can be built on top of it. XGA provides an easy to use (and parallelized) Python interface with XMM's Science Analysis System (ascl:1404.004), as well as with XSPEC (ascl:9910.005). All XMM products and fit results are read into an XGA source storage structure, thus avoiding the need to leave a Python environment at any point during the analysis. This module also supports more complex analyses for specific object types such as the easy generation of scaling relations, the measurement of gas masses for galaxy clusters, and the PSF correction of images.

[ascl:2301.011] Rosetta: Platform for resource-intensive, interactive data analysis

Rosetta runs tasks for resource-intensive, interactive data analysis as software containers. The code's architecture frames user tasks as microservices – independent and self-contained units – which fully support custom and user-defined software packages, libraries and environments. These include complete remote desktop and GUI applications, common analysis environments such as the Jupyter Notebooks. Rosetta relies on Open Container Initiative containers, allowing for safe, effective and reproducible code execution. It can use a number of container engines and runtimes and seamlessly supports several workload management systems, thus enabling containerized workloads on a wide range of computing resources.

[ascl:2301.010] Fastcc: Broadband radio telescope receiver fast color corrections

Fastcc returns color corrections for different spectra for various Cosmic Microwave Background experiments. Available in both Python and IDL, the script is easy to use when analyzing radio spectra of sources with data from multiple wide-survey CMB experiments in a consistent way across multiple experiments.

[ascl:2301.009] Xpol: Pseudo-Cl power spectrum estimator

Xpol computes angular power spectra based on cross-correlation between maps and covariance matrices. The code is written in C and is fully MPI parallelized in CPU and memory using spherical transform by s2hat (ascl:1110.013). It has been used to derive CMB and dust power spectra for Archeops and CMB, dust, CIB, SZ, SZ-CIB for Planck, among others.

[ascl:2301.008] HiLLiPoP: High-L Likelihood Polarized for Planck

HiLLiPoP is a multifrequency CMB likelihood for Planck data. The likelihood is a spectrum-based Gaussian approximation for cross-correlation spectra from Planck 100, 143 and 217GHz split-frequency maps, with semi-analytic estimates of the Cl covariance matrix based on the data. The cross-spectra are debiased from the effects of the mask and the beam leakage using Xpol (ascl:2301.009) before being compared to the model, which includes CMB and foreground residuals. They cover the multipoles from ℓ=30 to ℓ=2500. HiLLiPoP is interfaced with the Cobaya (ascl:1910.019) MCMC sampler.

[ascl:2301.007] LoLLiPoP: Low-L Likelihood Polarized for Planck

LoLLiPoP is a Planck low-l polarization likelihood based on cross-power-spectra for which the bias is zero when the noise is uncorrelated between maps. It uses a modified approximation to apply to cross-power spectra and is interfaced with the Cobaya (ascl:1910.019) MCMC sampler. Cross-spectra are computed on the CMB maps from Commander component separation applied on each detset-split Planck frequency maps.

[ascl:2301.006] Self-cal: Optical/IR long-baseline interferometry

Self-cal produces radio-interferometric images of an astrophysical object. The code is an adaptation of the self-calibration algorithm to optical/infrared long-baseline interferometry, especially to make use of differential phases and differential visibilities. It works together with the Mira image reconstruction software and has been used mainly on VLTI data. Self-cal, written in Yorick, is also available as part of fitsOmatic (ascl:2301.005).

[ascl:2301.005] fitOmatic: Interferometric data modeling

The fitOmatic model-fitting prototyping tool tests multi-wavelength model-fitting and exploits VLTI data. It provides tools to define simple geometrical models and conveniently adjust the model's parameters. Written in Yorick, it takes optical interferometry FITS (oifits) files as input and allows the user to define a model of the source from a set of pre-defined models, which can be combined to make more complicated models. fitOmatic then computes the Fourier Transform of the modeled brightness distribution and synthetic observables are computed at the wavelengths and projected baselines of the observations. fitomatic's strength is its ability to define vector-parameters, i.e., parameters that may depend on wavelength and/or time. The self-cal (ascl:2301.006) component of fitOmatic is also available as a separate code.

[ascl:2301.004] HEADSS: HiErArchical Data Splitting and Stitching for non-distributed clustering algorithms

HEADSS (HiErArchical Data Splitting and Stitching) facilitates clustering at scale, unlike clustering algorithms that scale poorly with increased data volume or that are intrinsically non-distributed. HEADSS automates data splitting and stitching, allowing repeatable handling, and removal, of edge effects. Implemented in conjunction with scikit's HDBSCAN, the code achieves orders of magnitude reduction in single node memory requirements for both non-distributed and distributed implementations, with the latter offering similar order of magnitude reductions in total run times while recovering analogous accuracy. HEADSS also establishes a hierarchy of features by using a subset of clustering features to split the data.

[ascl:2301.003] WF4Py: Gravitational waves waveform models in pure Python language

WF4Py implements frequency-domain gravitational wave waveform models in pure Python, thus enabling parallelization over multiple events at a time. Waveforms in WF4Py are built as classes; the functions take dictionaries containing the parameters of the events to analyze as input and provide Fourier domain waveform models. All the waveforms are accurately checked with their implementation in LALSuite (ascl:2012.021) and are a core element of GWFAST (ascl:2212.001).

[ascl:2301.002] Pyxel: Detector and end-to-end instrument simulation

Pyxel hosts and pipelines models (analytical, numerical, statistical) simulating different types of detector effects on images produced by Charge-Coupled Devices (CCD), Monolithic, and Hybrid CMOS imaging sensors. Users can provide one or more input images to Pyxel, set the detector and model parameters, and select which effects to simulate, such as cosmic rays, detector Point Spread Function (PSF), electronic noises, Charge Transfer Inefficiency (CTI), persistence, dark current, and charge diffusion, among others. The output is one or more images including the simulated detector effects combined. The Pyxel framework, written in Python, provides basic image analysis tools, an input image generator, and a parametric mode to perform parametric and sensitivity analysis. It also offers a model calibration mode to find optimal values of its parameters based on a target dataset the model should reproduce.

[ascl:2301.001] CALSAGOS: Select cluster members and search, find, and identify substructures

CALSAGOS (Clustering ALgorithmS Applied to Galaxies in Overdense Systems) selects cluster members and searches, finds, and identifies substructures and galaxy groups in and around galaxy clusters using the redshift and position in the sky of the galaxies. The package offers two ways to determine cluster members, ISOMER and CLUMBERI. The ISOMER (Identifier of SpectrOscopic MembERs) function selects the spectroscopic cluster members by defining cluster members as those galaxies with a peculiar velocity lower than the escape velocity of the cluster. The CLUMBERI (CLUster MemBER Identifier) function select the cluster members using a 3D-Gaussian Mixture Modules (GMM). Both functions remove the field interlopers by using a 3-sigma clipping algorithm. CALSAGOS uses the function LAGASU (LAbeller of GAlaxies within SUbstructures) to search, find, and identify substructures and groups in and around a galaxy cluster; this function is based on clustering algorithms (GMM and DBSCAN), which search areas with high density to define a substructure or groups.

[submitted] unWISE-verse: An Integrated WiseView and Zooniverse Data Pipeline

unWISE-verse is an integrated Python pipeline for downloading sets of unWISE time-resolved coadd cutouts from the WiseView image service and uploading subjects to Zooniverse.org for use in astronomical citizen science research. This software was initially designed for the Backyard Worlds: Cool Neighbors research project and is optimized for target sets containing low luminosity brown dwarf candidates. However, unWISE-verse can be applied to other future astronomical research projects that seek to make use of unWISE infrared sky maps, such as studies of infrared variable/transient sources.

[ascl:2212.026] Spender: Neural spectrum encoder and decoder

Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.

[ascl:2212.025] CONTROL: Colorado Ultraviolet Transit Experiment data reduction pipeline

CONTROL (CUTE autONomous daTa ReductiOn pipeLine) produces science-quality output with a single command line with zero user interference for CUTE (Colorado Ultraviolet Transit Experiment) data. It can be used for any single order spectral data in any wavelength without any modification. The pipeline is governed by a parameter file, which is available with this distribution. CONTROL is fully automated and works in a series of steps following standard CCD reduction techniques. It creates a reduction log to track processes carried out and any parameters used.

[ascl:2212.024] Burning Arrow: Black hole massive particles orbit degradation

Burning Arrow determines the destabilization of massive particle circular orbits due to thermal radiation, emitted in X-ray, from the hot accretion disk material. This code requires the radiation forces exerted on the material at the point of interest found by running the code Infinity (ascl:2212.021). Burning Arrow begins by assuming a target particle in the disk that moves in a circular orbit. It then introduces the recorded radiation forces from Infinity code for the target region. The forces are subsequently introduced into the target particle equations of motion and the trajectory is recalculated. Burning Arrow then produces images of the black hole - accretion disk system that includes the degenerated particle trajectories that obey the assorted velocity profiles.

[ascl:2212.023] Tranquillity: Creating black hole spin divergence plots

Tranquillity creates an observing screen looking toward a black hole - accretion disk system, seeks the object, then searches and locates its contour. Subsequently, it attempts to locate the first Einstein "echo" ring and its location. Finally, it collates the retrieved information and draws conclusions; these include the accretion disk level inclination compared to the line of sight and the main disk and the first echo median. The displacement, and thus the divergence of the latter two, is the required information in order to construct the divergence plots. Other programs can later on automatically read these plots and provide estimations of the central black hole spin.

[ascl:2212.022] Elysium: Observing black hole accretion disks

Elysium creates an observing screen at the desirable distance away from a black hole system. Observers set on every pixel of this screen then photograph the area toward the black hole - accretion disk system and report back what they record. This can be the accretion disk (incoming photons bring in radiation and thus energy), the black hole event horizon, or the empty space outside and beyond the system (there are no incoming photons or energy). The central black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user.

[ascl:2212.021] Infinity: Calculate accretion disk radiation forces onto moving particles

Infinity sets an observer in a black hole - accretion disk system. The black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. This observer can be on the surface of the disk, in its exterior or its interior (if the disk is not opaque). Infinity then scans the entire sky around the observer and investigates whether photons emitted by the hot accretion disk material can reach them. After recording the incoming radiation, the program calculates the stress-energy tensor of the radiation. Afterwards, the program calculates the radiation flux and hence, the radiation force exerted on target particles of various velocity profiles.

[ascl:2212.020] Omega: Photon equations of motion

Omega solves the photon equations of motion in the environment surrounding a black hole. This black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. The software offers numerous options, such as the geometrical setup of the accretion disk around the black hole (including no disk, band, slab, wedge, among others, the spin parameter of the central black hole, and the thickness of the accretion disk. Other options that can be set includ the azimuthal angle of the photon emission/reception, the poloidal angle of the photon emission/reception, and how far away or close to the system to look.

[ascl:2212.019] m2mcluster: Star clusters made-to-measure modeling

m2mcluster performs made-to-measure modeling of star clusters, and can fit target observations of a Galactic globular cluster's 3D density profile and individual kinematic properties, including proper motion velocity dispersion, and line of sight velocity dispersion. The code uses AMUSE (ascl:1107.007) to model the gravitational N-body evolution of the system between time steps; GalPy (ascl:1411.008) is also required.

[ascl:2212.018] SourceXtractor++: Extracts sources from astronomical images

SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.

[ascl:2212.017] powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:2212.016] AbundanceMatching: Subhalo abundance matching with scatter

The AbundanceMatching Python module creates (interpolates and extrapolates) abundance functions and also provides fiducial deconvolution and abundance matching.

[ascl:2212.015] SImMER: Stellar Image Maturation via Efficient Reduction

SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.

[ascl:2212.014] pyTANSPEC: Python tool for extracting 1D TANSPEC spectra from 2D images

pyTANSPEC extracts XD-mode spectra automatically from data collected by the TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on India's ground-based 3.6-m Devasthal Optical Telescope at Nainital, India. The TANSPEC offers three modes of observations, imaging with various filters, spectroscopy in the low-resolution prism mode with derived R~ 100-400 and the high-resolution cross-dispersed mode (XD-mode) with derived median R~ 2750 for a slit of width 0.5 arcsec. In the XD-mode, ten cross-dispersed orders are packed in the 2048 x 2048 pixels detector to cover the full wavelength regime. The XD-mode is most utilized; pyTANSPEC provides a dedicated pipeline for consistent data reduction for all orders and to reduces data reduction time. The code requires nominal human intervention only for the quality assurance of the reduced data. Two customized configuration files are used to guide the data reduction. The pipeline creates a log file for all the fits files in a given data directory from its header, identifies correct frames (science, continuum and calibration lamps) based on the user input, and offers an option to the user for eyeballing and accepting/removing of the frames, does the cleaning of raw science frames and yields final wavelength calibrated spectra of all orders simultaneously.

[ascl:2212.013] PACMAN: Planetary Atmosphere, Crust, and MANtle geochemical evolution

PACMAN (Planetary Atmosphere, Crust, and MANtle geochemical evolution) runs a coupled redox-geochemical-climate evolution model. It runs Monte Carlo calculations over nominal parameter ranges, including number of iterations and number of cores for parallelization, which can be altered to reproduce different scenarios and sensitivity tests. Model outputs and corresponding input parameters are saved in separate files which are used to plot results; the the user can choose which outputs to plot, including all successful outputs, nominal Earth outputs, waterworld false positives, desertworld false positives, and high CO2:H2O false positives. Among other functions, PACMAN contains functions for interpolating the pre-computed Outgoing Longwave Radiation (OLR) grid, the atmosphere-ocean partitioning grid, and the stratospheric water vapor grid, calculating bond albedo and outgassing fluxes.

[ascl:2212.012] BANZAI-NRES: BANZAI data reduction pipeline for NRES

The BANZAI-NRES pipeline processes data from the Network of Robotic Echelle Spectrographs (NRES) on the Las Cumbres Observatory network and provides extracted, wavelength calibrated spectra. If the target is a star, it provides stellar classification parameters (e.g., effective temperature and surface gravity) and a radial velocity measurement. The automated radial velocity measurements from this pipeline have a precision of ~ 10 m/s for high signal-to-noise observations. The data flow and infrastructure of this code relies heavily on BANZAI (ascl:2207.031), enabling BANZAI-NRES to focus on analysis that is specific to spectrographs. The wavelength calibration is primarily done using xwavecal (ascl:2212.011). The pipeline propagates an estimate of the formal uncertainties from all of the data processing stages and includes these in the output data products. These are used as weights in the cross correlation function to measure the radial velocity.

[ascl:2212.011] xwavecal: Wavelength calibrating echelle spectrographs

The xwavecal library automatically wavelength calibrates echelle spectrographs for high precision radial velocity work. The routines are designed to operate on data with extracted 1D spectra. The library provides a convienience function which returns a list of wavelengths from just a list of spectral feature coordinates (pixel and order) and a reference line list. The returned wavelengths are the wavelengths of the measured spectral features under the best fit wavelength model. xwavecal also provides line identification and spectral reduction utilities. The library is modular; each step of the wavelength calibration is a stage which can be disabled by removing the associated line in the config.ini file. Wavelength calibrating data which already have spectra means only using the wavelength calibration stages. Using the full experimental pipeline means enabling the other data reduction stages, such as overscan subtraction.

[ascl:2212.010] sf_deconvolve: PSF deconvolution and analysis

sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (i.e. with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.

Would you like to view a random code?