νHawkHunter explores the prospects of detecting neutrinos produced by the evaporation of primordial black holes in ground-based experiments. It makes use of neutrino fluxes from Hawking radiation computed with BlackHawk (ascl:2012.020). νHawkHunter is also be used for Diffuse Supernova Neutrino Background or similar studies by replacing the signal fluxes by the proper ones.
β-SGP deconvolves an astronomical image with a known Point Spread Function, providing a means for restoration of telescopic images due to issues ranging from atmospheric turbulence to instrumental aberrations. The code supports improved astrometry, deblending of overlapping sources, faint source detection, and identification of point sources near bright extended objects, and other tasks. β-SGP generalizes the Scaled Gradient Projection (SGP) image deconvolution algorithm using β-divergence as a loss function to restore distorted stellar shapes.
Zwindstroom computes background quantities and scale-dependent growth factors for cosmological models with free-streaming species, such as massive neutrinos. Following the earlier REPS code (ascl:1612.022), the code uses a Newtonian fluid approximation with external neutrino sound speed to close the Boltzmann hierarchy. Zwindstroom supports multi-fluid models with distinct transfer functions and sound speeds. A flexible python interface facilitates interaction with CLASS (ascl:1106.020) through classy. There is also a Zwindstroom plugin for the cosmological initial conditions generator monofonIC (ascl:2008.024) that allows for higher-order LPT ICs for massive neutrino simulations in a single step.
ZWAD (ZTF anomaly detection pipeline) examines data and performs tailored feature extraction. The code then uses machine learning methods to searches for outliers, and identifies anomalies to be examined for validation by experts. Used with the SNAD ZTF data releases object viewer (ascl:2106.034), the infrastructure helps experts to form global views of specific scientifically interesting candidates.
The SNAD ZTF DR4 object viewer enables quick expert investigation of objects within the public Zwicky Transient Facility (ZTF) data releases. The viewer allows visualization of raw and folded light curves and metadata, as well as cross-match information with the General Catalog of Variable Stars, the International Variable Stars Index, the ATLAS Catalog of Variable Stars, the ZTF Catalog of Periodic Variable Stars, the Transient Name Server, the Open Astronomy Catalogs, the OGLE III Catalog of Variable Stars, the Simbad Astronomical Data Base, Gaia DR2 distances (Bailer-Jones+, 2018), and Vizier. The viewer is also available for ZTF DR2 and ZTF DR3.
Photometric redshifts are estimated on the basis of template scenarios with the help of the code ZPEG, an extension of the galaxy evolution model PEGASE.2 and available on the PEGASE web site. The spectral energy distribution (SED) templates are computed for nine spectral types including starburst, irregular, spiral and elliptical. Dust, extinction and metal effects are coherently taken into account, depending on evolution scenarios. The sensitivity of results to adding near-infrared colors and IGM absorption is analyzed. A comparison with results of other models without evolution measures the evolution factor which systematically increases the estimated photometric redshift values by $Delta z$ > 0.2 for z > 1.5. Moreover we systematically check that the evolution scenarios match observational standard templates of nearby galaxies, implying an age constraint of the stellar population at z=0 for each type. The respect of this constraint makes it possible to significantly improve the accuracy of photometric redshifts by decreasing the well-known degeneracy problem. The method is applied to the HDF-N sample. From fits on SED templates by a $chi^2$-minimization procedure, not only is the photometric redshift derived but also the corresponding spectral type and the formation redshift $z_for$ when stars first formed. Early epochs of galaxy formation z > 5 are found from this new method and results are compared to faint galaxy count interpretations.
Zoobot classifies galaxy morphology with Bayesian CNN. Deep learning models were trained on volunteer classifications; these models were able to both learn from uncertain volunteer responses and predict full posteriors (rather than point estimates) for what volunteers would have said. The code reproduces and improves Galaxy Zoo DECaLS automated classifications, and can be finetuned for new tasks.
ZOGY performs optimal image subtraction; the code is designed specifically for the MeerLICHT and BlackGEM pipelines, but should also be useful to apply to images of other telescopes. The module accepts a new and a reference FITS image, runs SExtractor (ascl:1010.064) on them, and finds their WCS solution using Astrometry.net (ascl:1208.001). ZOGY then uses PSFex (ascl:1301.001) to infer the position-dependent PSFs of the images and SWarp (ascl:1010.068) to map the reference image to the new image and performs optimal image subtraction. This produces the subtracted image, the significance image, the corrected significance image, and the PSF photometry image and associated error image. The inferred PSFs are also used to extract optimal photometry of all sources detected by SExtractor.
ZodiPy simulates the zodiacal emission in intensity that an arbitrary solar system observer is predicted to see given an interplanetary dust model, either in the form of timestreams or full-sky HEALPix maps. Written in Python, the code makes zodiacal emission simulations more accessible by providing a simple interface to existing models.
ZODIPIC synthesizes images of exozodiacal clouds. As a default, ZODIPIC creates an image of the solar zodiacal cloud as seen from 10 pc, but it contains many parameters that are tweakable from the command line, making it a handy general-purpose model for optically-thin debris disks that yields both accurate images and photometric information simultaneously. Written in IDL, ZODIPIC includes dust with real optical constants, user-specified dust maps and can compute images as seen through a linear polarizer.
ZInCo manipulates existing initial conditions (ICs) compatible with GADGET-2/3 (ascl:0003.001) ICs, allowing different flavors of zoom-in simulations rather then producing new ICs from scratch. The code can manipulate initial conditions with multiple types of particles, unlike the vast majority of zoom-in ICs codes available, preserving their properties and random field. This allows ZInCo to take advantage of other codes that produce ICs featuring a broad range of different cosmologies; it can be used also on existing ICs even in the unlikely case nothing is known about their properties. The code is written in C++ and parallelized using MPI.
Zeus21 (Zippy Early-Universe Solver for 21-cm) captures the nonlocal and nonlinear physics of cosmic dawn to create an effective model for the 21-cm power spectrum and global signal. The code takes advantage of the approximate log-normality of the star-formation rate density (SFRD) during cosmic dawn to compute the 21-cm power spectrum analytically. It agrees with more expensive semi-numerical simulations to roughly 10% precision, but has comparably negligible computational cost (~ s) and memory requirements. Zeus21 pairs well with data from HERA, but can be used for any 21-cm inference or prediction. Its capabilities include finding the 21-cm power spectrum (at a broad range of k and z), the global signal, IGM temperatures (Tk, Ts, Tcolor), neutral fraction xHI, Lyman-alpha fluxes, and the evolution of the SFRD; all across cosmic dawn z=5-35. It can also predict UVLFs for HST and JWST. Zeus21 can use three different astrophysical models, one of which emulates 21cmFAST (ascl:1102.023), and can vary the cosmology through CLASS (ascl:1106.020).
Zeus is a pure-Python implementation of the Ensemble Slice Sampling method. Ensemble Slice Sampling improves upon Slice Sampling by bypassing some of that method's difficulties; it also exploits an ensemble of parallel walkers, thus making it immune to linear correlations. Zeus offers fast and robust Bayesian inference and efficient Markov Chain Monte Carlo without hand-tuning. The code provides excellent performance in terms of autocorrelation time and convergence rate, can scale to multiple CPUs without any extra effort, and includes convergence diagnostics.
ZEUS-MP is a multiphysics, massively parallel, message-passing implementation of the ZEUS code. ZEUS-MP offers an MHD algorithm that is better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the method of characteristics scheme first suggested by Hawley & Stone. This MHD module is shown to compare quite favorably to the TVD scheme described by Ryu et al. ZEUS-MP is the first publicly available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules can be used, singly or in concert, in one, two, or three space dimensions. In addition, so-called 1.5D and 2.5D grids, in which the "half-D'' denotes a symmetry axis along which a constant but nonzero value of velocity or magnetic field is evolved, are supported. Self-gravity can be included either through the assumption of a GM/r potential or through a solution of Poisson's equation using one of three linear solver packages (conjugate gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported.
Because ZEUS-MP is designed for large simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module in the code. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (2563 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.
ZEUS-2D is a hydrodynamics code based on ZEUS which adds a covariant differencing formalism and algorithms for compressible hydrodynamics, MHD, and radiation hydrodynamics (using flux-limited diffusion) in Cartesian, cylindrical, or spherical polar coordinates.
The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere.
Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems; snapshot generation routines to create particle distributions with various properties; systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium; and snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.
Simulation codes include both pure N-body and combined N-body/SPH programs. Pure N-body codes are available in both uniprocessor and parallel versions. SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions. Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.
Zeltron is an explicit 3D relativistic electromagnetic Particle-In-Cell code suited for modeling particle acceleration in astrophysical plasmas. The code is efficiently parallelized with the Message Passing Interface, and can be run on a laptop computer or on multiple cores on current supercomputers. Zeltron takes into account the effect of the radiation reaction force on the motion of the particles; it assigns variable weights to the macro-particles to model particle density gradients, and does not strictly conserve the total energy. The code uses linear interpolation to deposit the charges and currents generated by each particle at the nodes of the computational grid, and computes the charge and current densities for Maxwell's equations. Zeltron contains a large set of analysis tools, including plasma density, particle spectrum, optically thin synchrotron and inverse Compton spectra, angular distributions, and stress-energy tensor.
ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants: 1.) zelrecon.cpp, which computes the various contributions to the correlation function; 2.) zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and 3.) a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.
zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.
The Zelda command-line tool extracts correlation functions in velocity space from a galaxy catalog. Zelda is modular, extendable, and can be generalized to produce power spectra and to work in position space. Written in C, it was heavily inspired by the cosmological Boltzmann code CLASS (ascl:1106.020). Zelda is a parallel code using the OpenMP standard.
The current version of the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA) combines and extends several of the classical approaches to produce accurate photometric redshifts down to faint magnitudes. In particular, ZEBRA uses the template-fitting approach to produce Maximum Likelihood and Bayesian redshift estimates based on: (1.) An automatic iterative technique to correct the original set of galaxy templates to best represent the SEDs of real galaxies at different redshifts; (2.) A training set of spectroscopic redshifts for a small fraction of the photometric sample; and (3.) An iterative technique for Bayesian redshift estimates, which extracts the full two-dimensional redshift and template probability function for each galaxy.
The cross-correlation function (CCF) is commonly employed in the study of AGN, where it is used to probe the structure of the broad line region by line reverberation, to study the continuum emission mechanism by correlating multi-waveband light curves and to seek correlations between the variability and other AGN properties. The z -transformed discrete correlation function (ZDCF) is a method for estimating the CCF of sparse, unevenly sampled light curves. Unlike the commonly used interpolation method, it does not assume that the light curves are smooth and it does provide errors on its estimates.
zCluster measures galaxy cluster photometric redshifts using data from broadband photometry in large public surveys, given a priori knowledge of the cluster position. The code retrieves and uses redshift probability distributions in order to create a projected two-dimensional density map of a targeted galaxy cluster, which is later convolved with a Gaussian kernel to smooth the map. zCluster also produces photometric redshift estimates and galaxy density maps for any point in the sky using the included zField tool.
ZChecker finds, measures, and visualizes known comets in the Zwicky Transient Facility time-domain survey. Images of targets are identified using on-line ephemeris generation and survey metadata. The photometry of the targets are measured and the images are processed with temporal filtering to highlight morphological variations in time.
ZBARYCORR determines the barycentric redshift (zB) for a given star. It calculates the positions and velocities of solar system objects, applies the rotation, precession, nutation, and polar motion of the Earth, applies the stellar motion using the Markwardt library (ascl:1807.016), Shapiro delay, and light-travel term, and finally calculates the quantity zB—the barycentric correction independent of the measured redshift. A Python wrapper, BARYCORR (ascl:1807.018), is available.
ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.
ZAP (Zurich Atmosphere Purge) provides sky subtraction for integral field spectroscopy; its approach is based on principal component analysis (PCA) developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources; this method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation.
ytree reads and works with merger tree data from multiple formats. An extension of yt (ascl:1011.022), which can analyze snapshots from cosmological simulations, ytree can be thought of as the yt of merger trees. ytree's online documentation lists supported formats; support for additional formats can be added, as in principle, any type of tree-like data where an object has one or more ancestors and a single descendant can be supported.
yt is an open source, community-developed volumetric analysis and visualization toolkit. Originally designed for handling Enzo's (ascl:1010.072) structure adaptive mesh refinement (AMR) data, yt has been extended to work with numerous simulation methods and simulation codes including Orion, RAMSES (ascl:1011.007), and FLASH (ascl:1010.082). Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to data representation on-disk or in-memory. yt can be used for projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation and topologically-connected isocontour identification.
yt benefits from the contributions of a broad range of community members, and a full list of credits for the code can be found on the yt website or in the source repository.
ysoisochrone is a Python3 package that handles the isochrones for young stellar objects (YSOs), and utilize isochrones to derive the stellar mass and ages. Our primary method is a Bayesian inference approach, and the Python code builds on the IDL version developed in Pascucci et al. (2016). The code estimates the stellar masses, ages, and associated uncertainties by comparing their stellar effective temperature, bolometric luminosity, and their uncertainties with different stellar evolutionary models, including those specifically developed for YSOs. User-developed evolutionary tracks can also be utilized when provided in the specific format described in the code documentation.
Youpi is a portable, easy to use web application providing high level functionalities to perform data reduction on scientific FITS images. Built on top of various open source reduction tools released to the community by TERAPIX (http://terapix.iap.fr), Youpi can help organize data, manage processing jobs on a computer cluster in real time (using Condor) and facilitate teamwork by allowing fine-grain sharing of results and data. Youpi is modular and comes with plugins which perform, from within a browser, various processing tasks such as evaluating the quality of incoming images (using the QualityFITS software package), computing astrometric and photometric solutions (using SCAMP), resampling and co-adding FITS images (using SWarp) and extracting sources and building source catalogues from astronomical images (using SExtractor). Youpi is useful for small to medium-sized data reduction projects; it is free and is published under the GNU General Public License.
YONDER uses singular value decomposition to perform low-rank data denoising and reconstruction. It takes a tabular data matrix and an error matrix as input and returns a denoised version of the original dataset as output. The approach enables a more accurate data analysis in the presence of uncertainties. Consequently, this package can be used as a simple toolbox to perform astronomical data cleaning.
YODA, implemented in C++, performs object detection, photometry and star-galaxy classification on astronomical images. Developed specifically to cope with the multi-band imaging data common in modern extragalactic imaging surveys, it is modular and therefore easily adaptable to specific needs. YODA works under conditions of inhomogeneous background noise across the detection frame, and performs accurate aperture photometry in image sets not sharing a common coordinate system or pixel scale as is often the case in present-day extragalactic survey work.
YNOGKM (Yun-Nan observatories geodesic in a Kerr-Newman spacetime for massive particles) performs fast calculation of time-like geodesics in the Kerr-Newman (K-N) spacetime; it is a direct extension of YNOGK (Yun-Nan observatories geodesic Kerr) calculating null geodesics in a Kerr spacetime. The four Boyer-Lindquis coordinates and proper time are expressed as functions of a parameter p semi-analytically by using the Weierstrass' and Jacobi's elliptic functions and integrals. The elliptic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code. The source Fortran file ynogkm.f90 contains three modules: constants, rootfind, ellfunction, and blcoordinates.
YNOGK, written in Fortran, calculates the null geodesics in the Kerr spacetime. It uses Weierstrass' and Jacobi's elliptic functions to express all coordinates and affine parameters as analytical and numerical functions of a parameter $p$, which is an integral value along the geodesic. The information about the turning points do not need to be specified in advance by the user, allowing applications such as imaging, the calculation of line profiles or the observer-emitter problem to become root finding problems. Elliptic integrations are computed by Carlson's elliptic integral method, which allows fast computation.
YMW16 models the distribution of free electrons in the Galaxy, the Magellanic Clouds and the inter-galactic medium and can be used to estimate distances for real or simulated pulsars and fast radio bursts (FRBs) based on their position and dispersion measure. The Galactic model is based on 189 pulsars that have independently determined distances as well as dispersion measures, whereas simpler models are used for the electron density in the MC and the IGM.
Yaxx is a Perl script that facilitates batch data processing using Perl open source software and commonly available software such as CIAO/Sherpa, S-lang, SAS, and FTOOLS. For Chandra and XMM analysis it includes automated spectral extraction, fitting, and report generation. Yaxx can be run without climbing an extensive learning curve; even so, yaxx is highly configurable and can be customized to support complex analysis. yaxx uses template files and takes full advantage of the unique Sherpa / S-lang environment to make much of the processing user configurable. Although originally developed with an emphasis on X-ray data analysis, yaxx evolved to be a general-purpose pipeline scripting package.
The xwavecal library automatically wavelength calibrates echelle spectrographs for high precision radial velocity work. The routines are designed to operate on data with extracted 1D spectra. The library provides a convienience function which returns a list of wavelengths from just a list of spectral feature coordinates (pixel and order) and a reference line list. The returned wavelengths are the wavelengths of the measured spectral features under the best fit wavelength model. xwavecal also provides line identification and spectral reduction utilities. The library is modular; each step of the wavelength calibration is a stage which can be disabled by removing the associated line in the config.ini file. Wavelength calibrating data which already have spectra means only using the wavelength calibration stages. Using the full experimental pipeline means enabling the other data reduction stages, such as overscan subtraction.
XSTAR is a command-driven, interactive, computer program for calculating the physical conditions and emission spectra of photoionized gases. It may be applied in a wide variety of astrophysical contexts. Stripped to essentials, its job may be described simply: A spherical gas shell surrounding a central source of ionizing radiation absorbs some of this radiation and reradiates it in other portions of the spectrum; XSTAR computes the effects on the gas of absorbing this energy, and the spectrum of reradiated light. The user supplies the shape and strength of the incident continuum, the elemental abundances in the gas, its density or pressure, and its thickness; the code can be directed to return any of a large number of derived quantities, including (but not limited to) the ionization balance and temperature, opacity tables, and emitted line and continuum fluxes.
It has been over a decade since the first paper was published containing results determined using the general X-ray spectral-fitting program XSPEC. Since then XSPEC has become the most widely used program for this purpose, being the de facto standard for the ROSAT and the de jure standard for the ASCA and XTE satellites. Probably the most important features of XSPEC are the large number of theoretical models available and the facilities for adding new models.
XSPEC_EMCEE is an XSPEC-friendly interface for emcee (ascl:1303.002). It carries out MCMC analyses of X-ray spectra in the X-ray spectral fitting program XSPEC (ascl:9910.005). It can run multiple xspec processes simultaneously, speeding up the analysis, and can switch to parameterizing norm
parameters in log space.
xSonify maps scientific data to acoustic sequences. Listening to data can help discover patterns in huge amounts of data. Written in Java, xSonify allows visually impaired people to examine numerical data for patterns. The data can be imported from local files or from remote databases via the Internet. Single results of measurements from spacecraft instruments can be selected by their corresponding variables in a specific time frame. The results are transformed into MIDI sequences which can be played with a selection of different instruments from a soundbank. Another software module enables xSonify to convert the sonified data into other sound formats to make it easier to archive and exchange the Sonification results with other scientists.
Xsmurf is a software package written in C/Tcl/Tk that implements the continuous wavelet transform modulus maxima method, an image processing tool for measuring fractal and multifractal properties in experimental and simulation data.
Multifractal analysis is described in the following page: http://www.scholarpedia.org/article/Wavelet-based_multifractal_analysis
Xsmurf has been used in multiple applications in astrophysics, e.g. :
- analysis of solar magnetograms for characterizing complexity of evolving regions
- fractal/multifractal nature and anisotropic structure of Galactic atomic hydrogen (H I)
- analysis of simulation data (velocity field, ...) of turbulent flow
XSHPipelineManager provides a framework for reducing spectroscopic observations taken by the X-shooter spectrograph at the Very Large Telescope. This Python code wraps recipes developed by the European Southern Observatory and runs the full X-shooter data reduction pipeline. The code offers full flexibility in terms of what data reduction recipes to include and which calibration files to use. During the data reduction chain restart-files are saved, making it possible to restart at any step in the chain.
Xpol computes angular power spectra based on cross-correlation between maps and covariance matrices. The code is written in C and is fully MPI parallelized in CPU and memory using spherical transform by s2hat (ascl:1110.013). It has been used to derive CMB and dust power spectra for Archeops and CMB, dust, CIB, SZ, SZ-CIB for Planck, among others.
XPHOT is an IDL implementation of a non-parametric method for estimating the apparent and intrinsic broad-band fluxes and absorbing X-ray column densities of weak X-ray sources. XPHOT is intended for faint sources with greater than ∼5-7 counts but fewer than 100-300 counts where parametric spectral fitting methods will be superior. This method is similar to the long-standing use of color-magnitude diagrams in optical and infrared astronomy, with X-ray median energy replacing color index and X-ray source counts replacing magnitude. Though XPHOT was calibrated for thermal spectra characteristic of stars in young stellar clusters, recalibration should be possible for some other classes of faint X-ray sources such as extragalactic active galactic nuclei.
XPCell simulates convective plasma cells. The program is implemented in two versions, one using GNUPLOT and the second OpenGL. XPCell offers a GUI to introduce the parameter required by the program.
XookSuut models circular and noncircular flows on resolved velocity maps. The code performs nonparametric fits to derive kinematic models without assuming analytical functions on the different velocity components of the models. It recovers the circular and radial motions in galaxies in dynamical equilibrium and can derive the noncircular motions induced by oval distortions, such as that produced by stellar bars. XookSuut explores the full space of parameters on a N-dimensional space to derive their mean values; this combined method efficiently recovers the constant parameters and the different kinematic components.
XNS solves for the axisymmetric equilibrium configuration of neutron stars in general relativity. It can model differentially rotating and magnetic fields that are either purely toroidal, purely poloidal or in the mixed twisted torus configuration. Einsten's equations are solved using the XCFC approximation for the metric in spherical coordinates.
Xmatch is a cross-platform, multi-GPU tool which allows for extremely fast cross-matching between two Astronomic catalogs. It is capable of asyncronously managing multiple GPUs, ideal for workstation and cluster environments.
XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.
Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.
xGDS (Exploration Ground Data Systems) synthesizes real world data (from sensors, robots, ROVs, mobile devices, etc) and human observations into rich, digital maps and displays for analysis, decision making, and collaboration. xGDS processes and maps data (including video) in real-time during operations and uses it to support live role-based geolocated note taking. Notes can be used to search for and display important data. The software enables real-time analysis of data, permitting one to make inferences and plan new data collection operations while still in the field.
XGA (X-ray: Generate and Analyse) analyzes X-ray sources observed by the XMM-Newton Space telescope. It is based around declaring different types of source and sample objects which correspond to real X-ray sources, finding all available data, and then insulating the user from the tedious generation and basic analysis of X-ray data products. XGA generates photometric products and spectra for individual sources, or whole samples, with just a few lines of code. Though not a pipeline, pipelines for complex analysis can be built on top of it. XGA provides an easy to use (and parallelized) Python interface with XMM's Science Analysis System (ascl:1404.004), as well as with XSPEC (ascl:9910.005). All XMM products and fit results are read into an XGA source storage structure, thus avoiding the need to leave a Python environment at any point during the analysis. This module also supports more complex analyses for specific object types such as the easy generation of scaling relations, the measurement of gas masses for galaxy clusters, and the PSF correction of images.
XFGL visualizes gravitational lenses. It has an XFORM GUI and is completely interactive with the mouse. It uses OpenGL for the simulations.
XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. XEphem computes heliocentric, geocentric and topocentric information for all objects and has built-in support for all planets, the moons of Mars, Jupiter, Saturn, Uranus and Earth, central meridian longitude of Mars and Jupiter, Saturn's rings, and Jupiter's Great Red Spot. It allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites, provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC, displays data in configurable tabular formats in conjunction with several interactive graphical views, and displays a night-at-a-glance 24 hour graphic showing when any selected objects are up. It also displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories, quickly finds all close pairs of objects in the sky, and sorts and prints all catalogs with very flexible criteria for creating custom observing lists.
The CL-based package XDSPRES is a complete reducing facility for cross-dispersed spectra taken with the Ohio State Infrared Imager/Spectrometer, as installed at the SOAR telescope. This instrument provides spectra in the range between 1.2um and 2.35um in a single exposure, with resolving power of R ~ 1200. XDSPRES consists of two tasks, namely xdflat and doosiris. The former is a completely automated code for preparing normalized flat field images from raw flat field exposures. Doosiris provides a complete reduction pipeline that requires a minimum of user interaction. The user guide explains the general steps towards a fully reduced spectrum.
XDQSO, written in IDL, calculates photometric quasar probabilities to mimick SDSS-III’s BOSS quasar target selection or photometric redshifts for quasars, whether in three redshift ranges (z < 2.2; 2.2 leq z leq 3.5; z > 3.5) or arbitrary redshift ranges.
XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.
XDF-GAN generates mock galaxy surveys with a Spatial Generative Adversarial Network (SGAN)-like architecture. Mock galaxy surveys are generated from data that is preprocessed as little as possible (preprocessing is only a 99.99th percentile clipping). The outputs can also be tessellated together to create a very large survey, limited in size only by the RAM of the generation machine.
XCLASS (eXtended CASA Line Analysis Software Suite) extends CASA (ascl:1107.013) with new functions for modeling interferometric and single dish data. It provides a tool for calculating synthetic spectra by solving the radiative transfer equation for an isothermal object in one dimension, taking into account the finite source size and dust attenuation. It also includes an interface for MAGIX (ascl:1303.009) to find the parameter set that most closely reproduces the data.
XAssist provides automation of X-ray astrophysics, specifically data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts, with an emphasis on galaxies. It has been used for data from Chandra, ROSAT, XMM-Newton, and other various projects.
X-PSI simulates rotationally-modified (pulsed) surface X-ray emission from neutron stars, taking into account relativistic effects on the emitted radiation. This can then be used to perform Bayesian statistical inference on real or simulated astronomical data sets. Model parameters of interest may include neutron star mass and radius (useful to constrain the properties of ultradense nuclear matter) or the system geometry and properties of the hot emitting surface-regions. To achieve this, X-PSI couples code for likelihood functionality (simulation) with existing open-source software for posterior sampling (inference).
WzBinned extracts binned and uncorrelated estimates of dark energy equation of state w(z) using Type Ia supernovae Hubble diagram and other cosmological probes and priors. It can handle an arbitrary number of input distance modulus data (entered as an input file SNdata.dat) and various existing cosmological information.
wwz provides a python3 implementation of the Foster weighted wavelet z-transform, a wavelet-based method for periodicity analysis of unevenly sampled data.
WVTICs generates glass-like initial conditions for Smoothed Particle Hydrodynamics. Relaxation of the particle distribution is done using an algorithm based on Weighted Voronoi Tesselations; additional particle reshuffling can be enabled to improve over- and undersampled maxima/minima. The WBTICs package includes a full suite of analytical test problems.
WVT Binning is a spatially adaptive 2-dimensional binning algorithm designed to bin sparse X-ray data. It can handle background subtracted, exposure corrected data to produce intensity images, hardness ratio maps, or temperature maps. The algorithm is an extension of Cappellari & Copin's (2003) Voronoi binning code and uses Weighted Voronoi Tesselations (WVT) to produce a very compact binning structure with a constant S/N per bin. The bin size adjusts to the required resolution in single-pixel steps, which minimizes the scatter around the target S/N. The code is very versatile and can in principle be applied to any type of data. The user manual contains instructions on how to apply the WVT binning code to X-ray data and how to extend the algorithm to other problems.
wvrgcal is a command line front end to LibAIR, the atmospheric inference library for phase correction of ALMA data using water vapour radiometers, and is the user-facing application for calculating atmospheric phase correction from WVR data. wvrgcal outputs a CASA gain calibration table which can then be applied to the observed data in the usual way.
Note: wvrgcal has been incorporated into the NRAO CASA suite.
wsynphot provides a broad set of filters, including observation facility, instrument, and wavelength range, and functions for imaging stars to produce a filter curve showing the transmission of light for each wavelength value. It can create a filter curve object, plot the curve, and allows the user to do calculations on the filter curve object.
wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.
Pairwise forces between particles in cosmological N-body simulations are generally softened to avoid hard collisions. Physically, this softening corresponds to treating the particles as diffuse clouds rather than point masses. For particles of unequal mass (and hence unequal softening length), computing the softened force involves a nontrivial double integral over the volumes of the two particles. We show that Plummer force softening is consistent with this interpretation of softening while spline softening is not. We provide closed-form expressions and numerical implementation for pairwise gravitational force laws for pairs of particles of general softening scales $epsilon_1$ and $epsilon_2$ assuming the commonly used cloud profiles: NGP, CIC, TSC, and PQS. Similarly, we generalize Plummer force law into pairs of particles of general softenings. We relate our expressions to the gaussian, Plummer and spline force softenings known from literature. Our expressions allow possible inclusions of pointlike particles such as stars or supermassive black holes.
WSClean (w-stacking clean) is a fast generic widefield imager. It uses the w-stacking algorithm and can make use of the w-snapshot algorithm. It supports full-sky imaging and proper beam correction for homogeneous dipole arrays such as the MWA. WSClean allows Hogbom and Cotton-Schwab cleaning, and can clean polarizations joinedly. All operations are performed on the CPU; it is not specialized for GPUs.
Wqed (pronounced "Wicked") is a set of tools developed by the Delaware Asteroseismic Research Center (DARC) to simplify the process of reducing time-series CCD data on variable stars. It does not provide tools to measure the brightness of stars in individual frames, focusing instead on what comes next:
wpca, written in Python, offers several implementations of Weighted Principal Component Analysis and uses an interface similar to scikit-learn's sklearn.decomposition.PCA. Implementations include a direct decomposition of a weighted covariance matrix to compute principal vectors, and then a weighted least squares optimization to compute principal components, and an iterative expectation-maximization approach to solve simultaneously for the principal vectors and principal components of weighted data. It also includes a standard non-weighted PCA implemented using the singular value decomposition, primarily to be useful for testing.
Wōtan provides free and open source algorithms to remove trends from time-series data automatically as an aid to search efficiently for transits in stellar light curves from surveys. The toolkit helps determine empirically the best tool for a given job, serving as a one-stop solution for various smoothing tasks.
World Observatory visualizes S/N-versus-cost tradeoffs for large optical and near-infrared telescopes. Both mid-latitude and Arctic/Antarctic sites can be considered; the intent is a simple simulation to grow intuition for where major capital costs lie relative to key observatory design choices, and against expected scientific performance at various sites. User-defined unit costs for (a possibly "effective") roadway, enclosure, aperture, focal length, and adaptive optics can be scaled up for polar sites, and down for better seeing and lower sky brightness in K-band. Observatory models and results are immediately displayed side-by-side. Either point-source-detection S/N or recovery of bulge-to-total ratios in a simulated galaxy survey are divided by the total project cost, thus providing a universal metric.
WOMBAT (sWift Objects for Mhd BAsed on Tvd) is an astrophysical fluid code that is an implementation of a non-relativistic MHD TVD scheme; an extension for relativistic MHD has been added. The code operates on 1, 2, and 3D Eulerian meshes (cartesian and cylindrical coordinates) with magnetic field divergence restriction controlled by a constrained transport (CT) scheme. The user can tune code performance to a given processor based on chip cache sizes. Proper settings yield significant speed-ups due to efficient cache reuse.
WOLF processes FITS files and generates photometry files, annotated JPGs, opacity maps, background, transient detection and luminance changes detection. This software was used to process data for the Night Sky Live project.
wobble analyzes time-series spectra. It was designed with stabilized extreme precision radial velocity (EPRV) spectrographs in mind, but is highly flexible and extensible to a variety of applications. It takes a data-driven approach to deriving radial velocities and requires no a priori knowledge of the stellar spectrum or telluric features.
WND-CHARM quantitatively analyzes morphologies of galaxy mergers and associate galaxies by their morphology. It computes a large set (up to ~2700) of image features for each image based on the WND-CHARM algorithm. It can then split the images into training and test sets and classify them. The software extracts the image content descriptor from raw images, image transforms, and compound image transforms. The most informative features are then selected, and the feature vector of each image is used for classification and similarity measurement using Fisher discriminant scores and a variation of Weighted Nearest Neighbor analysis. WND-CHARM's results comparable favorably to the performance of task-specific algorithms developed for tested datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.
WM-basic is an easy-to-use interface to a program package which models the atmospheres of Hot Stars (and also SN and GN). The release comprises all programs required to calculate model atmospheres which especially yield ionizing fluxes and synthetic spectra. WM-basic is a native 32-bit application, conforming to the Multiple Documents Interface (MDI) standards for Windows XP/2000/NT/9x. All components of the program package have been compiled with Digital Visual Fortran V6.6(Pro) and Microsoft Visual C++.
WISP (Wenger Interferometry Software Package) is a radio interferometry calibration, reduction, imaging, and analysis package. WISP is a collection of Python code implemented through CASA (ascl:1107.013). Its generic and modular framework is designed to handle any continuum or spectral line radio interferometry data.
WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.
WISE2MBH uses infrared cataloged data from the Wide-field Infrared Survey Explorer (WISE) to estimate the mass of supermassive black holes (SMBH). It implements a Monte Carlo approach for error propagation, considering mean photometric errors from WISE magnitudes, errors in fits of scaling relations used and scatter of those relations, if available.
WinNet, a single zone nuclear reaction network, calculates many different nucleosynthesis processes, including r-process, nup-process, and explosive nucleosynthesis, and many more). It reads in a user-defined file with runtime parameters, then chooses the evolution mode, which is dependent on temperature. The temperature, density, and neutrino quantities are updated, after which the reaction network equations are solved numerically. If convergence is not achieved, the step size is halved and the iteration is repeated. Once convergence is reached, the output is generated and the time is evolved; the final output such as the final abundances and mass fractions are written.
WINGSPAN is a program written to analyze spectral data from the Burst and Transient Source Experiment (BATSE) on NASA's Compton Gamma-Ray Observatory. Data files in the FITS (BFITS) format are suitable for input into the program. WINGSPAN can be used to view and manipulate event time histories or count spectra, and also has the capability to perform spectral deconvolution via a standard forward folding model fitting technique (Levenberg-Marquardt algorithm). Although WINGSPAN provides many functions for data manipulation, the program was designed to allow users to easily plug in their own external IDL routines. These external routines have access to all data read from the FITS files, as well as selection intervals created in the main part of WINGSPAN (background intervals and model, etc).
WimPyDD calculates accurate predictions for the expected rates in WIMP direct–detection experiments within the framework of Galilean–invariant non–relativistic effective theory. The object–oriented customizable Python code handles different scenarios including inelastic scattering, WIMP of arbitrary spin, and a generic velocity distribution of WIMP in the Galactic halo.
WIMpy_NREFT (also known as WIMpy) calculates Dark Matter-Nucleus scattering rates in the framework of non-relativistic effective field theory (NREFT). It currently supports operators O1 to O11, as well as millicharged and magnetic dipole Dark Matter. It can be used to generate spectra for Xenon, Argon, Carbon, Germanium, Iodine and Fluorine targets. WIMpy_NREFT also includes functionality to calculate directional recoil spectra, as well as signals from coherent neutrino-nucleus scattering (including fluxes from the Sun, atmosphere and diffuse supernovae).
WignerFamilies generates families of Wigner 3j and 6j symbols by recurrence relation. These exact methods are orders of magnitude more efficient than strategies such as prime factorization for problems which require every non-trivial symbol in a family, and are very useful for large quantum numbers. WignerFamilies is thread-safe and very fast, beating the standard Fortran routine DRC3JJ from SLATEC by a factor of 2-4.
Wigglewave uses a finite difference method to solve the linearized governing equations for a torsion Alfvèn wave propagating in a plasma with negligible plasma beta and in a force-free axisymmetric magnetic field with no azimuthal component embedded in a high density divergent tube structure. Wigglewave is fourth order in time and space using a fourth-order central difference scheme for calculating spatial derivatives and a fourth-order Runge-Kutta (RK4) scheme for updating at each timestep. The solutions calculated are the perturbations to the velocity, v and to the magnetic field, b. All variables are calculated over a uniform grid in radius r and height z.
Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet.
Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.
WhereWolf tracks (sub)haloes even if they have been lost by a halo finder in cosmological simulations and supplements halo catalogs such as VELOCIraptor (ascl:1911.020) with these recovered (sub)haloes. The code can improve measurements of the subhalo/halo mass function and present estimates of the distribution of radii at which subhaloes merge.
whereistheplanet predicts the locations of directly imaged companions (mainly exoplanets and brown dwarfs) based on past orbital fits to the data. This tool helps coordinate follow-up observations to characterize their properties, as precise pointing of the instrument is often needed. It uses orbitize! (ascl:1910.009) as a backend. whereistheplanet is available as a Python API, a command line tool, and a web form at whereistheplanet.com.
WFC3UV_GC is an improved geometric-distortion solution for the Hubble Space Telescope UVIS channel of Wide Field Camera 3 for ten broad-band filters. The solution is made up of three parts:
1.) a 3rd-order polynomial to deal with the general optical distortion;
2.) a table of residuals that accounts for both chip-related anomalies and fine-structure introduced by the filter; and,
3.) a linear transformation to put the two chips into a convenient master frame.
WF4Py implements frequency-domain gravitational wave waveform models in pure Python, thus enabling parallelization over multiple events at a time. Waveforms in WF4Py are built as classes; the functions take dictionaries containing the parameters of the events to analyze as input and provide Fourier domain waveform models. All the waveforms are accurately checked with their implementation in LALSuite (ascl:2012.021) and are a core element of GWFAST (ascl:2212.001).
WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.
WeightWatcher is a program that combines weight-maps, flag-maps and polygon data in order to produce control maps which can directly be used in astronomical image-processing packages like Drizzle, SWarp or SExtractor.
This code, which requires HEALPix 2.x (ascl:1107.018), allows you to generate power spectrum estimators from WMAP 5-year maps and generate hybrid cross- and auto- power spectrum and covariance from general foreground-cleaned maps. In addition, it allows you to simulate combined maps or combinations of maps for individual detectors and do MPI spherical transforms of arrays of maps, calculate coupling matrices etc. The code includes all of LensPix (ascl:1102.025), the MPI framework used for doing spherical transforms (based on HealPix).
Weighted EMPCA performs principal component analysis (PCA) on noisy datasets with missing values. Estimates of the measurement error are used to weight the input data such that the resulting eigenvectors, when compared to classic PCA, are more sensitive to the true underlying signal variations rather than being pulled by heteroskedastic measurement noise. Missing data are simply limiting cases of weight = 0. The underlying algorithm is a noise weighted expectation maximization (EM) PCA, which has additional benefits of implementation speed and flexibility for smoothing eigenvectors to reduce the noise contribution.
WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.
WeakLensingQML implements the Quadratic Maximum Likelihood (QML) estimator and applies it to simulated cosmic shear data and compares the results to a Pseudo-Cl implementation. The package computes and saves relevant data files for later processes, such as the fiduciary cosmic shear power spectrum used in the analysis, the sky mask, and computing an analytic version of the QML's covariance matrix. The core of the package implements a conjugate-gradient approach for the quadratic estimator, and is parallelized for maximum performance. The code relies on the Eigen linear algebra package and the HealPix spherical harmonic transform library. A post-processing script analyzes the results and compares the QML's estimates with those from the Pseudo-Cl estimator; it then produces an array of plots highlighting the results.
WeakLensingDeblending provides weak lensing fast simulations and analysis for the LSST Dark Energy Science Collaboration. It is used to study the effects of overlapping sources on shear estimation, photometric redshift algorithms, and deblending algorithms. Users can run their own simulations (of LSST and other surveys) or download the galaxy catalog and simulation outputs to use with their own code.
wdwarfdate derives the Bayesian total age of a white dwarf from an effective temperature and a surface gravity. It runs a chain of models assuming single star evolution and estimates the following parameters and their uncertainties: total age of the object, mass and cooling age of the white dwarf, and mass and lifetime of the progenitor star.
wdtools characterizes the atmospheric parameters of white dwarfs using spectroscopic data. The flagship class is the generative fitting pipeline (GFP), which fits ab initio theoretical models to observed spectra in a Bayesian framework using high-speed neural networks to interpolate synthetic spectra.
WDPhotTools generates color-color diagrams and color-magnitude diagrams in various photometric systems, plots cooling profiles from different models, and computes theoretical white dwarf luminosity functions based on the built-in or supplied models of the (1) initial mass function, (2) total stellar evolution lifetime, (3) initial-final mass relation, and (4) white dwarf cooling time. The software has three main parts: the formatters that handle the output models from various works in the format as they are downloaded; the photometric fitter that solves for the WD parameters based on the photometry, with or without distance and reddening; and the generator of the white dwarf luminosity function in bolometric magnitudes or in any of the photometric systems available from the atmosphere model.
WDMWaveletTransforms implements the fast forward and inverse WDM wavelet transforms in Python from both the time and frequency domains. The frequency domain transforms are inherently faster and more accurate. The wavelet domain->frequency domain and frequency domain->wavelet domain transforms are nearly exact numerical inverses of each other for a variety of inputs tested, including Gaussian random noise. WDMWaveletTransforms has both command line and Python interfaces.
wdmerger simulates binary white dwarf mergers (and related events) in CASTRO (ascl:1105.010) and provides useful information on the viability of mergers of white dwarfs as a progenitor for Type Ia supernovae.
WDEC (White Dwarf Evolution Code), written in Fortran, offers a fast and fairly easy way to produce models of white dwarfs. The code evolves hot (~100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models.
Wilson-Devinney binary star modeling code (WD) is a complete package for modeling binary stars and their eclipes and consists of two main modules. The LC module generates light and radial velocity curves, spectral line profiles, images, conjunction times, and timing residuals; the DC module handles differential corrections, performing parameter adjustment of light curves, velocity curves, and eclipse timings by the Least Squares criterion. WD handles eccentric orbits and asynchronous rotation, and can compute velocity curves (with proximity and eclipse effects). It offers options for detailed reflection and nonlinear (logarithmic law) limb darkening, adjustment of spot parameters, an optional provision for spots to drift over the surface, and can follow light curve development over large numbers of orbits. Absolute flux solution allow Direct Distance Estimation (DDE) and there are improved solutions for ellipsoidal variables and for eclipsing binaries (EBs) with very shallow eclipses. Absolute flux solutions also can estimate temperatures of both EB components under suitable circumstances.
WCSTools is a package of programs and a library of utility subroutines for setting and using the world coordinate systems (WCS) in the headers of the most common astronomical image formats, FITS and IRAF .imh, to relate image pixels to sky coordinates. In addition to dealing with image WCS information, WCSTools has extensive catalog search, image header manipulation, and coordinate and time conversion tasks. This software is all written in very portable C, so it should compile and run on any computer with a C compiler.
WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System" (WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX, for drawing general curvilinear coordinate graticules and a number of utility programs.
The graphical user interface Wavelength Calibrator facilitates wavelength calibration. Although developed for astronomical data reduction, it can also be used in any place where wavelength calibration is needed.
Wavetrack recognizes and tracks CME shock waves, filaments, and other solar objects. The code creates base images by averaging а series of images a few minutes prior to the start of the eruption and constructs base difference images by subtracting base images from the current raw image of the sequence. This enhances the change in intensity caused by coronal bright fronts, omits static details, and reduces noise. Wavetrack then chooses an appropriate intensity interval and decomposes the base difference or running difference image with an A-Trous wavelet transform, where each wavelet coefficient is obtained by convolving the image array with a corresponding iteration of the wavelet kernel. When the maximum value of the wavelet coefficients for a connected set of pixels satisfies certain conditions, this region is considered as a structure on the respective wavelet coefficient. Separate stand-alone object masks are obtained with a clustering algorithm and objects are renumbered according to the number of the quadrant they belong at each iteration.
WarpX is an advanced electromagnetic & electrostatic Particle-In-Cell code. It supports many features including Perfectly-Matched Layers (PML), mesh refinement, and the boosted-frame technique. A highly-parallel and highly-optimized code, WarpX can run on GPUs and multi-core CPUs, includes load balancing capabilities, and scales to the largest supercomputers.
Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥105 M☉). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation fesc, I, the minimum star formation efficiency ∊min required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.
walter calculates the number density of stars detected in a given observation aiming to resolve a stellar population. The code also calculates the exposure time needed to reach certain population features, such as the horizontal branch, and provides an estimate of the crowding limit. walter was written with the expectation that such calculations will be very useful for planning surveys with the Nancy Grace Roman Space Telescope (RST, formerly WFIRST).
WaldoInSky finds anomalous astronomical light curves and their analogs. The package contains four methods: an adaptation of the Unsupervised Random Forest for anomaly detection in light curves that operates on the light curve points and their power spectra; two manifold-learning methods (the t-SNE and UMAP) that operate on the DMDT maps (image representations of the light curves), and that can be used to find analog light curves in the low-dimensional representation; and an Isolation Forest method for evaluating approaches of light curve pre-processing, before they are passed to the anomaly detectors. WaldoInSky also contain code for random sparsification of light curves.
WALDO (Waveform AnomaLy DetectOr) flags possible anomalous Gravitational Waves from Numerical Relativity catalogs using deep learning. It uses a U-Net architecture to learn the waveform features of a dataset. After computing the mismatch between those waveforms and the neural predictions, WALDO isolates high mismatch evaluations for anomaly search.
The vysmaw client library facilitates the development of code for processes to tap into the fast visibility stream on the National Radio Astronomy Observatory's Very Large Array correlator back-end InfiniBand network. This uses the vys protocol to allow loose coupling to clients that need to remotely access memory over an Infiniband network.
VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.
VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.
VPLanet (Virtual Planetary Laboratory) simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.
vpguess facilitates the fitting of multiple Voigt profiles to spectroscopic data. It is a graphical interface to VPFIT (ascl:1408.015). Originally meant to simplify the process of setting up first guesses for a subsequent fit with VPFIT, it has developed into a full interface to VPFIT. It may also be used independently of VPFIT for displaying data, playing around with data and models, "chi-by-eye" fits, displaying the result of a proper fit, pretty plots, etc. vpguess is written in C, and the graphics are based on PGPLOT (ascl:1103.002).
The VPFIT program fits multiple Voigt profiles (convolved with the instrument profiles) to spectroscopic data that is in FITS or an ASCII file. It requires CFITSIO (ascl:1010.001) and PGPLOT (ascl:1103.002); the tarball includes RDGEN (ascl:1408.017), which can be used with VPFIT to set up the fits, fit the profiles, and examine the result in interactive mode for setting up initial guesses; vpguess (ascl:1408.016) can also be used to set up an initial file.
VOStat allows astronomers to use both simple and sophisticated statistical routines on large datasets. This tool uses the large public-domain statistical computing package R. Datasets can be uploaded in either ASCII or VOTABLE (preferred) format. The statistical computations are performed by the VOStat and results are returned to the user.
VOSpec is a multi-wavelength spectral analysis tool with access to spectra, theoretical models and atomic and molecular line databases registered in the VO. The standard tools of VOSpec include line and continuum fitting, redshift and reddening correction, spectral arithmetic and convolution between spectra, equivalent width and flux calculations, and a best fitting algorithm for fitting selected SEDs to a TSAP service. VOSpec offers several display modes (tree vs table) and organising functionalities according to the available metadata for each service, including distance from the observation position.
vortex performs a Helmholtz-Hodge decomposition on vector fields defined on AMR grids, decomposing a vector field in its solenoidal (divergence-less) and compressive (curl-less) parts. It works natively on vector fields defined on Adaptive Mesh Refinement (AMR) grids, so that it can perform the decomposition over large dynamical ranges; it is also applicable to particle-based simulations. As vortex is devised primarily to investigate the properties of the turbulent velocity field in the Intracluster Medium (ICM), it also includes routines for multi-scale filtering the velocity field.
vortex-p analyzes the velocity fields of astrophysical simulations of different natures (for example, SPH, moving-mesh, and meshless) usually spanning many orders of magnitude in scales involved. The code performs Helmholtz-Hodge decomposition (HHD); that is, it can decompose the velocity field into a solenoidal and an irrotational/compressive part Helmholtz-Hodge decomposition. vortex-p internally uses an AMR representation of the velocity field and can, in principle, capture the full dynamical range of the simulation. The package can also perform Reynolds decomposition (i.e., the decomposition of the velocity field into a bulk and a turbulent part). This is achieved by means of a multi-scale filtering of the velocity field, where the filtering scale around each point is determined by the local flow properties. vortex-p expands the vortex (ascl:2206.001) code, which had been coupled to the outputs of the MASCLET code, to a fully stand-alone tool capable of working with the outcomes of a broad range of simulation methods.
VorBin (Voronoi binning method) bins two-dimensional data to a constant signal-to-noise ratio per bin. It optimally solves the problem of preserving the maximum spatial resolution of general two-dimensional data, given a constraint on the minimum signal-to-noise ratio. The method is available in both IDL and Python.
VOPlot is a tool for visualizing astronomical data. It was developed in Java and acts on data available in VOTABLE, ASCII and FITS formats. VOPlot is available as a stand alone version, which is to be installed on the user's machine, or as a web-based version fully integrated with the VizieR database.
VOMegaPlot, a Java based tool, has been developed for visualizing astronomical data that is available in VOTable format. It has been specifically optimized for handling large number of points (in the range of millions). It has the same look and feel as VOPlot (ascl:1309.006) and both these tools have certain common functionality.
The VOLK2 (VLBI Observation for transient Localization Keen Searcher) pipeline conducts single pulse searches and localization in regular VLBI observations as well as single pulse detections from known sources in dedicated observations. In VOLKS2, the search and localization are two independent steps. The search step takes the idea of geodetic VLBI post processing, which fully utilizes the cross spectrum fringe phase information to maximize the signal power. Compared with auto spectrum based method, it is able to extract single pulses from highly RFI contaminated data. The localization uses the geodetic VLBI solving methods, which derives the single pulse location by solving a set of linear equations given the relation between the residual delay and the offset to a priori position.
VoigtFit fits Voigt profiles to absorption lines. It fits multiple components for various atomic lines simultaneously, allowing parameters to be tied and fixed, and can automatically fit a polynomial continuum model together with the line profiles. A physical model can be used to constrain thermal and turbulent broadening of absorption lines as well as implementing molecular excitation models. The code uses a χ2 minimization approach to find the best solution and offers interactive features such as manual continuum placement locally around each line, manual masking of undesired fitting regions, and interactive definition of velocity components for various elements, improving the ease of estimating initial guesses.
voevent-parse, written in Python, parses, manipulates, and generates VOEvent XML packets; it is built atop lxml.objectify. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. However, working with XML and adhering to the sometimes lengthy VOEvent schema can be a tricky process. voevent-parse provides convenience routines for common tasks, while allowing the user to utilise the full power of the lxml library when required. An earlier version of voevent-parse was part of the pysovo (ascl:1411.002) library.
VOBOZ (VOronoi BOund Zones) is an algorithm to find haloes in an N-body dark matter simulation which has little dependence on free parameters.
ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points without any free parameters or assumptions about shape. It uses the Voronoi tessellation to estimate densities to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations.
The high-contrast imager SPHERE at the Very Large Telescope combines extreme adaptive optics and coronagraphy to directly image exoplanets in the near-infrared. The vlt-sphere package enables easy reduction of the data coming from IRDIS and IFS, the two near-infrared subsystems of SPHERE. The package relies on the official ESO pipeline (ascl:1402.010), which must be installed separately.
Vlasiator is a 6-dimensional Vlasov theory-based simulation. It simulates the entire near-Earth space at a global scale using the kinetic hybrid-Vlasov approach, to study fundamental plasma processes (reconnection, particle acceleration, shocks), and to gain a deeper understanding of space weather.
vKompth fits the energy-dependent rms-amplitude and phase-lag spectra of low-frequency quasi-periodic oscillations in low mass black-hole X-ray binaries using a variable Comptonization model. The accretion disc is modeled as a multi-temperature blackbody source emitting soft photons which are then Compton up-scattered in a spherical corona, including feedback of Comptonized photons that return to the disc.
Vizic is a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. The software visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog and displays interactive and customizable objects in the map. Property values such as redshift and magnitude can be used to filter or apply colormaps, and objects can be selected for further analysis through standard Python functions from inside a Jupyter notebook.
Vizic allows custom overlays to be appended dynamically on top of the sky map; included are Voronoi, Delaunay, Minimum Spanning Tree and HEALPix layers, which are helpful for visualizing large-scale structure. Overlays can be generated, added or removed dynamically with one line of code. Catalog data is kept in a non-relational database. The Jupyter Notebook allows the user to create scripts to analyze and plot the data selected/displayed in the interactive map, making Vizic a powerful and flexible interactive analysis tool. Vizic be used for data inspection, clustering analysis, galaxy alignment studies, outlier identification or simply large-scale visualizations.
Vissage (VISualisation Software for Astronomical Gigantic data cubEs) is a FITS browser primarily targeting FITS data cubes obtained from ALMA. Vissage offers basic functionality for viewing three-dimensional data cubes, integrated intensity map, flipbook, channel map, and P-V diagram. It has several color sets and color scales available, offers panning and zooming, and can connect with the ALMA WebQL system and the JVO Subaru Image Cutout Service.
VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments.
VisIt is a free interactive parallel visualization and graphical analysis tool for viewing scientific data on Unix and PC platforms. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images for presentations. VisIt contains a rich set of visualization features so that you can view your data in a variety of ways. It can be used to visualize scalar and vector fields defined on two- and three-dimensional (2D and 3D) structured and unstructured meshes. VisIt was designed to handle very large data set sizes in the terascale range and yet can also handle small data sets in the kilobyte range. See the table below for more details about the tool’s features.
VisIt was developed by the Department of Energy (DOE) Advanced Simulation and Computing Initiative (ASCI) to visualize and analyze the results of terascale simulations. It was developed as a framework for adding custom capabilities and rapidly deploying new visualization technologies. Although the primary driving force behind the development of VisIt was for visualizing terascale data, it is also well suited for visualizing data from typical simulations on desktop systems.
VisiOmatic is a web client for IIPImage (ascl:1408.009) and is used to visualize and navigate through large science images from remote locations. It requires STIFF (ascl:1110.006), is based on the Leaflet Javascript library, and works on both touch-based and mouse-based devices.
VISIBLE applies approximated matched filters to interferometric data, allowing line detection directly in visibility space. The filter can be created from a FITS image or RADMC3D output image, and the weak line data can be a CASA MS or uvfits file. The filter response spectrum can be output either to a .npy file or returned back to the user for scripting.
viscm is a Python tool for visualizing and designing colormaps using colorspacious and matplotlib.
ViSBARD interactively visualizes and analyzes space physics data. It provides an interactive integrated 3-D and 2-D environment to determine correlations between measurements across many spacecraft. It supports a variety of spacecraft data products and MHD models and is easily extensible to others. ViSBARD provides a way of visualizing multiple vector and scalar quantities as measured by many spacecraft at once. The data are displayed three-dimesionally along the orbits which may be displayed either as connected lines or as points. The data display allows the rapid determination of vector configurations, correlations between many measurements at multiple points, and global relationships. With the addition of magnetohydrodynamic (MHD) model data, this environment can also be used to validate simulation results with observed data, use simulated data to provide a global context for sparse observed data, and apply feature detection techniques to the simulated data.
Virtual Telescope predicts the signal-to-noise and other parameters of imaging and/or spectroscopic observations as a function of telescope size, detector noise, and other factors for the Next-Generation Space Telescope.
VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.
viper (Velocity and IP EstimatoR) measures differential radial velocities from stellar spectra taken through iodine or other gas cells. It convolves the product of a stellar template and a gas cell spectrum with an instrumental profile. Via least square fitting, it optimizes the parameters of the instrumental profile, the wavelength solution, flux normalization, and the stellar Doppler shift. viper offers various functions to describe the instrumental profile such as Gaussian, super-Gaussian, skewed Gaussian or mixtures of Gaussians. The code is developed for echelle spectra; it can handle data from CES, CRIRES+, KECK, OES, TCES, and UVES, and additional instruments can easily be added. A graphical interface facilitates the work with numerous flexible options.
VIP (Vortex Image Processing pipeline) provides pre- and post-processing algorithms for high-contrast direct imaging of exoplanets. Written in Python, VIP provides a very flexible framework for data exploration and image processing and supports high-contrast imaging observational techniques, including angular, reference-star and multi-spectral differential imaging. Several post-processing algorithms for PSF subtraction based on principal component analysis are available as well as the LLSG (Local Low-rank plus Sparse plus Gaussian-noise decomposition) algorithm for angular differential imaging. VIP also implements the negative fake companion technique coupled with MCMC sampling for rigorous estimation of the flux and position of potential companions.
VINE is a particle based astrophysical simulation code. It uses a tree structure to efficiently solve the gravitational N-body problem and Smoothed Particle Hydrodynamics (SPH) to simulate gas dynamical effects. The code has been successfully used for a number of studies on galaxy interactions, galactic dynamics, star formation and planet formation and given the implemented physics, other applications are possible as well.
VIM (Virtual Observatory Integration and Mining) is a data retrieval and exploration application that assumes an astronomer has a list of 'sources' (positions in the sky), and wants to explore archival catalogs, images, and spectra of the sources, in order to identify, select, and mine the list. VIM does this either through web forms, building a custom 'data matrix,' or locally through downloadable Python code. Any VO-registered catalog service can be used by VIM, as well as co-registered image cutouts from VO-image services, and spectra from VO-spectrum services. The user could, for example, show together: proper motions from GSC2, name and spectral type from NED, magnitudes and colors from 2MASS, and cutouts and spectra from SDSS. VIM can compute columns across surveys and sort on these (eg. 2MASS J magnitude minus SDSS g). For larger sets of sources, VIM utilizes the asynchronous Nesssi services from NVO, that can run thousands of cone and image services overnight.
Viewpoints is an interactive tool for exploratory visual analysis of large high-dimensional (multivariate) data. It uses linked scatterplots to find relations in a few seconds that can take much longer with other plotting tools. Its features include linked scatter plots with brushing, dynamic histograms, normalization, and outlier detection/removal.
The Void IDentification and Examination toolkit (VIDE) identifies voids using a modified version of the parameter-free void finder ZOBOV (ascl:1304.005); a Voronoi tessellation of the tracer particles is used to estimate the density field followed by a watershed algorithm to group Voronoi cells into zones and subsequently voids. Output is a summary of void properties in plain ASCII; a Python API is provided for analysis tasks, including loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles.
The Victoria–Regina stellar models are comprised of seventy-two grids of stellar evolutionary tracks accompanied by complementary zero-age horizontal branches and are presented in “equivalent evolutionary phase” (.eep) files. This Fortran 77 software interpolates isochrones, isochrone population functions, luminosity functions, and color functions of stellar evolutionary tracks.
VHD is a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. VHD is based on ZEUS-2D (Stone & Norman 1992) with the addition of an explicit scheme for the viscosity.
VH-1 is a multidimensional ideal compressible hydrodynamics code written in FORTRAN for use on any computing platform, from desktop workstations to supercomputers. It uses a Lagrangian remap version of the Piecewise Parabolic Method developed by Paul Woodward and Phil Colella in their 1984 paper. VH-1 comes in a variety of versions, from a simple one-dimensional serial variant to a multi-dimensional version scalable to thousands of processors.
Vevacious takes a generic expression for a one-loop effective potential energy function and finds all the tree-level extrema, which are then used as the starting points for gradient-based minimization of the one-loop effective potential. The tunneling time from a given input vacuum to the deepest minimum, if different from the input vacuum, can be calculated. The parameter points are given as files in the SLHA format (though is not restricted to supersymmetric models), and new model files can be easily generated automatically by the Mathematica package SARAH (ascl:1904.020).
Veusz produces a wide variety of publication-ready 2D and 3D plots. Plots are created by building up plotting widgets with a consistent object-based interface, and the package provides many options for customizing plots. Veusz can import data from text, CSV, HDF5 and FITS files; datasets can also be entered within the program and new datasets created via the manipulation of existing datasets using mathematical expressions and more. The program can also be extended, by adding plugins supporting importing new data formats, different types of data manipulation or for automating tasks, and it supports vector and bitmap output, including PDF, Postscript, SVG and EMF.
vetting contains simple, stand-alone Python tools for vetting transiting signals in NASA's Kepler, K2, and TESS data. The code performs a centroid test to look for significant changes in the centroid of a star during a transit or eclipse. vetting requires an installation of Python 3.8 or higher.
Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA) calculates false positive probabilities and statistically validates transiting exoplanets. Written in Python, it uses isochrones [ascl:1503.010] and the package simpledist.
Verne calculates the Earth-stopping effect for super-heavy Dark Matter (DM). The code allows you to calculate the speed distribution (and DM signal rate) at an arbitrary detector location on the Earth. The calculation takes into account the full anisotropic DM velocity distribution and the full velocity dependence of the DM-nucleus cross section. Results can be obtained for any DM mass and cross section, though the results are most reliable for very heavy DM particles.
venice reads a mask file (DS9 or fits type) and a catalogue of objects (ascii or fits type) to create a pixelized mask, find objects inside/outside a mask, or generate a random catalogue of objects inside/outside a mask. The program reads the mask file and checks if a point, giving its coordinates, is inside or outside the mask, i.e. inside or outside at least one polygon of the mask.
VELOCIraptor-STF, formerly STructure Finder (ascl:1306.009), is a 6-Dimensional Friends-of-Friends (6D-FoF) phase space halo finder and constructs halo catalogs. The code uses using MPI and OpenMP APIs and can be compiled as a library for on-the-fly halo finding within an N-body/hydrodynamnical code. There is an associated halo merger tree code TreeFrog (ascl:1911.021).
velocileptors computes the real- and redshift-space power spectra and correlation functions of biased tracers using 1-loop perturbation theory (with effective field theory counter terms and up to cubic biasing) as well as the real-space pairwise velocity moments. It provides simple computation of the power spectrum wedges or multipoles, and uses a reduced set of parameters for computing the most common case of the redshift-space power spectrum. In addition, velocileptors offers two "direct expansion" modules available in LPT and EPT.
High-quality velocity maps of galaxies frequently exhibit signatures of non-circular streaming motions. velfit yields results that are more easily interpreted than the commonly used procedure. It can estimate the magnitudes of forced non-circular motions over a broad range of bar strengths from a strongly barred galaxy, through cases of mild bar-like distortions to placing bounds on the shapes of halos in galaxies having extended rotation curves.
This code is no longer maintained and has been superseded by DiskFit (ascl:1209.011).
Velbin convolves the radial velocity offsets due to binary orbital motions with a Gaussian to model an observed velocity distribution. This can be used to measure the mean velocity and velocity dispersion from an observed radial velocity distribution, corrected for binary orbital motions. Velbin fits single- or multi-epoch data with any arbitrary binary orbital parameter distribution (as long as it can be sampled properly), however it always assumes that the intrinsic velocity distribution (i.e. corrected for binary orbital motions) is a Gaussian. Velbin samples (and edits) a binary orbital parameter distribution, fits an observed radial velocity distribution, and creates a mock radial velocity distribution that can be used to provide the fitted radial velocities in the single_epoch or multi_epoch methods.
void-dwarf-analysis analyzes Keck Cosmic Web Imager datacubes to produce maps of kinematic properties (velocity and velocity dispersion), emission line fluxes, and gas-phase metallicities of void dwarf galaxies.
VCAL-SPHERE, for VIP-based Calibration of VLT/SPHERE data, is a versatile pipeline for high-contrast imaging of exoplanets and circumstellar disks. The pipeline covers all steps of data reduction, including raw calibration, pre-processing and post-processing (i.e., modeling and subtraction of the stellar halo), for the IFS, IRDIS-DBI and IRDIS-CI modes (and combinations thereof) of the VLT instrument SPHERE. The three main steps of the reduction correspond to different modules, where the first follows the recommended EsoRex (ascl:1504.003) workflow and associated recipes with occasional inclusion of VIP (ascl:1603.003) routines (e.g., for PCA-based sky subtraction), while the other two stages fully rely on the VIP toolbox. Although the default parameters of the pipeline should yield a good reduction in most cases, these can be tuned using JSON parameter files for each stage of the pipeline for optimal reduction of specific datasets.
VBBinaryLensing forward models gravitational microlensing events using the advanced contour integration method; it supports single and binary lenses. The lens map is inverted on a collection of points on the source boundary to obtain a corresponding collection of points on the boundaries of the images from which the area of the images can be recovered by use of Green’s theorem. The code takes advantage of a number of techniques to make contour integration much more efficient, including using a parabolic correction to increase the accuracy of the summation, introducing an error estimate on each arc of the boundary to enable defining an optimal sampling, and allowing the inclusion of limb darkening. The code is written as a C++ library and wrapped as a Python package, and can be called from either C++ or Python.
VaST (Variability Search Toolkit) finds variable objects on a series of astronomical images in FITS format. The software performs object detection and aperture photometry using SExtractor (ascl:1010.064) on each image, cross-matches lists of detected stars, performs magnitude calibration with respect to the first (reference) image and constructs a lightcurve for each object. The sigma-magnitude, Stetson's L variability index, Robust Median Statistic (RoMS) and other plots may be used to visually identify variable star candidates. The two distinguishing features of VaST are its ability to perform accurate aperture photometry of images obtained with non-linear detectors and to handle complex image distortions. VaST can be used in cases of unstable PSF (e.g., bad guiding or with digitized wide-field photographic images), and has been successfully applied to images obtained with telescopes ranging from 0.08 to 2.5m in diameter equipped with a variety of detectors including CCD, CMOS, MIC and photographic plates.
The VARTOOLS program is a command line utility that provides tools for analyzing time series astronomical data. It implements a number of routines for calculating variability/periodicity statistics of light curves, as well as tools for modifying and filtering light curves.
Varstar Detect uses several numerical and statistical methods to filter and interpret the data obtained from TESS. It performs an amplitude test to determine whether a star is variable and if so, provides the characteristics of each star through phenomenological analysis of the lightcurve.
VapoRock calculates the equilibrium partial pressures of metal-bearing gas species of specific elements above the magma ocean surface to determine the metal-bearing composition of the atmosphere as a function of temperature and the bulk composition of the magma ocean. It utilizes ENKI's ThermoEngine (ascl:2208.006) and combines estimates for element activities in silicate melts with thermodynamic data for metal and metal oxide vapor species.
VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers. VAPOR provides an interactive 3D visualization environment that runs on most UNIX and Windows systems equipped with modern 3D graphics cards. VAPOR provides:
- A visual data discovery environment tailored towards the specialized needs of the astro and geosciences CFD community
- A desktop solution capable of handling terascale size data sets
- Advanced interactive 3D visualization tightly coupled with quantitative data analysis
- Support for multi-variate, time-varying data
- Close coupling with RSI's powerful interpretive data language, IDL
- Support for 3D visualization of WRF-ARW datasets
VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.
VAPHOT is an aperture photometry package for precise time−series photometry of uncrowded fields, geared towards the extraction of target lightcurves of eclipsing or transiting systems. Its photometric main routine works within the IRAF (ascl:9911.002) environment and is built upon the standard aperture photometry task 'phot' from IRAF, using optimized aperture sizes. The associated analysis program 'VANALIZ' works in the IDL environment. It performs differential photometry with graphical and numerical output. VANALIZ produces plots indicative of photometric stability and permits the interactive evaluation and weighting of comparison stars. Also possible is the automatic or manual suppression of data-points and the output of statistical analyses. Several methods for the calculation of the reference brightness are offered. Specific routines for the analysis of transit 'on'-'off' photometry, comparing the target brightness inside against outside a transit are also available.
Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.
VaeX (Visualization and eXploration) interactively visualizes and explores big tabular datasets. It can calculate statistics such as mean, sum, count, and standard deviation on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots, and 3d volume rendering, allowing interactive exploration of big data. VaeX uses memory mapping, zero memory copy policy and lazy computations for best performance, and integrates well with the Jupyter/IPython notebook/lab ecosystem.
VADER is a flexible, general code that simulates the time evolution of thin axisymmetric accretion disks in time-steady potentials. VADER handles arbitrary viscosities, equations of state, boundary conditions, and source and sink terms for both mass and energy.
The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.
uvplot makes nice plots of deprojected interferometric visibilities (often called uvplots). It implements plotting functionality, handles MS tables with spectral windows with different number of channels, and can import visibilities from ASCII to MS Table. It also allows export of specific channels. uvplot can be installed inside the NRAO CASA package (ascl:1107.013).
The two Swift UVOT grisms provide uv (170.0-500.0 nm) and visible (285.0-660.0 nm) spectra with a resolution of R~100 and 75. To reduce the grism data, UVOTPY extracts a spectrum given source sky position, and outputs a flux calibrated spectrum. UVOTPY is a replacement for the UVOTIMGRISM FTOOL (ascl:9912.002) in the HEADAS Swift package. Its extraction uses a curved aperture for the uv spectra, accounts the coincidence losses in the detector, provides more accurate anchor positions for the wavelength scale, and is valid for the whole detector.
UVMULTIFIT, written in Python, is a versatile library for fitting models directly to visibility data. These models can depend on frequency and fitting parameters in an arbitrary algebraic way. The results from the fit to the visibilities of sources with sizes smaller than the diffraction limit of the interferometer are superior to the output obtained from a mere analysis of the deconvolved images. Though UVMULTIFIT is based on the CASA package, it can be easily adapted to other analysis packages that have a Python API.
Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).
uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.
The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.
The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.
The time dependent Monte-Carlo code URILIGHT, written in Fortran 90, assumes homologous expansion. Energy deposition resulting from the decay of radioactive isotopes is calculated by a Monte-Carlo solution of the γ-ray transport, for which interaction with matter is included through Compton scattering and photoelectric absorption. The temperature is iteratively solved for in each cell by requiring that the total emissivity equals the total absorbed energy.
URecon reconstructs the initial conditions of N-body simulations from late time (e.g., z=0) density fields. This simple UNET architecture is implemented in TensorFlow and requires Pylians3 (ascl:2403.012) for measuring power spectrum of density fields. The package includes weights trained on Quijote fiducial cosmology simulations.
URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.
UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing) classifies periodic variable stars such as Delta Scuti stars, RR Lyraes, Cepheids, Type II Cepheids, eclipsing binaries, and long-period variables (i.e. superclasses), and their subclasses (e.g. RR Lyrae ab, c, d, and e types) using well-sampled light curves from any astronomical time-series surveys in optical bands regardless of their survey-specific characteristics such as color, magnitude, and sampling rate. UPSILoN consists of two parts, one which extracts variability features from a light curve, and another which classifies a light curve, and returns extracted features, a predicted class, and a class probability. In principle, UPSILoN can classify any light curves having arbitrary number of data points, but using light curves with more than ~80 data points provides the best classification quality.
UPMASK, written in R, performs membership assignment in stellar clusters. It uses photometry and spatial positions, but can take into account other types of data. UPMASK takes into account arbitrary error models; the code is unsupervised, data-driven, physical-model-free and relies on as few assumptions as possible. The approach followed for membership assessment is based on an iterative process, principal component analysis, a clustering algorithm and a kernel density estimation.
unWISE-verse is an integrated Python pipeline for downloading sets of unWISE time-resolved coadd cutouts from the WiseView image service and uploading subjects to Zooniverse.org for use in astronomical citizen science research. This software was initially designed for the Backyard Worlds: Cool Neighbors research project and is optimized for target sets containing low luminosity brown dwarf candidates. However, unWISE-verse can be applied to other future astronomical research projects that seek to make use of unWISE infrared sky maps, such as studies of infrared variable/transient sources.
The unwise_psf Python module renders point spread function (PSF) models appropriate for use in modeling of unWISE coadd images. unwise_psf translates highly detailed single-exposure WISE PSF models in detector coordinates to the corresponding pixelized PSF models in coadd space, accounting for subtleties including the WISE scan direction and its considerable variation near the ecliptic poles. Applications of the unwise_psf module include performing forced photometry on unWISE coadds, constructing WISE-selected source catalogs based on unWISE coadds and masking unWISE coadd regions contaminated by bright stars.
unTimely Catalog Explorer searches for and visualizes detections in the unTimely Catalog, a full-sky, time-domain catalog of detections based on WISE and NEOWISE image data acquired between 2010 and 2020. The tool searches the catalog by coordinates to create finder charts for each epoch with overplotted catalog positions and light curves using the unTimely photometry, to overplot these light curves with AllWISE multi-epoch and NEOWISE-R single exposure (L1b) photometry, and to create image blinks with overlaid catalog positions in GIF format.
unpopular is an implementation of the Causal Pixel Model (CPM) de-trending method to obtain TESS Full-Frame Image (FFI) light curves. The code, written in Python, models the systematics in the light curves of individual pixels as a linear combination of light curves from many other distant pixels and removes shared flux variations. unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data.
Univiewer is a visualisation program for HEALPix maps. It is written in C++ and uses OpenGL and the wxWidgets library for cross-platform portability. Using it you can:
- Rotate and zoom maps on the sphere in 3D
- Create high-resolution views of square patches of the map
- Change maximum and minimum values of the colourmap interactively
- Calculate the power spectrum of the full-sky map or a patch
- Display any column of a HEALPix map FITS file on the sphere
Since Univiewer uses OpenGL for 3D graphics, its performance is dependent your video card. It has been tested successfully on computers with as little as 8Mb video memory, but it is recommended to have at least 32Mb to get good performance.
In the 3D view, a HEALPix map is projected onto a ECP pixelation to create a texture which is wrapped around the sphere. In calculating the power spectrum, the spherical harmonic transforms are computed using the same ECP pixelation. This inevitably leads to some discrepancies at small scales due to repixelation effects, but they are reasonably small.
The UniverseMachine applies simple empirical models of galaxy formation to dark matter halo merger trees. For each model, it generates an entire mock universe, which it then observes in the same way as the real Universe to calculate a likelihood function. It includes an advanced MCMC algorithm to explore the allowed parameter space of empirical models that are consistent with observations.
UniPOPS, a suite of programs and utilities developed at the National Radio Astronomy Observatory (NRAO), reduced data from the observatory's single-dish telescopes: the Tucson 12-m, the Green Bank 140-ft, and archived data from the Green Bank 300-ft. The primary reduction programs, 'line' (for spectral-line reduction) and 'condar' (for continuum reduction), used the People-Oriented Parsing Service (POPS) as the command line interpreter. UniPOPS unified previous analysis packages and provided new capabilities; development of UniPOPS continued within the NRAO until 2004 when the 12-m was turned over to the Arizona Radio Observatory (ARO). The submitted code is version 3.5 from 2004, the last supported by the NRAO.
The data analysis UniMAP (Unicorn Multi-window Anomaly Detection Pipeline) leverages the Temporal Outlier Factor (TOF) method to find anomalies in LVC data. The pipeline requires a target detector and a start and stop GPS time describing a time interval to analyze, and has three outputs: 1.) an array of GPS times corresponding to TOF detections; 2.) a long q-transform of the entire data interval with visualizations of the TOF detections in the time series; and 3.) q-transforms of the data windows that triggered TOF detections.
UniDAM obtains a homogenized set of stellar parameters from spectrophotometric data of different surveys. Parallax and extinction data can be incorporated into the isochrone fitting method used in UniDAM to reduce distance and age estimate uncertainties for TGAS stars for distances up to 1 kpc and decrease distance Gaia end-of-mission parallax uncertainties by about a factor of 20 and age uncertainties by a factor of two for stars up to 10 kpc away from the Sun.
Umbrella detects, validates, and identifies asteroids. The core of this software suite, Umbrella2, includes algorithms and interfaces for all steps of the processing pipeline, including a novel detection algorithm for faint trails. A detection pipeline accessible as a desktop program (ViaNearby) builds on the library to provide near real-time data reduction of asteroid surveys on the Wide Field Camera of the Isaac Newton Telescope. Umbrella can read and write MPC optical reports, supports SkyBoT and VizieR querying, and can be extended by user image processing functions to take advantage of the algorithms framework as a multi-threaded CPU scheduler for easy algorithm parallelization.
ULySS (University of Lyon Spectroscopic Analysis Software) is an open-source software package written in the GDL/IDL language to analyze astronomical data. ULySS fits a spectrum with a linear combination of non-linear components convolved with a line-of-sight velocity distribution (LOSVD) and multiplied by a polynomial continuum. ULySS is used to study stellar populations of galaxies and star clusters and atmospheric parameters of stars.
Ulula is an ultra-lightweight 2D hydro code for teaching purposes. The code is written in pure python and is designed to be as short and easy to understand as possible, while not compromising on performance. The latter is achieved with a simple Godunov solver and by using numpy for all array operations.
This three-component package provides a Pythonic implementation of the Nested Sampling integration algorithm for Bayesian model comparison and parameter estimation. It offers multiple implementations for constrained drawing functions and a test suite to evaluate the correctness, accuracy and efficiency of various implementations. The three components are:
- a modular framework for nested sampling algorithms (nested_sampling) and their development;
- a test framework to evaluate the performance and accuracy of algorithms (testsuite); and
- UltraNest, a fast C implementation of a mixed RadFriends/MCMC nested sampling algorithm.
UltraDark.jl simulates cosmological scalar fields. Written in Julia, it is inspired by PyUltraLight (ascl:1810.009) and designed to be simple to use and extend. It solves a non-interacting scalar field Gross-Pitaevskii equation coupled to Poisson's equation for gravitational potential. The scalar field describes scalar dark matter in models including ultralight dark matter, fuzzy dark matter, axion-like particles and the like. It also describes an inflaton field in the reheating epoch of the early universe.
Ujti calculates geodesics, gravitational lenses and gravitational redshift in principle, for any metric. Special attention has been given to compact objects, so the current implementation considers only metrics in spherical coordinates.
UFalcon rapidly post-processes N-body code output into signal maps for many different cosmological probes. The package is able to produce maps of weak-lensing convergence, linear-bias galaxy over-density, cosmic microwave background (CMB) lensing convergence and the integrated Sachs-Wolfe temperature perturbation given a set of N-body lightcones. It offers high flexibility for lightcone construction, such as user-specific survey-redshift ranges, redshift distributions and single-source redshifts. UFalcon also computes the galaxy intrinsic alignment signal, which can be treated as an additive component to the cosmological signal.
UDAT is a pattern recognition tool for mass analysis of various types of data, including image and audio. Based on its WND-CHARM (ascl:1312.002) prototype, UDAT computed a large set of numerical content descriptors from each file it analyzes, and selects the most informative features using statistical analysis. The tool can perform automatic classification of galaxy images by training with annotated galaxy images. It also has unsupervised learning capabilities, such as query-by-example of galaxies based on morphology. That is, given an input galaxy image of interest, the tool can search through a large database of images to retrieve the galaxies that are the most similar to the query image. The downside of the tool is its computational complexity, which in most cases will require a small or medium cluster.
UCLCHEM is a time and depth dependent gas-grain chemical model that can be used to estimate the fractional abundances (with respect to hydrogen) of gas and surface species in every environment where molecules are present. The model includes both gas and surface reactions. The code starts from the most diffuse state where all the gas is in atomic form and evolve sthe gas to its final density. Depending on the temperature, atoms and molecules from the gas freeze on to the grains and they hydrogenate where possible. The advantage of this approach is that the ice composition is not assumed but it is derived by a time-dependent computation of the chemical evolution of the gas-dust interaction process. The code is very modular, has been used to model a variety of regions and can be coupled with the UCL_PDR and SMMOL codes.
UCL_PDR is a time dependent photon-dissociation regions model that calculates self consistently the thermal balance. It can be used with gas phase only species as well as with surface species. It is very modular, has the possibility of accounting for density and pressure gradients and can be coupled with UCL_CHEM as well as with SMMOL. It has been used to model small scale (e.g. knots in proto-planetary nebulae) to large scale regions (high redshift galaxies).
Uncertain_blackholemass predicts virial black hole masses using a neural network model and quantifies their uncertainties. The scripts retrieve data and run feature extraction and uncertainty quantification for regression. They can be used separately or deployed to existing machine learning methods to generate prediction intervals for the black hole mass predictions.
UBER (Universal Boltzmann Equation Solver) solves the general form of Fokker-Planck equation and Boltzmann equation, diffusive or non-diffusive, that appear in modeling planetary radiation belts. Users can freely specify the coordinate system, boundary geometry and boundary conditions, and the equation terms and coefficients. The solver works for problems in one to three spatial dimensions. The solver is based upon the mathematical theory of stochastic differential equations. By its nature, the solver scheme is intrinsically Monte Carlo, and the solutions thus contain stochastic uncertainty, though the user may dictate an arbitrarily small relative tolerance of the stochastic uncertainty at the cost of longer Monte Carlo iterations.
USNO/AE98 contains ephemerides for fifteen of the largest asteroids that The Astronomical Almanac has used since its 2000 edition. These ephemerides are based on the Jet Propulsion Laboratory (JPL) planetary ephemeris DE405 and, thus, aligned to the International Celestial Reference System (ICRS). The data cover the period from 1799 November 16 (JD 2378450.5) through 2100 February 1 (JD 2488100.5). The internal uncertainty in the mean longitude at epoch, 1997 December 18, ranges from 0.05 arcseconds for 7 Iris through 0.22 arcseconds for 65 Cybele, and the uncertainty in the mean motion varies from 0.02 arcseconds per century for 4 Vesta to 0.14 arcseconds per century for 511 Davida.
The Astronomical Almanac has published ephemerides for 1 Ceres, 2 Pallas, 3 Juno, and 4 Vesta since its 1953 edition. Historically, these four asteroids have been observed more than any of the others. Ceres, Pallas, and Vesta deserve such attention because as they are the three most massive asteroids, the source of significant perturbations of the planets, the largest in linear size, and among the brightest main belt asteroids. Studying asteroids may provide clues to the origin and primordial composition of the solar system, data for modeling the chaotic dynamics of small solar system bodies, and assessments of potential collisions. Therefore, USNO/AE98 includes more than the traditional four asteroids.
The following criteria were used to select main belt asteroids for USNO/AE98:
Diameter greater than 300 km, presumably among the most massive asteroids
Excellent observing history and discovered before 1850
Largest in their taxonomic class
The massive asteroids included may be studied for their perturbing effects on the planets while those with detailed observing histories may be used to evaluate the accuracy limits of asteroid ephemerides. The fifteen asteroids that met at least one of these criteria are
1 Ceres (new mass determination)
2 Pallas (new mass determination)
3 Juno
4 Vesta (new mass determination)
6 Hebe
7 Iris
8 Flora
9 Metis
10 Hygiea
15 Eunomia
16 Psyche
52 Europa
65 Cybele
511 Davida
704 Interamnia
The refereed paper by Hilton (1999, Astron. J. 117, 1077) describes the USNO/AE98 asteroid ephemerides in detail. The associated USNO/AA Tech Note 1998-12 includes residual plots for all fifteen asteroids and a comparison between these ephemerides and those used in The Astronomical Almanac through 1999.
Software to compact, read, and interpolate the USNO/AE98 asteroid ephemerides is also available. It is written in C and designed to work with the C edition of the Naval Observatory Vector Astrometry Software (NOVAS). The programs could be used with tabular ephemerides of other asteroids as well. The associated README file provides the details of this system.
TYCHO is a general, one dimensional (spherically symmetric) stellar evolution code written in structured Fortran 77; it is designed for hydrostatic and hydrodynamic stages including mass loss, accretion, pulsations and explosions. Mixing and convection algorithms are based on 3D time-dependent simulations. It offers extensive on-line graphics using Tim Pearson's PGPLOT (ascl:1103.002) with X-windows and runs effectively on Linux and Mac OS X laptop and desktop computers.
NOTE: This code is no longer being supported.
TwoDSSM solves the equations of self-gravitating hydrodynamics in the shearing sheet, with cooling. TwoDSSM is configured to use a simple, exponential cooling model, although it contains code for a more complicated (and perhaps more realistic) cooling model based on a one-zone vertical model. The complicated cooling model can be switched on using a flag.
TWODSPEC offers programs for the reduction and analysis of long-slit and optical fiber array spectra, implemented as extensions to the FIGARO package (ascl:1203.013). The software are currently distributed as part of the Starlink software collection (ascl:1110.012). These programs are designed to do as much as possible for the user, to assist quick reduction and analysis of data; for example, LONGSLIT can fit multiple Gaussians to line profiles in batch and decides how many components to fit.
TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.
tvguide determines whether stars and galaxies are observable by TESS. It uses an object's right ascension and declination and estimates the pointing of TESS's cameras using predicted spacecraft ephemerides to determine whether and for how long the object is observable with TESS. tvguide returns a file with two columns, the first the minimum number of sectors the target is observable for and the second the maximum.
TVD solves the magnetohydrodynamic (MHD) equations by updating the fluid variables along each direction using the flux-conservative, second-order, total variation diminishing (TVD), upwind scheme of Jin & Xin. The magnetic field is updated separately in two-dimensional advection-constraint steps. The electromotive force (EMF) is computed in the advection step using the TVD scheme, and this same EMF is used immediately in the constraint step in order to preserve ∇˙B=0 without the need to store intermediate fluxes. The code is extended to three dimensions using operator splitting, and Runge-Kutta is used to get second-order accuracy in time. TVD offers high-resolution per grid cell, second-order accuracy in space and time, and enforcement of the ∇˙B=0 constraint to machine precision. Written in Fortran, It has no memory overhead and is fast. It is also available in a fully scalable message-passing parallel MPI implementation.
TurbuStat implements a variety of turbulence-based statistics described in the astronomical literature and defines distance metrics for each statistic to quantitatively compare spectral-line data cubes, as well as column density, integrated intensity, or other moment maps. The software can simulate observations of fractional Brownian Motion fields, including 2-D images and optically thin H I data cubes. TurbuStat also offers multicore fast-Fourier-transform support and provides a segmented linear model for fitting lines with a break point.
Turbospectrum is a 1D LTE spectrum synthesis code which covers 600 molecules, is fast with many lines, and uses the treatment of line broadening described by Barklem & O’Mara (1998).
Latest version of TS (Turbospectrum), with NLTE capabilities.
Computation of stellar spectra (flux and intensities) in 1D or average stellar atmosphere models.
In order to compute NLTE stellar spectra, additional data is needed, downloadable outside GitHub.
See documentation in DOC folder
Python wrappers are available at https://github.com/EkaterinaSe/TurboSpectrum-Wrapper/ and https://github.com/JGerbs13/TSFitPy
They allow interpolation between models and fitting of spectra to derive stellar parameters.
TurboSETI analyzes filterbank data (frequency vs. time) for narrow band drifting signals; its main purpose is to search for signals of extraterrestrial origin. TurboSETI can search the data for hundreds of drift rates (in Hz/sec) and handles either .fil or .h5 file formats. It has several dependencies, including Blimpy (ascl:1906.002) and Astropy (ascl:1304.002).
turboGL is a fast Mathematica code based on a stochastic approach to cumulative weak lensing. It can easily compute the lensing PDF relative to arbitrary halo mass distributions, selection biases, number of observations, halo profiles and evolutions, making it a useful tool to study how lensing depends on cosmological parameters and impact on observations.
TULIPS (Tool for Understanding the Lives, Interiors, and Physics of Stars) creates diagrams of the structure and evolution of stars. It creates plots and movies based on output from the MESA stellar evolution code (ascl:1010.083). TULIPS represents stars as circles of varying size and color. The code can also visualize the size and perceived color of stars, their interior mixing and nuclear burning processes, their chemical composition, and can compare different MESA models.
TTVFaster implements analytic formulae for transit time variations (TTVs) that are accurate to first order in the planet–star mass ratios and in the orbital eccentricities; the implementations are available in several languages, including IDL, Julia, Python and C. These formulae compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems.
TTVFast efficiently calculates transit times for n-planet systems and the corresponding radial velocities. The code uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times (Nesvorny et al. 2013); it is available in both C and Fortran.
The time series reconstruction method of massive astronomical catalogs reconstructs all celestial objects' time series data for astronomical catalogs with great accuracy. In addition, the program, which requires a Spark cluster, solves the boundary source leakage problem on the premise of ensuring accuracy, and the user can set different parameters for different data sets to filter the error records in the catalogs.
TSP is an astronomical data reduction package that handles time series data and polarimetric data from a variety of different instruments, and is distributed as part of the Starlink software collection (ascl:1110.012).
TRUVOT decontaminates Swift UVOT grism spectra for transient objects. The technique makes use of template images in a process similar to image subtraction.
TROVE (Theoretical ROVibrational Energies) performs variational calculations of rovibrational energies for general polyatomic molecules of arbitrary structure in isolated electronic states. The software numerically constructs the kinetic energy operator, which is represented as an expansion in terms of internal coordinates. The code is self-contained, requiring no analytical pre-derivation of the kinetic energy operator. TROVE is also general and can be used with any internal coordinates.
TRISTAN (TRIdimensional STANford) is a fully electromagnetic code with full relativistic particle dynamics. The code simulates large-scale space plasma phenomena such as the formation of systems of galaxies. TRISTAN particles which hit the boundaries are arrested there and redistributed more uniformly by having the boundaries slightly conducting, thus allowing electrons to recombine with ions and provides a realistic way of eliminating escaping particles from the code. Fresh particle fluxes can then be introduced independently across the boundaries. Written in 1993, this code has largely been superceded by TRISTAN-MP (ascl:1908.008).
TRISTAN-MP is a fully relativistic Particle-In-Cell (PIC) code for plasma physics computations and self-consistently solves the full set of Maxwell’s equations, along with the relativistic equations of motion for the charged particles. Fields are discretized on a finite 3D or 2D mesh, the computational grid; the code then uses time-centered and space-centered finite difference schemes to advance the equations in time via the Lorentz force equation, and to calculate spatial derivatives, so that the algorithm is second order accurate in space and time. The charges and currents derived from the particles' velocities and positions are then used as source terms to re-calculate the electromagnetic fields. TRISTAN-MP is based on the original TRISTAN code (ascl:2008.025) by O. Buneman (1993).
TRIPPy (TRailed Image Photometry in Python) uses a pill-shaped aperture, a rectangle described by three parameters (trail length, angle, and radius) to improve photometry of moving sources over that done with circular apertures. It can generate accurate model and trailed point-spread functions from stationary background sources in sidereally tracked images. Appropriate aperture correction provides accurate, unbiased flux measurement. TRIPPy requires numpy, scipy, matplotlib, Astropy (ascl:1304.002), and stsci.numdisplay; emcee (ascl:1303.002) and SExtractor (ascl:1010.064) are optional.
Written in IDL, TRIPP performs CCD time series reduction and analysis. It provides an on-line check of the incoming frames, performs relative aperture photometry and provides a set of time series tools, such as calculation of periodograms including false alarm probability determination, epoc folding, sinus fitting, and light curve simulations.
triple-stability uses a simple form of an artificial neural network, a multi-layer perceptron, to check whether a given configuration of a triple-star system is dynamically stable. The code is written in Python and the MLP classifier can be imported to other custom Python3 scripts.
TRIP is an interactive computer algebra system that is devoted to perturbation series computations, and specially adapted to celestial mechanics. Its development started in 1988, as an upgrade of the special purpose FORTRAN routines elaborated by J. Laskar for the demonstration of the chaotic behavior of the Solar System. TRIP is a mature and efficient tool for handling multivariate generalized power series, and embeds two kernels, a symbolic and a numerical kernel. This numerical kernel communicates with Gnuplot or Grace to plot the graphics and allows one to plot the numerical evaluation of symbolic objects.
TRINITY statistically connects dark matter halos, galaxies and supermassive black holes (SMBHs) from z=0-10. Constrained by multiple galaxy (0 < z < 10) and SMBH datasets (0 < z < 6.5), the empirical model finds the posterior probability distributions of the halo-galaxy-SMBH connection and SMBH properties, all of which are allowed to evolve with redshift. TRINITY can predict many observational data, such as galaxy stellar mass functions and quasar luminosity functions, and underlying galaxy and SMBH properties, including SMBH Eddington average Eddington ratios. These predictions are made by different code files. There are basically two types of prediction codes: the first type generates observable data given input redshift or redshift invertals; the second type generates galaxy or SMBH properties as a function of host halo mass and redshift.
Trilogy automatically scales and combines FITS images to produce color or grayscale images using Python scripts. The user assigns images to each color channel (RGB) or a single image to grayscale luminosity. Trilogy determines the intensity scaling automatically and independently in each channel to display faint features without saturating bright features. Each channel's scaling is determined based on a sample of the image (or summed images) and two input parameters. One parameter sets the output luminosity of "the noise," currently determined as 1-sigma above the sigma-clipped mean. The other parameter sets what fraction of the data (if any) in the sample region should be allowed to saturate. Default values for these parameters (0.15% and 0.001%, respectively) work well, but the user is able to adjust them. The scaling is accomplished using the logarithmic function y = a log(kx + 1) clipped between 0 and 1, where a and k are constants determined based on the data and desired scaling parameters as described above.
Trident creates synthetic absorption-line spectra from astrophysical hydrodynamics simulations. It uses the yt package (ascl:1011.022) to read in simulation datasets and extends it to provide realistic synthetic observations appropriate for studies of the interstellar, circumgalactic, and intergalactic media.
triceratops (Tool for Rating Interesting Candidate Exoplanets and Reliability Analysis of Transits Originating from Proximate Stars) validates planet candidates from the Transiting Exoplanet Survey Satellite (TESS). The code calculates the probabilities of a wide range of transit-producing scenarios using the primary transit of the planet candidate and preexisting knowledge of its host and nearby stars. It then uses the known properties of these stars to calculate star-specific priors for each scenario with estimates of stellar multiplicity and planet occurrence rates.
TRES simulates hierarchical triple systems with stellar and planetary components, including stellar evolution, stellar winds, tides, general relativistic effects, mass transfer, and three-body dynamics. It combines stellar evolution and interactions with three-body dynamics in a self-consistent way. The code includes the effects of common-envelope evolution, circularized stable mass transfer, tides, gravitational wave emission and up-to-date stellar evolution through SeBa (ascl:1201.003). Other stellar evolution codes, such as SSE (ascl:1303.015), can also be used. TRES is written in the AMUSE (ascl:1107.007) software framework.
TreeFrog reads in particle IDs information between various structure catalogs and cross matches catalogs, assuming that particle IDs are unique and constant across snapshots. Though it is built as a cross correlator (in that it can match particles across several different catalogs), its principle use is as halo merger tree builder. TreeFrog produces links between objects found at different snapshots (or catalogs) and uses several possible functions to evaluate the merit of a link between one object at a given snapshot (or in a given catalog) to another object in a previous snapshot (or different catalog). It can also produce a full graph. The code utilizes MPI and OpenMP. It is optimzed for reading VELOCIraptor (ascl:1911.020) output but can also read output from other structure finders such as AHF (ascl:1102.009).
TreeCorr efficiently computes two-point correlation functions. It can compute correlations of regular number counts, weak lensing shears, or scalar quantities such as convergence or CMB temperature fluctuations. Two-point correlations may be auto-correlations or cross-correlations, including any combination of shear, kappa, and counts. Two-point functions can be done with correct curved-sky calculation using RA, Dec coordinates, on a Euclidean tangent plane, or in 3D using RA, Dec and a distance. The front end is written in Python, which can be used as a Python module or as a standalone executable using configuration files; the actual computation of the correlation functions is done in C++ using ball trees (similar to kd trees), making the calculation extremely efficient, and when available, OpenMP is used to run in parallel on multi-core machines.
The TraP is a pipeline for detecting and responding to transient and variable sources in a stream of astronomical images. Images are initially processed using a pure-Python source-extraction package, PySE (ascl:1805.026), which is bundled with the TraP. Source positions and fluxes are then loaded into a SQL database for association and variability detection. The database structure allows for estimation of past upper limits on newly detected sources, and for forced fitting of previously detected sources which have since dropped below the blind-extraction threshold. Developed with LOFAR data in mind, the TraP has been used with data from other radio observatories.
TRANSPHERE is a simple dust continuum radiative transfer code for spherically symmetric circumstellar envelopes. It handles absorption and re-emission and computes the dust temperature self-consistently; it does not, however, deal with scattering. TRANSPHERE uses a variable eddington factor method for the radiative transfer. The RADMD code (ascl:1108.016) is more versatile, but for a spherically symmetric problem for which scattering is of much concern, it may be easier to use a simple code such as TRANSPHERE.
Please note that this code has not been updated since 2006.
A self-organizing map (SOM) can be used to identify planetary candidates from Kepler and K2 datasets with accuracies near 90% in distinguishing known Kepler planets from false positives. TransitSOM classifies a Kepler or K2 lightcurve using a self-organizing map (SOM) created and pre-trained using PyMVPA (ascl:1703.009). It includes functions for users to create their own SOMs.
TransitFit fits exoplanetary transit light-curves for transmission spectroscopy studies. The code uses nested sampling for efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently ("uncoupled") for each filter or combined ("coupled") using prior conditioning from the PHOENIX stellar atmosphere models. For this, TransitFit uses the Limb Darkening Toolkit (ascl:1510.003) together with filter profiles, including user-supplied filter profiles.
Transit calculates the transmission or emission spectrum of a planetary atmosphere with application to extrasolar-planet transit and eclipse observations, respectively. It computes the spectra by solving the one-dimensional line-by-line radiative-transfer equation for an atmospheric model.
Transit Clairvoyance uses Artificial Neural Networks (ANNs) to predict the most likely short period transiters to have additional transiters, which may double the discovery yield of the TESS (Transiting Exoplanet Survey Satellite). Clairvoyance is a simple 2-D interpolant that takes in the number of planets in a system with period less than 13.7 days, as well as the maximum radius amongst them (in Earth radii) and orbital period of the planet with maximum radius (in Earth days) in order to predict the probability of additional transiters in this system with period greater than 13.7 days.
We present an IDL graphical user interface-driven software package designed for the analysis of extrasolar planet transit light curves. The Transit Analysis Package (TAP) software uses Markov Chain Monte Carlo (MCMC) techniques to fit light curves using the analytic model of Mandel and Agol (2002). The package incorporates a wavelet based likelihood function developed by Carter and Winn (2009) which allows the MCMC to assess parameter uncertainties more robustly than classic chi-squared methods by parameterizing uncorrelated "white" and correlated "red" noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc). The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user's specific data set and has been thoroughly tested on ground-based and Kepler photometry. AutoKep provides a similar GUI for the preparation of Kepler MAST archive data for analysis by TAP or any other analysis software. This paper describes the software release and provides instructions for its use.
The Sloan Digital Sky Survey (SDSS) produces large amounts of data daily. transfer, written in Python, provides the effective automation needed for daily data transfer operations and management and operates essentially free of human intervention. This package has been tested and used successfully for several years.
Tranquillity creates an observing screen looking toward a black hole - accretion disk system, seeks the object, then searches and locates its contour. Subsequently, it attempts to locate the first Einstein "echo" ring and its location. Finally, it collates the retrieved information and draws conclusions; these include the accretion disk level inclination compared to the line of sight and the main disk and the first echo median. The displacement, and thus the divergence of the latter two, is the required information in order to construct the divergence plots. Other programs can later on automatically read these plots and provide estimations of the central black hole spin.
TRAN_K2 searches for periodic transits in the photometric time series of the Kepler K2 mission. The search is made by considering stellar variability and instrumental systematics. TRAN_K2 is written in Fortran 77 and has a single input parameter file that can be edited by the user depending on the type of run and parameter ranges to be used.
TRADES (TRAnsits and Dynamics of Exoplanetary Systems) simultaneously fits observed radial velocities and transit times data to determine the orbital parameters of exoplanetary systems from observational data. It uses a dynamical simulator for N-body systems that also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis.
TPZ, a parallel code written in python, produces robust and accurate photometric redshift PDFs by using prediction tree and random forests. The code also produces ancillary information about the sample used, such as prior unbiased errors estimations (giving an estimation of performance) and a ranking of importance of variables as well as a map of performance indicating where extra training data is needed to improve overall performance. It is designed to be easy to use and a tutorial is available.
TPM carries out collisionless (dark matter) cosmological N-body simulations, evolving a system of N particles as they move under their mutual gravitational interaction. It combines aspects of both Tree and Particle-Mesh algorithms. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The code is parallel and uses MPI for message passing.
Visibilities from radio interferometers have not traditionally been used to study the fast transient sky. Millisecond transients (e.g., fast radio bursts) and periodic sources (e.g., pulsars) have been studied with single-dish radio telescopes and a software stack developed over the past few decades. tpipe is an initial attempt to develop the fast transient algorithms for visibility data. Functions exist for analysis of visibilties, such as reading data, flagging data, applying interferometric gain calibration, and imaging. These functions are given equal footing as time-domain techniques like filters and dedispersion.
tpipe has been largely superseded by rtpipe (ascl:1706.002).
TPI computes the gravitational dynamics of particles orbiting a supermassive black hole (SBH). A distinction is made to two types of particles: test particles and field particles. Field particles are assumed to move in quasi-static Keplerian orbits around the SBH that precess due to the enclosed mass (Newtonian 'mass precession') and relativistic effects. Otherwise, field-particle-field-particle interactions are neglected. Test particles are integrated in the time-dependent potential of the field particles and the SBH. Relativistic effects are included in the equations of motion (including the effects of SBH spin), and test-particle-test-particle interactions are neglected.
TP2VIS creates visibilities from a single dish cube; the TP visibilities can be combined with the interferometric visibilities in a joint deconvolution using, for example, CASA's tclean() method. TP2VIS requires CASA 5.4 (ascl:1107.013) or above.
Toyz is a python web framework that allows scientists to interact with large images and data sets stored on a remote server. A web application is run on the server containing the data and clients are run from web browsers on the user's computer. Toyz displays large FITS images and also renders any image format supported by Pillow (a fork of the Python Imaging Library), contains a GUI to interact with linked plots, and offers a customizable framework that allows students and researchers to create their own work spaces inside a Toyz environment. Astro-Toyz extends the features of the Toyz image viewer, allowing users to view world coordinates and align images based on their WCS.
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
Torch simulates coupled gas and N-body dynamics in astrophysical systems such as newly forming star clusters. It combines the FLASH (ascl:1010.082) code for gas dynamics and the ph4 code for direct N-body evolution via the AMUSE framework.
topoaccel calculates topological acceleration for several of the S^3 quotient spaces considered 'regular', in that they have a Platonic solid as one of their fundamental domain shapes, and are globally homogeneous. The topoaccel scripts can be run using the free-licensed software package Maxima (https://maxima.sourceforge.io/documentation.html).
TOPCAT is an interactive graphical viewer and editor for tabular data. Its aim is to provide most of the facilities that astronomers need for analysis and manipulation of source catalogues and other tables, though it can be used for non-astronomical data as well. It understands a number of different astronomically important formats (including FITS and VOTable) and more formats can be added.
It offers a variety of ways to view and analyse tables, including a browser for the cell data themselves, viewers for information about table and column metadata, and facilities for 1-, 2-, 3- and higher-dimensional visualisation, calculating statistics and joining tables using flexible matching algorithms. Using a powerful and extensible Java-based expression language new columns can be defined and row subsets selected for separate analysis. Table data and metadata can be edited and the resulting modified table can be written out in a wide range of output formats.
It is a stand-alone application which works quite happily with no network connection. However, because it uses Virtual Observatory (VO) standards, it can cooperate smoothly with other tools in the VO world and beyond, such as VODesktop, Aladin and ds9. Between 2006 and 2009 TOPCAT was developed within the AstroGrid project, and is offered as part of a standard suite of applications on the AstroGrid web site, where you can find information on several other VO tools.
The program is written in pure Java and available under the GNU General Public Licence. It has been developed in the UK within the Starlink and AstroGrid projects, and under PPARC and STFC grants. Its underlying table processing facilities are provided by STIL.
tomso loads and saves input and output files for and from stellar evolution and oscillation codes. The functions are bundled together in modules that correspond with a specific stellar evolution code, stellar oscillation code, or file format. tomso supports the FGONG format and various input/output files for ADIPLS (ascl:1109.002), GYRE (ascl:1308.010), MESA (ascl:1010.083), and STARS (ascl:1107.008). tomso's main purpose is to provide a compact interface for manipulating input and output data in these formats and simplify research that uses them.
TomograPy is an open-source software freely available on the Python Package Index that can perform fast tomographic inversions that scale linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors.
The TOM Toolkit combines a flexible, searchable database of all information related to a scientific research project, with an observation and data analysis control system, and communication and data visualization tools. This Toolkit includes a fully operational TOM (Target and Observation Manager) system in addition to a range of optional tools for specific tasks, including interfaces to widely-used observing facilities and data archives and data visualization tools. With TOM Toolkit, project teams can develop and customize a system for their own science goals, without needing specialist expertise in databasing.
The toise framework estimates the sensitivity of natural-medium neutrino detectors such as IceCube-Gen2 to sources of high-energy astrophysical neutrinos. It uses parameterizations of a detector's fiducial area or volume, selection efficiency, energy resolution, angular resolution, and event classification efficiency to convert (surface) neutrino fluxes into mean event rates in bins of observable space. These are then used to estimate statistical quantities of interest, e.g., the median sensitivity to some flux (i.e., 90% upper limit assuming the true flux is zero) or the median discovery potential (i.e., the flux level at which the null hypothesis would be rejected at 5 sigma in 50% of realizations).
TOASTER is a pulse times-of-arrival (TOA) tracker. It stores reduced/folded observations, meta data, templates, parfiles, TOAs, and timefiles in an organized manner using an SQL database. TOASTER also provides a full-featured python toolkit for reliably interacting with the data and database, and provides scripts that, for example, list and summarize the TOAs in the data base, and generate TOA files in multiple formats. The framework can also be used to generate TOAs from observations using flexible and reproducible plugins referred to as "manipulators".
The TOAST software framework simulates and processes timestream data collected by telescopes. The framework can distribute data among many processes and perform operations on the local pieces of the data, and has generic operators for common processing tasks such as filtering, pointing expansion, and map-making. In addition to offering I/O for a limited set of formats, it provides well-defined interfaces for adding custom I/O classes and processing operators. TOAST is written in C++ with a public Python interface, and contains utilities for controlling the runtime environment, logging, timing, streamed random number generation, quaternion operations, FFTs, and special function evaluation.
TMCalc is a C code developed as an extension to ARES. Using the line list given, the code can be used as a precise and fast indicator of the spectroscopic temperature and metallicity for dwarf FKG stars with effective temperatures ranging from 4500 K to 6500 K and with [Fe/H] ranging from -0.8 dex to 0.4 dex.
The IDL package reduces and analyzes radio astronomy data. It translates SDFITS files into TMBIDL format, and can average and display spectra, remove baselines, and fit Gaussian models.
The Tübingen NLTE Model-Atmosphere Package (TMAP) is a tool to calculate stellar atmospheres in spherical or plane-parallel geometry in hydrostatic and radiative equilibrium allowing departures from local thermodynamic equilibrium (LTE) for the population of atomic levels. It is based on the Accelerated Lambda Iteration (ALI) method and is able to account for line blanketing by metals. All elements from hydrogen to nickel may be included in the calculation with model atoms which are tailored for the aims of the user.
TM (Torus Mapper) produces models for orbits in action-angle coordinates in axisymmetric potentials using torus mapping, a non-perturbative technique for creating orbital tori for specified values of the action integrals. It can compute a star's position at any time given an orbital torus and a star’s position at a reference time, and also provides a way to choose initial conditions for N-body simulations of realistic disc galaxies that start in perfect equilibrium. TM provides some advantages over use of a standard time-stepper to create orbits.
TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.
TLS is an optimized transit-fitting algorithm to search for periodic transits of small planets. In contrast to BLS: Box Least Squares (ascl:1607.008), which searches for rectangular signals in stellar light curves, TLS searches for transit-like features with stellar limb-darkening and including the effects of planetary ingress and egress. TLS also analyses the entire, unbinned data of the phase-folded light curve. TLS yields a ~10% higher detection efficiency (and similar false alarm rates) compared to BLS though has a higher computational load. This load is partly compensated for by applying an optimized period sampling and transit duration sampling constrained to the physically plausible range.
tlpipe processes the drift scan survey data from the Tianlai experiment; the Tainlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. tlpipe performs offline data processing tasks such as radio frequency interference (RFI) flagging, array calibration, binning, and map-making, in addition to other tasks. It includes utility functions needed for the data analysis, such as data selection, transformation, visualization and others. tlpipe implements a number of new algorithms are implemented, including the eigenvector decomposition method for array calibration and the Tikhnov regularization for m-mode analysis.
Tidally Locked Coordinates converts global climate model (GCM) output from standard/Earth-like coordinates into a tidally locked coordinate system. The transformations in Tidally Locked Coordinates are useful for plotting and analyzing GCM simulations of slowly rotating tidally locked planets such as Earth-like planets inside the habitable zone of small stars. They can be used to leverage the fact that a slowly rotating planet's climate will start to look approximately symmetric about the axis of insolation.
TITAN is a general-purpose radiation hydrodynamics code developed at the Laboratory for Computational Astrophysics (NCSA, University of Illinois at Urbana-Champaign). TITAN solves the coupled sets of radiation transfer and fluid dynamics equations on an adaptive mesh in one spatial dimension.
Tilted Ring Fitting Code (TiRiFiC) is a prototype computer program to construct simulated (high-resolution) astronomical spectroscopic 3d-observations (data cubes) of simple kinematical and morphological models of rotating (galactic) disks. It is possible to automatically optimize the parameterizations of constructed model disks to fit spectroscopic (3d-) observations via a χ2 minimization. TiRiFiC is currently implemented as an add-on to the Groningen Image Processing System (GIPSY) software package and attempts to provide a method to automatically fit an extended tilted-ring model directly to a data cube.
The development of TIPSY was motivated by the need to quickly display and analyze the results of N-body simulations. Most data visualization packages are designed for the display of gridded data, and hence are unsuitable for use with particle data. Therefore, a special package was built that could easily perform the following functions:
1.) Display particle positions (as points), and velocities (as line segments) from an arbitrary viewpoint;
2.) Zoom in to a chosen position. Due to their extremely clustered nature, structure of interest in an N-body simulation is often so small that it cannot be seen when looking at the simulation as a whole;
3.) Color particles to display scalar fields. Examples of such fields are potential energy, or for SPH particles, density and temperature;
4.) Selection of a subset of the particles for display and analysis. Regions of interest are generally small subsets of the simulation;
5.) Following selected particles from one timestep to another; and,
6.) Finding cumulative properties of a collection of particles. This usually involves just a sum over the particles.
The basic data structure is an array of particle structures. Since TIPSY was built for use with cosmological N-body simulations, there are actually three separate arrays for each of the types of particle used in such simulations: collisionless particles, SPH particles, and star particles. A single timestep is read into these arrays from a disk file. Display is done by finding the x and y coordinates of the particles in the rotated coordinate system, and storing them in arrays. Screen coordinates are calculated from these arrays according to the current zoom factor. Also, a software Z-buffer is maintained to save time if many particles project to the same screen pixel. There are several types of display. An "all plot" displays all particles colored according to their type. A "radial plot" will color particles according to the projection of the velocity along the line-of-sight. A "gas plot" will color gas according to SPH quantities such as density, temperature, neutral hydrogen fraction, etc. Subsets of particles are maintained using boxes." A box structure contains a bounding box, and an array of pointers to particles within the box. All display and analysis functions are performed on the "active box." By default all particles are loaded into box 0, which becomes the active box. If a new timestep is read from disk, all boxes are destroyed. A selection of particles can be followed between timesteps via a "mark" array. Marked particles are displayed in a different color, and the analysis functions can be told to only operate on the marked particles.
Tiny Tim generates simulated Hubble Space Telescope point spread functions (PSFs). It is written in C and distributed as source code and runs on a wide variety of UNIX and VMS systems. Tiny Tim includes mirror zonal errors, time dependent aberrations (for the pre-repair instruments), field dependent obscuration patterns (for WF/PC-1 and WFPC2), and filter passband effects. It can produce a normally sampled or subsampled PSF. Output is a FITS image file.
Time-domain astronomy sandbox consists in a series of classes to simulate and process time-domain astronomy data products in Python. The code was originally developed to model Fast Radio Burst (FRB) and Radio Frequency Interference (RFI), and evaluate different RFI mitigation methods and their effect on FRB search.
Time Utilities are software tools that, in principal, allow one to calculate BJD to a precision of 1 μs for any target from anywhere on Earth or from any spacecraft. As the quality and quantity of astrophysical data continue to improve, the precision with which certain astrophysical events can be timed becomes limited not by the data themselves, but by the manner, standard, and uniformity with which time itself is referenced. While some areas of astronomy (most notably pulsar studies) have required absolute time stamps with precisions of considerably better than 1 minute for many decades, recently new areas have crossed into this regime. In particular, in the exoplanet community, we have found that the (typically unspecified) time standards adopted by various groups can differ by as much as a minute. Left uncorrected, this ambiguity may be mistaken for transit timing variations and bias eccentricity measurements. We recommend using BJD_TDB, the Barycentric Julian Date in the Barycentric Dynamical Time standard for any astrophysical event. The BJD_TDB is the most practical absolute time stamp for extraterrestrial phenomena, and is ultimately limited by the properties of the target system. We compile a general summary of factors that must be considered in order to achieve timing precisions ranging from 15 minutes to 1 μs, and provide software for download and online webapps for use.
The N-body code TIDYMESS (TIdal DYnamics of Multi-body ExtraSolar Systems) can describe the mass distribution of each body its inertia tensor and directly and self-consistently integrates orbit, spin, and inertia tensors. It manages the deformation of a body follows the tidal Creep model and includes the centrifugal force and tidal force. Written in C++, TIDYMESS is available as a standalone package and also through the AMUSE framework (ascl:1107.007).
TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.
TiDE (TIdal Disruption Event) computes the light curves or spectrum of tidal disruption events. Written in C++, it can compute the monochromatic light curve without diffusion, including the total luminosity, wind luminosity and disk luminosity, and the monochromatic light curve with diffusion. TiDE can also model the bolometric luminosity and calculate the spectrum at a given time, including the wind luminosity and disk luminosity. This code can be used to explore the possible parameter space and reveal potential biases caused by the model assumptions, and can be extended with new models, allowing one to compare and test different prescriptions and model assumptions under the same circumstances.
tidalspin uses a Bayesian approach to infer posterior distributions of a black hole's parameters (mass and spin) in an observed tidal disruption event, given a prior estimate of the black hole’s mass (e.g., from a galactic scaling relationship, or the tidal disruption event’s observed properties). These posterior distributions will only utilize the properties of tidal forces in their inference. tidalspin can be applied to the population of tidal disruption events already discovered.
TidalPy performs semi-analytic calculations of tidal dissipation and subsequent orbit-spin evolution for rocky and icy worlds. It can be used as a black box, in which an Object-Oriented Programming (OOP) scheme performs many calculations with very little user input from the user, making it easy to get started with the package, or as a toolbox, as it contains many efficient functions to perform calculations relevant to tides and thermal-orbital coupling, which can be quickly imported and used in a custom scripts. In general, TidelPy's toolbox (functional) scheme provides much higher performance, flexibility, and extensibility than the OOP scheme. It also makes assumptions more visible to the user. The downside is the user may need to be more familiar with the underlying physics.
ThumbStack produces stacked maps and profiles, given catalogs of object positions and maps. It is designed for thermal and kinematic Sunyaev-Zel'dovich measurements. Based on Pixell (ascl:2102.003), it outputs 2D stacked maps and radial profiles for different filters (e.g., aperture photometry filters), as well as their covariances, estimated through several methods including bootstrap.
Thrust is a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-level interface greatly enhances programmer productivity while enabling performance portability between GPUs and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP) facilitates integration with existing software.
threepoint models the third-order aperture statistics, the natural components of the shear three-point correlation function and the covariance of third-order aperture statistics. Third-order weak lensing statistics extract cosmological information in the non-Gaussianity of the cosmic large-scale structure, making them a promising tool for cosmological analyses.
THOR solves the three-dimensional nonhydrostatic Euler equations. The code implements an icosahedral grid for the poles where converging meridians lead to increasingly smaller time steps; irregularities in the grid are smoothed using spring dynamics. THOR is designed to run on graphics processing units (GPUs) and is part of the open-source Exoclimes Simulation Platform.
Thindisk computes the line emission from a geometrically thin protoplanetary disk. It creates a datacube in FITS format that can be processed with a data reduction package (such as GILDAS, ascl:1305.010) to produce synthetic images and visibilities. These synthetic data can be compared with observations to determine the properties (e.g. central mass or inclination) of an observed disk. The disk is assumed to be in Keplerian rotation at a radius lower than the centrifugal radius (which can be set to a large value, for a purely Keplerian disk), and in infall with rotation beyond the centrifugal radius.
ThermoEngine estimates the thermodynamic properties of minerals, fluids, and melts, and calculates phase equilibriums. The Equilibrate module of ThermoEngine provides Python functions and classes for computing equilibrium phase assemblages with focus on MELTS calculations. The Phases module includes Python functions and classes for computing standard thermodynamic calculations utilizing the Berman, Holland and Powell, or Stixrude-Lithgow-Bertelloni endmember databases, and calculations based on solution properties utilized by MELTS. There are many helper functions available in this module that assist in the calculation of pseudosections, univariant equilibria and the construction of phase diagrams.
THERMINATOR is a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The increased functionality of the code contains the following features: The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1 dimensional profiles, in particular those generated externally with various hydrodynamic codes. The hypersufraces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region, where the baryon chemical potential becomes large. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au+Au data at sqrt(s_(NN)) = 200 GeV for various centralities, as well as those anticipated for the LHC Pb+Pb collisions at sqrt(s_(NN)) = 5.5 TeV. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations which are an important source of information concerning the size and expansion of the system. We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p_T-spectra, the elliptic flow coefficients, and the HBT correlation radii. We also investigate the problem of the back-flow of particles into the hydrodynamic region, as well as estimate the elastic rescattering in terms of trajectory crossings. The package is written in C++ and uses the CERN ROOT environment.
ThERESA retrieves three-dimensional maps of exoplanets. The code constructs 2-dimensional maps for each light given light curve, places those maps vertically in an atmosphere, and runs radiative transfer to calculate emission from the planet over a latitude/longitude grid. ThERESA then integrates over the grid (combined with the visibility function) to generate light curves. These light curves are compared against the input light curves behind MCMC to explore parameter space.
THELI is an easy-to-use, end-to-end pipeline for the reduction of any optical, near-IR and mid-IR imaging data. It combines a variety of processing algorithms and third party software into a single, homogeneous tool. Over 90 optical and infrared instruments at observatories world-wide are pre-configured; more can be added by the user. The code's online appendix contains three walk-through examples using public data (optical, near-IR and mid-IR) and additional online documentation is available for training and troubleshooting.
the-wizz clusters redshift estimates for any photometric unknown sample in a survey. The software is composed of two main parts: a pair finder and a pdf maker. The pair finder finds spatial pairs and stores the indices of all closer pairs around target reference objects in an output HDF5 data file. Users then query this data file using the indices of their unknown sample to produce an output clustering-z.
The Tractor optimizes or samples from models of astronomical objects. The approach is generative: given astronomical sources and a description of the image properties, the code produces pixel-space estimates or predictions of what will be observed in the images. This estimate can be used to produce a likelihood for the observed data given the model: assuming the model space actually includes the truth (it doesn’t, in detail), then if we had the optimal model parameters, the predicted image would differ from the actually observed image only by noise. Given a noise model of the instrument and assuming pixelwise independent noise, the log-likelihood is the negative chi-squared difference: (image - model) / noise.
The Starfish Diagram is a statistical visualization tool that simultaneously displays the properties of an individual and its parent sample through a series of histograms. The code is useful for large datasets for which one needs to understand the standing or significance of a single entry.
The Sequencer reveals the main sequence in a dataset if one exists. To do so, it reorders objects within a set to produce the most elongated manifold describing their similarities which are measured in a multi-scale manner and using a collection of metrics. To be generic, it combines information from four different metrics: the Euclidean Distance, the Kullback-Leibler Divergence, the Monge-Wasserstein or Earth Mover Distance, and the Energy Distance. It considers different scales of the data by dividing each object in the input data into separate parts (chunks), and estimating pair-wise similarities between the chunks. It then aggregates the information in each of the chunks into a single estimator for each metric+scale.
The Exoplanet Modeling and Analysis Center (EMAC) is a website which serves as a catalog, repository and integration platform for modeling and analysis resources focused on the study of exoplanet characteristics and environments. EMAC hosts user-submitted software ranging in category from planetary interior models to data visualization tools. Other features of EMAC include integrated web tools developed by the EMAC team in collaboration with the tools' original authors and video demonstrations of a growing number of hosted tools. EMAC aims to be a comprehensive repository for researchers to access a variety of exoplanet resources that can assist them in their work, and currently hosts a growing number of code bases, models, and tools. EMAC is a key project of the NASA GSFC Sellers Exoplanet Environments Collaboration (SEEC).
Given sparse or low-quality radial-velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and MCMC posterior sampling over the orbital parameters. The Joker is a custom-built Monte Carlo sampler that can produce a posterior sampling for orbital parameters given sparse or noisy radial-velocity measurements, even when the likelihood function is poorly behaved. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still highly informative and can be used in hierarchical (population) modeling.
The Hammer can classify spectra in a variety of formats with targets spanning the MK spectral sequence. It processes a list of input spectra by automatically estimating each object's spectral type and measuring activity and metallicity tracers in late type stars. Once automatic processing is complete, an interactive interface allows the user to manually tweak the final assigned spectral type through visual comparison with a set of templates.
The Farmer contains photometry routines geared towards deep, multi-wavelength galaxy surveys. It fits simple parametric surface brightness profiles provided by The Tractor (ascl:1604.008) to measure precision photometry even in deeply crowded fields when provided with a suitable high resolution detection image. The Farmer has been used to build a number of galaxy survey catalogs including COSMOS202, SHELA, and H20.
The Exo-Striker analyzes exoplanet orbitals, performs N-body simulations, and models the RV stellar reflex motion caused by dynamically interacting planets in multi-planetary systems. It offers a broad range of tools for detailed analysis of transit and Doppler data, including power spectrum analysis for Doppler and transit data; Keplerian and dynamical modeling of multi-planet systems; MCMC and nested sampling; Gaussian Processes modeling; and a long-term stability check of multi-planet systems. The Exo-Striker can also analyze Mean Motion Resonance (MMR) analysis, create fast fully interactive plots, and export ready-to-use LaTeX tables with best-fit parameters, errors, and statistics. It combines Fortran efficiency and Python flexibility and is cross-platform compatible (MAC OS, Linux, Windows). The tool relies on a number of open-source packages, including RVmod engine, emcee (ascl:1303.002), batman (ascl:1510.002), celerite (ascl:1709.008), and dynesty (ascl:1809.013).
We present the DTFE public software, a code for reconstructing fields from a discrete set of samples/measurements using the maximum of information contained in the point distribution. The code is written in C++ using the CGAL library and is parallelized using OpenMP. The software was designed for the analysis of cosmological data but can be used in other fields where one must interpolate quantities given at a discrete point set. The software comes with a wide suite of options to facilitate the analysis of 2- and 3-dimensional data and of both numerical simulations and galaxy redshift surveys. For comparison purposes, the code also implements the TSC and SPH grid interpolation methods. The code comes with an extensive user guide detailing the program options, examples and the inner workings of the code.
The Cannon is a data-driven method for determining stellar labels (physical parameters and chemical abundances) from stellar spectra in the context of vast spectroscopic surveys. It fits for the spectral model given training spectra and labels, with the polynomial order for the spectral model decided by the user, infers labels for the test spectra, and provides diagnostic output for monitoring and evaluating the process. It offers SNR-independent continuum normalization, performs well at lower signal-to-noise, and is very accurate.
THALASSA (Tool for High-Accuracy, Long-term Analyses for SSA) propagates orbits for bodies in the Earth-Moon-Sun system. Written in Fortran, it integrates either Newtonian equations in Cartesian coordinates or regularized equations of motion with the LSODAR (Livermore Solver for Ordinary Differential equations with Automatic Root-finding). THALASSA is a command-line tool; the repository also includes some Python3 scripts to perform batch propagations.
The Tsyganenko models are semi-empirical best-fit representations for the magnetic field, based on a large number of satellite observations (IMP, HEOS, ISEE, POLAR, Geotail, GOES, etc). The models include the contributions from major external magnetospheric sources: ring current, magnetotail current system, magnetopause currents, and large-scale system of field-aligned currents.
TGCat is an archive of Chandra transmission grating spectra and a suite of software for processing such data. Users can browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and download analysis ready products from multiple observations in one convenient operation. Data processing for the catalog is done with a suite of ISIS/S-Lang scripts; the software is available for download. These ISIS scripts wrap and call CIAO tools for reprocessing from "Level 1" (acis_process_events or hrc_process_events) through "Level 2" (binned spectra, via tg_resolve_events and tgextract), compute responses (grating "RMFs" and "ARFs", via mkgrmf and mkgarf), and make summary plots.
Turbulence Generator generates a time sequence of random Fourier modes via an Ornstein-Uhlenbeck (OU) process, used to drive turbulence in hydrodynamical simulation codes. It can also generate single turbulent realizations. Turbulence driving based on this method is currently supported by implementations in AREPO (ascl:1909.010), FLASH (ascl:1010.082), GADGET (ascl:0003.001), PHANTOM (ascl:1709.002), PLUTO (ascl:1010.045), and Quokka (ascl:2110.009).
TFIT measures galaxy photometry using prior knowledge of sources in a deep, high‐resolution image (HRI) to improve photometric measurements of objects in a corresponding low‐resolution image (LRI) of the same field, usually at a different wavelength. For background‐limited data, this technique produces optimally weighted photometry that maximizes signal‐to‐noise ratio (S/N). For objects not significantly detected in the low‐resolution image, it provides useful and quantitative information for setting upper limits.
This code is no longer updated and has been superseded by T-PHOT (ascl:1609.001).
TFF derives the Fourier decomposition of period-folded RR Lyrae light curves with gaps. The method can be used for the same purpose on any other types of variables, assuming that the the template database is changed to the proper type of variables.
tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.
TESSreduce builds on lightkurve (ascl:1812.013) to reduce TESS data while preserving transient signals. It takes a TPF as input (supplied or constructed with TESScut (https://mast.stsci.edu/tesscut/). The background subtraction accounts for the smooth background and detector straps. In addition to background subtraction, TESSreduce also aligns images, performs difference imaging, detects transient events, and by using PS1 data, can calibrate TESS counts to physical flux or AB magnitudes.
TesseRACt computes concentrations of simulated dark matter halos from volume information for particles generated using Voronoi tesselation. This technique is advantageous as it is non-parametric, does not assume spherical symmetry, and allows for the presence of substructure. TesseRACt accepts data in a number of formats, including Gadget-2 (ascl:0003.001), Gasoline (ascl:1710.019), and ASCII, and computes concentrations using particles volumes, traditional fitting to an NFW profile, and non-parametric techniques that assume spherical symmetry.
TESS-Point converts astronomical target coordinates given in right ascension and declination to detector pixel coordinates for the MIT-led NASA Transiting Exoplanet Survey Satellite (TESS) spacecraft. The program can also provide detector pixel coordinates for a star by TESS input catalog identifier number and common astronomical name. Tess-Point outputs the observing sector number, camera number, detector number, and pixel column and row.
TESS-Localize identifies the location on the target pixel files (TPF) where sources of variability found in the aperture originate. The user needs only to provide a list of frequencies found in the aperture that belong to the same source and the number of principal components needed to be removed from the light curve to ensure it is free of systematic trends.
TESS_PRF displays the TESS pixel response function (PRF) at any location on the detector. The package is primarily for estimating how the light from a point source is distributed given its position in a TESS Target Pixel File (TPF) or TESScut postage stamp. By default, it accesses the relevant PRF files on MAST, but can also reference files on a local directory. TESS_PRF assumes the PRF doesn't change considerably within a small TPF. The PRF model can be positioned by passing the relative row and column location within the TPF to the "resample" method. The pixel locations follow WCS convention, that an integer value corresponds to the center of a pixel.
TES models the evolution of exoplanet systems. This n-body integration package comes in two parts, the C++ TES source code, and the Python-based experiment manager for running experiments and plotting the results. The experiment manager, used as the interface to TES, handles temporary data storage and allows for experiment results to be saved and then loaded later on for plotting. The experiment manager can automatically use multiple threads to run independent experiments in parallel using the mpi4py package. The experiment manager is specifically designed to enable HPC to be performed as easily as possible.
TERRA (Transiting Exoearth Robust Reduction Algorithm) identifies and removes instrumental noise in Kepler photometry. This transit detection code is optimized to detect small planets around photometrically quiet stars. TERRA calculates photometry in the time domain, combs the calibrated photometry for periodic, box-shaped signals, fits promising signals, and rejects signals inconsistent with exoplanet transits.
Tensiometer provides non-Gaussian tension estimators that extend GetDist (ascl:1910.018) capabilities to test the level of agreement or disagreement between different posterior distributions by using kernel density estimates. The code has been used to study the level of internal agreement between different measurements of the clustering of cosmological structures from the Dark Energy Survey and the Planck satellite.
Tempo2 is a pulsar timing package developed to be used both for general pulsar timing applications and also for pulsar timing array research in which data-sets from multiple pulsars need to be processed simultaneously. It was initially developed by George Hobbs and Russell Edwards as part of the Parkes Pulsar Timing Array project. Tempo2 is based on the original Tempo (ascl:1509.002) code and can be used (from the command-line) in a similar fashion. It is very versatile and can be extended by plugins.
Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.
tellrv measures absolute radial velocities for low-resolution NIR spectra. It uses telluric features to provide absolute wavelength calibration, and then cross-correlates with a standard star. Observations of a standard star are included for convenience; the code also requires both the telluric and non-telluric-corrected spectra.
TelFit calculates the best-fit telluric absorption spectrum in high-resolution optical and near-IR spectra. The best-fit model can then be divided out to remove the telluric contamination. Written in Python, TelFit is essentially a wrapper to LBLRTM (ascl:1405.001), the Line-By-Line Radiative Transfer Model, and simplifies the process of generating a telluric model.
TEA (Thermal Equilibrium Abundances) calculates gaseous molecular abundances under thermochemical equilibrium conditions. Given a single T,P point or a list of T,P pairs (the thermal profile of an atmosphere) and elemental abundances, TEA calculates mole fractions of the desired molecular species. TEA uses 84 elemental species and thermodynamical data for more then 600 gaseous molecular species, and can adopt any initial elemental abundances.
TDEmass interprets Tidal Disruption Event (TDE) observations. In TDEs, a supermassive black hole at the center of a galaxy tears apart an ordinary star; the debris is placed on highly eccentric orbits and ultimately produces a very bright flare. Using this TDEmass, one can infer the mass of the black hole (mbh) and the mass of the star (mstar) involved in a TDE.
TCF calculates a periodogram designed to detect exoplanet transits after the light curve has been differenced. It is a matched filter for a periodic double-spike pattern. The difference operator that can be used independently for detrending a light curve; it is also embedded in ARIMA (autoregressive integrated moving average) Box-Jenkins modeling.
Three-Body Integration performs numerical n-body simulations for mapping conditions for close approaches for the relevant parameter space of configurations and mass values of two white dwarfs and a third star. Low tertiary masses of 0.1M⊙ can be studied, and the collision probability can be estimated with good confidence for the case of nearly equal mass white dwarfs.
TAWAS solves the wave equation for torsional Alfvèn waves in a viscous plasma. The background magnetic field is axisymmetric and force-free with no azimuthal component and the plasma beta is assumed to be negligible. The solution is calculated over a uniform numerical grid with coordinates r and z for the radius and height respectively. TAWAS, written in IDL, requires no input files. The problem parameters at the top of the code can be changed as need. The 'plotting' variable determines which plots are shown by the script; the code contains several options for plotting. Outputs can be saved to a specific location by changing the variables save_dir and run_name listed just below the parameters. The code outputs include solutions for the velocity perturbation, the magnetic field perturbation and the wave energy flux.
TauRunner propagates ultra-high-energy neutrinos, with a focus on tau neutrinos. Although it was developed for extremely high energy (EeV+) applications, it is able to propagate neutrinos from 1 to 10^16 GeV. Oscillations are not taken into account at the lowest energies, but they become negligible above 1 TeV.
TauREx 3 (Tau Retrieval for Exoplanets) provides a fully Bayesian inverse atmospheric retrieval framework for exoplanetary atmosphere modeling and retrievals. It is fully customizable, allowing the user to mix and match atmospheric parameters and add additional ones. The framework builds forward models, simulates instruments, and performs retrievals, and provides a rich library of classes for building additional programs and using new atmospheric parameters.
TAU is a 1D line-by-line radiative transfer code for modeling transmission spectra of close-in extrasolar planets. The code calculates the optical path through the planetary atmosphere of the radiation from the host star and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++ and is parallelized using OpenMP.
TATTER (Two-sAmple TesT EstimatoR) performs two-sample hypothesis test. The two-sample hypothesis test is concerned with whether distributions p(x) and q(x) are different on the basis of finite samples drawn from each of them. This ubiquitous problem appears in a legion of applications, ranging from data mining to data analysis and inference. This implementation can perform the Kolmogorov-Smirnov test (for one-dimensional data only), Kullback-Leibler divergence, and Maximum Mean Discrepancy (MMD) test. The module performs a bootstrap algorithm to estimate the null distribution and compute p-value.
TATOO (Tidal-chronology Age TOOl) estimates the age of massive close-in planetary systems, even those subject to tidal spin-up, using the systems' observed properties: the mass of the planet and the star, stellar rotational, and planetary orbital periods. It can also be used as a classical gyrochronological tool and offers first order correction of the impact of tidal interaction on gyrochronology.
TAT-pulsar (Timing Analysis Toolkit for Pulsars) analyzes, processes, and visualizes pulsar data, thus handling the scientific intricacies of pulsar timing. By leveraging observational data from pulsars, along with the associated physical processes and statistical characteristics, the package integrates a suite of Python-based tools and data analysis scripts specifically developed for both isolated pulsars and binary systems. This enables swift analysis and the detailed presentation of timing properties in the high-energy pulsar field. Developed and implemented completely independently from other pulsar timing software such as Stingray (ascl:1608.001) and PINT (ascl:1902.007), TAT-pulsar serves as a valuable cross-checking and supplementary tool for data analysis.
TARDIS creates synthetic spectra for supernova ejecta and is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. TARDIS uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It is written in Python with a modular design that facilitates the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency; this allows users to choose a level of sophistication appropriate for their application.
Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.
tapify implements a suite of multitaper spectral estimation techniques for analyzing time series data. It supports analysis of both evenly and unevenly sampled time series data. The multitaper statistic tackles the problems of bias and consistency, which makes it an improvement over the classical periodogram for evenly sampled data and the Lomb-Scargle periodogram for uneven sampling. In basic statistical terms, this estimator provides a confident look at the properties of a time series in the frequency or Fourier domain.
Tangra performs scientific grade data reduction of GPS time-tagged video observations, including reduction of stellar occultation light curves and astrometry of close flybys of Near Earth Objects. It offers Dark and Flat frame image correction, PSF and aperture photometry, multiple methods for deriving a background as well as extensibility via add-ins. Tangra is actively developed for Windows and the current version of the software supports UCAC2, UCAC3, UCAC4, NOMAD, PPMXL and Gaia DR2 star catalogues for astrometry. The software can perform motion-fitting for fast objects and derive a mini-normal astrometric positions. The supported video file formats are AVI, SER, ADV and AAV. Tangra can be also used with observations recorded as a sequence of FITS files. There are also versions for Linux and OS-X with more limited functionality.
Tangos builds databases (along the lines of Eagle or MultiDark) for cosmological and zoom simulations. Its modular system generates and queries databases. It is designed to store and manage results from a user's own analysis code, provides web and python interfaces, and allows users to construct science-focused queries, including across entire merger trees, without requiring knowledge of SQL. Tangos manages the process of populating the database with science data, including auto-parallelizing the analysis. It can be customized to work with multiple python modules such as pynbody (ascl:1305.002) or yt (ascl:1011.022) to process raw simulation data; it defaults to using SQLite, but allows use of other databases as the underlying store through the use of SQLAlchemy.
TAME measures the equivalent width (EWs) in high-resolution spectra. Written by IDL, TAME provides the EWs of spectral lines by profile fitting in an automatic or interactive mode and is reliable for measuring EWs in a spectrum with a spectral resolution of R ≳ 20000. It offers an interactive mode for more flexible measurement of the EW and a fully automatic mode that can simultaneously measure the EWs for a large set of lines.
TALYS simulates nuclear reactions which involve neutrons, gamma-rays, protons, deuterons, tritons, helions and alpha-particles, in the 1 keV-200MeV energy range. A suite of nuclear reaction models has been implemented into a single code system, enabling one to evaluate basically all nuclear reactions beyond the resonance range. In particular, TALYS estimates the Maxwellian-averaged reaction rates that are of astrophysical relevance. This enables reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. The TALYS code provides a tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability.
This Python package allows the user to setup and run an agent-based simulation of a SETI survey. The package allows the creation of a population of observing and transmitting civilisations. Each transmitter and observer conducts their activities according to an input strategy. The success of observers and transmitters can then be recorded, and multiple simulations can be run for Monte Carlo Realisation.
This package is therefore a flexible framework in which to simulate and test different SETI strategies, both as an Observer and as a Transmitter. It is primarily designed with radio SETI in mind, but is sufficiently flexible to simulate all forms of electromagnetic SETI, and potentially neutrino and gravitational wave SETI.
TailZ estimates redshift distributions of photometric samples of galaxies selected photometrically given a subsample with measured spectroscopic redshifts. The approach uses a non-parametric Voronoi tessellation density estimator to interpolate the galaxy distribution in the redshift and photometric color space. The Voronoi tessellation estimator performs well at reconstructing the tails of the redshift distribution of individual galaxies and gives unbiased estimates of the first and second moments.
The Action Computation Tool (TACT) tests methods for estimating actions, angles and frequencies of orbits in both axisymmetric and triaxial potentials, including general spherical potentials, analytic potentials (Isochrone and Harmonic oscillator), axisymmetric Stackel fudge, average generating function from orbit (AvGF), and others. It is written in C++; code is provided to compile the routines into a Python library. TM (ascl:1512.014) and LAPACK are required to access some features.
TACHE (TensoriAl Classification of Hydrodynamic Elements) performs classification of the eigenvalues of either the tidal tensor or the velocity shear tensor at the point of a smoothed particle. This provides local information as to how matter is collapsing or flowing, respectively, in particular what stable manifold is being produced. The code reads in smoothed particle hydrodynamics (SPH) snapshot files in sphNG format and computes neighbor lists for SPH data and either the (symmetric) velocity shear tensor or tidal tensor and their eigenvalues/eigenvectors. It classifies fluid elements by number of "positive" eigenvalues and permits decomposition of snapshots into classified components; it also includes several Python plotting scripts.
TAC-maker allows for rapid and interactive calculation of synthetic planet transits by numerical computations of the integrals, allowing the use of an arbitrary limb-darkening law of the host star. This advantage together with the practically arbitrary precision of the calculations makes the code a valuable tool for the continuously increasing photometric precision of ground-based and space observations.
TA-DA is a pre-compiled IDL widget-based application which greatly simplifies and improves the analysis of stellar photometric data in comparison with theoretical models and allows the derivation of stellar parameters from multi-band photometry. It is flexible and can address a number of problems, from the interpolation of stellar models or sets of stellar physical parameters in general to the computation of synthetic photometry in arbitrary filters or units. It also analyzes observed color-magnitude diagrams and allows a Bayesian derivation of stellar parameters (and extinction) based on multi-band data.
This IDL code returns the dust temperature of a galaxy from its redshift, SFR and stellar mass; it can also predict the observed monochromatic fluxes of the galaxy. These monochromatic fluxes correspond to those of a DH SED template with the appropriate dust temperature and the appropriate normalization. Dust temperatures and fluxes predictions are only valid and provided in the redshift, stellar mass, SSFR and wavelength ranges 0 < z < 2.5, Mstar> 10^10 Msun, 10^-11 < SSFR[yr-1]< 10^-7 and 30um < lambda_rest < 2mm.
T-RECS produces radio sources catalogs with user-defined frequencies, area and depth. It models two main populations of radio galaxies, Active Galactic Nuclei (AGNs) and Star-Forming Galaxies (SFGs), and corresponding sub-populations. T-RECS is not computationally demanding and can be run multiple times, using the same catalog inputs, to project the simulated sky onto different fields.
T-PHOT extracts accurate photometry from low-resolution images of extragalactic fields, where the blending of sources can be a serious problem for accurate and unbiased measurement of fluxes and colors. It gathers data from a high-resolution image of a region of the sky and uses the source positions and morphologies to obtain priors for the photometric analysis of the lower resolution image of the same field. T-PHOT handles different types of datasets as input priors, including a list of objects that will be used to obtain cutouts from the real high-resolution image, a set of analytical models (as .fits stamps), and a list of unresolved, point-like sources, useful for example for far-infrared wavelength domains. T-PHOT yields accurate estimations of fluxes within the intrinsic uncertainties of the method when systematic errors are taken into account (which can be done using a flagging code given in the output), and handles multiwavelength optical to far-infrared image photometry. T-PHOT was developed as part of the ASTRODEEP project (www.astrodeep.eu).
The T-Matrix package includes codes to compute electromagnetic scattering by homogeneous, rotationally symmetric nonspherical particles in fixed and random orientations, randomly oriented two-sphere clusters with touching or separated components, and multi-sphere clusters in fixed and random orientations. All codes are written in Fortran-77. LAPACK-based, extended-precision, Gauss-elimination- and NAG-based, and superposition codes are available, as are double-precision superposition, parallelized double-precision, double-precision Lorenz-Mie codes, and codes for the computation of the coefficients for the generalized Chebyshev shape.
SZpack is a numerical library which allows fast and precise computation of the Sunyaev-Zeldovich (SZ) signal for hot, moving clusters of galaxies. Both explicit numerical integration as well as approximate representation of the SZ signals can be obtained. Variations of the electron temperature and bulk velocity along the line-of-sight can be included. SZpack allows very fast and precise (<~0.001% at frequencies h nu <~ 30kT_g and electron temperature kTe ~ 75 keV) computation and its accuracy practically eliminates uncertainties related to more expensive numerical evaluation of the Boltzmann collision term. It furthermore cleanly separates kinematic corrections from scattering physics, effects that previously have not been clarified.
Systemic Console is a tool for advanced analysis of exoplanetary data. It comprises a graphical tool for fitting radial velocity and transits datasets and a library of routines for non-interactive calculations. Among its features are interactive plotting of RV curves and transits, combined fitting of RV and transit timing (primary and secondary), interactive periodograms and FAP estimation, and bootstrap and MCMC error estimation. The console package includes public radial velocity and transit data.
The Feed Forward Neural Network SYSNet models the relationship between the imaging maps, such as stellar density and the observed galaxy density field, in order to mitigate the systematic effects and to make a robust galaxy clustering measurements. The cost function is Mean Squared Error and a L2 regularization term, and the optimization algorithm is Adaptive Moment (ADAM).
Synthetic Population of Interstellar Objects generates a synthetic population of interstellar objects (orbits and sizes) in arbitrary volume of space around the Sun. The only necessary assumption is that the population of ISOs in the interstellar space (far from any massive body) is homogeneous and isotropic. The assumed distribution of interstellar velocities of ISOs has to be provided as an input. This distribution can be defined analytically, but also in a discrete form. The algorithm, based on the multivariate inverse transform sampling method, is implemented in Python.
Synthetic LISA simulates the LISA science process at the level of scientific and technical requirements. The code generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables, and provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI, including the motion of the LISA array, and the temporal and directional dependence of the armlengths.
Synth3 is a non-magnetic spectrum synthesis code. It works with model atmospheres in Kurucz format and VALD Sf line lists and features element stratification, molecular equilibrium and individual microturbulence for each line. Disk integration can be done with s3di which is included in the archive. Synth3 computes spectra emergent from the stellar atmospheres with a depth-dependent chemical composition if depth-dependent abundance is provided in the input model atmosphere file.
Synspec is a user-oriented package written in FORTRAN for modeling stellar atmospheres and for stellar spectroscopic diagnostics. It assumes an existing model atmosphere, calculated previously with Tlusty or taken from the literature (for instance, from the Kurucz grid of models). The opacity sources (continua, atomic and molecular lines) are fully specified by the user. An arbitrary stellar rotation and instrumental profile can be applied to the synthetic spectrum.
Synphot simulates photometric data and spectra, observed or otherwise. It can incorporate the user's filters, spectra, and data, and use of a pre-defined standard star (Vega), bandpass, or extinction law. synphot can also construct complicated composite spectra using different models, simulate observations, and compute photometric properties such as count rate, effective wavelength, and effective stimulus. It can manipulate a spectrum by, for example, applying redshift, or normalize it to a given flux value in a given bandpass. Synphot can also sample a spectrum at given wavelengths, plot a quick-view of a spectrum, and perform repetitive operations such as simulating the observations of multiple type of sources through multiple bandpasses. Synphot understands Astropy (ascl:1304.002) models and units and is an Astropy affiliated package. Support for HST and JWST is available through the extension stsynphot (ascl:2010.003).
SYNOW is a highly parameterized spectrum synthesis code used primarily for direct (empirical) analysis of SN spectra. The code is based on simple assumptions : spherical symmetry; homologous expansion; a sharp photosphere that emits a blackbody continuous spectrum; and line formation by resonance scattering, treated in the Sobolev approximation. Synow does not do continuum transport, it does not solve rate equations, and it does not calculate ionization ratios. Its main function is to take line multiple scattering into account so that it can be used in an empirical spirit to make line identifications and estimate the velocity at the photosphere (or pseudo-photosphere) and the velocity interval within which each ion is detected. these quantities provide constraints on the composition structure of the ejected matter.
SYNMAG is a tool for producing synthetic aperture magnitudes to enable fast matched photometry at the catalog level without reprocessing imaging data. Aperture magnitudes are the most widely tabulated flux measurements in survey catalogs; obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. An alternative solution called "synthetic aperture photometry" exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures.
The synchrofit (synchrotron fitter) package implements a reduced dimensionality parameterisation of standard synchrotron spectrum models, and provides fitting routines applicable for active galactic nuclei and supernova remnants. The Python code includes the Jaffe-Parola model (JP), Kardashev-Pacholczyk model (KP), and continuous injection models (CI/KGJP) for both constant or Maxwell-Boltzmann magnetic field distributions. An adaptive maximum likelihood algorithm is invoked to fit these models to multi-frequency radio observations; the adaptive mesh is customisable for either optimal precision or computational efficiency. Functions are additionally provided to plot the fitted spectral model with its confidence interval, and to derive the spectral age of the synchrotron emitting particles.
SYNAPPS is a spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer. This open-source code is aimed primarily at the problem of systematically interpreting large sets of SN spectroscopy data.
SYN++ is a standalone SN spectrum synthesis program. It is a rewrite of the original SYNOW (ascl:1010.055) code in modern C++. It offers further enhancements, a new structured input control file format, and the atomic data files have been repackaged and are more complete than those of SYNOW.
The Python package sympy2c allows creation and compilation of fast C/C++ based extension modules from symbolic representations. It can create fast code for the solution of high dimensional ODEs, or numerical evaluation of integrals where sympy fails to compute an anti-derivative. Based on the symbolic formulation of a stiff ODE, sympy2c analyzes sparsity patterns in the Jacobian matrix of the ODE, and generates loop-less fast code by unrolling loops in the internally used LU factorization algorithm and by avoiding unnecessary computations involving known zeros.
symbolic_pofk provides simple Python functions and a Fortran90 routine for precise symbolic emulations of the linear and non-linear matter power spectra and for the conversion σ 8 ↔ A s as a function of cosmology. These can be easily copied, pasted, and modified to other languages. Outside of a tested k range, the fit includes baryons by default; however, this can be switched off.
SYGMA (Stellar Yields for Galactic Modeling Applications) follows the ejecta of simple stellar populations as a function of time to model the enrichment and feedback from simple stellar populations. It is the basic building block of the galaxy code One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) and is part of the NuGrid Python Chemical Evolution Environment (NuPyCEE, ascl:1610.015). Stellar yields of AGB and massive stars are calculated with the same nuclear physics and are provided by the NuGrid collaboration.
The ROSAT X-Ray Background Tool (sxrbg) calculates the average X-ray background count rate and statistical uncertainty in each of the six standard bands of the ROSAT All-Sky Survey (RASS) diffuse background maps (R1, R2, R4, R5, R6, R7) for a specified astronomical position and a search region consisting of either a circle with a specified radius or an annulus with specified inner and outer radii centered on the position. The values returned by the tool are in units of 10^-6 counts/second/arcminute^2. sxrbg can also create a count-rate-based spectrum file which can be used with XSpec (ascl:9910.005) to calculate fluxes and offers support for counts statistics (cstat), an alternative method for generating a background spectrum. HEASoft (ascl:1408.004) is a prerequisite for building. The code is in the public domain.
swyft implements Truncated Marginal Neural Radio Estimation (TMNRE), a Bayesian parameter inference technique for complex simulation data. The code improves performance by estimating low-dimensional marginal posteriors rather than the joint posteriors of distributions, while also targeting simulations to targets of observational interest via an indicator function. The use of local amortization permits statistical checks, enabling validation of parameters that cannot be performed using sampling-based methods. swyft is also based on stochastic simulations, mapping parameters to observational data, and incorporates a simulator manager.
SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.
Swordfish studies the information yield of counting experiments. It implements at its core a rather general version of a Poisson point process with background uncertainties described by a Gaussian random field, and provides easy access to its information geometrical properties. Based on this information, a number of common and less common tasks can be performed. Swordfish allows quick and accurate forecasts of experimental sensitivities without time-intensive Monte Carlos, mock data generation and likelihood maximization. It can:
- calculate the expected upper limit or discovery reach of an instrument;
- derive expected confidence contours for parameter reconstruction;
- visualize confidence contours as well as the underlying information metric field;
- calculate the information flux, an effective signal-to-noise ratio that accounts for background systematics and component degeneracies; and
- calculate the Euclideanized signal which approximately maps the signal to a new vector which can be used to calculate the Euclidean distance between points.
SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.
SWIGLAL, a wrapper for and component of the LALSuite (ascl:2012.021) gravitational wave detection and analysis libraries, which are primarily written in C, makes LALSuite routines directly accessible to Python and Octave scripts.
SwiftVis is a tool originally developed as part of a rewrite of Swift (ascl:1303.001) to be used for analysis and plotting of simulations performed with Swift and Swifter. The extensibility built into the design has allowed us to make SwiftVis a general purpose analysis and plotting package customized to be usable by the planetary science community at large. SwiftVis is written in Java and has been tested on Windows, Linux, and Mac platforms. Its graphical interface allows users to do complex analysis and plotting without having to write custom code.
SWIFTGalaxy provides a software abstraction of simulated galaxies produced by the SWIFT smoothed particle hydrodynamics code. It extends the SWIFTSimIO module and is tailored to analyses of particles belonging to individual simulated galaxies. It inherits from and extends the functionality of the SWIFTDataset. It understands the output of halo finders and therefore which particles belong to a galaxy, and its integrated properties. The particles occupy a coordinate frame that is enforced to be consistent, such that particles loaded on-the-fly will match e.g. rotations and translations of particles already in memory. Intuitive masking of particle datasets is also enabled. Finally, some utilities to make working in cylindrical and spherical coordinate systems more convenient are also provided.
Swiftest is a software package designed to model the long-term dynamics of system of bodies in orbit around a dominant central body, such a planetary system around a star, or a satellite system around a planet. The main body of the program is written in Modern Fortran, taking advantage of the object-oriented capabilities included with Fortran 2003 and the parallel capabilities included with Fortran 2008 and Fortran 2018. Swiftest also includes a Python package that allows the user to quickly generate input, run simulations, and process output from the simulations. Swiftest uses a NetCDF output file format which makes data analysis with the Swiftest Python package a streamlined and flexible process for the user. Building off a strong legacy, including its predecessors Swifter and Swift, Swiftest takes the next step in modeling the dynamics of planetary systems by improving the performance and ease of use of software, and by introducing a new collisional fragmentation model. Currently, Swiftest includes the four main symplectic integrators included in its predecessors: WHM, RMVS, HELIO, and SyMBA. In addition, Swiftest also contains the Fraggle model for generating products of collisional fragmentation.
Swiftbat retrieves, analyzes, and displays data from NASA's Swift spacecraft, especially data from the Swift Burst Alert Telescope (BAT). All BAT data are available from the Swift data archive; however, a few routines in this library use data access methods not available to the general public and thus are useful only to Swift team members. The package also installs a command-line program 'swinfo' that provides Swift Information such as what the MET (onboard-clock) time is, where Swift was pointing, and whether a specific source was above the horizon and/or in the field of view.
SWIFT runs cosmological simulations on peta-scale machines for solving gravity and SPH. It uses the Fast Multipole Method (FMM) to calculate gravitational forces between nearby particles, combining these with long-range forces provided by a mesh that captures both the periodic nature of the calculation and the expansion of the simulated universe. SWIFT currently uses a single fixed but time-variable softening length for all the particles. Many useful external potentials are also available, such as galaxy haloes or stratified boxes that are used in idealised problems. SWIFT implements a standard LCDM cosmology background expansion and solves the equations in a comoving frame; equations of state of dark-energy evolve with scale-factor. The structure of the code allows implementation for modified-gravity solvers or self-interacting dark matter schemes to be implemented. Many hydrodynamics schemes are implemented in SWIFT and the software allows users to add their own.
SWIFT follows the long-term dynamical evolution of a swarm of test particles in the solar system. The code efficiently and accurately handles close approaches between test particles and planets while retaining the powerful features of recently developed mixed variable symplectic integrators. Four integration techniques are included: Wisdom-Holman Mapping; Regularized Mixed Variable Symplectic (RMVS) method; fourth order T+U Symplectic (TU4) method; and Bulirsch-Stoer method. The package is designed so that the calls to each of these look identical so that it is trivial to replace one with another. Complex data manipulations and results can be analyzed with the graphics packace SwiftVis.
SWarp resamples and co-adds together FITS images using any arbitrary astrometric projection defined in the WCS standard. It operates on pre-reduced images and their weight-maps. Based on the astrometric and photometric calibrations derived at an earlier phase of the pipeline, SWarp re-maps ("warps") the pixels to a perfect projection system, and co-adds them in an optimum way, according to their relative weights. SWarp's astrometric engine is based on a customized version of Calabretta's WCSLib 2.6 and supports all of the projections defined in the 2000 version of the WCS proposal.
Swarm-NG is a C++ library for the efficient direct integration of many n-body systems using highly-parallel Graphics Processing Units (GPU). Swarm-NG focuses on many few-body systems, e.g., thousands of systems with 3...15 bodies each, as is typical for the study of planetary systems; the code parallelizes the simulation, including both the numerical integration of the equations of motion and the evaluation of forces using NVIDIA's "Compute Unified Device Architecture" (CUDA) on the GPU. Swarm-NG includes optimized implementations of 4th order time-symmetrized Hermite integration and mixed variable symplectic integration as well as several sample codes for other algorithms to illustrate how non-CUDA-savvy users may themselves introduce customized integrators into the Swarm-NG framework. Applications of Swarm-NG include studying the late stages of planet formation, testing the stability of planetary systems and evaluating the goodness-of-fit between many planetary system models and observations of extrasolar planet host stars (e.g., radial velocity, astrometry, transit timing). While Swarm-NG focuses on the parallel integration of many planetary systems,the underlying integrators could be applied to a wide variety of problems that require repeatedly integrating a set of ordinary differential equations many times using different initial conditions and/or parameter values.
SUSHI (Semi-blind Unmixing with Sparsity for hyperspectral images) performs non-stationary unmixing of hyperspectral images. The typical use case is to map the physical parameters such as temperature and redshift from a model with multiple components using data from hyperspectral images. Applying a spatial regularization provides more robust results on voxels with low signal to noise ratio. The code has been used on X-ray astronomy but the method can be applied to any integral field unit (IFU) data cubes.
surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.
The Surprise is a measure for consistency between posterior distributions and operates in parameter space. It can be used to analyze either the compatibility of separately analyzed posteriors from two datasets, or the posteriors from a Bayesian update. The Surprise Calculator estimates relative entropy and Surprise between two samples, assuming they are Gaussian. The software requires the R package CompQuadForm to estimate the significance of the Surprise, and rpy2 to interface R with Python.
surfinBH predicts the final mass, spin and recoil velocity of the remnant of a binary black hole merger. Trained directly against numerical relativity simulations, these models are extremely accurate, reproducing the results of the simulations at the same level of accuracy as the simulations themselves. Fits such as these play a crucial role in waveform modeling and tests of general relativity with gravitational waves, performed by LIGO.
SURF reduces data from the SCUBA instrument from the James Clerk Maxwell Telescope. Facilities are provided for reducing all the SCUBA observing modes including jiggle, scan and photometry modes. SURF uses the Starlink environment (ascl:1110.012).
SUPPNet performs fully automated precise continuum normalization of merged echelle spectra and offers flexible manual fine-tuning, if necessary. The code uses a fully convolutional deep neural network (SUPP Network) trained to predict a pseudo-continuum. The post-processing step uses smoothing splines that give access to regressed knots, which are useful for optional manual corrections. The active learning technique controls possible biases that may arise from training with synthetic spectra and extends the applicability of the method to features absent in this kind of spectra.
SuperRAENN performs photometric classification of supernovae in the following categories: Type I superluminos supernovae, Type II, Type IIn, Type Ia and Type Ib/c. Though the code is optimized for use with complete (rather than realtime) light curves from the Pan-STARRS Medium Deep Survey, the classifier can be trained on other data. SuperRAENN can be used on a dataset containing both spectroscopically labelled and unlabelled SNe; all events will be used to train the RAENN, while labelled events will be used to train the random forest.
SuperRad models ultralight boson clouds that arise through black hole superradiance. It uses numerical results in the relativistic regime combined with analytic estimates to describe the dynamics and gravitational wave signals of ultralight scalar or vector clouds. Written in Python, SuperRad includes a set of testing routines that check the internal consistency of the package; these tests mainly serve the purpose of ensuring functionality of the waveform model but can also be utilized to check that SuperRad works as intended.
Superplot calculates and plots statistical quantities relevant to parameter inference from a "chain" of samples drawn from a parameter space produced by codes such as MultiNest (ascl:1109.006), BAYES-X (ascl:1505.027), and PolyChord (ascl:1502.011). It offers a graphical interface for browsing a chain of many variables quickly and can produce numerous kinds of publication quality plots, including one- and two-dimensional profile likelihood, three-dimensional scatter plots, and confidence intervals and credible regions. Superplot can also save plots in PDF format, create a summary text file, and export a plot as a pickled object for importing and manipulating in a Python interpreter.
SuperNu simulates time-dependent radiation transport in local thermodynamic equilibrium with matter. It applies the methods of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for static or homologously expanding spatial grids. The radiation field affects material temperature but does not affect the motion of the fluid. SuperNu may be applied to simulate radiation transport for supernovae with ejecta velocities that are not affected by radiation momentum. The physical opacity calculation includes elements from Hydrogen up to Cobalt. SuperNu is motivated by the ongoing research into the effect of variation in the structure of progenitor star explosions on observables: the brightness and shape of light curves and the temporal evolution of the spectra. Consequently, the code may be used to post-process data from hydrodynamic simulations. SuperNu does not include any capabilities or methods that allow for non-trivial hydrodynamics.
Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.
Flux-averaging justifies the use of the distance-redshift relation for a smooth universe in the analysis of type Ia supernova (SN Ia) data. Flux-averaging of SN Ia data is required to yield cosmological parameter constraints that are free of the bias induced by weak gravitational lensing. SN Ia data are converted into flux. For a given cosmological model, the distance dependence of the data is removed, then the data are binned in redshift, and placed at the average redshift in each redshift bin. The likelihood of the given cosmological model is then computed using "flux statistics''. These Fortran codes compute the likelihood of an arbitrary cosmological model [with given H(z)/H_0] using flux-averaged Type Ia supernova data.
SuperNNova performs photometric classification by leveraging recent advances in deep neural networks. It can train either a recurrent neural network or random forest to classify light-curves using only photometric information. It also allows additional information, such as host-galaxy redshift, to be incorporated to improve performance.
SuperLite produces synthetic spectra for astrophysical transient phenomena affected by circumstellar interaction. It uses Monte Carlo methods and multigroup structured opacity calculations for semi-implicit, semirelativistic radiation transport in high-velocity shocked outflows, and can reproduce spectra of typical Type Ia, Type IIP, and Type IIn supernovae. SuperLite also generates high-quality spectra that can be compared with observations of transient events, including superluminous supernovae, pulsational pair-instability supernovae, and other peculiar transients.
SuperFreq numerically estimates the fundamental frequencies and orbital actions of pre-computed orbital time series. It is an implementation of a version of the Numerical Analysis of Fundamental Frequencies close to that by Monica Valluri, which itself is an implementation of an algorithm first used by Jacques Laskar.
SUPERBOX is a particle-mesh code that uses moving sub-grids to track and resolve high-density peaks in the particle distribution and a nearest grid point force-calculation scheme based on the second derivatives of the potential. The code implements a fast low-storage FFT-algorithm and allows a highly resolved treatment of interactions in clusters of galaxies, such as high-velocity encounters between elliptical galaxies and the tidal disruption of dwarf galaxies, as sub-grids follow the trajectories of individual galaxies. SUPERBOX is efficient in that the computational overhead is kept as slim as possible and is also memory efficient since it uses only one set of grids to treat galaxies in succession.
SuperBoL calculates the bolometric lightcurves of Type II supernovae using observed photometry; it includes three different methods for calculating the bolometric luminosity: quasi-bolometric, direct, and bolometric correction. SuperBoL propagates uncertainties in the input data through the calculations made by the code, allowing for error bars to be included in plots of the lightcurve.
SuperBayeS is a package for fast and efficient sampling of supersymmetric theories. It uses Bayesian techniques to explore multidimensional SUSY parameter spaces and to compare SUSY predictions with observable quantities, including sparticle masses, collider observables, dark matter abundance, direct detection cross sections, indirect detection quantities etc. Scanning can be performed using Markov Chain Monte Carlo (MCMC) technology or even more efficiently by employing a new scanning technique called MultiNest (ascl:1109.006). which implements the nested sampling algorithm. Using MultiNest, a full 8-dimensional scan of the CMSSM takes about 12 hours on 10 2.4GHz CPUs. There is also an option for old-style fixed-grid scanning. A discussion forum for SuperBayeS is available.
The package combines SoftSusy, DarkSusy, FeynHiggs, Bdecay, MultiNest and MicrOMEGAs. Some of the routines and the plotting tools are based on CosmoMC (ascl:1106.025).
SuperBayeS comes with SuperEGO, a MATLAB graphical user interface tool for interactive plotting of the results. SuperEGO has been developed by Rachid Lemrani and is based on CosmoloGUI by Sarah Bridle.
The superABC sampling method obtains cosmological constraints from supernova light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. It provides an interface to two forward model simulations, SNCosmo (ascl:1611.017) and SNANA (ascl:1010.027), for supernova cosmology.
These IDL codes create a thick magneto-static structure with parameters of a typical sunspot in a solar like photosphere - chromosphere. The variable parameters are field strength on the axis, radius, and Wilson depression (displacement of the atmosphere on the axis with respect to the field-free atmosphere). Output are magnetic field vector, pressure and density distributions with radius and height. The structure has azimuthal symmetry. The codes are relatively self explanatory and the download packages contain README files.
Sunrise is a Monte Carlo radiation transfer code for calculating absorption and scattering of light to study the effects of dust in hydrodynamic simulations of interacting galaxies. It uses an adaptive mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 104; it can efficiently generate images of the emerging radiation at arbitrary points in space and spectral energy distributions of simulated galaxies run with the Gadget (ascl:0003.001), Gasoline (ascl:1710.019), Arepo (ascl:1909.010), Enzo (ascl:1010.072) or ART codes. In addition to the monochromatic radiative transfer typically used by Monte Carlo codes, Sunrise can propagate a range of wavelengths simultaneously. This "polychromatic" algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated.
sunpy is a community-developed free and open-source software package for solar physics and is an alternative to the SolarSoft (ascl:1208.013) data analysis environment. SunPy provides data structures for representing the most common solar data types (images, lightcurves, and spectra) and integration with the Virtual Solar Observatory (VSO) and the Heliophysics Event Knowledgebase (HEK) for data acquisition.
SunnyNet learns the mapping the between LTE and NLTE populations of a model atom and predicts the NLTE populations based on LTE populations for an arbitrary 3D atmosphere. To use SunnyNet, one must already have a set of LTE and NLTE populations computed in 3D, to train the network. These must come from another code, as SunnyNet is unable to solve the formal problem. Once SunnyNet is trained, one can feed it LTE populations from a different 3D atmosphere, and obtain predicted NLTE populations. The NLTE populations can then be used to synthesize any spectral line that is included in the model atom. SunnyNet's output is a file with predicted NLTE populations. SunnyNet itself does not calculate synthetic spectra, but a sample script written in the Julia language that quickly computes Hα spectra is included.
SUNBIRD trains neural-network-based models for galaxy clustering. It also incorporates pre-trained emulators for different summary statistics, including galaxy two-point correlation function, density-split clustering statistics, and old-galaxy cross-correlation function. These models have been trained on mock galaxy catalogs, and were calibrated to work for specific samples of galaxies. SUNBIRD implements routines with PyTorch to train new neural-network emulators.
sunbather simulates the upper atmospheres of exoplanets and their observational signatures. The code constructs 1D Parker wind profiles using p-winds (ascl:2111.011) to simulate these with Cloudy (ascl:9910.001), and postprocesses the output with a custom radiative transfer module to predict the transmission spectra of exoplanets.
SubgridClumping derives the parameters for the global, in-homogeneous and stochastic clumping model and then computes the clumping factor for large low-resolution N-body simulations smoothed on a regular grid. Written for the CUBEP3M simulation, the package contains two main modules. The first derives the three clumping model parameters for a given small high-resolution simulation; the second computes a clumping factor cube (same mesh-size as input) for the three models for the given density field of a large low-resolution simulation.
The SubGen2 subhalo population generator works for both CDM and WDM of arbitrary DM particle mass. It can be used to generate a population of subhaloes according to the joint distribution of subhalo bound mass, infall mass and halo-centric distance in a halo of a given mass. SubGen2 is an extension to SubGen (ascl:2312.035), which works only for CDM subhaloes.
SubGen generates Monte-Carlo samples of dark matter subhaloes. It fully describes the joint distribution of subhaloes in final mass, infall mass, and radius; it can be used to predict derived distributions involving combinations of these quantities, including the universal subhalo mass function, the subhalo spatial distribution, the gravitational lensing profile, the dark matter annihilation radiation profile and boost factor. SubGen works only for CDM subhaloes; for an extension of the code to also work with WDM subhaloes, see SubGen2 (ascl:2312.036).
Stuff is a program that simulates “perfect” astronomical catalogues. It generate object lists in ASCII which can read by the SkyMaker program to produce realistic astronomical fields. Stuff is part of the EFIGI development project.
An extension to synphot (ascl:1811.001), stsynphot implements synthetic photometry package for HST and JWST support. The software constructs spectra from various grids of model atmosphere spectra, parameterized spectrum models, and atlases of stellar spectrophotometry. It also simulates observations specific to HST and JWST, computes photometric calibration parameters for any supported instrument mode, and plots instrument-specific sensitivity curves and calibration target spectra.
The Space Telescope Science Data Analysis System (STSDAS) is a software package for reducing and analyzing astronomical data. It is layered on top of IRAF and provides general-purpose tools for astronomical data analysis as well as routines specifically designed for HST data. In particular, STSDAS contains all the programs used for the calibration and reduction of HST data in the STScI post-observation processing pipelines.
StructureFunction determines the X-ray Structure Function of a population of Active Galactic Nuclei (AGN) for which two epoch X-ray observations are available and are separated by rest frame time interval. The calculation of the X-ray structure function is Bayesian. The sampling of the likelihood uses Stan (ascl:1801.003) for statistical modeling and high-performance statistical computation.
stringgen creates emulations of cosmic string maps with statistics similar to those of a single (or small ensemble) of reference simulations. It uses wavelet phase harmonics to calculate a compressed representation of these reference simulations, which may then be used to synthesize new realizations with accurate statistical properties, e.g., 2 and 3 point correlations, skewness, kurtosis, and Minkowski functionals.
StringFast implements a method for efficient computation of the C_l spectra induced by a network of strings, which is fast enough to be used in Markov Chain Monte Carlo analyses of future data. This code allows the user to calculate TT, EE, and BB power spectra (scalar [for TT and EE], vector, and tensor modes) for "wiggly" cosmic strings. StringFast uses the output of the public code CMBACT (ascl:1106.023). The properties of the strings are described by four parameters: Gμ—dimensionless string tension; v—rms transverse velocity (as fraction of c); α—"wiggliness"; ξ—comoving correlation length of the string network. It is written as a Fortran 90 module.
streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the streampepperdf.py galpy extension, which implements the fast calculation of the perturbed stream structure.
Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.
Stratsi calculates stratified and vertically-shearing streaming instabilities. It solves one- and two-fluid linearized equations, and, for two-fluid models, also provides the parameters and analytic vertical structure and solves for equilibrium horizontal velocity profiles. It offers utilities and various plotting options, including plots to compare one- and two-fluid results, viscous results to inviscid results, and results from two different stokes numbers or two different metallicities. stratsi requires Dedalus (ascl:1603.015) and Eigentools (ascl:2101.017).
STools contains a variety of simple tools for spectroscopy, such as reading an IRAF-formatted (multispec) echelle spectrum in FITS, measuring the wavelength of the center of a line, Gaussian convolution, deriving synthetic photometry from an input spectrum, and extracting and interpolating a MARCS model atmosphere (standard composition).
STOKES was designed to perform three-dimensional radiative transfer simulations for astronomical applications. The code also considers the polarization properties of the radiation. The program is based on the Monte-Carlo method and treats optical and ultraviolet polarization induced by scattering off free electrons or dust grains. Emission and scattering regions can be arranged in various geometries within the model space, the computed continuum and line spectra can be evaluated at different inclinations and azimuthal viewing angles.
Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.
stimela provides a system-agnostic scripting framework for simulating, processing, and imaging radio interferometric data. The framework executes radio interferometry related tasks such as imaging, calibration, and data synthesis in Docker containers using Python modules. stimela offers a simple interface to packages that perform these tasks rather than doing any data processing, synthesis or analysis itself. stimela only requires Docker and Python. Moreover, because of Docker, a stimela script runs the same way (in the same isolated environment) regardless of the host machine’s settings, thus providing a user-friendly and modular scripting environment that gives general users easy access to novel radio interferometry calibration, imaging, and synthesis packages.
The STIL Tool Set is a set of command-line tools based on STIL, the Starlink Tables Infrastructure Library. It deals with the processing of tabular data; the package has been designed for, but is not restricted to, astronomical tables such as object catalogues. Some of the tools are generic and can work with multiple formats (including FITS, VOTable, CSV, SQL and ASCII), and others are specific to the VOTable format. In some ways, STILTS forms the command-line counterpart of the GUI table analysis tool TOPCAT. The package is robust, fully documented, and designed for efficiency, especially with very large datasets.
Facilities offered include:
- format conversion
- crossmatching
- plotting
- column calculation and rearrangement
- row selections
- data and metadata manipulation and display
- sorting
- statistical calculations
- histogram calculation
- data validation
- VO service access
A powerful and extensible expression language is used for specifying data calculations. These facilities can be put together in very flexible and efficient ways. For tasks in which the data can be streamed, the size of table STILTS can process is effectively unlimited. For other tasks, million-row tables usually do not present a problem. STILTS is written in pure Java (J2SE1.5 or later), and can be run from the command line or from Jython, or embedded into java applications. It is released under the GPL.
STIFF converts scientific FITS images to the more popular TIFF format for illustration purposes. Most FITS readers and converters do not do a proper job at converting FITS image data to 8 bits. 8-bit images stored in JPEG, PNG or TIFF files have the intensities implicitly stored in a non-linear way. Most current FITS image viewers and converters provide the user an incorrect translation of the FITS image content by simply rescaling linearly input pixel values. A first consequence is that the people working on astronomical images usually have to apply narrow intensity cuts or square-root or logarithmic intensity transformations to actually see something on their deep-sky images. A less obvious consequence is that colors obtained by combining images processed this way are not consistent across such a large range of surface brightnesses. Though with other software the user is generally afforded a choice of nonlinear transformations to apply in order to make the faint stuff stand out more clearly in the images, with the limited selection of choices provides, colors will not be accurately rendered, and some manual tweaking will be necessary. The purpose of STIFF is to produce beautiful pictures in an automatic and consistent way.
STiC is a MPI-parallel non-LTE inversion code for observed full-Stokes observations. The code processes lines from multiple atoms in non-LTE, including partial redistribution effects of scattered photons in angle and frequency of scattered photons (PRD), and can be used with model atmospheres that have a complex depth stratification without introducing artifacts.
stginga customizes Ginga to aid data analysis for the data supported by STScI (e.g., HST or JWST). For instance, it provides plugins and configuration files that understand HST and JWST data products.
STF is a general structure finder designed to find halos, subhaloes, and tidal debris in N-body simulations. The current version is designed to read in "particle data" (that is SPH N-body data), but a simple modification of the I/O can have it read grid data from Grid based codes.
This code has been updated and renamed to VELOCIraptor-STF (ascl:1911.020).
The sterile neutrino production code sterile-dm incorporates new elements to the calculations of the neutrino opacity at temperatures 10 MeV ≤ T ≤ 10 GeV and folds the asymmetry redistribution and opacity calculations into the sterile neutrino production computation, providing updated PSDs for the range of parameters relevant to the X-ray excess. The code requires several data files, which are included. With each run, sterile-dm creates a new output sub-directory that contains a parameter file listing the mass, mixing angle, initial lepton asymmetry and other information, a state file, which includes, among other states, the temperature and FRW coordinate time, and a set of snapshot files, one for each line in the state file.
StePS (Stereographically Projected Cosmological Simulations) compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to simulate the evolution of the large-scale structure. This eliminates the need for periodic boundary conditions, which are a numerical convenience unsupported by observation and which modifies the law of force on large scales in an unrealistic fashion. StePS uses stereographic projection for space compactification and naive O(N2) force calculation; this arrives at a correlation function of the same quality more quickly than standard (tree or P3M) algorithms with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence StePS can function as a high-speed prediction tool for modern large-scale surveys.
stepped_luneburg investigates the scattered light properties of a Luneburg lens approximated as a series of concentric shells with discrete refractive indices. The optical Luneburg lens has promising applications for low-cost, continuous all-sky monitoring to obtain transit light curves of bright, nearby stars. This code implements a stack-based algorithm that tracks all reflected and refracted rays generated at each optical interface of the lens as described by Snell's law. The Luneburg lens model parameters, such as number of lens layers, the power-law that describes the refractive indices, the number of incident rays, and the initial direction of the incident wavefront can be altered to optimize lens performance. The stepped_luneburg module can be imported within the Python environment or used with scripting, and it is accompanied by two other modules, enc_int and int_map, that help the user to determine the resolving power of the lens and the strength of scattered light haloes for the purpose of quality assessment.
SteParSyn infers stellar atmospheric parameters (Teff, log g, [Fe/H], and Vbroad) of FGKM-type stars using the spectral synthesis method. The code uses the MCMC sampler emcee (ascl:1303.002) in conjunction with an spectral emulator that can interpolate spectra down to a precision < 1%. A grid of synthetic spectra that allow the user to characterize the spectra of FGKM-type stars with parameters in the range of 3500 to 7000 K in Teff, 0.0 to 5.5 dex in log g, and −2.0 to 1.0 dex in [Fe/H] is also provided.
StePar computes the stellar atmospheric parameters Teff, log g, [Fe/H], and ξ of FGK-type stars using the Equivalent Width (EW) method. The code implements a grid of MARCS model atmospheres and uses the MOOG radiative transfer code (ascl:1202.009) and TAME (ascl:1503.003). StePar uses a Downhill Simplex minimization algorithm, running it twice for any given star, to compute the stellar atmospheric parameters.
StelNet predicts mass and age from absolute luminosity and effective temperature for stars with close to solar metallicity. It uses a Deep Neural Network trained on stellar evolutionary tracks. The underlying model makes no assumption on the evolutionary stage and includes the pre-main sequence phase. A mix of models are trained and bootstrapped to quantify the uncertainty of the model, and data is through all trained models to provide a predictive distribution from which an expectation value and uncertainty level can be estimated.
stellarWakes uses stellar kinematic data to search for dark matter (DM) subhalos through their gravitational perturbations to the stellar phase-space distribution.
Cosmic ray electrons scatter on the photon fields around stars, including the sun, to create gamma rays by the inverse Compton effect. Stellarics computes the spectrum and angular distribution of this emission. The software also includes general-purpose routines for inverse Compton scattering on a given electron spectrum, for example for interstellar or astrophysical source modelling.
stellaR accesses and manipulates publicly available stellar evolutionary tracks and isochrones from the Pisa low-mass database. It retrieves and plots the required calculations from CDS, constructs by interpolation tracks or isochrones of compositions different to the ones available in the database, constructs isochrones for age not included in the database, and extracts relevant evolutionary points from tracks or isochrones.
stella creates and trains a neural network to identify stellar flares. Within stella, users can simulate flares as a training set, run a neural network, and feed in their own data to the neural network model. The software returns a probability at each data point as to whether that data point is part of a flare; the code can also characterize the flares identified.
STELLA is a one-dimensional multi-group radiation hydrodynamics code. STELLA incorporates implicit hydrodynamics coupled to a multi-group non-equilibrium radiative transfer for modeling SN II-L light curves. The non-equilibrium description of radiation is crucial for this problem since the presupernova envelope may be of low mass and very dilute. STELLA implicitly treats time dependent equations of the angular moments of intensity averaged over a frequency bin. Local thermodynamic equilibrium is assumed to determine the ionization levels of materials.
STECKMAP stands for STEllar Content and Kinematics via Maximum A Posteriori likelihood. It is a tool for interpreting galaxy spectra in terms of their stellar populations through the derivation of their star formation history, age-metallicity relation, kinematics and extinction. The observed spectrum is projected onto a temporal sequence of models of single stellar populations, so as to determine a linear combination of these models that best fits the observed spectrum. The weights of the various components of this linear combination indicate the stellar content of the population. This procedure is regularized using various penalizing functions. The principles of the method are detailed in Ocvirk et al. 2006.
STDPipe is a set of Python routines for astrometry, photometry and transient detection related tasks, intended for quick and easy implementation of custom pipelines, as well as for interactive data analysis. It is implemented as a library of routines covering most common tasks and operates on standard Python objects, including NumPy arrays for images and Astropy (ascl:1304.002) tables for catalogs and object lists. The pipeline does not re-implement code already implemented in other Python packages; instead, it transparently wraps external codes, such as SExtractor (ascl:1010.064), SCAMP (ascl:1010.063), PSFEx (ascl:1301.001), HOTPANTS (ascl:1504.004), and Astrometry.Net (ascl:1208.001), that do not have their own Python interfaces. STDPipe operates on temporary files, keeping nothing after the run unless something is explicitly requested.
statpl estimates the parameter of power-law distributed data and calculates goodness-of-fit tests for them. Many objects studied in astronomy follow a power-law distribution function (DF), for example the masses of stars or star clusters. Such data is often analyzed by generating a histogram and fitting a straight line to it. The parameters obtained in this way can be severely biased, and the properties of the underlying DF, such as its shape or a possible upper limit, are difficult to extract. statpl is an (effectively) bias-free estimator for the exponent and the upper limit.
statmorph calculates non-parametric morphological diagnostics of galaxy images (e.g., Gini-M_{20} and CAS statistics), and fits 2D Sérsic profiles. Given a background-subtracted image and a corresponding segmentation map indicating the source(s) of interest, statmorph calculates the following morphological statistics for each source:
- Gini-M20 statistics;
- Concentration, Asymmetry and Smoothness (CAS) statistics;
- Multimode, Intensity and Deviation (MID) statistics;
- outer asymmetry and shape asymmetry;
- Sérsic index; and,
- several shape and size measurements associated to the above statistics, such as ellipticity, Petrosian radius, and half-light radius, among others.
STATCONT determines the continuum emission level in line-rich spectral data by inspecting the intensity distribution of a given spectrum by using different statistical approaches. The sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination; this uncertainty is used to correct the final continuum emission level. In general, STATCONT obtains accuracies of < 10 % in the continuum determination, and < 5 % in most cases. The main products of the software are the continuum emission level, together with its uncertainty, and data cubes containing only spectral line emission, i.e. continuum-subtracted data cubes. STATCONT also includes the option to estimate the spectral index or variation of the continuum emission with frequency.
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.
The Matlab starsense_algorithms package evaluates the performance of various star sensors through the implementation of centroiding, geometric voting and QUEST algorithms. The physical parameters of a star sensor are parametrized and by changing these parameters, performance estimators such as sky coverage, memory requirement, and timing requirements can be estimated for the selected star sensor.
The 3D grid-based Monte Carlo code STaRS (Sejong Radiative Transfer through Raman and Rayleigh Scattering with atomic hydrogen) traces radiative transfer through Raman and Rayleigh scattering. This can be used to investigate line formation of Raman-scattered features in a thick neutral region illuminated by a strong far-UV emission source. Favorable conditions for Raman scattering with atomic hydrogen are easily met in symbiotic stars, young planetary nebulae, and active galactic nuclei.
We have developed a detailed stellar evolution code capable of following the simultaneous evolution of both stars in a binary system, together with their orbital properties. To demonstrate the capabilities of the code we investigate potential progenitors for the Type IIb supernova 1993J, which is believed to have been an interacting binary system prior to its primary exploding. We use our detailed binary stellar evolution code to model this system to determine the possible range of primary and secondary masses that could have produced the observed characteristics of this system, with particular reference to the secondary. Using the luminosities and temperatures for both stars (as determined by Maund et al. 2004) and the remaining mass of the hydrogen envelope of the primary at the time of explosion, we find that if mass transfer is 100 per cent efficient the observations can be reproduced by a system consisting of a 15 solar mass primary and a 14 solar mass secondary in an orbit with an initial period of 2100 days. With a mass transfer efficiency of 50 per cent, a more massive system consisting of a 17 solar mass primary and a 16 solar mass secondary in an initial orbit of 2360 days is needed. We also investigate some of the uncertainties in the evolution, including the effects of tidal interaction, convective overshooting and thermohaline mixing.
STARRY computes light curves for various applications in astronomy: transits and secondary eclipses of exoplanets, light curves of eclipsing binaries, rotational phase curves of exoplanets, light curves of planet-planet and planet-moon occultations, and more. By modeling celestial body surface maps as sums of spherical harmonics, STARRY does all this analytically and is therefore fast, stable, and differentiable. Coded in C++ but wrapped in Python, STARRY is easy to install and use.
starry_process implements an interpretable Gaussian process (GP) for modeling stellar light curves. The code's hyperparameters are physically interpretable, and include the radius of the spots, the mean and variance of the latitude distribution, the spot contrast, and the number of spots, among others. The rotational period of the star, the limb darkening parameters, and the inclination (or marginalize over the inclination if it is not known) can also be specified.
StarPy derives the quenching star formation history (SFH) of a single galaxy through the Bayesian Markov Chain Monte Carlo method code emcee (ascl:1303.002). The sample function implements the emcee EnsembleSampler function for the galaxy colors input. Burn-in is run and calculated for the length specified before the sampler is reset and then run for the length of steps specified. StarPy provides the ability to use the look-up tables provided or creating your own.
STARMAN is a stellar photometry package designed for the reduction of data from imaging systems. Its main components are crowded-field photometry programs, aperture photometry programs, a star finding program, and a CCD reduction program.
Image and table handling are served by a large number of programs which have a general use in photometry and other types of work. The package is a coherent whole, for use in the entire process of stellar photometry from raw images to the final standard-system magnitudes and their plotting as color-magnitude and color-color diagrams. It was distributed as part of the Starlink software collection (ascl:1110.012).
Starlink has many applications within it to meet a variety of needs; it includes:
Starlink Figaro is an independently-maintained fork of Figaro (ascl:1203.013) that runs in the Starlink software environment (ascl:1110.012). It is a general-purpose data reduction package targeted mainly at optical/IR spectroscopy. It uses the NDF data format and the ADAM libraries for parameters and messaging.
The study of stellar populations in galaxies is entering a new era with the availability of large and high quality databases of both observed galactic spectra and state-of-the-art evolutionary synthesis models. The power of spectral synthesis can be investigated as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities, producing astrophysically interesting output such as the star-formation and chemical enrichment histories of a galaxy, its extinction and velocity dispersion. This is what the STARLIGHT spectral synthesis code does.
Traditionally, a simulation of a dense stellar system required choosing an initial model, running an integrator, and analyzing the output. Almost all of the effort went into writing a clever integrator that could handle binaries, triples and encounters between various multiple systems efficiently. Recently, the scope and complexity of these simulations has increased dramatically, for three reasons: 1) the sheer size of the data sets, measured in Terabytes, make traditional 'awking and grepping' of a single output file impractical; 2) the addition of stellar evolution data brings qualitatively new challenges to the data reduction; 3) increased realism of the simulations invites realistic forms of 'SOS': Simulations of Observations of Simulations, to be compared directly with observations. We are now witnessing a shift toward the construction of archives as well as tailored forms of visualization including the use of virtual reality simulators and planetarium domes, and a coupling of both with budding efforts in constructing virtual observatories. This review describes these new trends, presenting Starlab as the first example of a full software environment for realistic large-scale simulations of dense stellar systems.
Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.
StarFISH is a suite of programs designed to determine the star formation history (SFH) of a stellar population, given multicolor stellar photometry and a library of theoretical isochrones. It constructs a library of synthetic color-magnitude diagrams from the isochrones, which includes the effects of extinction, photometric errors and completeness, and binarity. A minimization routine is then used to determine the linear combination of synthetic CMDs that best matches the observed photometry. The set of amplitudes modulating each synthetic CMD describes the star formation history of the observed stellar population.
StarFinder is an IDL code for the deep analysis of stellar fields, designed for Adaptive Optics well-sampled images with high and low Strehl ratio. The Point Spread Function is extracted directly from the frame, to take into account the actual structure of the instrumental response and the atmospheric effects. The code is written in IDL language and organized in the form of a self-contained widget-based application, provided with a series of tools for data visualization and analysis. A description of the method and some applications to Adaptive Optics data are presented.
The deep learning model Starduster emulates dust radiative transfer simulations, which significantly accelerates the computation of dust attenuation and emission. Starduster contains two specific generative models, which explicitly take into account the features of the dust attenuation curves and dust emission spectra. Both generative models should be trained by a set of characteristic outputs of a radiative transfer simulation. The obtained neural networks can produce realistic galaxy spectral energy distributions that satisfy the energy balance condition of dust attenuation and emission. Applications of Starduster include SED-fitting and SED-modeling from semi-analytic models.
Stardust extracts galaxy properties by fitting their multiwavelength data to a set of linearly combined templates. This Python package brings three different families of templates together: 1.) UV+Optical emission from dust unobscured stellar light; 2.) AGN heated dust in the MIR; and 3.) IR dust reprocessed stellar light in the NIR-FIR. Stardust's template fitting does not rely on energy balance. As a result, the total luminosity of dust obscured and dust unobscured stellar light do not rely on each other, and it is possible to fit objects such as SMGs where the energy balance approach might not be applicable.
stardate measures precise stellar ages by combining isochrone fitting with gyrochronology (rotation-based ages) to increase the precision of stellar ages on the main sequence. The best possible ages provided by stardate will be for stars with rotation periods, though ages can also be predicted for stars without rotation periods. stardate is an extension to isochrones that incorporates gyrochronology and the code reverts back to isochrones when no rotation period is provided.
StarCrash is a parallel fortran code based on Smoothed Particle Hydrodynamics (SPH) techniques to calculate the 3-d evolution of self-gravitating fluid systems. The code in particularly suited to the study of stellar interactions, such as mergers of binary star systems and stellar collisions. The StarCrash code comes with several important features, including:
StarcNet (STAR Cluster classification NETwork) classifies star clusters from galaxy images taken by the Hubble Space Telescope (HST); it uses a convolutional neural network (CNN) trained to classify five-band galaxy images into four morphological classes. Written in PyTorch, StarcNet runs using mosaics (.fits files with the galaxy photometric information) and catalogs (.tab files with object coordinates), and includes the option to also download the galaxy mosaics from a single .tar.gz file per galaxy (as from the Legacy ExtraGalactic UV Survey).
StarburstPy is a python wrapper for Starburst99 (ascl:1104.003). The code contains methods for setting all inputs, running Starburst99, and reading output data into python dictionaries.
Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 10^6 to 10^9 yr. Spectral energy distributions are used to compute colors and other quantities.
The python photometry suite StarbugII provides accurate photometry on point-like sources embedded in complex diffuse emissions. The tool has a simple modular interface with a wide range of photometric routines including embedded source detection, aperture and PSF photometry, diffuse background emission estimation, catalog matching and artificial star testing. The core is built around Photutils (ascl:1609.011).
STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.
Database management is an increasingly important part of astronomical data analysis. Astronomers need easy and convenient ways of storing, editing, filtering, and retrieving data about data. Commercial databases do not provide good solutions for many of the everyday and informal types of database access astronomers need. The Starbase database system with simple data file formatting rules and command line data operators has been created to answer this need. The system includes a complete set of relational and set operators, fast search/index and sorting operators, and many formatting and I/O operators. Special features are included to enhance the usefulness of the database when manipulating astronomical data. The software runs under UNIX, MSDOS and IRAF.
STAR-MELT extracts and identifies emission lines from FITS files by matching to a compiled reference database of lines. Line profiles are fitted and quantified, allowing for calculations of physical properties across each individual observation. Temporal variations in lines can readily be displayed and quantified. STAR-MELT is also useful for different applications of spectral analysis where emission line identification is required. Standard data formats for spectra are automatically compatible, with user-defined custom formats also available. Any reference database (atomic or molecular) can also be used for line identification.
star_shadow automatically analyzes space based light curves of eclipsing binaries and provide a measurement of eccentricity, among other parameters. It measures the timings of eclipses using the time derivatives of the light curves, using a model of orbital harmonics obtained from an initial iterative prewhitening of sinusoids. Since the algorithm extracts the harmonics from the rest of the sinusoidal variability eclipse timings can be measured even in the presence of other (astrophysical) signals, thus determining the orbital eccentricity automatically from the light curve along with information about the other variability present in the light curve. The output includes, but is not limited to, a sinusoid plus linear model of the light curve, the orbital period, the eccentricity, argument of periastron, and inclination.
Stan facilitates statistical inference at the frontiers of applied statistics and provides both a modeling language for specifying complex statistical models and a library of statistical algorithms for computing inferences with those models. These components are exposed through interfaces in environments such as R, Python, and the command line.
The modular Stagger code can run simulations of deep stellar atmospheres, sunspot formation, stellar chromospheres and coronae, proto-stellar disks, star formation from giant molecular clouds, and galaxy formation. First described in 1995 for model star formation, the code has evolved and handles simulations with large ranges of both spatial and temporal scales. Stagger is efficient and highly parallelizable, provides accurate magnetohydrodynamic (MHD) solvers, handles simulations with large ranges of both spatial and temporal scales, and is adaptable to many kinds of astrophysical systems.
STACKER stacks sources in interferometric data, i.e., averaging emission from different sources. The library allows stacking to be done directly on visibility data as well as in the image domain. The code is in format of a CASA (ascl:1107.013) task and implements uv- and image-stacking algorithms; it also provides several useful tasks for stacking related data processing. It allows introduction and stacking of random sources to estimate bias and noise, and also allows removal of a model of bright sources from the data.
sstrax provides fast simulations of Milky Way stellar stream formation. Using JAX (ascl:2111.002) acceleration to support code compilation, sstrax forward models all aspects of stream formation, including evolution in gravitational potentials, tidal disruption and observational models, in a fully modular way. Although sstrax is a standalone python package, it was also developed to integrate directly with the Albatross (ascl:2306.009) inference pipeline, which performs inference on all relevant aspects of the stream model.
SSSpaNG is a data-driven Gaussian Process model of the spectra of APOGEE red clump stars, whose parameters are inferred using Gibbs sampling. By pooling information between stars to infer their covariance it permits clear identification of the correlations between spectral pixels. Harnessing this correlation structure, a complete spectrum for each red clump star can be inferred, inpainting missing regions and de-noising by a factor of at least 2-3 for low-signal-to-noise stars.
The ssos pipeline detects and identifies known and unknown Solar System Objects (SSOs) in astronomical images. ssos requires at least 3 images with overlapping field-of-views in the sky taken within a reasonable amount of time (e.g., 2 hours, 1 night). SSOs are detected mainly by judging the apparent motion of all sources in the images. The pipeline serves as a wrapper for the SExtractor (ascl:1010.064) and SCAMP (ascl:1010.063) software suites and allows different source extraction strategies to be chosen. All sources in the images are subject to a highly configurable filter pipeline. ssos is a versatile, light-weight, and easy-to-use software for surveys or PI-observation campaigns lacking a dedicated SSO detection pipeline.
StellarSpectraObservationFitting (SSOF) measures radial velocities and creates data-driven models (with fast, physically-motivated Gaussian Process regularization) for the time-variable spectral features for both the telluric transmission and stellar spectrum measured by Extremely Precise Radial Velocity (EPRV) spectrographs (while accounting for the wavelength-dependent instrumental line-spread function). Written in Julia, SSOF provides two methods for estimating the uncertainties on the RVs and model scores based on the photon uncertainties in the original data. For quick estimates of the uncertainties, the code looks at the local curvature of the likelihood space; the second method for estimating errors is via bootstrap resampling.
SSMM (Slotted Symbolic Markov Modeling) reduces time-domain stellar variable observations to classify stellar variables. The method can be applied to both folded and unfolded data, and does not require time-warping for waveform alignment. Written in Matlab, the performance of the supervised classification code is quantifiable and consistent, and the rate at which new data is processed is dependent only on the computational processing power available.
sslf is a simple, effective and useful spectral line finder for 1D data. It utilizes the continuous wavelet transform from SciPy, which is a productive way to find even weak spectral lines.
SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.
SSE is a rapid single-star evolution (SSE) code; these analytical formulae cover all phases of evolution from the zero-age main-sequence up to and including remnant phases. It is valid for masses in the range 0.1-100 Msun and metallicity can be varied. The SSE package contains a prescription for mass loss by stellar winds. It also follows the evolution of rotational angular momentum for the star.
Scaling Relations Finder finds the scaling relations between magnetic field properties and observables for a model of galactic magnetic fields. It uses observable quantities as input: the galaxy rotation curve, the surface densities of the gas, stars and star formation rate, and the gas temperature to create galactic dynamo models. These models can be used to estimate parameters of the random and mean components of the magnetic field, as well as the gas scale height, root-mean-square velocity and the correlation length and time of the interstellar turbulence, in terms of the observables.
SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.
The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.
The SPS software simulates the operation of the Spectral and Photometric Imaging Receiver on-board the ESA’s Herschel Space Observatory. It is coded using the Interactive Data Language (IDL), and produces simulated data at the level-0 stage (non-calibrated data in digitised units). The primary uses for the simulator are to:
The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).
The finite volume hydro code Sprout uses a simple expanding Cartesian grid to track outflows for several orders of magnitudes in expansion. It captures shocks whether they are aligned or misaligned with the grid, and provides second-order convergence for smooth flows. The code's expanding mesh capability reduces numerical diffusion drastically for outflows, especially when the analytic nature of the bulk flow is known beforehand. Sprout can be used to study fluid instabilities in expanding flows, such as in SN explosions and jets; it resolves fine fluid structures at small length scales and expand the mesh gradually as the structures grow.
The Spritz code is a fully general relativistic magnetohydrodynamic code based on the Einstein Toolkit (ascl:1102.014). The code solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical spacetime. Spritz supports tabulated equations of state, takes finite temperature effects into account and allows for the inclusion of neutrino radiation.
SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.
SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.
spops is a database of populations synthesis simulations of spinning black-hole binary systems, together with a python module to query it. Data are obtained with the startrack and precession [ascl:1611.004] numerical codes to consistently evolve binary stars from formation to gravitational-wave detection. spops allows quick exploration of the interplay between stellar physics and black-hole spin dynamics.
Splotch is a light and fast, publicly available, ray-tracer software tool which supports the effective visualization of cosmological simulations data. The algorithm it relies on is designed to deal with point-like data, optimizing the ray-tracing calculation by ordering the particles as a function of their 'depth', defined as a function of one of the coordinates or other associated parameters. Realistic three-dimensional impressions are reached through a composition of the final colour in each pixel properly calculating emission and absorption of individual volume elements.
SPLAT is a graphical tool for displaying, comparing, modifying and analyzing astronomical spectra stored in NDF, FITS and TEXT files as well as in NDX format. It can read in many spectra at the same time and then display these as line plots. Display windows can show one or several spectra at the same time and can be interactively zoomed and scrolled, centered on specific wavelengths, provide continuous coordinate readout, produce printable hardcopy and be configured in many ways. Analysis facilities include the fitting of a polynomial to selected parts of a spectrum, the fitting of Gaussian, Lorentzian and Voigt profiles to emission and absorption lines and the filtering of spectra using average, median and line-shape window functions as well as wavelet denoising. SPLAT also supports a full range of coordinate systems for spectra, which allows coordinates to be displayed and aligned in many different coordinate systems (wavelength, frequency, energy, velocity) and transformed between these and different standards of rest (topocentric, heliocentric, dynamic and kinematic local standards of rest, etc). SPLAT is distributed as part of the Starlink (ascl:1110.012) software collection.
SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).
SPLASH (formerly SUPERSPHPLOT) visualizes output from (astrophysical) simulations using the Smoothed Particle Hydrodynamics (SPH) method in one, two and three dimensions. Written in Fortran 90, it uses the PGPLOT graphics subroutine library for plotting. It is based around a command-line menu structure but utilizes the interactive capabilities of PGPLOT to manipulate data interactively in the plotting window. SPLASH is fully interactive; visualizations can be changed rapidly at the touch of a button (e.g. zooming, rotating, shifting cross section positions etc). Data is read directly from the code dump format giving rapid access to results and the visualization is advanced forwards and backwards through timesteps by single keystrokes. SPLASH uses the SPH kernel to render plots of not only density but other physical quantities, giving a smooth representation of the data.
SPISEA (Stellar Population Interface for Stellar Evolution and Atmospheres) generates single-age, single-metallicity populations (i.e., star clusters). The software (formerly called PyPopStar) provides control over different parameters, including cluster characteristics (age, metallicity, mass, distance); total extinction, differential extinction, and extinction law; stellar evolution and atmosphere models; stellar multiplicity and Initial Mass Function; and photometric filters. SPISEA can be used to create a cluster isochrone in many filters using different stellar models, generate a star cluster at any age with an unusual IMF and unresolved multiplicity, and make a spectrum of a star cluster in integrated light.
Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.
SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.
SpinSpotter calculates stellar rotation periods from high-cadence photometry. The code uses the autocorrelation function (ACF) to identify stellar rotation periods up to one-third the observational baseline of the data. SpinSpotter includes diagnostic tools that describe features in the ACF and allows tuning of the tolerance with which to accept a period detection.
SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.
spinsfast is a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. It permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at π/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L^3), where L is the band limit of the function.
SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.
spinOS calculates binary orbital elements. Given a set of radial velocity measurements of a spectroscopic binary and/or relative position measurement of an astrometric binary, spinOS fits an orbital model by minimizing a chi squared metric. These routines are neatly packaged in a graphical user interface, developed using tkinter, facilitating use. Minimization is achieved by default using a Levenberg-Marquardt algorithm from lmfit [ascl:1606.014]. A Markov Chain Monte Carlo option is available to sample the posterior probability distribution in order to estimate errors on the orbital elements.
SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.
SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.
SpiceyPy is a Python wrapper for the NAIF C SPICE Toolkit (ascl:1903.015). It is compatible with Python 2 and 3, and was written using ctypes.
The SPICE (Spacecraft Planet Instrument C-matrix [“Camera matrix”] Events) toolkit offers a set of building blocks for constructing tools supporting multi-mission, international space exploration programs and research in planetary science, heliophysics, Earth science, and for observations from terrestrial observatories. It computes many kinds of observation geometry parameters, including the ephemerides, orientations, sizes, and shapes of planets, satellites, comets and asteroids. It can also compute the orientation of a spacecraft, its various moving structures, and an instrument's field-of-view location on a planet's surface or atmosphere. It can determine when a specified geometric event occurs, such as when an object is in shadow or is in transit across another object. The SPICE toolkit is available in FORTRAN 77, ANSI C, IDL, and MATLAB.
SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.
SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.
SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access.
SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).
Spheroid determines the size distribution of polarizing interstellar dust grains based on electromagnetic scattering by spheroidal particles. It contains subroutines to treat the case of complex refractive indices, and also includes checks for some limiting cases.
The Spherical Library provides an efficient and accurate mathematical representation of shapes on the celestial sphere, such as sky coverage and footprints. Shapes of arbitrary complexity and size can be dynamically created from simple building blocks, whose exact area is also analytically computed. This methodology is also perfectly suited for censoring problematic parts of datasets, e.g., bad seeing, satellite trails or diffraction spikes of bright stars.
sphereint calculates the numerical volume in a sphere. It provides a weight for each grid position based on whether or not it is in (weight = 1), out (weight = 0), or partially in (weight in between 0 and 1) a sphere of a given radius. A cubic cell is placed around each grid position and the volume of the cell in the sphere (assuming a flat surface in the cell) is calculated and normalized by the cell volume to obtain the weight.
Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.
SpheCow explores the structure and dynamics of any spherical model for galaxies and dark matter haloes. The lightweight and flexible code automatically calculates the dynamical properties, assuming an isotropic or Osipkov-Merritt anisotropic orbital structure, of any model with either an analytical density profile or an analytical surface density profile as a starting point. SpheCow contains readily usable implementations for many standard models, including the Plummer, Hernquist, NFW, Einasto, Sérsic and Nuker models. The code is easily extendable, allowing new models to be added in a straightforward way. The code is publicly available as a set of C++ routines and as a Python module.
We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.
Spextool (Spectral EXtraction tool) is an IDL-based data reduction package for SpeX, a medium resolution near-infrared spectrograph on the NASA IRTF. It performs all of the steps necessary to produce spectra ready for analysis and publication including non-linearity corrections, flat fielding, wavelength calibration, telluric correction, flux calibration, and order merging.
SPEX provides a uniform interface suitable for the X-ray spectral analysis of a number of solar (or other) instruments in the X and Gamma Ray energy ranges. Part of the SolarSoft (ascl:1208.013) library, this package is suitable for any datastream which can be placed in the form of response vs interval where the response is usually a counting rate (spectrum) and the interval is normally an accumulation over time. Together with an algorithm which can be used to relate a model input spectrum to the observed response, generally a response matrix, the dataset is amenable to analysis with this package. Currently the data from a large number of instruments, including SMM (HXRBS, GRS Gamma, GRS X1, and GRS X2), Yohkoh (HXT, HXS, GRS, and SXT,) CGRO (BATSE SPEC and BATSE LAD), WIND (TGRS), HIREX, and NEAR (PIN). SPEX's next generation software is available in OSPEX (ascl:2007.018), an object-oriented package that is also part of and dependent on SolarSoft.
SPEX is optimized for the analysis and interpretation of high-resolution cosmic X-ray spectra. The software is especially suited for fitting spectra obtained by current X-ray observatories like XMM-Newton, Chandra, and Suzaku. SPEX can fit multiple spectra with different model components simultaneously and handles highly complex models with many free parameters.
spex_to_xspec takes the output from the collisional ionisation equilibrium model in the SPEX spectral modelling and fitting package (ascl:1308.014), and converts it into a form usable by the XSPEC spectral fitting package (ascl:9910.005). For a list of temperatures it computes the line strengths and continuum spectra using SPEX. These are collated and written into an APEC-format table model which can be loaded into Xspec. By allowing SPEX models to be loaded into XSPEC, the program allows easy comparison between the results of the SPEX and APEC codes.
Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.
SPEGID (Single-Pulse Event Group IDentification) identifies astrophysical pulse candidates as trial single-pulse event groups (SPEGs) by first applying Density Based Spatial Clustering of Applications with Noise (DBSCAN) on trial single-pulse events and then merging the clusters that fall within the expected DM (Dispersion Measure) and time span of astrophysical pulses. SPEGID also calculates the peak score for each SPEG in the S/N versus DM space to identify the expected peak-like shape in the signal-to-noise (S/N) ratio versus DM curve of astrophysical pulses. Additionally, SPEGID groups SPEGs that appear at a consistent DM and therefore are likely emitted from the same source. After running SPEGID, periocity.py can be used to find (or verify) the underlying periodicity among a group of SPEGs (i.e., astrophysical pulse candidates).
The SPEDAS (Space Physics Environment Data Analysis Software) framework supports multi-mission data ingestion, analysis and visualization for the Space Physics community. It standardizes the retrieval of data from distributed repositories, the scientific processing with a powerful set of legacy routines, the quick visualization with full output control and the graph creation for use in papers and presentations. SPEDAS includes a GUI for ease of use by novice users, works on multiple platforms, and though based on IDL, can be used with or without an IDL license. The framework supports plugin modules for multiple projects such as THEMIS, MMS, and WIND, and provides interfaces for software modules developed by the individual teams of those missions. A Python implementation of the framework, PySPEDAS (ascl:2405.005), is also available.
SPECX is a general purpose line data reduction system. It can read and write FITS data cubes but has specialist support for the GSD format data from the James Clerk Maxwell Telescope. It includes commands to store and retrieve intermediate spectra in storage registers and perform the fitting and removal of polynomial, harmonic and Gaussian baselines.
SPECX can filter and edit spectra and list and display spectra on a graphics terminal. It is able to perform Fourier transform and power spectrum calculations, process up to eight spectra (quadrants) simultaneously with either the same or different center, and assemble a number of reduced individual spectra into a map file and contour or greyscale any plane or planes of the resulting cube.
Two versions of SPECX are distributed. Version 6.x is the VMS and Unix version and is distributed as part of the Starlink software collection. Version 7.x is a complete rewrite of SPECX distributed for Windows.
SpecViz interactively visualizes and analyzes 1D astronomical spectra. It reads data from FITS and ASCII tables and allows spectra to be easily plotted and examined. It supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, among other features. SpecViz includes a measurement tool for spectral lines for performing and recording measurements and a model fitting capability for creating simple (e.g., single Gaussian) or multi-component models (e.g., multiple Gaussians for emission and absorption lines in addition to regions of flat continua). SpecViz is built on top of the Specutils (ascl:1902.012) Astropy-affiliated python library, providing a visual, interactive interface to the analysis capabilities in that library.
The functionality of SpecViz is now actively developed as part of Jdaviz (ascl:2307.001).
Specview is a tool for 1-D spectral visualization and analysis of astronomical spectrograms. Written in Java, it is capable of reading all the Hubble Space Telescope spectral data formats as well as data from several other instruments (such as IUE, FUSE, ISO, FORS and SDSS), preview spectra from MAST, and data from generic FITS and ASCII tables. It can read data from Virtual Observatory servers, and read and write spectrogram data in Virtual Observatory SED format. It can also read files in the SPC Galactic format used in the chemistry field. Once ingested, data can be plotted and examined with a large selection of custom settings. Specview supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, hardcopy to JPEG files and PostScript file or printer, etc. Specview can be used to build wide-band SEDs, overplotting or combining data from the same astronomical source taken with different instruments and/or spectral bands. Data can be further processed with averaging, splicing, detrending, and Fourier filtering tools. Specview has a spectral model fitting capability that enables the user to work with multi-component models (including user-defined models) and fit models to data.
Specutils provides a basic interface for the loading, manipulation, and common forms of analysis of spectroscopic data. Its generic data containers and accompanying modules can be used to build a particular scientific workflow or higher-level analysis tool. It is an AstroPy (ascl:1304.002) affiliated package, and SpecViz (ascl:1902.011), which is built on top of Specutils, provides a visual, interactive interface to its analysis capabilities.
SPECTRUM ((C) Richard O. Gray, 1992-2008) is a stellar spectral synthesis program which runs on a number of platforms, including most flavors of UNIX and LINUX. It will also run under Windwos 9x/ME/NT/2000/XP using the Cygwin tools or the distributed Windows binaries. The code for SPECTRUM has been written in the "C" language. SPECTRUM computes the LTE synthetic spectrum given a stellar atmosphere model. SPECTRUM can use as input the fully blanketed stellar atmosphere models of Robert Kurucz including the new models of Castelli and Kurucz, but any other stellar atmosphere model which can be cast into the format of Kurucz's models can be used as well. SPECTRUM can be programmed with "command-line switches" to give a number of different outputs. In the default mode, SPECTRUM computes the stellar-disk-integrated normalized-intensity spectrum, but in addition, SPECTRUM will compute the absolute monochromatic flux from the stellar atmosphere or the specific intensity from any point on the stellar surface.
This module implements an ad-hoc grism-based spectrograph optical model. It provides a flexible chromatic mapping between the input focal plane and the output detector plane, based on an effective simplified ray-tracing model of the key optical elements defining the spectrograph (collimator, prism, grating, camera), described by a restricted number of physically-motivated distortion parameters.
Spectroflat is a generic python calibration library for spectro-polarimetric data. It can be plugged into existing python based data reduction pipelines or used as a standalone calibration and performance ananlzsis tool.
It includes smile distortion correction and flat field extraction.
SpectRes efficiently resamples spectra and their associated uncertainties onto an arbitrary wavelength grid. The Python function works with any grid of wavelength values, including non-uniform sampling, and preserves the integrated flux. This may be of use for binning data to increase the signal to noise ratio, obtaining synthetic photometry, or resampling model spectra to match the sampling of observational data.
SpECTRE solves multi-scale, multi-physics problems in astrophysics and gravitational physics, such as those associated with the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. It runs at petascale and is designed for future exascale computers.
SPECTRE's chief purpose is the manipulation of single-order spectra, and it performs many of the tasks contained in such IRAF routines as "splot" and "rv". It is not meant to replace the much more general capabilities of IRAF, but does some functions in a manner that some might find useful. A brief list of SPECTRE tasks are: spectrum smoothing; equivalent width calculation; continuum rectification; noise spike excision; and spectrum comparison. SPECTRE was written to manipulate coude spectra, and thus is probably most useful for working on high dispersion spectra. Echelle spectra can be gathered from various observatories, reduced to singly-dimensioned spectra using IRAF, then written out as FITS files, thus becoming accessible to SPECTRE. Three different spectra may be manipulated and displayed simultaneously. SPECTRE, written in standard FORTRAN77, can be used only with the SM graphics package.
SpectraPy collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. It produces two-dimensional wavelength calibrated spectra corrected by instrument distortions. The library is designed to be spectrograph independent and can be used on both longslit (LS) and multi object spectrograph (MOS) data. SpectraPy comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments.
Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.
Spectractor extracts spectra from slitless spectrophotometric images and measures the atmospheric transmission on the line of sight if standard stars are targeted. It has been optimized on CTIO images but can be configured to analyze any kind of slitless data that contains the order 0 and the order 1 of a spectrum. In particular, it can be used to estimate the atmospheric transmission of the Vera Rubin Observatory site using the dedicated Auxiliary Telescope.
Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.
Spectra-Without-Windows (formerly called BOSS-Without-Windows) analyzes Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data using quadratic and cubic estimators. It contains analysis codes to estimate unwindowed power spectra and unwindowed bispectra. It also supplies the raw power and bispectrum spectrum measurements of BOSS and 999 Patchy simulations, and contains a utility function to generate the background number density, n(r) from the survey mask and n(z) distribution. This code has been replaced by the newer and more powerful 3D polyspectrum code PolyBin3D (ascl:2404.006).
Studies of astrophysical non-LTE media require the combination of atomic and molecular spectroscopic and collisional data often described differently in various databases. SPECTCOL is a tool that implements VAMDC standards, retrieve relevant information from different databases such as CDMS, HITRAN, BASECOL, and can upload local files. All transfer of data between the client and the databases use the VAMDC-XSAMS schema. The spectroscopic and collisional information is combined and useful outputs (ascii or xsams) are provided for the study of the interstellar medium.
Specstack creates stacked spectra using a simple algorithm with sigma-clipping to combine the spectra of galaxies in the rest-frame into a single averaged spectrum. Though written originally for galaxy spectra, it also works for other types of objects. It is written in Python and is started from the command-line.
SpecPro is an interactive program for viewing and analyzing spectra, particularly in the context of modern imaging surveys. In addition to displaying the 1D and 2D spectrum, SpecPro can simultaneously display available stamp images as well as the spectral energy distribution of a source. This extra information can help significantly in assessing a spectrum.
species (spectral characterization and inference for exoplanet science) provides a coherent framework for spectral and photometric analysis of directly imaged exoplanets and brown dwarfs which builds on publicly-available data and models from various resources. species contains tools for grid and free retrievals using Bayesian inference, synthetic photometry, interpolating a variety atmospheric and evolutionary model grids (including the possibility to add a custom grid), color-magnitude and color-color diagrams, empirical spectral analysis, spectral and photometric calibration, and analysis of emission lines.
special (SPEctral Characterization of directly ImAged Low-mass companions) characterizes low-mass (M, L, T) dwarfs down to giant planets at optical/IR wavelengths. It can also be used more generally to characterize any type of object with a measured spectrum, provided a relevant input model grid, regardless of the observational method used to obtain the spectrum (direct imaging or not) and regardless of the format of the spectra (multi-band photometry, low-resolution or medium-resolution spectrum, or a combination thereof). It analyzes measured spectra, calculating the spectral correlation between channels of an IFS datacube and empirical spectral indices for MLT-dwarfs. It fits input spectra to either photo-/atmospheric model grids or a blackbody model, including additional parameters such as (extra) black body component(s), extinction and total-to-selective extinction ratio, and can use emcee (ascl:1303.002), nestle (ascl:2103.022), or UltraNest (ascl:1611.001) samplers infer posterior distributions on spectral model parameters in a Bayesian framework, among other tasks.
The IDL code Special-Blurring compares models of quantum-foam-induced blurring with the full dataset of gamma-ray burst localizations available from the NASA High Energy Astrophysics Science Research Archive (as of 1 November 2022). This includes GRB221009A, which was especially bright and detected in extremely high energy TeV gamma-rays. An upper limit of the parameter alpha (giving the maximal strength of quantum blurring) can be entered, which is scaled in the model of blurring (called "Phi") operating much like "seeing" from the ground in the optical, and those calculations are plotted against the observations.
Specdre performs spectroscopy data reduction and analysis. General features of the package include data cube manipulation, arc line calibration, resampling and spectral fitting. Particular care is taken with error propagation, including tracking covariance. SPECDRE is distributed as part of the Starlink software collection (ascl:1110.012).
The DEEP2 DEIMOS Data Reduction Pipeline ("spec2d") is an IDL-based, automated software package designed to reduce Keck/DEIMOS multi-slit spectroscopic observations, collected as part of the DEEP2 Galaxy Redshift Survey. The pipeline is best suited for handling data taken with the 1200 line/mm grating tilted towards the red (lambda_c ~ 7800Å). The spec2d reduction package takes the raw DEIMOS data as its input and produces a variety of outputs including 2-d slit spectra and 1-d object spectra.
SpDust is an IDL program that evaluates the spinning dust emissivity for user-provided environmental conditions. A new version of the code became available in March, 2010.
SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.
SPARTAN fits the spectroscopy and photometry of distant galaxies. The code implements multiple interfaces to help in the configuration of the fitting and the inspection of the results. SPARTAN relies on pre-computed input files (such as stellar population and IGM extinction), available for download, to save time in the fitting process.
SPARTA is a post-processing framework for particle-based cosmological simulations. The code is written in pure, MPI-parallelized C and is optimized for high performance. The main purpose of SPARTA is to understand the formation of structure in a dynamical sense, namely by analyzing the trajectories (or orbits) of dark matter particles around their halos. Within this framework, the user can add analysis modules that operate on individual trajectories or entire halos. The initial goal of SPARTA was to compute the splashback radius of halos, but numerous other applications have been implemented as well, including spherical overdensity calculations and tracking subhalos via their constituent particles.
SPARTA analyzes periodically-variable spectroscopic observations. Intended for common astronomical uses, SPARTA facilitates analysis of single- and double-lined binaries, high-precision radial velocity extraction, and periodicity searches in complex, high dimensional data. It includes two modules, UNICOR and USuRPER. UNICOR analyzes spectra using 1-d CCF. It includes maximum-likelihood analysis of multi-order spectra and detection of systematic shifts. USuRPER (Unit Sphere Representation PERiodogram) is a phase-distance correlation (PDC) based periodogram and is designed for very high-dimensional data such as spectra.
SparsePZ uses sparse basis representation to fully represent individual photometric redshift probability density functions (PDFs). This approach requires approximately half the parameters for the same multi-Gaussian fitting accuracy, and has the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function. Only 10-20 points per galaxy are needed to reconstruct both the individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9 per cent when compared to the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage of 200 original values by a factor of 10-20. This basis representation can be directly extended to a cosmological analysis, thereby increasing computational performance without losing resolution or accuracy.
SparseBLS uses the Box-fitting Least Squares (BLS) algorithm to detect transiting exoplanets in photometric data. SparseBLS does not bin data into phase bins and does not use a phase grid. Because its detection efficiency does not depend on the transit phase, it is significantly faster than BLS for sparse data and is well-suited for large photometric surveys producing unevenly-sampled sparse light curves, such as Gaia.
SPARK (Software Package for Astronomical Reduction with KMOS), also called kmos-kit, reduces data from the K-band Multi Object Spectrograph (KMOS) for the VLT. In many cases, science data can be processed using a single recipe; alternately, all functions this recipe provides can be performed using other recipes provided as tools. Among the functions the recipes provide are sky subtraction, cube reconstruction with the application of flexure corrections, dividing out the telluric spectrum, applying an illumination correction, aligning the cubes, and then combinging them. The result is a set of files which contain the combined datacube and associated noise cube for each of the 24 integral field unit (IFUs). The pipeline includes simple error propagation.
SpArcFiRe takes as input an image of a galaxy in FITS, JPG, or PNG format, identifies spiral arms, and extracts structural information about the spiral arms. Pixels in each arm segment are listed, enabling image analysis on each segment. The automated method also performs a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, and location, and outputs images showing the steps SpArcFire took to detect arm segments.
The Seismic Propagation through Active Regions and Convection (SPARC) code was developed by S. Hanasoge. The acoustic wavefield in SPARC is simulated by numerically solving the linearised 3-D Euler equations in Cartesian geometry (e.g., see Hanasoge, Duvall and Couvidat (2007)). Spatial derivatives are calculated using sixth-order compact finite differences (Lele,1992) and time evolution is achieved through the repeated application of an optimized second-order five-stage Runge-Kutta scheme (Hu, 1996). Periodic horizontal boundaries are used.
SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.
SPAMCART generates synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. It follows discrete luminosity packets as they propagate through a density field, and computes the radiative equilibrium temperature of the ambient dust from their trajectories. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. The code strictly adheres to Kirchhoff's law of radiation. The algorithm is based on the Lucy Monte Carlo radiative transfer method and is fairly simple to implement, as it uses data structures that are already constructed for other purposes in modern particle codes
SPAM is a extension to AIPS for reducing high-resolution, low-frequency radio interferometric observations. Direction-dependent ionospheric calibration and image-plane ripple suppression are among the features that help to make high-quality sub-GHz images. Data reductions are captured in well-tested Python scripts that execute AIPS tasks directly (mostly during initial data reduction steps), call high-level functions that make multiple AIPS or ParselTongue calls, and require few manual operations.
SPAM searches for imprints of Hu-Sawicki f(R) gravity on the rotation curves of the SPARC (Spitzer Photometry and Accurate Rotation Curves) sample using the MCMC sampler emcee (ascl:1303.002). The code provides attributes for inspecting the MCMC chains and translating names of parameters to indices. The SPAM package also contains plotting scripts.
spalipy performs detection-based astronomical image registration in Python. A source image is transformed to the pixel-coordinate system of a template image using their respective detections as tie-points by finding matching quads of detections. spalipy also includes an optional additional warping of the initial affine transformation via splines to achieve accurate registration in the case of non-homogeneous coordinate transforms. This is particularly useful in the case of optically distorted or wide field-of-view images.
SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.
SpacePy provides data analysis and visualization tools for the space science community. Written in Python, it builds on the capabilities of the NumPy and MatPlotLib packages to make basic data analysis, modeling and visualization easier. It contains modules for handling many complex time formats, obtaining data from the OMNI database, and accessing the powerful Onera library. It contains a library of commonly used empirical relationships, performs association analysis, coordinate transformations, radiation belt modeling, and CDF reading, and creates publication quality plots.
SpaceHub uses unique algorithms for fast precise and accurate computations for few-body problems ranging from interacting black holes to planetary dynamics. This few-body gravity integration toolkit can treat black hole dynamics with extreme mass ratios, extreme eccentricities and very close encounters. SpaceHub offers a regularized Radau integrator with round off error control down to 64 bits floating point machine precision and can handle extremely eccentric orbits and close approaches in long-term integrations.
The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at https://www.nrel.gov/midc/solpos/spa.html.
SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.
SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.
SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.
Spin-Orbit Tomography (SOT) is a retrieval technique of a two-dimensional map of an Exo-Earth from time-series data of integrated reflection light. The software provides code for the Bayesian version of the static SOT and dynamic mapping (time-varying mapping) with full Bayesian modeling, and tutorials for L2 and Bayesian SOT are available in jupyter notebooks.
SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.
SOPT (Sparse OPTimisation) is a C implementation of the Sparsity Averaging Reweighted Analysis (SARA) algorithm. The approach relies on the observation that natural images exhibit strong average sparsity; average sparsity outperforms state-of-the-art priors that promote sparsity in a single orthonormal basis or redundant frame, or that promote gradient sparsity.
SOPIE (Sequential Off-Pulse Interval Estimation) provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.
SOPHISM models astronomical instrumentation from the entrance of the telescope to data acquisition at the detector, along with software blocks dealing with, for example, demodulation, inversion, and compression. The code performs most analyses done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator offers flexibility and implementation of new effects and subsystems, making it user-adaptable for a wide variety of instruments. SOPHISM can be used for all stages of instrument definition, design, operation, and lifetime tracking evaluation.
SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.
SONG computes the non-linear evolution of the Universe in order to predict cosmological observables such as the bispectrum of the Cosmic Microwave Background (CMB). More precisely, it is a second-order Boltzmann code, as it solves the Einstein and Boltzmann equations up to second order in the cosmological perturbations.
Sonification extends the Astronify software (ascl:2408.005) to sonify a spatially distributed dataset. The package contains scripts to convert images into scatterplots and sonifications. The reproduce_image.py script takes an image file and reproduces it as a scatterplot by converting the input image to grayscale, extracting pixel values and generating scatter data based on these values, and then plotting the scatter data to create a visual representation of the image. The sonifications script converts the scatterplot data into an audio series and adjusts the note spacing and sonification range to customize an auditory representation. Sonification accepts images in PNG and JPG formats.
SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.
SolAster provides querying, analysis, and calculation methods to independently derive 'sun-as-a-star' RV variations using SDO/HMI data for any time span since SDO has begun observing. Scaling factors are provided in order to calculate RVs comparable to magnitudes measured by ground-based spectrographs (HARPS-N and NEID). In addition, there are routines to calculate magnetic observables to compare with RV variations and determine what is driving Solar activity.
SolarSoft is a set of integrated software libraries, data bases, and system utilities which provide a common programming and data analysis environment for Solar Physics. The SolarSoftWare (SSW) system is built from Yohkoh, SOHO, SDAC and Astronomy libraries and draws upon contributions from many members of those projects. It is primarily an IDL based system, although some instrument teams integrate executables written in other languages. The SSW environment provides a consistent look and feel at widely distributed co-investigator institutions to facilitate data exchange and to stimulate coordinated analysis. Commonalities and overlap in solar data and analysis goals are exploited to permit application of fundamental utilities to the data from many different solar instruments. The use of common libraries, utilities, techniques and interfaces minimizes the learning curve for investigators who are analyzing new solar data sets, correlating results from multiple experiments or performing research away from their home institution.
SolarKAT mitigates solar interference in MeerKAT data and recovers the visibilities rather than discarding them; this solar imaging pipeline takes 1GC calibrated data in Measurement Set format as input. Written in Python, the pipeline employs solar tracking, subtraction, and peeling techniques to enhance data quality by significantly reducing solar radio interference. This is achieved while preserving the flux measurements in the main field. SolarKAT is versatile and can be applied to general radio astronomy observations and solar radio astronomy; additionally, generated solar images can be used for weather forecasting. SolarKAT is deployed in Stimela (ascl:2305.007). It is based on existing radio astronomy software, including CASA (ascl:1107.013), breizorro (ascl:2305.009), WSclean (ascl:1408.023), Quartical (ascl:2305.006), and Astropy (ascl:1304.002).
SolarAxionFlux quantifies systematic differences and statistical uncertainties in the calculation of the solar axion flux from axion-photon and axion-electron interactions. Determining the limitations of these calculations can be used to identify potential improvements and help determine axion model parameters more accurately.
solar-vSI performs Monte Carlo integration of multi-body phase space efficiently. The calculation of solar antineutrino spectra from 8B decay requires the integration of five-body phase space. Though there is no simple analytical approach to this problem, recursive relations can be used to facilitate numerical evaluations.
Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (i.e., spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)
SoFiAX is a web-based platform to merge and interact with the results of parallel execution of SoFiA HI source finding software [ascl:1412.001] and other steps of processing ASKAP Wallaby HI survey data.
SoFiA is a flexible source finding pipeline designed to detect and parameterize sources in 3D spectral-line data cubes. SoFiA combines several powerful source finding and parameterization algorithms, including wavelet denoising, spatial and spectral smoothing, source mask optimization, spectral profile fitting, and calculation of the reliability of detections. In addition to source catalogues in different formats, SoFiA can also generate a range of output data cubes and images, including source masks, moment maps, sub-cubes, position-velocity diagrams, and integrated spectra. The pipeline is controlled by simple parameter files and can either be invoked on the command line or interactively through a modern graphical user interface.
A reimplementation of this pipeline using OpenMPI, SoFiA 2 (ascl:2109.005), is available.
SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.
SOFA (Standards Of Fundamental Astronomy) is a collection of subprograms, in source-code form, that implement official IAU algorithms for fundamental astronomy computations. SOFA offers more than 160 routines for fundamental astronomy, including time scales (including dealing with leap seconds), Earth rotation, sidereal time, precession, nutation, polar motion, astrometry and transforms between various reference systems (e.g. BCRS, ICRS, GCRS, CIRS, TIRS, ITRS). The subprograms are supported by 55 vector/matrix routines, and are available in both Fortran77 and C implementations.
SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.
SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.
so_noise_models is the N(ell) noise curve projection code for the Simons Observatory. The code, written in pure Python, consists of several independent sub-modules, representing each version of the noise code. The usage of the models can vary substantially from version to version. The package also includes demo code that that demonstrates usage of the noise models, such as by producing noise curve plots, effective noise power spectra for SO LAT component-separated CMB T, E, B, and Compton-y maps, and lensing noise curves from SO LAT component-separated CMB T, E, B maps.
Supernova Time Delays (SNTD) simulates and measures time delay of multiply-imaged supernovae, and offers an improved characterization of the uncertainty caused by microlensing. Lensing time delays can be determined by fitting the multiple light curves of these objects; measuring these delays provide precise tests of lens models or constraints on the Hubble constant and other cosmological parameters that are independent of the local distance ladder. Fitting the effects of microlensing without an accurate prior often leads to biases in the time delay measurement and over-fitting to the data; this can be mitigated by using a Gaussian Process Regression (GPR) technique to determine the uncertainty due to microlensing. SNTD can produce accurate simulations for wide-field time domain surveys such as LSST and WFIRST.
SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.
SNRPy (Super Nova Remnant Python) models supernova remnant (SNR) evolution and is useful for understanding SNR evolution and to model observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs and includes alternate evolutionary models, including evolution in a cloudy ISM, the fractional energy loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity vs. time, SNR surface brightness profile and spectrum.
SNOwGLoBES (SuperNova Observatories with GLoBES) computes interaction rates and distributions of observed quantities for supernova burst neutrinos in common detector materials. The code provides a very simple and fast code and data package for tests of observability of physics signatures in current and future detectors, and for evaluation of relative sensitivities of different detector configurations. The event estimates are made using available cross-sections and parameterized detector responses. Water, argon, scintillator and lead-based configurations are included. The package makes use of GLoBES (ascl:2109.018). SNOwGLoBES is not intended to replace full detector simulations; however output should be useful for many types of studies, and simulation results can be incorporated.
Snowball models atmospheric loss in order to constrain an atmosphere's cumulative impact of historic X-ray and extreme ultraviolet radiation-driven mass loss. The escape model interpolates the BaSTI luminosity evolution grid to the observed mass and luminosity of the host star.
The SNooPy package (also known as SNpy), written in Python, contains tools for the analysis of TypeIa supernovae. It offers interactive plotting of light-curve data and models (and spectra), computation of reddening laws and K-corrections, LM non-linear least-squares fitting of light-curve data, and various types of spline fitting, including Diercx and tension. The package also includes a SNIa lightcurve template generator in the CSP passbands, estimates of Milky-Way Extinction, and a module for dealing with filters and spectra.
Snoopy is a spectral 3D code that solves the MHD and Boussinesq equations, such as compressibility, particles, and Braginskii viscosity, and several other physical effects. It's useful for turbulence study involving shear and rotation. Snoopy requires the FFTW library (ascl:1201.015), and can run on parallel machine using MPI OpenMP or both at the same time.
snmachine reads in photometric supernova light curves, extracts useful features from them, and subsequently performs supervised machine learning to classify supernovae based on their light curves. This python library is also flexible enough to easily extend to general transient classification.
We present an algorithm to identify the type of an SN spectrum and to determine its redshift and age. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the Supernova Identification (SNID) code. It is used by members of ongoing high-redshift SN searches to distinguish between type Ia and type Ib/c SNe, and to identify "peculiar" SNe Ia. We develop a diagnostic to quantify the quality of a correlation between the input and template spectra, which enables a formal evaluation of the associated redshift error. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the SN host galaxy spectrum, we show that accurate redshifts (with a typical error less than 0.01) can be determined for SNe Ia without a spectrum of the host galaxy. Last, the age of an input spectrum is determined with a typical 3-day accuracy, shown here by using high-redshift SNe Ia with well-sampled light curves. The success of the correlation technique confirms the similarity of some SNe Ia at low and high redshifts. The SNID code, which is available to the community, can also be used for comparative studies of SN spectra, as well as comparisons between data and models.
SNEWPY uses simulated supernovae data to generate a time series of neutrino spectral fluences at Earth or the total time-integrated spectral fluence. The code can also process generated data through SNOwGLoBES (ascl:2109.019) and collate its output into the observable channels of each detector. Data from core-collapse, thermonuclear, and pair-instability supernovae simulations are included in the package.
SNEC (SuperNova Explosion Code) is a spherically-symmetric Lagrangian radiation-hydrodynamics code that follows supernova explosions through the envelope of their progenitor star, produces bolometric (and approximate multi-color) light curve predictions, and provides input to spectral synthesis codes for spectral modeling. SNEC's features include 1D (spherical) Lagrangian Newtonian hydrodynamics with artificial viscosity, stellar equation of state with a Saha solver ionization/recombination, equilibrium flux-limited photon diffusion with OPAL opacities and low-temperature opacities, and prediction of bolometric light curves and multi-color lightcurves (in the blackbody approximation).
SNCosmo synthesizes supernova spectra and photometry from SN models, and has functions for fitting and sampling SN model parameters given photometric light curve data. It offers fast implementations of several commonly used extinction laws and can be used to construct SN models that include dust. The SNCosmo library includes supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models, as well as a variety of built-in bandpasses and magnitude systems, and provides convenience functions for reading and writing peculiar data formats used in other packages. The library is extensible, allowing new models, bandpasses, and magnitude systems to be defined using an object-oriented interface.
SNAPDRAGONS (Stellar Numbers And Parameters Determined Routinely And Generated Observing N-body Systems) is a simplified version of the population synthesis code Galaxia (ascl:1101.007), using a different process to generate the stellar catalog. It splits each N-body particle from the galaxy simulation into an appropriate number of stellar particles to create a mock catalog of observable stars from the N-body model. SNAPDRAGON uses the same isochrones and extinction map as Galaxia.
SNANA is a general analysis package for supernova (SN) light curves that contains a simulation, light curve fitter, and cosmology fitter. The software is designed with the primary goal of using SNe Ia as distance indicators for the determination of cosmological parameters, but it can also be used to study efficiencies for analyses of SN rates, estimate contamination from non-Ia SNe, and optimize future surveys. Several SN models are available within the same software architecture, allowing technical features such as K-corrections to be consistently used among multiple models, and thus making it easier to make detailed comparisons between models. New and improved light-curve models can be easily added. The software works with arbitrary surveys and telescopes and has already been used by several collaborations, leading to more robust and easy-to-use code. This software is not intended as a final product release, but rather it is designed to undergo continual improvements from the community as more is learned about SNe.
SMURF reduces submillimeter single-dish continuum and heterodyne data. It is mainly targeted at data produced by the James Clerk Maxwell Telescope but data from other telescopes have been reduced using the package. SMURF is released as part of the bundle that comprises Starlink (ascl:1110.012) and most of the packages that use it. The two key commands are MAKEMAP for the creation of maps from sub millimeter continuum data and MAKECUBE for the creation of data cubes from heterodyne array instruments. The software can also convert data from legacy JCMT file formats to the modern form to allow it to be processed by MAKECUBE. SMURF is a core component of the ORAC-DR (ascl:1310.001) data reduction pipeline for JCMT.
smops interpolates input sub-band model FITS images, such as those produced by WSClean (ascl:1408.023), into more finely channelized sub-band model FITS images, thus generating model images at a higher frequency resolution. It is a Python-based command line tool. For example, given input model FITS images initially created from sub-dividing a given bandwidth into four, smops can subdivide that bandwidth further, resulting in more finely channelized model images, to a specified frequency resolution. This smooths out the stepwise behavior of models across frequency, which can improve the results of self-calibration with such models.
Smooth calculates several mean quantities for all particles in an N-Body simulation output file. The program produces a file for each type of output specified on the command line. This output file is in ASCII format with one smoothed quantity for each particle. The program uses a symmetric SPH (Smoothed Particle Hydrodynamics) smoothing kernel to find the mean quantities.
SMMOL (Spherical Multi-level MOLecular line radiative transfer) is a molecular line radiative transfer code that uses Accelerated Lambda Iteration to solve the coupled level population and line transfer problem in spherical geometry. The code uses a discretized grid and a ray tracing methodology. SMMOL is designed for high optical depth regimes and can cope with maser emission as long as the spatial-velocity sampling is fine enough.
SMILI uses sparse sampling techniques and other regularization methods for interferometric imaging. The python-interfaced library is mainly designed for very long baseline interferometry, and has been under the active development primarily for the Event Horizon Telescope (EHT).
SMILE is interactive software for studying a variety of 2D and 3D models, including arbitrary potentials represented by a basis-set expansion, a spherical-harmonic expansion with coefficients being smooth functions of radius (splines), or a set of fixed point masses. Its main features include:
SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n X n grid in O(n2 log n) and efficiently derives the necessary conditional covariance matrices.
Spectroscopy Made Easy (SME) is IDL software and a compiled external library that fits an observed high-resolution stellar spectrum with a synthetic spectrum to determine stellar parameters. The SME external library is available for Mac, Linux, and Windows systems. Atomic and molecular line data formatted for SME may be obtained from VALD. SME can solve for empirical log(gf) and damping parameters, using an observed spectrum of a star (usually the Sun) as a constraint.
SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.
SMART is an IDL-based software tool, developed by the IRS Instrument Team at Cornell University, that allows users to reduce and analyze Spitzer data from all four modules of the Infrared Spectrograph, including the peak-up arrays. The software is designed to make full use of the ancillary files generated in the Spitzer Science Center pipeline so that it can either remove or flag artifacts and corrupted data and maximize the signal-to-noise ratio in the extraction routines. It can be run in both interactive and batch modes. SMART includes visualization tools for assessing data quality, basic arithmetic operations for either two-dimensional images or one-dimensional spectra, extraction of both point and extended sources, and a suite of spectral analysis tools.
Smart provides pre-processing for LP-VIcode (ascl:1501.007). It computes the accelerations and variational equations given a generic user-defined potential function, eliminating the need to calculate manually the accelerations and variational equations.
SMART (Spectral energy distributions Markov chain Analysis with Radiative Transfer models) implements a Bayesian Markov chain Monte Carlo (MCMC) method to fit the ultraviolet to millimeter spectral energy distributions (SEDs) of galaxies exclusively with radiative transfer models. The models constitute four types of pre-computed libraries, which describe the starburst, active galactic nucleus (AGN) torus, host galaxy and polar dust components.
The effects of stochasticity on the luminosities of stellar populations are an often neglected but crucial element for understanding populations in the low mass or low star formation rate regime. To address this issue, we present SLUG, a new code to "Stochastically Light Up Galaxies". SLUG synthesizes stellar populations using a Monte Carlo technique that treats stochastic sampling properly including the effects of clustering, the stellar initial mass function, star formation history, stellar evolution, and cluster disruption. This code produces many useful outputs, including i) catalogs of star clusters and their properties, such as their stellar initial mass distributions and their photometric properties in a variety of filters, ii) two dimensional histograms of color-magnitude diagrams of every star in the simulation, iii) and the photometric properties of field stars and the integrated photometry of the entire simulated galaxy. After presenting the SLUG algorithm in detail, we validate the code through comparisons with starburst99 in the well-sampled regime, and with observed photometry of Milky Way clusters. Finally, we demonstrate the SLUG's capabilities by presenting outputs in the stochastic regime.
Stellar Locus Regression (SLR) is a simple way to calibrate colors at the 1-2% level, and magnitudes at the sub-5% level as limited by 2MASS, without the traditional use of standard stars. With SLR, stars in any field are "standards." This is an entirely new way to calibrate photometry. SLR exploits the simple fact that most stars lie along a well defined line in color-color space called the stellar locus. Cross-match point-sources in flattened images taken through different passbands and plot up all color vs color combinations, and you will see the stellar locus with little effort. SLR calibrates colors by fitting these colors to a standard line. Cross-match with 2MASS on top of that, and SLR will deliver calibrated magnitudes as well.
SLOPES computes six least-squares linear regression lines for bivariate datasets of the form (x_i,y_i) with unknown population distributions. Measurement errors, censoring (nondetections) or other complications are not treated. The lines are: the ordinary least-squares regression of y on x, OLS(Y|X); the inverse regression of x on y, OLS(X_Y); the angular bisector of the OLS lines; the orthogonal regression line; the reduced major axis, and the mean-OLS line. The latter four regressions treat the variables symmetrically, while the first two regressions are asymmetrical. Uncertainties for the regression coefficients of each method are estimated via asymptotic formulae, bootstrap resampling, and bivariate normal simulation. These methods, derivation of the regression coefficient uncertainties, and discussions of their use are provided in three papers listed below. The user is encouraged to read and reference these studies.
SLIT (Sparse Lens Inversion Technique) provides a method for inversion of lensed images in the frame of strong gravitational lensing. The code requires the input image along with lens mass profile and a PSF. The user then has to chose a maximum number of iterations after which the algorithm will stop if not converged and a image size ratio to the input image to set the resolution of the reconstructed source. Results are displayed in pyplot windows.
slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.
Slim performs lossless compression on binary data files. Written in C++, it operates very rapidly and achieves better compression on noisy physics data than general-purpose tools designed primarily for text.
The semi-spectral linear MHD (SLiM) code follows the interaction of linear waves through an inhomogeneous three-dimensional solar atmosphere. The background model allows almost arbitrary perturbations of density, temperature, sound speed as well as magnetic and velocity fields. The code is useful in understanding the helioseismic signatures of various solar features, including sunspots.
SlicerAstro extends 3D Slicer, a multi-platform package for visualization and medical image processing, to provide a 3-D interactive viewer with 3-D human-machine interaction features, based on traditional 2-D input/output hardware, and analysis capabilities.
Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these.
Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering.
Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.
SLALIB is a library of routines that make accurate and reliable positional-astronomy applications easier to write. Most SLALIB routines are concerned with astronomical position and time, but a number have wider trigonometrical, numerical or general applications. A Fortran implementation of SLALIB under GPL licensing is available as part of Starlink (ascl:1110.012).
SL1M deconvolves radio synthesis images based on direct inversion of the measured visibilities that can deal with the non-coplanar base line effect and can be applied to telescopes with direction dependent gains. The code is more computationally demanding than some existing methods, but is highly parallelizable and scale well to clusters of CPUs and GPUs. The algorithm is also extremely flexible, allowing the solution of the deconvolution problem on arbitrarily placed pixels.
The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well.
SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.
SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.
Skyoffset makes wide-field mosaics of FITS images. Principal features of Skyoffset are the ability to produce a mosaic with a continuous background level by solving for sky offsets that minimize the intensity differences between overlapping images, and its handling of hierarchies, making it ideal for optimizing backgrounds in large mosaics made with array cameras (such as CFHT’s MegaCam and WIRCam). Skyoffset uses MongoDB in conjunction with Mo’Astro (ascl:2104.012) to store metadata about each mosaic and SWarp (ascl:1010.068) to handle image combination and propagate uncertainty maps. Skyoffset can be integrated into Python pipelines and offers a convenient API and metadata storage in MongoDB. It was developed originally for the Andromeda Optical and Infrared Disk Survey (ANDROIDS).
SkyNet is an efficient and robust neural network training code for machine learning. It is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet is implemented in C/C++ and fully parallelized using MPI.
The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.
Skymapper maps astronomical survey data from the celestial sphere onto 2D using a collection of matplotlib instructions. It facilitates interactive work as well as the creation of publication-quality plots with a python-based workflow many astronomers are accustomed to. The primary motivation is a truthful representation of samples and fields from the curved sky in planar figures, which becomes relevant when sizable portions of the sky are observed.
SkyMaker simulates astronomical images. It accepts object lists in ASCII generated by the Stuff program (ascl:1010.067) to produce realistic astronomical fields. SkyMaker is part of the EFIGI development project.
SkyLine generates mock line-intensity maps (both in 3D and 2D) in a lightcone from a halo catalog, accounting for the evolution of clustering and astrophysical properties, and observational effects such as spectral and angular resolutions, line-interlopers, and galactic foregrounds. Using a given astrophysical model for the luminosity of each line, the code paints the signal for each emitter and generates the map, adding coherently all contributions of interest. In addition, SkyLine can generate maps with the distribution of Luminous Red Galaxies and Emitting Line Galaxies.
Skylens++ implements a Layer-based raytracing framework particularly well-suited for realistic simulations of weak and strong gravitational lensing. Source galaxies can be drawn from analytic models or deep space-based imaging. Lens planes can be populated with arbitrary deflectors, typically either from N-body simulations or analytic lens models. Both sources and lenses can be placed at freely configurable positions into the light cone, in effect allowing for multiple source and lens planes.
Skyfield computes positions for the stars, planets, and satellites in orbit around the Earth. Its results should agree with the positions generated by the United States Naval Observatory and their Astronomical Almanac to within 0.0005 arcseconds (which equals half a “mas” or milliarcsecond). It computes geocentric coordinates or topocentric coordinates specific to your location on the Earth’s surface. Skyfield accepts AstroPy (ascl:1304.002) time objects as input and can return results in native AstroPy units but is not dependend on AstroPy nor its compiled libraries.
Skye detects a statistically significant excess clustering of transit times, indicating that there are likely systematics at specific times that cause many false positive detections, for the Kepler DR25 planet candidate catalog. The technique could be used for any survey looking to statistically cull false alarms.
The Skye framework develops and prototypes new EOS physics; it is not tied to a specific set of physics choices and can be extended for new effects by writing new terms in the free energy. It takes into account the effects of positrons, relativity, electron degeneracy, and non-linear mixing effects and more, and determines the point of Coulomb crystallization in a self-consistent manner. It is available in the MESA (ascl:1010.083) EOS module and as a standalone package.
Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.
SkyCat is a tool that combines visualization of images and access to catalogs and archive data for astronomy. The tool, developed in Tcl/Tk, was originally conceived as a demo of the capabilities of the class library that was developed for the VLT. The Skycat sources currently consist of five packages:
• Tclutil - Generic Tcl and C++ utilities
• Astrotcl - Astronomical Tcl and C++ utilities
• RTD - Real-time Display classes and widgets
• Catlib - Catalog library and widgets
• Skycat - Skycat application and library package
All of the required packages are always included in the tarfile.
SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.
Written in Fortran 90, Sky3D solves the static or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic boundary conditions and no further symmetry assumptions. Pairing can be included in the BCS approximation for the static case. The code can be easily modified to include additional physics or special analysis of the results and requires LAPACK and FFTW3.
SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.
SKID finds gravitationally bound groups in N-body simulations. The SKID program will group different types of particles depending on the type of input binary file. This could be either dark matter particles, gas particles, star particles or gas and star particles depending on what is in the input tipsy binary file. Once groups with at least a certain minimum number of members have been determined, SKID will remove particles which are not bound to the group. SKID must use the original positions of all the particles to determine whether or not particles are bound. This procedure which we call unbinding, is again dependent on the type of grouping we are dealing with. There are two cases, one for dark matter only or star particles only (case 1 unbinding), the other for inputs including gas (also stars in a dark matter environment this is case 2 unbinding).
Skid version 1.3 is a much improved version of the old denmax-1.1 version. The new name was given to avoid confusion with the DENMAX program of Gelb & Bertschinger, and although it is based on the same idea it represents a substantial evolution in the method.
SIXTE simulates X-Ray telescope observation; the software performs instrument performance analyses and produces simulated event files for mission and analysis studies. SIXTE strives to find a compromise between exactness of the simulation and speed. Using calibration files such as the PSF, RMF and ARF makes efficient simulations possible at comparably high speed, even though they include nonlinear effects such as pileup. Setups for some current and future missions, such as XMM-Newton and Athena, are included in the package; others can be added by the user with relatively little effort through specifying the main instrument characteristics in a flexible, human-readable XML-based format. Properties of X-ray sources to be simulated are described in a detector-independent format, i.e., the same input can be used for simulating observations with all available instruments, and the same input can also be used for simulations with the SIMX simulator. The input files are easily generated from standard data such as XSPEC (ascl:9910.005) spectral models or FITS images with tools provided with the SIXTE distribution. The input data scale well from single point sources up to very complicated setups.
SITools2 is a CNES generic tool performed by a joint effort between CNES and scientific laboratories. SITools provides a self-manageable data access layer deployed on already existing scientific laboratory databases. This new version of SITools is a JAVA-based framework, under open source license, that provides a portable archive system, highly configurable, easy to use by laboratories, with a plugin mechanism so developers can add their own applications.
SISTER (Starshade Imaging Simulations Toolkit for Exoplanet Reconnaissance) predicts how an exoplanet system would look in an instrument that utilizes an Starshade to block the light from the host star. The tool allows for controlling a set of parameters of the whole instrument for: (1) the Starshade design, (2) the exoplanetary system, (3) the telescope and (4) the camera. SISTER includes plotting software, and can also store simulations on disk for plotting with other software.
SISPO (Space Imaging Simulator for Proximity Operations) simulates trajectories, light parameters, and camera intrinsic parameters for small solar system body fly-by and terrestrial planet surface missions. The software provides realistic surface rendering and realistic dust- and gas-environment optical models for comets and active asteroids and also simulates common image aberrations such as simple geometric distortions and tangential astigmatism. SISPO uses Blender and its Cycles rendering engine, which provides physically based rendering capabilities and procedural micropolygon displacement texture generation.
SIRENA (Software Ifca for Reconstruction of EveNts for Athena X-IFU) reconstructs the energy of incoming X-ray photons after their detection in the X-IFU TES detector. It is integrated in the SIXTE (ascl:1903.002) end-to-end simulations environment where it currently runs over SIXTE simulated data. This is done by means of a tool called tesreconstruction, which is mainly a wrapper to pass a data file to the SIRENA tasks.
SIR is a general-purpose code capable of dealing with gradients of the physical quantities with height. It admits one and two-component model atmospheres. It allows the recovery of the stratification of the temperature, the magnetic field vector, and the line of sight velocity through the atmosphere, and the micro- and macroturbulence velocities - which are assumed to be constant with depth. It is based on the response functions, which enter a Marquardt nonlinear least-squares algorithm in a natural way. Response functions are calculated at the same time as the full radiative transfer equation for polarized light is integrated, which determines values of many free parameters in a reasonable computation time. SIR demonstrates high stability, accuracy, and uniqueness of results, even when simulated observations present signal-to-noise ratios of the order of the lowest acceptable values in real observations.
SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.
SofteningLength: Because Newton's law of Gravitation diverges as the relative separations |r'-r| tends to zero, it is common to add a positive constant λ also known as the "softening length", i.e. :
SingLe determines the appropriate value of this Softening Length λ for a given disc local structure (thickness 2h and vertical stratification ρ), in the axially symmetric, flat disc limit, preserving at best the Newtonian character of the gravitational potential and associated forces. Mass density ρ(z) is assumed to be locally expandable in the z-direction according to:
The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.
SIMX simulates a photon-counting detector's response to an input source, including a simplified model of any telescope. The code is not a full ray-trace, but a convolution tool that uses standard descriptions of telescope PSF (via either a simple Gaussian parameter, an energy-dependent encircled-energy function, or an image of the PSF) and the detector response (using the OGIP response function) to model how sources will appear. simx uses a predefined set of PSFs, vignetting information, and instrumental responses and outputs to make the simulation. It is designed to be a 'approximation' tool to estimate issues such as source confusion, background effects, pileup, and other similar issues.
simuTrans models transit light curves affected by gravity-darkened stars. The code defines a star on a grid by modeling the brightness of each point as blackbody emission, then sets a series of parameters and uses emcee (ascl:1303.002) to explore the posterior probability distribution for the remaining fitted parameters and determine their best-fit values.
simulateSearch simulates high time-resolution data in radio astronomy. The code is built around producing multiple binary data files that contain information on the radiometer noise and sources that are being simulated. These binary data files subsequently get combined and output PSRFITS
search mode files produced. The PSRFITS files can be processed using standard pulsar software packages such as PRESTO (ascl:1107.017).
The R-package SimSpin measures the kinematics of a galaxy simulation as if it had been observed using an IFU. The functions included in the package can produce a kinematic data cube and measure the "observables" from this data cube, specifically the observable spin parameter λr. This package, once installed, is fully documented and tested.
simqso generates mock quasar spectra and photometry. Simulated quasar spectra are built from a series of components. Common quasar models are built-in, such as a broken power-law continuum model and Gaussian emission line templates; however, the code allows user-defined features to be included. Mock spectra are generated at arbitrary resolution and can be used to produce broadband photometry representative of a number of surveys.
SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.
SIMPLE (Simple Intensity Map Producer for Line Emission) generates intensity maps that include observational effects such as noise, anisotropic smoothing, sky subtraction, and masking. Written in Python, it is based on a lognormal simulation of galaxies and random assignment of luminosities to these galaxies and generates mock intensity maps that can be used to study survey systematics and calculate covariance matrices of power spectra. The code is modular, allowing its components to be used independently.
Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (e.g., the inclination) or parameters describing an external potential.
simple_reg_dem reconstructs differential emission measures (DEMs) in the solar corona. It overcomes issues, such as complexity, idiosyncratic output, convergence difficulty, and lack of speed, that exists in other methods. Initially written for extreme ultraviolet (EUV) data, the algorithm is notable for its simplicity, and is robust and extensible to any other wavelengths (e.g., X-rays) where the DEM treatment is valid. It is available in the SolarSoft (ascl:1208.013) package.
This is an implementation of a fairly simple-minded luminosity distance fitter, intended for use with supernova data. The calculational technique is based on evaluating the $chi^2$ of the model fit on a grid and marginalization over various nuisance parameters. Of course, the nature of these things is that this code has gotten steadily more complex, so perhaps the simple moniker is no longer justified.
SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.
SimLine computes the profiles of molecular rotational transitions and atomic fine structure lines in spherically symmetric clouds with arbitrary density, temperature and velocity structure. The code is designed towards a maximum flexibility and very high accuracy based on a completely adaptive discretization of all quantities. The code can treat arbitrary species in spherically symmetric configurations with arbitrary velocity structures and optical depths between about -5 and 5000. Moreover, SimLine includes the treatment of turbulence and clumping effects in a local statistical approximation combined with a radial dependence of the correlation parameters. The code consists of two parts: the self-consistent solution of the balance equations for all level populations and energy densities at all radial points and the computation of the emergent line profiles observed from a telescope with finite beam width and arbitrary offset.
SimFast 21 generates a simulation of the cosmological 21cm signal. While limited to low spatial resolution, the next generation low-frequency radio interferometers that target 21 cm observations during the era of reionization and prior will have instantaneous fields-of-view that are many tens of square degrees on the sky. Predictions related to various statistical measurements of the 21 cm brightness temperature must then be pursued with numerical simulations of reionization with correspondingly large volume box sizes, of order 1000 Mpc on one side. The authors pursued a semi-numerical scheme to simulate the 21 cm signal during and prior to Reionization by extending a hybrid approach where simulations are performed by first laying down the linear dark matter density field, accounting for the non-linear evolution of the density field based on second-order linear perturbation theory as specified by the Zel'dovich approximation, and then specifying the location and mass of collapsed dark matter halos using the excursion-set formalism. The location of ionizing sources and the time evolving distribution of ionization field is also specified using an excursion-set algorithm. They account for the brightness temperature evolution through the coupling between spin and gas temperature due to collisions, radiative coupling in the presence of Lyman-alpha photons and heating of the intergalactic medium, such as due to a background of X-ray photons. The method is capable of producing the required large volume simulations with adequate resolution in a reasonable time so a large number of realizations can be obtained with variations in assumptions related to astrophysics and background cosmology that govern the 21 cm signal.
SimCADO simulates observations with any NIR/Vis imaging system. Though the package was originally designed to simulate images for the European Extremely Large Telescope (ELT) and MICADO, with the proper input, it is capable of simulating observations from many different telescope and instrument configurations.
SIMBI simulates heterogeneous relativistic gas dynamics up to 3d for special relativistic hydrodynamics and up to 2D Newtonian hydrodynamics. It supports user-defined mesh expansion and contraction, density, momentum, and energy density terms outside of grid; the code also supports source terms in the Euler equations and source terms at the boundaries. Boundary conditions, which include periodic, reflecting, outflow, and inflow boundaries, are given as an array of strings. If an inflow boundary condition is set but no inflow boundary source terms are given, SIMBI switches to outflow boundary conditions to prevent crashes. The code can track a single passive scalar, insert an immersed boundary, and is impermeable by default. SIMBI USES the Cython framework to blend together C++, CUDA, HIP, and Python.
SimAb (Simulating Abundances) simulates planet formation, focusing on the atmosphere accretion of gas giant planets. The package can run the simulation in two different modes. The single simulation mode is run by specifying the initial conditions (the core mass, the initial orbital distance, the planetesimal ratio, and the dust grain fraction), and the mature planet mass and orbital distance. The multi run simulation mode requires specifying the mass and the final orbital distance of the mature planet; the simulation randomly assigns initial orbital distance, initial core mass, initial planetesimal ratio, and initial dust grain fraction. The package also provides Jupyter codes for plotting the results of the simulations.
The SIM5 library contains routines for relativistic raytracing and radiation transfer in GR. Written C with a Python interface, it has a special focus on raytracing from accretion disks, tori, hot spots or any other 3D configuration of matter in Kerr geometry, but it can be used with any other metric as well. It handles both optically thick and thin sources as well as transport of polarization of the radiation and calculates the propagation of light rays from the source to an observer through a curved spacetime. It supports parallelization and runs on GPUs.
The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.
Silo reads and writes a wide variety of scientific data to binary disk files. The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms. Consequently, Silo facilitates the development of general purpose tools for processing scientific data. One of the more popular tools that process Silo data files is the VisIt visualization tool (ascl:1103.007).
Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes, piecewise-constant (e.g., zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials. In addition, Silo supports a wide variety of other useful objects to address various scientific computing application needs. Although the Silo library is a serial library, it has features that enable it to be applied quite effectively and scalable in parallel.
SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).
SiFTO is an empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. SiFTO has been compared to other published light-curve models by applying them to the same set of SN photometry, and it's been demonstrated that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. When SiFTO and SALT2 are trained on the same data set the cosmological results agree.
The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.
Self-Interacting Dark Matter (SIDM) is a hypothetical model for cold dark matter in the Universe. A strong interaction between dark matter particles introduce a different physics inside dark-matter haloes, making the density profile cored, reduce the number of subhaloes, and trigger gravothermal collapse. sidm-nbody is an N-body simulation code with Direct Simulation Monte Carlo scattering for self interaction, and some codes to analyse gravothermal collapse of isolated haloes. The N-body simulation is based on GADGET 1.1.
SICON (Stokes Inversion based on COnvolutional Neural networks) provides a three-dimensional cube of thermodynamical and magnetic properties from the interpretation of two-dimensional maps of Stokes profiles by use of a convolutional neural network. In addition to being much faster than parallelized inversion codes, SICON, when trained on synthetic Stokes profiles from two numerical simulations of different structures of the solar atmosphere, also provided a three-dimensional view of the physical properties of the region of interest in geometrical height, and pressure and Wilson depression properties that are decontaminated from the blurring effect of instrumental point spread functions.
sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.
sic (Sparse Inpainting Code) generates Gaussian, isotropic CMB realizations, masks them, and recovers the large-scale masked data using sparse inpainting; it is written in Fortran90.
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
SHTOOLS performs (among others) spherical harmonic transforms and reconstructions, rotations of spherical harmonic coefficients, and multitaper spectral analyses on the sphere. The package accommodates any standard normalization of the spherical harmonic functions ("geodesy" 4π normalized, Schmidt semi-normalized, orthonormalized, and unnormalized), and either real or complex spherical harmonics can be employed. Spherical harmonic transforms are calculated by exact quadrature rules using either (1) the sampling theorem of Driscoll and Healy (1994) where data are equally sampled (or spaced) in latitude and longitude, or (2) Gauss-Legendre quadrature. A least squares inversion routine for irregularly sampled data is included as well. The Condon-Shortley phase factor of (-1)m can be used or excluded with the associated Legendre functions. The spherical harmonic transforms are accurate to approximately degree 2800, corresponding to a spatial resolution of better than 4 arc minutes. Routines are included for performing localized multitaper spectral analyses and standard gravity calculations, such as computation of the geoid, and the determination of the potential associated with finite-amplitude topography. The routines are fast. Spherical harmonic transforms and reconstructions take on the order of 1 second for bandwidths less than 600 and about 3 minutes for bandwidths close to 2800.
Sherpa is the CIAO (ascl:1311.006) modeling and fitting application made available by the Chandra X-ray Center (CXC). It can be used for analysis of images, spectra and time series from many telescopes, including optical telescopes such as Hubble. Sherpa is flexible, modular and extensible. It has an IPython user interface and it is also an importable Python module. Sherpa models, optimization and statistic functions are available via both C++ and Python for software developers wishing to link such functions directly to their own compiled code.
The CIAO 4.3 Sherpa release supports fitting of 1-D X-ray spectra from Chandra and other X-ray missions, as well as 1-D non-X-ray data, including ASCII data arrays, radial profiles, and lightcurves. The options for grating data analysis include fitting the spectrum with multiple response files required for overlapping orders in LETG observations. Modeling of 2-D spatial data is fully supported, including the PSF and exposure maps. User specified models can be added to Sherpa with advanced "user model" functionality.
The end-to-end SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers) pipeline allows users to explore data from space-based missions to search for planetary candidates. It can recover alerted candidates by the automatic pipelines such as SPOC and the QLP, Kepler objects of interest (KOIs) and TESS objects of interest (TOIs), and can search for candidates that remain unnoticed due to detection thresholds, lack of data exploration, or poor photometric quality. SHERLOCK has six different modules to perform its tasks; these modules can be executed by filling in an initial YAML file with some basic information and using a few lines of code sequentially to pass from one step to the next. Alternatively, the user may provide with the light curve in a csv file, where the time, normalized flux, and flux error are provided in columns in comma-separated format.
Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). The SHERA (SHEar Reconvolution Analysis) software simulates ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak lensing galaxy shape measurements or galaxy radial profiles, given user-supplied observational conditions and real galaxy morphologies. Moreover, the simulations allow for the empirical test of error estimates and determination of parameter degeneracies, via generation of many noise maps. The public release of this software, along with a large sample of cleaned COSMOS galaxy images (corrected for charge transfer inefficiency), should enable upcoming ground-based imaging surveys to achieve their potential in the areas of precision weak lensing analysis, galaxy profile measurement, and other applications involving detailed image analysis.
This code is no longer maintained and has been superseded by GalSim (ascl:1402.009).
SHELLSPEC calculates lightcurves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars as well as an empty space may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative tranfer. A related code based on SHELLSPEC, Pyshellspec (ascl:2106.006), solves the inverse problem of finding the stellar and orbital parameters.
The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.
shear-stacking calculates stacked shear profiles and tests based upon them, e.g. consistency for different slices of lensed background galaxies. The basic concept is that the lensing signal in terms of surface mass density (instead of shear) should be entirely determined by the properties of the lens sample and have no dependence on source galaxy properties.
The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.
SHARK solves the hydrodynamic equations for gas and dust mixtures accounting for dust coagulation and fragmentation (among other things). The code is written in Fortran and is capable of handling both 1D and 2D Cartesian geometries; 1D simulations with spherical geometry are also possible. SHARK is versatile and can be used to model various astrophysical environments.
Shark is a flexible semi-analytic galaxy formation model for easy exploration of different physical processes. Shark has been implemented with several models for gas cooling, active galactic nuclei, stellar and photo-ionization feedback, and star formation (SF). The software can determine the stellar mass function and stellar–halo mass relation at z=0–4; cosmic evolution of the star formation rate density, stellar mass, atomic and molecular hydrogen; local gas scaling relations; and structural galaxy properties. It performs particularly well for the mass–size relation for discs/bulges, the gas–stellar mass and stellar mass–metallicity relations. Shark is written in C++11 and has been parallelized with OpenMP.
SHARC (SHArpened Dimensionality Reduction and Classification) performs local gradient clustering-based sharpened dimensionality reduction (SDR) using neural network projections and uses these projections to make classifications. The library also contains functions for finding the optimal SDR parameters and for consolidating classification results obtained through multiple classifiers. It requires pySDR (ascl:2408.002). SHARC provides accurate and physically insightful classification of astronomical objects based on their broadband colors.
ShapePipe processes single-exposure images and stacked images. Input images have to be calibrated beforehand for astrometry and photometry. The code can handle different image and file types, such as single-exposure mosaic, single-exposure single-CCD, stacked images, database catalog files, and PSF files, some of which are created by the pipeline during the analysis, among others. The end product of ShapePipe is a final catalog containing information for each galaxy, including its shape parameters and the ellipticity components :math:e_1 and :math:e_2. This catalog also contains shapes of artificially sheared images. This information is used in post-processing to compute calibrated shear estimates via metacalibration.
ShapeMeasurementFisherFormalism is used to study Fisher Formalism predictions on galaxy weak lensing for LSST Dark Energy Science Collaboration. It can create predictions with user-defined parameters for one or two galaxies simulated from GalSim (ascl:1402.009).
Shapelets are a complete, orthonormal set of 2D basis functions constructed from Laguerre or Hermite polynomials weighted by a Gaussian. A linear combination of these functions can be used to model any image, in a similar way to Fourier or wavelet synthesis. The shapelet decomposition is particularly efficient for images localized in space, and provide a high level of compression for individual galaxies in astronomical data. The basis has many elegant mathematical properties that make it convenient for image analysis and processing.
The shapelens C++ library provides ways to load galaxies and star images from FITS files and catalogs and to analyze their morphology. The main purpose of this library is to make several weak-lensing shape estimators publicly available. All of them are based on the moments of the brightness distribution. The estimators include DEIMOS, for analytic deconvolution in moment space, DEIMOSElliptical, a practical implemention of DEIMOS with an automatically matched elliptical weight function, DEIMOSCircular, which is identical to DEIMOSElliptical but with a circular weight function, and others.
Shape is a flexible interactive 3D morpho-kinematical modeling application for astrophysics. It reduces the restrictions on the physical assumptions, data type and amount required for a reconstruction of an object's morphology. It applies interactive graphics and allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation.
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
SgrbWorldModel, written in Fortran 90, presents an attempt at modeling the population distribution of the Short-duration class of Gamma-Ray Bursts (SGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of SGRBs is well fit by a multivariate log-normal distribution, whose differential cosmological rate of occurrence follows the Star-Formation-Rate (SFR) convolved with a log-normal binary-merger delay-time distribution. The best-fit parameters of the model are then found by maximizing the likelihood of the observed data by the BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC)Sampler that is part of the code. A model for the detection algorithm of the BATSE detectors is also provided.
SGNAPS allows the user to plot a one-dimensional spectrum, together with the corresponding two-dimensional and a reference spectrum (for example the sky spectrum). This makes it possible to check on the reality of spectral features that are present in the one-dimensional spectrum, which could be due to bad sky subtraction or fringing residuals. It is also possible to zoom in and out all three spectra, edit the one-dimensional spectrum, smooth it with a simple square window function, measure the signal to noise over a selected wavelength interval, and fit the position of a selected spectral line. SGNAPS also allows the astronomer to obtain quick redshift estimates by providing a tool to fit or mark the position of a spectral line, and a function that will compute a list of possible redshifts based on a list of known lines in galaxy spectra. SGNAPS is derived from the plotting tools of VIPGI and contains almost all of their capabilities.
NOTE: SGNAPS functionality has been transitioned to EZ.
SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.
SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.
SFH is an efficient IDL tool that quickly computes accurate predictions for the baryon budget history in a galactic halo.
sf3dmodels models star-forming regions; it brings together analytical models in order to compute their physical properties in a 3-dimensional grid. The package can couple different models in a single grid to recreate complex star forming systems such as those being revealed by current instruments. The output data can be read with LIME (ascl:1107.012) or RADMC-3D (ascl:1108.016) to carry out radiative transfer calculations of the modeled region.
sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (i.e. with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.
This new software optimally detects, de-blends, measures and classifies sources from astronomical images: SExtractor (Source Extractor). A very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated images. Salient features of SExtractor include its ability to work on very large images, with minimal human intervention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the analysis of large extragalactic surveys.
SExSeg forces SExtractor (ascl:1010.064) to run using a pre-defined segmentation map (the definition of objects and their borders). The defined segments double as isophotal apertures. SExSeg alters the detection image based on a pre-defined segmenation map while preparing your "analysis image" by subtracting the background in a separate SExtractor run (using parameters you specify). SExtractor is then run in "double-image" mode with the altered detection image and background-subtracted analysis image.
The population synthesis code SEVN (Stellar EVolution for N-body) includes up-to-date stellar evolution (through look-up tables), binary evolution, and different recipes for core-collapse supernovae. SEVN also provides an up-to-date formalism for pair-instability and pulsational pair-instability supernovae, and is designed to interface with direct-summation N-body codes such as STARLAB (ascl:1010.076) and HiGPUs (ascl:1207.002).
The SETI Encryption code, written in Python, creates a message for use in testing the decryptability of a simulated incoming interstellar message. The code uses images in a portable bit map (PBM) format, then writes the corresponding bits into the message, and finally returns both a PBM image and a text (TXT) file of the entire message. The natural constants (c, G, h) and the wavelength of the message are defined in the first few lines of the code, followed by the reading of the input files and their conversion into 757 strings of 359 bits to give one page. Each header of a page, i.e., the little-endian binary code translation of the tempo-spatial yardstick, is calculated and written on-the-fly for each page.
SetCoverPy finds an (near-)optimal solution to the set cover problem (SCP) as fast as possible. It employs an iterative heuristic approximation method, combining the greedy and Lagrangian relaxation algorithms. It also includes a few useful tools for a quick chi-squared fitting given two vectors with measurement errors.
SERVAL calculates radial velocities (RVs) from stellar spectra. The code uses least-squares fitting algorithms to derive the RVs and additional spectral diagnostics. Forward modeling in pixel space is used to properly weight pixel errors, and the stellar templates are reconstructed from the observations themselves to make optimal use of the RV information inherent in the stellar spectra.
Sérsic is an implementation of the exact deprojection of Sérsic surface brightness profiles described in Baes and Gentile (2011). This code depends on the mpmath python library for an implementation of the Meijer G function required by the Baes and Gentile (hereafter B+G) formulas for rational values of the Sérsic index. Sérsic requires rational Sérsic indices, but any irrational number can be approximated arbitrarily well by some rational number. The code also depends on scipy, but the dependence is mostly for testing. The implementation of the formulas and the formulas themselves have undergone comprehensive testing.
SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.
SEREN is an astrophysical Smoothed Particle Hydrodynamics code designed to investigate star and planet formation problems using self-gravitating hydrodynamics simulations of molecular clouds, star-forming cores, and protostellar disks.
SEREN is written in Fortran 95/2003 with a modular philosophy for adding features into the code. Each feature can be easily activated or deactivated by way of setting options in the Makefile before compiling the code. This has the added benefit of allowing unwanted features to be removed at the compilation stage resulting in a smaller and faster executable program. SEREN is written with OpenMP directives to allow parallelization on shared-memory architecture.
Subpixel Event Repositioning (SER) techniques significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. Unlike ACIS SER models that are restricted to corner split (3- and 4-pixel) events and assume that such events take place at the split pixel corners, this IDL code uses two-pixel splits as well, and incorporates more realistic estimates of photon impact positions.
SEP (Source Extraction and Photometry) makes the core algorithms of Source Extractor (ascl:1010.064) available as a library of standalone functions and classes. These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. It is generated using Cython.
From Source Extractor, SEP includes background estimation, image segmentation (including on-the-fly filtering and source deblending), aperture photometry in circular and elliptical apertures, and source measurements such as Kron radius, "windowed" position fitting, and half-light radius. It also adds the following features that are not available in Source Extractor: optimized matched filter for variable noise in source extraction; circular annulus and elliptical annulus aperture photometry functions; local background subtraction in shape consistent with aperture in aperture photometry functions; exact pixel overlap mode in all aperture photometry functions; and masking of elliptical regions on images.
SENR (Simple, Efficient Numerical Relativity) provides the algorithmic framework that combines the C codes generated by NRPy+ (ascl:1807.025) into a functioning numerical relativity code. It is part of the numerical relativity code package SENR/NRPy+. The package extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it suitable for modeling physical configurations with approximate or exact symmetries, such as modeling black hole dynamics.
Sengi enables online viewing of the spectral outputs of stellar population synthesis (SPS) codes. Typical SPS codes require significant disk space or computing resources to produce spectra for simple stellar populations with arbitrary parameters, making it difficult to present their results in an interactive, web-friendly format. Sengi uses Non-negative Matrix Factorisation (NMF) and bilinear interpolation to estimate output spectra for arbitrary values of stellar age and metallicity; this reduces the disk requirements and computational expense, allowing Sengi to serve the results in a client-based Javascript application.
The self-lensing binary code with Markov chain code was used to analyze the self-lensing binary system KOI-3278. It includes the MCMC modeling and the key figures.
Self-cal produces radio-interferometric images of an astrophysical object. The code is an adaptation of the self-calibration algorithm to optical/infrared long-baseline interferometry, especially to make use of differential phases and differential visibilities. It works together with the Mira image reconstruction software and has been used mainly on VLTI data. Self-cal, written in Yorick, is also available as part of fitsOmatic (ascl:2301.005).
SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) investigates the chameleon model that arises from screening a scalar field introduced in some modified gravity models that is coupled to matter. The code provides tools to construct user defined meshes by utilizing the GMSH mesh generation software. These tools include constructing shapes whose boundaries are defined by some function or by constructing it out of basis shapes such as circles, cones and cylinders. The mesh can also be separated into subdomains, each of which having its own refinement parameters. These meshes can then be converted into a format that is compatible with the finite element software FEniCS. SELCIE uses FEniCS (ascl:2110.018) with a nonlinear solving method (Picard or Newton method) to solve the chameleon equation of motion for some parameters and density distribution. These density distributions are constructed by having the density profile of each subdomain being set by a user defined function, allowing for extremely customizable setups that are easy to implement.
The Python package segueSelect automatically models the SDSS/SEGUE selection fraction -- the fraction of stars with good spectra -- as a continuous function of apparent magnitude for each plate. The selection function can be determined for any desired sample cuts in signal-to-noise ratio, u-g, r-i, and E(B-V). The package requires Pyfits (ascl:1207.009) and, for coordinate transformations, galpy (ascl:1411.008). It can calculate the KS probability that the spectropscopic sample was drawn from the underlying photometric sample with the model selection function, plot the cumulative distribution function in r-band apparent magnitude of the spectroscopic sample (red) and the photometric sample+selection-function-model for this plate, and, if galpy is installed, can transform velocities into the Galactic coordinate frame. The code can also determine the selection function for SEGUE K stars.
SeeKAT is a Python implementation of a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once to (sub-)arcsecond precision. It reads in list of detections (RA, Dec, S/N) and the beam PSF and computes a covariance matrix of the S/N value ratios, assuming 1-sigma Gaussian errors on each measurement. It models the aggregate beam response by arranging beam PSFs appropriately relative to each other and calculates a likelihood distribution of obtaining the observed S/N in each beam according to the modeled response. In addition, SeeKAT can plot the likelihood function over RA and Dec with 1-sigma uncertainty, overlaid on the beam coordinates and sizes.
SEEK (Signal Extraction and Emission Kartographer) processes time-ordered-data from single dish radio telescopes or from the simulation pipline HIDE (ascl:1607.019), removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and recovers the astronomical radio signal. With its companion code HIDE (ascl:1607.019), it provides end-to-end simulation and processing of radio survey data.
SEDPY performs a variety of tasks for astronomical spectral energy distributions. It can generate synthetic photometry through any filter, provides detailed modeling of extinction curves, and offers basic aperture photometry algorithms. SEDPY can also store and interpolate model SEDs, convolve absolute or apparent fluxes, and calculate rest-frame magnitudes.
sedop is a Monte-Carlo minimization code designed to optimally construct spectral energy distributions (SEDs) for sources of ultraviolet and X-ray radiation employed in numerical simulations of reionization and radiative feedback.
SEDobs uses state-of-the-art theoretical galaxy SEDs (spectral energy distributions) to create simulated observations of distant galaxies. It used BC03 and M05 theoretical models and allows the user to configure the simulated observation that are needed. For a given simulated galaxy, the user is able to simulate multi-spectral and multi-photometric observations.
SEDkit constructs and analyzes simple spectral energy distributions (SED). This collection of pure Python modules creates individual SEDs or SED catalogs from spectra and/or photometry and calculates fundamental parameters (fbol, Mbol, Lbol, Teff, mass, log(g)).
SEDBYS (Spectral Energy Distribution Builder for Young Stars) provides command-line tools and uses existing functions from standard packages such as Astropy (ascl:1304.002) to collate archival photometric and spectroscopic data. It also builds and inspects SEDS, and automatically collates the necessary software references.
SecularMultiple computes the secular (orbit-averaged) gravitational dynamics of hierarchical multiple systems composed of nested binary orbits (simplex-type systems) with any configuration and any number of bodies. A particle can represent a binary or a body. The structure of the system is determined by linking to other particles with the attributes child1 and child2, and tidal interactions and relativistic corrections are included in an ad hoc fashion. SecularMultiple also includes routines for external perturbations such as flybys and supernovae.
Prior to recombination photons, electrons, and atomic nuclei rapidly scattered and behaved, almost, like a single tightly-coupled photon-baryon plasma. In order to solve the cosmological perturbation equations during that time, Cosmic Microwave Background (CMB) codes use the so-called tight-coupling approximation in which the problematic terms (i.e. the source of the stiffness) are expanded in inverse powers of the Thomson Opacity. Most codes only keep the terms linear in the inverse Thomson Opacity. We have developed a second-order tight-coupling code to test the validity of the usual first-order tight-coupling code. It is based on the publicly available code CAMB.
SeBa is the stellar and binary evolution module, fully integrated into the kira N-body integrator, for Starlab (ascl:1010.076), although it can also be used as a stand-alone module for non-dynamical applications. Due to the interaction between stellar evolution and stellar dynamics, it is difficult to solve for the evolution of both systems in a completely self-consistent way. The trajectories of stars are computed using a block timestep scheme, as described earlier. Stellar and binary evolution is updated at fixed intervals (every 1/64 of a crossing time, typically a few thousand years). Any feedback between the two systems may thus experience a delay of at most one timestep. Internal evolution time steps may differ for each star and binary, and depend on binary period, perturbations due to neighbors, and the evolutionary state of the star. Time steps in this treatment vary from several milliseconds up to (at most) a million years.
SearchCal builds an evolutive catalog of stars suitable as calibrators within any given user-defined angular distance and magnitude around a scientific target. SearchCal can select suitable bright calibration stars (V ≤ 10; K ≤ 5.0) for obtaining the ultimate precision of current interferometric instruments like the VLTI and faint calibration stars up to K ~ 15 around the scientific target. Star catalogs available at the CDS are searched via web requests and provide the useful astrometric and photometric informations for selecting calibrators. The missing photometries are computed with an accuracy of about 0.1 mag. The stellar angular diameter is estimated with a precision of about 10% through newly determined surface-brightness versus color-index relations based on the I, J, H and K magnitudes. For each star the squared visibility is computed taking into account the central wavelength and the maximum baseline of the predicted observations.
Seaborn provides a high-level interface for drawing attractive statistical graphics. Written in Python, it builds on matplotlib and integrates closely with pandas data structures. Its plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots. Its dataset-oriented, declarative API allows the user to focus on what the different elements of the plots mean, rather than on the details of how to draw them.
Dual Active Nuclei Galaxies (DAGNs) are rare occurrences in the sky. Until now, most AGNs have been described to be found serendipitously, or by manual observation. In recent years, there has been an increasing interest in such dual AGNs and their astrophysical properties. Their study is important to the understanding of galaxy formation, star formation and these objects are the precursors to Gravitational Wave Sources.
Hence, we have devised a pipeline, that along with systematic data collection, can detect such dual AGN candidates. A novel algorithm 'Graph-Boosted Gradient Ascent' has been devised to detect whether an R-band image of a galaxy is a potential candidate for a DAGN or not. The pipeline can be cloned to a user's machine, and by joining the AstrIRG_DAGN group on SciServer, astronomers can collectively contribute to the mining of DAGNs.
Sharpened dimensionality reduction (SDR) sharpens original data before dimensionality reduction to create visually segregrated sample clusters. user-guided labeling. Each distinct cluster can then be labeled and used to further analyze an otherwise unlabeled data set. Written in C++, SDR scales well with large high-dimensional data.
SDAR (Slow-Down Algorithmic Regularization) simulates the long-term evolution of few-body systems such as binaries and triples. The algorithm used provides a few orders of magnitude faster performance than the classical N-body method. The secular evolution of hierarchical systems, e.g. Kozai-Lidov oscillation, can be well reproduced. The code is written in the C++ language and can be used either as a stand-alone tool or a library to be plugged in other N-body codes. The high precision of the floating point to 62 digits is also supported.
Sculptor manipulates, models and analyzes spectroscopic data; the code facilitates reproducible scientific results and easy to inspect model fits. A built-in graphical user interface around LMFIT (ascl:1606.014) offers interactive control to set up and combine multiple spectral models to fully fit the spectrum of choice. Alternatively, all core functionality can be scripted to facilitate the design of spectral fitting and analysis pipelines.
SCRIPT (Semi-numerical Code for ReIonization with PhoTon-conservation) generates the ionization field during the epoch of cosmological reionization using a photon-conserving algorithm. The code depends on density and velocity files obtained using a N-body simulation, which can be generated with a 2LPT code such as MUSIC (ascl:1311.011).
Scri manipulates time-dependent functions of spin-weighted spherical harmonics. It implements the BMS transformations of the most common gravitational waveforms, including the Newman-Penrose quantity ψ4, the Bondi news function, the shear spin coefficient σ, and the transverse-traceless metric perturbation h, as well as the remaining Newman-Penrose quantities ψ0 through ψ3.
scousepy is a Python implementation of spectral line-fitting IDL code SCOUSE (ascl:1601.003). It fits a large amount of complex astronomical spectral line data in a systematic way.
The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.
The Python package SCORPIO retrieves images and associated data of galaxy pairs based on their position, facilitating visual analysis and data collation of multiple archetypal systems. The code ingests information from SDSS, 2MASS and WISE surveys based on the available bands and is designed for studies of galaxy pairs as natural laboratories of multiple astrophysical phenomena for, among other things, tidal force deformation of galaxies, pressure gradient induced star formation regions, and morphological transformation.
The Shape COnstraint REstoration algorithm (SCORE) is a proximal algorithm based on sparsity and shape constraints to restore images. Its main purpose is to restore images while preserving their shape information. It can, for example, denoise a galaxy image by instanciating SCORE and using its denoise method and then visualize the results, and can deconvolve multiple images with different parameter values.
Templates and helper functions for creating on-sky Source description objects for the ScopeSim instrument data simulation engine.
A reference database for astronomical instrument and telescope characteristics for all types of visual and infrared systems. Instrument packages are used in conjunction with the ScopeSim instrument data simulator.
An attempt at creating a common pythonic framework for visual and infrared telescope instrument data simulators.
SCONCE-SCMS detects cosmic web structures, primarily cosmic filaments and the associated cosmic nodes, from a collection of discrete observations with the extended subspace constrained mean shift (SCMS) algorithms on the unit (hyper)sphere (in most cases, the 2D (RA,DEC) celestial sphere), and the directional-linear products space (most commonly, the 3D (RA,DEC,redshift) light cone).
The subspace constrained mean shift (SCMS) algorithm is a gradient ascent typed method dealing with the estimation of local principal curves, more widely known as density ridges. The one-dimensional density ridge traces over the curves where observational data are highly concentrated and thus serves as a natural model for cosmic filaments in our Universe. Modeling cosmic filaments as density ridges enables efficient estimation by the kernel density estimator (KDE) and the subsequent SCMS algorithm in a statistically consistent way. While the standard SCMS algorithm can identify the density ridges in any "flat" Euclidean space, it exhibits large bias in estimating the density ridges on the data space with a non-linear curvature. The extended SCMS algorithms used in SCONCE-SCMS are adaptive to the spherical and conic geometries and resolve the estimation bias of the standard SCMS algorithm on a 2D (RA,DEC) celestial sphere or 3D (RA,DEC,redshift) light cone.
SCINTOOLS (SCINtillation TOOLS) simulates and analyzes pulsar scintillation data. The code can be used for processing observed dynamic spectra, computing secondary spectra and ACFs, measuring scintillation arcs, simulating dynamic spectra, and modeling pulsar transverse velocities through scintillation arcs or diffractive timescales.
SCIMES identifies relevant molecular gas structures within dendrograms of emission using the spectral clustering paradigm. It is useful for decomposing objects in complex environments imaged at high resolution.
SciDB is a DMAS (Data Management and Analytics Software System) optimized for data management of big data and for big analytics. SciDB is organized around multidimensional array storage, a generalization of relational tables, and is designed to be scalable up to petabytes and beyond. Complex analytics are simplified with SciDB because arrays and vectors are first-class objects with built-in optimized operations. Spatial operators and time-series analysis are easy to express. Interfaces to common scientific tools like R as well as programming languages like C++ and Python are provided.
SciCatalog handles catalogs of scientific data in a way that is easily extensible, including the ability to create nicely formatted AASTex deluxe tables for use in AAS Publishing manuscripts. It handles catalogs of values, their positive and negative uncertainties, and references for those values with methods for easily adding columns and changing values. The catalog is also backed up every time it is loaded under the assumption that it is about to be modified.
schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib). The utilities provided by schwimmbad require that tasks or data be “chunked” and that code can be “mapped” onto the chunked tasks.
schNell computes basic map-level noise properties for generic networks of gravitational wave interferometers, primarily the noise power spectrum "N_ell", but this lightweight python module that can also be used for, for example, antenna patterns, overlap functions, and inverse variance maps, among other tasks. The code has three main classes; detectors contain information about each individual detector of the network, such as their positions, noise properties, and orientation. NoiseCorrelations describes the noise-level correlation between pairs of detectors, and the MapCalculators class combines a list of Detectors into a network (potentially together with a NoiseCorrelation object) and computes the corresponding map-level noise properties arising from their correlations.
The fast N-body code SCF-FDPS (Self-Consistent Field-Framework for Developing Particle Simulators) simulates disk-halo systems. It combines a self-consistent field (SCF) code, which provides scalability, and a tree code that is parallelized using the Framework for Developing Particle Simulators (FDPS) (ascl:1604.011). SCF-FDPS handles a wide variety of halo profiles and can be used to study extensive dynamical problems of disk-halo systems.
SCEPtER (Stellar CharactEristics Pisa Estimation gRid) estimates the stellar mass and radius given a set of observable quantities; the results are obtained by adopting a maximum likelihood technique over a grid of pre-computed stellar models. The code is quite flexible since different observables can be used, depending on their availability, as well as different grids of models.
Scatfit models observed burst signals of impulsive time domain radio signals ( e.g., Fast Radio Bursts (FRBs) or pulsars pulses), which usually are convolution products of various effects, and fits them to the experimental data. It includes several models for scattering and instrumental effects. The code loads the experimental time domain radio data, cleans them, fits an aggregate scattering model to the data, and robustly estimates the model parameters and their uncertainties. Additionally, scatfit determines the scaling of the scattering time with frequency, i.e. the scattering index, and the scattering-corrected dispersion measure of the burst or pulse.
SCARLET performs source separation (aka "deblending") on multi-band images. It is geared towards optical astronomy, where scenes are composed of stars and galaxies, but it is straightforward to apply it to other imaging data. Separation is achieved through a constrained matrix factorization, which models each source with a Spectral Energy Distribution (SED) and a non-parametric morphology, or multiple such components per source. The code performs forced photometry (with PSF matching if needed) using an optimal weight function given by the signal-to-noise weighted morphology across bands. The approach works well if the sources in the scene have different colors and can be further strengthened by imposing various additional constraints/priors on each source. Because of its generic utility, this package provides a stand-alone implementation that contains the core components of the source separation algorithm. However, the development of this package is part of the LSST Science Pipeline; the meas_deblender package contains a wrapper to implement the algorithms here for the LSST stack.
Scanamorphos is an IDL program to build maps from scan observations made with bolometer arrays. Scanamorphos can post-process scan observations performed with the Herschel photometer arrays. This post-processing mainly consists in subtracting the total low-frequency noise (both its thermal and non-thermal components), masking cosmic ray hit residuals, and projecting the data onto a map. Although it was developed for Herschel, it is also applicable with minimal adjustment to scan observations made with other bolometer arrays provided they entail sufficient redundancy; it was successfully applied to P-Artemis, an instrument operating on the APEX telescope. Scanamorphos does not assume any particular noise model and does not apply any Fourier-space filtering to the data. It is an empirical tool using only the redundancy built in the observations, taking advantage of the fact that each portion of the sky is sampled at multiple times by multiple bolometers. The user is allowed to optionally visualize and control results at each intermediate step, but the processing is fully automated.
ScamPy "paints" an observed population of cosmological objects on top of the DM-halo/subhalo hierarchy obtained from DM-only simulations. The method combines the Halo Occupation Distribution (HOD) method with sub-halo abundance matching (SHAM); the two processes together are dubbed Sub-halo clustering and abundance matching (SCAM). The procedure requires applying the two methods in sequence; by applying the HOD scheme, the host sub-haloes are selected, and the SHAM algorithm associates an observable property of choice to each sub-halo. The provided python interface allows users to load and populate DM halos and sub-halos obtained by FoF and SUBFIND algorithms applied to DM snapshots at any redshift. The software is highly-optimized and flexible.
Astrometric and photometric calibrations have remained the most tiresome step in the reduction of large imaging surveys. SCAMP has been written to address this problem. The program efficiently computes accurate astrometric and photometric solutions for any arbitrary sequence of FITS images in a completely automatic way. SCAMP is released under the GNU General Public License.
sbpy, an Astropy affiliated package, supplements functionality provided by Astropy (ascl:1304.002) with functions and methods that are frequently used for planetary astronomy with a clear focus on asteroids and comets. It offers access tools for various databases for orbital and physical data, spectroscopy analysis tools and models, photometry models for resolved and unresolved observations, ephemerides services, and other tools useful for small-body planetary astronomy.
Simulation-based inference is the process of finding parameters of a simulator from observations. The PyTorch package sbi performs simulation-based inference by taking a Bayesian approach to return a full posterior distribution over the parameters, conditional on the observations. This posterior can be amortized (i.e. useful for any observation) or focused (i.e.tailored to a particular observation), with different computational trade-offs. The code offers a simple interface for one-line posterior inference.
SBGAT (Small Body Geophysical Analysis Tool) generates simulated data originating from small bodies shape models, combined with advanced shape-modification properties. It uses polyhedral shape models from which can be computed mass properties such as volume, center of mass, and inertia, synthetic observations such as lightcurves and radar, and which can be used within dynamical models, such as spherical harmonics and polyhedron gravity modeling. SBGAT can generate spherical harmonics expansions from constant-density polyhedra (and export them to JSON) and evaluate the spherical harmonics expansions. It can also generate YORP coefficients, multi-threaded Polyhedron Gravity Model gravity and potential evaluations, and synthetic light-curve and radar observations for single/primary asteroids.
SBGAT has two distinct packages: a dynamic library SBGAT Core that contains the data structure and algorithm backbone of SBGAT, and SBGAT Gui, which wraps the former inside a VTK, Qt user interface to facilitate user/data interaction. SBGAT Core can be used without the SBGAT Gui wrapper.
A Savitzky–Golay filter is often applied to data to smooth the data without greatly distorting the signal; however, almost all data inherently comes with noise, and the noise properties can differ from point to point. This python script improves upon the traditional Savitzky-Golay filter by accounting for error covariance in the data. The inputs and arguments are modeled after scipy.signal.savgol_filter.
SAVED21cm extracts the 21cm signal from the simulated mock observation for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH). Though built for the REACH experiment, this 21cm signal extraction pipeline can in principle can be utilized for any global 21cm experiment. The toolkit is based on a pattern recognition framework using the Singular Value Decomposition (SVD) of the 21cm and foreground training set. SAVED21cm finds the patterns in the training sets and properly models the chromatic distortions with a better basis than the polynomials.
SATMC is a general purpose, MCMC-based SED fitting code written for IDL and Python. Following Bayesian statistics and Monte Carlo Markov Chain algorithms, SATMC derives the best fit parameter values and returns the sampling of parameter space used to construct confidence intervals and parameter-parameter confidence contours. The fitting may cover any range of wavelengths. The code is designed to incorporate any models (and potential priors) of the user's choice. The user guide lists all the relevant details for including observations, models and usage under both IDL and Python.
SatGen generates satellite-galaxy populations for host halos of desired mass and redshift. It combines halo merger trees, empirical relations for galaxy-halo connection, and analytic prescriptions for tidal effects, dynamical friction, and ram-pressure stripping. It emulates zoom-in cosmological hydrosimulations in certain ways and outperforms simulations regarding statistical power and numerical resolution.
SATCHEL (Search Algorithm for Transits in the Citizen science Hunt for Exoplanets in Lightcurves) searches for individual signals of interest in time-series data classified through crowdsourcing. The pipeline was built for the purpose of finding long-period exoplanet transit signals in Kepler photometric time-series data, but may be adapted for searches for any kind of one-dimensional signals in crowdsourced classifications.
satcand applies theoretical constraints of orbital stability and tidal migration to KOI exomoon candidates. The package can evaluate the tidal migration within a Sun-Earth-Moon system, plot angular velocity over time, and calculate the migration time scale (T1) and the total migration time scale, among other things. In addition to the theoretical constraints, observational constraints can be applied.
SASRST, a small collection of Python scripts, attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008), respectively. The included code calculates the solution for a given set of input parameters and also plots the results using Matplotlib. This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code.
SASHIMI-W calculates various subhalo properties efficiently using semi-analytical models for warm dark matter (WDM); the code is based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. The calculated constraints are independent of physics of galaxy formation and free from numerical resolution and the Poisson noise, and its results are well in agreement with those from numerical N-body simulations.
SASHIMI-C calculates various subhalo properties efficiently using semi-analytical models for cold dark matter (CDM), providing a full catalog of dark matter subhalos in a host halo with arbitrary mass and redshift. Each subhalo is characterized by its mass and density profile both at accretion and at the redshift of interest, accretion redshift, and effective number (or weight) corresponding to that particular subhalo. SASHIMI-C computes the subhalo mass function without making any assumptions such as power-law functional forms; the only assumed power law is that for the primordial power spectrum predicted by inflation. The code is not limited to numerical resolution nor to Poisson shot noise, and its results are well in agreement with those from numerical N-body simulations.
The Science Analysis System (SAS) is an extensive suite of software tasks developed to process the data collected by the XMM-Newton Observatory. The SAS extracts standard (spectra, light curves) and/or customized science products, and allows reproductions of the reduction pipelines run to get the PPS products from the ODFs files. SAS includes a powerful and extensive suite of FITS file manipulation packages based on the Data Access Layer library.
SARAH builds and analyzes SUSY and non-SUSY models. It calculates all vertices, mass matrices, tadpoles equations, one-loop corrections for tadpoles and self-energies, and two-loop RGEs for a given model. SARAH writes model files for a variety of other software packages for dark matter studies, includes many SUSY and non-SUSY models, and makes implementing new models efficient and straightforward. Written in Mathematica, SARAH can also use output from Vevacious (ascl:1904.019) to check for the global minimum for a given model and parameter point.
SARA-PPD is a proof of concept MATLAB implementation of an acceleration strategy for a recently proposed primal-dual distributed algorithm. The algorithm optimizes resolution by accounting for the correct noise statistics, leverages natural weighting in the definition of the minimization problem for image reconstruction, and optimizes sensitivity by enabling accelerated convergence through a preconditioning strategy incorporating sampling density information. This algorithm offers efficient processing of large-scale data sets that will be acquired by next generation radio-interferometers such as the Square Kilometer Array.
SAQQARA analyzes stochastic gravitational wave background signals. This Simulation-based Inference (SBI) library is built on top of the swyft code (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Simulation-based inference combined with implicit marginalization (over nuisance parameters) has been shown to be well suited for SGWB data analysis.
Sapporo mimics the behavior of GRAPE hardware and uses the GPU to perform high-precision gravitational N-body simulations. It makes use of CUDA and therefore only works on NVIDIA GPUs. N-body codes currently running on GRAPE-6 can switch to Sapporo by a simple relinking of the library. Sapporo's precision is comparable to that of GRAPE-6, even though internally the GPU hardware is limited to single precision arithmetics. This limitation is effectively overcome by emulating double precision for calculating the distance between particles.
The SAPHIRES (Stellar Analysis in Python for HIgh REsolution Spectroscopy) suite contains functions for analyzing high-resolution stellar spectra. Though most of its functionality is aimed at deriving radial velocities (RVs), the suite also includes capabilities to measure projected rotational velocities (vsini) and determine spectroscopic flux ratios in double-lined binary systems (SB2s). These measurements are made primarily by computing spectral-line broadening functions. More traditional techniques such as Fourier cross-correlation, and two-dimensional cross-correlation (TODCOR) are also included.
SAOImage DS9 is an astronomical imaging and data visualization application. DS9 supports FITS images and binary tables, multiple frame buffers, region manipulation, and many scale algorithms and colormaps. It provides for easy communication with external analysis tasks and is highly configurable and extensible via XPA and SAMP. DS9 is a stand-alone application. It requires no installation or support files. Versions of DS9 currently exist for Solaris, Linux, MacOSX, and Windows. All versions and platforms support a consistent set of GUI and functional capabilities. DS9 supports advanced features such as multiple frame buffers, mosaic images, tiling, blinking, geometric markers, colormap manipulation, scaling, arbitrary zoom, rotation, pan, and a variety of coordinate systems. DS9 also supports FTP and HTTP access. The GUI for DS9 is user configurable. GUI elements such as the coordinate display, panner, magnifier, horizontal and vertical graphs, button bar, and colorbar can be configured via menus or the command line. DS9 is a Tk/Tcl application which utilizes the SAOTk widget set. It also incorporates the X Public Access (XPA) mechanism to allow external processes to access and control its data, GUI functions, and algorithms.
The Search And Non-Destroy (SAND) is a VLBI data reduction pipeline composed of a set of Python programs based on the AIPS interface provided by ObitTalk. It is designed for the massive data reduction of multi-epoch VLBI monitoring research. It can automatically investigate calibrated visibility data, search all the radio emissions above a given noise floor and do the model fitting either on the CLEANed image or directly on the uv data. It then digests the model-fitting results, intelligently identifies the multi-epoch jet component correspondence, and recognizes the linear or non-linear proper motion patterns. The outputs including CLEANed image catalogue with polarization maps, animation cube, proper motion fitting and core light curves. For uncalibrated data, a user can easily add inline modules to do the calibration and self-calibration in a batch for a specific array.
SAMUS (Simulator of Asteroid Malformation Under Stress) simulates the deformation of minor bodies, assuming that they are homogenous incompressible fluid masses. They are initialized as ellipsoids and the Navier-Stokes equations are interatively solved to investigate the deformation of the body over time. The software is modular and allows for user-defined output functions, size, and trajectories. Structured as a single large class, SAMUS can store variables and handle arbitrary function calls, which eases debugging and investigation, especially for lengthy high-fidelity simulation runs.
The samsam package provides two samplers, a scaled adaptive metropolis algorithm to robustly obtain samples from a target distribution, and a covariance importance sampling algorithm to efficiently compute the model evidence (or other integrals). It also includes tools to assess the convergence of the sam sampler and a few commonly used prior distributions.
samiDB is an archive, database, and query engine to serve the spectra, spectral hypercubes, and high-level science products that make up the SAMI Galaxy Survey. Based on the versatile Hierarchical Data Format (HDF5), samiDB does not depend on relational database structures and hence lightens the setup and maintenance load imposed on science teams by metadata tables. The code, written in Python, covers the ingestion, querying, and exporting of data as well as the automatic setup of an HTML schema browser. samiDB serves as a maintenance-light data archive for Big Science and can be adopted and adapted by science teams that lack the means to hire professional archivists to set up the data back end for their projects.
The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.
SALT (Spectral Adaptive Lightcurve Template) is a package for Type Ia Supernovae light curve fitting. Its main purpose is to provide a distance estimator but it can also be used for photometric redshifts, and spectroscopic + photometric identification. This code is also known by the name snfit.
Sailfish simulates accreting binary systems, including binary protostars, post-AGN stellar binaries, mass-transferring X-ray binaries, and double black hole systems. The binary components are "on the grid" rather than excised, and are evolved according to the Kepler two-body problem, modified to account for gravitational wave losses or self-consistent forcing from the orbiting gas. The solvers are shock-capturing and are second order accurate in space and time. Gravity is fully Newtonian. Thermodynamics can be treated using a gamma-law equation of state with a blackbody cooling term, or in the locally isothermal approximation, in which the gas temperature is set to a constant times the local free-fall speed. Sailfish is fully Cartesian and has extensive diagnostic capabilities to facilitate accurate calculations of gas-driven orbital evolution or the extraction of electromagnetic disk signatures. The code is extremely efficient, reaching more than one billion zone updates per second on an NVIDIA A100 GPU, enabling extremely high resolution of complex flows around the binary components.
SAGE corrects the time-dependent impact of stellar activity on transmission spectra. It uses a pixelation approach to model the stellar surface with spots and faculae, while accounting for limb-darkening and rotational line-broadening. The code can be used to evaluate stellar contamination for F to M-type hosts, test various spot sizes and locations, and quantify the impact of limb-darkening. SAGE can also retrieve the properties and distribution of active regions on the stellar surface from photometric monitoring, and connect the photometric variability to the stellar contamination of transmission spectra.
SAGE (Semi-Analytic Galaxy Evolution) models galaxy formation in a cosmological context. SAGE has been rebuilt to be modular and customizable. The model runs on any dark matter cosmological N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties.
SACC (Save All Correlations and Covariances) is a format and reference library for general storage
of summary statistic measurements for the Dark Energy Science Collaboration (DESC) within and from the Large Synoptic Survey Telescope (LSST) project's Dark Energy Science Collaboration.
The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.
Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.
s4cmb (Systematics For Cosmic Microwave Background) studies the impact of instrumental systematic effects on measurements of CMB experiments based on bolometric detector technology. s4cmb provides a unified framework to simulate raw data streams in the time domain (TODs) acquired by CMB experiments scanning the sky, and to inject in these realistic instrumental systematics effect.
s3PCF computes the 3-point correlation function (3PCF) in the squeezed limit given galaxy positions and pair positions. The code is currently written specifically for the Abacus simulations, but the main functionalities can be also easily adapted for other galaxy catalogs with the appropriate properties.
We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.
S2LET provides high performance routines for fast wavelet analysis of signals on the sphere. It uses the SSHT code (ascl:2207.034) built on the MW sampling theorem to perform exact spherical harmonic transforms on the sphere. The resulting wavelet transform implemented in S2LET is theoretically exact, i.e. a band-limited signal can be recovered from its wavelet coefficients exactly and the wavelet coefficients capture all the information. S2LET also supports the HEALPix sampling scheme, in which case the transforms are not theoretically exact but achieve good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections.
Many problems in astronomy and astrophysics require a computation of the spherical harmonic transforms. This is in particular the case whenever data to be analyzed are distributed over the sphere or a set of corresponding mock data sets has to be generated. In many of those contexts, rapidly improving resolutions of both the data and simulations puts increasingly bigger emphasis on our ability to calculate the transforms quickly and reliably.
The scalable spherical harmonic transform library S2HAT consists of a set of flexible, massively parallel, and scalable routines for calculating diverse (scalar, spin-weighted, etc) spherical harmonic transforms for a class of isolatitude sky grids or pixelizations. The library routines implement the standard algorithm with the complexity of O(n^3/2), where n is a number of pixels/grid points on the sphere, however, owing to their efficient parallelization and advanced numerical implementation, they achieve very competitive performance and near perfect scalability. S2HAT is written in Fortran 90 with a C interface. This software is a derivative of the spherical harmonic transforms included in the HEALPix package and is based on both serial and MPI routines of its version 2.01, however, since version 2.5 this software is fully autonomous of HEALPix and can be compiled and run without the HEALPix library.
S2FFT computes Fourier transforms on the sphere and rotation group using JAX (ascl:2111.002) or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g., GPUs and TPUs). More specifically, S2FFT provides support for spin spherical harmonic and Wigner transforms (for both real and complex signals), with support for adjoint transformations where needed, and comes with different optimisations (precompute or not) that one may select depending on available resources and desired angular resolution L.
The s2 package can represent any arbitrary function defined on the sphere. Both real space map and harmonic space spherical harmonic representations are supported. Basic sky representations have been extended to simulate full sky noise distributions and Gaussian cosmic microwave background realisations. Support for the representation and convolution of beams is also provided. The code requires HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001).
Rwcs offers access to all the projection and distortion systems of WCSLIB (ascl:1108.003) in R. This can be used directly for, for example, pixel lookups, or for higher level general distortion and projection.
RVSpecFit determines radial velocities and stellar atmospheric parameters from spectra by direct pixel fitting by interpolated stellar templates. The code doesn't require spectrum normalization and can deal with non-flux calibrated spectra. RVSpecFit is able to fit multiple spectra simultaneously.
RVSAO is a set of programs to obtain redshifts and radial velocities from digital spectra. RVSAO operates in the IRAF (Tody 1986, 1993) environment. The heart of the system is xcsao, which implements the cross-correlation method, and is a direct descendant of the system built by Tonry and Davis (1979). emsao uses intelligent heuristics to search for emission lines in spectra, then fits them to obtain a redshift. sumspec shifts and sums spectra to build templates for cross-correlation. linespec builds synthetic spectra given a list of spectral lines. bcvcorr corrects velocities for the motion of the earth. We discuss in detail the parameters necessary to run xcsao and emsao properly. We discuss the reliability and error associated with xcsao derived redshifts. We develop an internal error estimator, and we show how large, stable surveys can be used to develop more accurate error estimators. We develop a new methodology for building spectral templates for galaxy redshifts. We show how to obtain correlation velocities using emission line templates. Emission line correlations are substantially more efficient than the previous standard technique, automated emission line fitting. We compare the use of RVSAO with new methods, which use Singular Value Decomposition and $chi^2$ fitting techniques.
The RVLIN package for IDL is a set of routines that quickly fits an arbitrary number of Keplerian curves to radial velocity data. It can handle data from multiple telescopes (i.e. it solves for the offset), constraints on P, e, and time of peri passage, and can incorporate transit timing data. The code handles fixed periods and circular orbits in combination and transit time constraints, including for multiple transiting planets.
rvfit, developed in IDL 7.0, fits non-precessing keplerian radial velocity (RV) curves for double-line and single-line binary stars or exoplanets. It fits a simple keplerian model to the observed RV and computes the seven parameters (six for a single-line system) from the model. Some parameters can be fixed beforehand if they are known, for instance, if photometric observations are available. The fit is done using an Adaptive Simulated Annealing algorithm optimized for this specific task. Simulated Annealing methods are powerful heuristic algorithms to minimize functions in multiparametric spaces.
The RV program produces a report listing the components, in a given direction, of the observer's velocity on a given date. This allows an observed radial velocity to be referred to an appropriate standard of rest -- typically either the Sun or an LSR.
As a secondary function, RV computes light time components to the Sun, thus allowing the times of phenomena observed from a terrestrial observatory to be referred to a heliocentric frame of reference. n.b. It will of course, in addition, be necessary to express the observations in the appropriate timescale as well as applying light time corrections. In particular, it is likely that an observed UTC will need to be converted to TDB as well as being corrected to the Sun.)
RV is distributed with the Starlink software collection (ascl:1110.012) and uses SLALIB (ascl:1403.025).
runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.
The centrifugal deformation program RUBIS (Rotation code Using Barotropy conservation over Isopotential Surfaces) takes an input 1D model (with spherical symmetry) and returns its deformed version by applying a conservative rotation profile specified by the user. The code needs only the density as a function of radial distance from the reference model in addition to the surface pressure to be imposed to perform the deformation; preserving the relation between density and pressure when going from the 1D to the 2D structure makes this lightness possible. By solving Poisson's equation in spheroidal rather than spherical coordinates whenever a discontinuity is present, RUBIS can deform both stellar and planetary models, thereby dealing with potential discontinuities in the density profile.
Rubble implicitly models the local evolution of dust distributions in size, mass, and surface density by solving the Smoluchowski equation (also known as the coagulation-fragmentation equation) under given disk conditions. The Python package's robustness has been validated by a suite of numerical benchmarks against known analytical and empirical results. Rubble can model prescribed physical processes such as bouncing, modulated mass transfer, regulated dust loss/supply, probabilistic collisional outcomes based on velocity distributions, and more. The package also includes a toolkit for analyzing and visualizing results produced by Rubble.
Radio Transient Simulations uses Monte-Carlo simulations to accurately determine transient rates in radio surveys. The user inputs either a real or simulated observational setup, and the simulations code calculates transient rate as a function of transient duration and peak flux. These simulations allow for simulating a wide variety of scenarios including observations with varying sensitivities and durations, multiple overlapping telescope pointings, and a wide variety of light curve shapes with the user having the ability to easily add more. Though the current scientific focus is on the radio regime, the simulations code can be easily adapted to other wavelength regimes.
rtpipe (real-time pipeline) analyzes radio interferometric data with an emphasis on searching for transient or variable astrophysical sources. The package combines single-dish concepts such as dedispersion and filters with interferometric concepts, including images and the uv-plane. In contrast to time-domain data recorded with large single-dish telescopes, visibilities from interferometers can precisely localize sources anywhere in the entire field of view. rtpipe opens interferometers to the study of fast transient sky, including sources like pulsars, stellar flares, rotating radio transients, and fast radio bursts. Key portions of the search pipeline, such as image generation and dedispersion, have been accelerated. That, in combination with its multi-threaded, multi-node design, makes rtpipe capable of searching millisecond timescale data in real time on small compute clusters.
The parallel one-dimensional moving-mesh hydrodynamics code RT1D reproduces the multidimensional dynamics from Rayleigh-Taylor instability in supernova remnants.
rsigma calculates the resonant disturbing function, R(sigma), for a massless particle in an arbitrary orbit perturbed by a planet in circular orbit. This function defines the strength of the resonance (its semi-amplitude) and the location of the stable equilibrium points (the minima). It depends on the variable sigma called critical angle and on the particle's orbital elements a, e, i and the argument of the perihelion. R(sigma) is numerically calculated and the code is valid for arbitrary eccentricities and inclinations, including retrograde orbits.
Redshift Search Graphs provides a fast and reliable way to test redshifts found from sub-mm redshift searches. The scripts can graphically test the robustness of a spectroscopic redshift of a galaxy, test the efficiency of an instrument towards spectroscopic redshift searches, and optimize observations of tunable institutes (such as ALMA) for upcoming redshift searches.
RRLFE generates and applies calibrations for retrieving [Fe/H] from low-res spectra of RR Lyrae variable stars. The code can generate a metallicity calibration anew, from real or synthetic spectra; it can also apply a metallicity calibration to low-resolution (R ~2000) RR Lyrae spectra spanning 3911 to 4950 angstroms.
RRATtrap is a single-pulse sifting algorithm to identify Rotating Radio Transients (RRATs) and transients using output from the PRESTO (ascl:1107.017) routine single_pulse_search.py. It can be integrated into pulsar survey data analysis pipelines and, in addition to finding RRATs, it can also identify Fast Radio Bursts.
RPPPS (Re-analysing Pipeline for Parkes Pulsar Survey) uses Linux shell scripts, C language, and python code and two parallel strategies to reorganize the PRESTO (ascl:1107.017) pulsar search pipeline to run multiple processes in parallel, thus accelerating the search for pulsars. Though originally designed for reprocessing PMPS data, the code has also been successfully used with FAST (Five-hundred-meter Aperture Spherical radio Telescope) drift scan data. The pipeline is only CPU-based and can be easily and quickly deployed in computing nodes for testing purposes or data processes.
rPICARD (Radboud PIpeline for the Calibration of high Angular Resolution Data) reduces data from different VLBI arrays, including high-frequency and low-sensitivity arrays, and supports continuum, polarization, and phase-referencing observations. Built on the CASA (ascl:1107.013) framework, it uses CASA for CLEAN imaging and self-calibration, and can be run non-interactively after only a few non-default input parameters are set. rPICARD delivers high-quality calibrated data and large bandwidth data can be processed within reasonable computing times.
The RPFITS data file format records synthesis visibility data obtained from the Australia Telescope Compact Array (ATCA) at Narrabri, NSW. It is also used for single-dish spectral line data obtained from Parkes and Mopra, including Parkes multibeam data. RPFITS superficially resembles random group FITS, but differs in important respects, making it incompatible with standard FITS software such as FITSIO (ascl:1010.001) and FTOOLS (ascl:9912.002) and, in particular, it precludes the use of fv (ascl:1205.005). The RPFITS Fortran library contains routines for reading and writing RPFITS files. A header file, RPFITS.h, is provided to facilitate usage by C and C++ applications. Also included is rpfhdr, a utility for viewing RPFITS headers (it also works for standard FITS), and rpfex for extracting selected scans from an RPFITS file.
The numerical code RoSSBi3D (Rotating Systems Simulation Code for Bi-fluids) is designed for protoplanetary discs study at 2D and 3D. It is a finite volume code which is second order in time, features self-gravity (2D), and uses an exact Riemann solver to account for discontinuities. This FORTRAN 90 code solves the fully compressible inviscid Euler, continuity and energy conservation equations in polar coordinates for an ideal gas orbiting a central object. Solid particles are treated as a pressureless fluid and interact with the gas through aerodynamic forces. The code works on high performance computers thanks to the MPI standard (CPU).
Rosetta runs tasks for resource-intensive, interactive data analysis as software containers. The code's architecture frames user tasks as microservices – independent and self-contained units – which fully support custom and user-defined software packages, libraries and environments. These include complete remote desktop and GUI applications, common analysis environments such as the Jupyter Notebooks. Rosetta relies on Open Container Initiative containers, allowing for safe, effective and reproducible code execution. It can use a number of container engines and runtimes and seamlessly supports several workload management systems, thus enabling containerized workloads on a wide range of computing resources.
RoLo (Roche Lobe) calculates the radius and potential of the Roche Lobe for any specified direction, and also gives some other commonly used quantities (such as the Lagrange points). The calculator is valid for any mass ratio q between 0.01 and 100. The coordinates are spherical-polar (R, theta, phi) centered on one star (M1), with the x-axis (theta=pi/2, phi=0) pointing towards the other star (M2). The mass ratio is defined as q=M2/M1. Distances are given in units of the binary separation, a. A circular orbit is assumed.
ROHSA (Regularized Optimization for Hyper-Spectral Analysis) reveals the statistical properties of interstellar gas through atomic and molecular lines. It uses a Gaussian decomposition algorithm based on a multi-resolution process from coarse to fine grid to decompose any kind of hyper-spectral observations into a sum of coherent Gaussian. Optimization is performed on the whole data cube at once to obtain a solution with spatially smooth parameters.
ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) predicts the dynamical properties of galaxies using the projected phase-space information. Written in R, it offers a choice of machine learning methods to classify the dynamical properties of galaxies. An interface for online use of the software is available at https://mdelosrios.shinyapps.io/roger_shiny/.
RODRIGUES (RATT Online Deconvolved Radio Image Generation Using Esoteric Software) is a web-based radio telescope simulation and reduction tool. From a technical perspective it is a web based parameterized docker container scheduler with a result set viewer.
Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.
Roche is a visualization and analysis tool for drawing the Roche-lobe geometry of evolving binaries. Roche can be used as a standalone program reading data from the command line or from a file generated by SeBa (ascl:1201.003). Eventually Roche will be able to read data from any other binary evolution program. Roche requires Starlab (ascl:1010.076) version 4.1.1 or later and the pgplot (ascl:1103.002) libraries. Roche creates a series of images, based on the SeBa output file SeBa.data, displaying the evolutionary state of a binary.
The DR25 Kepler Robovetter is a robotic decision-making code that dispositions each Threshold Crossing Event (TCE) from the final processing (DR 25) of the Kepler data into Planet Candidates (PCs) and False Positives (FPs). The Robovetter provides four major flags to designate each FP TCE as Not Transit-Like (NTL), a Stellar Eclipse (SS), a Centroid Offset (CO), and/or an Ephemeris Match (EM). It produces a score ranging from 0.0 to 1.0 that indicates the Robovetter's disposition confidence, where 1.0 indicates strong confidence in PC, and 0.0 indicates strong confidence in FP. Finally, the Robovetter provides comments in a text string that indicate the specific tests each FP TCE fails and provides supplemental information on all TCEs as necessary.
ROBOSPECT, written in C, automatically measures and deblends line equivalent widths for absorption and emission spectra. ROBOSPECT should not be used for stars with spectra in which there is no discernible continuum over large wavelength regions, nor for the most carbon-enhanced stars for which spectral synthesis would be favored. Although ROBOSPECT was designed for metal-poor stars, it is capable of fitting absorption and emission features in a variety of astronomical sources.
Robbie automates cataloging sources, finding variables, and identifying transients in the image domain. It works in a batch processing paradigm with a modular design so components can be swapped out or upgraded to adapt to different input data while retaining a consistent and coherent methodological approach. Robbie is based on commonly used and open software, including AegeanTools (ascl:1212.009) and STILS/TOPCAT (ascl:1101.010).
ROBAST (ROOT-based simulator for ray tracing) is a non-sequential ray-tracing simulation library developed for wide use in optical simulations of gamma-ray and cosmic-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework, and can build the complex optics geometries typically used in cosmic ray experiments and ground-based gamma-ray telescopes.
ROA (Running Optimal Average) describes time series data. This model uses a Gaussian window function that moves through the data giving stronger weights to points close to the center of the Gaussian. Therefore, the width of the window function, delta, controls the flexibility of the model, with a small delta providing a very flexible model. The function also calculates the effective number of parameters, as a very flexible model will correspond to large number of parameters while a rigid model (low delta) has a low effective number of parameters. Knowing the effective number of parameters can be used to optimize the window width, e.g., using the Bayesian information criterion (BIC). An error envelope, which expands appropriately where there are gaps in the data, is also calculated for the model.
This program determines stellar population parameters (e.g. age, metallicity, IMF slope,...), using as input a pair of line-strength indices, through the interpolation in SSP model predictions. Both linear and bivariate fits are computed to perform the interpolation.
RMNest directly fits the Stokes Q and U (and V) spectra of a radio signal to measure the effects of Faraday rotation (or conversion) induced by propagation through a magnetized plasma along the line of sight. The software makes use of the Bayesian Inference Library (Bilby; ascl:1901.011) as an interface to the dynesty (ascl:1809.013) nested sampling algorithm.
RMHB is a hierarchical Bayesian code for reverberation mapping (RM) that combines results of a sparsely sampled broad line region (BLR) light curve and a large sample of active galactic nuclei (AGN) to infer properties of the sample of the AGN. The key idea of RM is to measure the time lag τ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of τ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass MBH. A major difficulty with RM campaigns is the large amount of data needed to measure τ. RMHB allows a clear interpretation of a posterior distribution for hyperparameters describing the sample of AGN.
Rmfit uses a forward-folding technique to obtain the best-fit parameters for a chosen model given user-selected source and background time intervals from data files containing observed count rates and a corresponding detector response matrix. rmfit displays lightcurves and spectra using a graphical interface that enables user-defined integrated or time-resolved spectral fits and binning in either time or energy. Originally developed for the analysis of BATSE Gamma-Ray Burst (GRB) spectroscopy, rmfit is a tool for the spectroscopy of transient sources; it accommodates the Fermi GBM and LAT data and Swift BAT.
RMextract calculates Ionospheric Faraday Rotation for a given epoch, location and line of sight. This Python code extracts TEC, vTEC, Earthmagnetic field and Rotation Measures from GPS and WMM data for radio interferometry observations.
RM-Tools analyzes radio polarization data, specifically the use of Faraday rotation measure synthesis and Stokes QU model fitting. It contains routines for both single-pixel 1D polarized spectra as well as 3D polarization cubes. RM-Tools is intended to serve as a toolkit for studies of polarized radio sources and measurements of their Faraday rotation. RM-Tools is the core package for the pipelines used for the POlarized Sky Survey of the Universe's Magnetism (POSSUM) and the polarization component of the Very Large Array Sky Survey (VLASS). The package is maintained by the Canadian Initiative for Radio Astronomy Data Analysis (CIRADA; cirada.org).
RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.
RLOS (Relativistic Line Of Sight) uses hydrocode output data, such as that from PLUTO (ascl:1010.045), to create synthetic images depicting what a model relativistic astrophysical jet looks like to a stationary observer. The approximate time-delayed imaging algorithm used is implemented within existing line-of-sight code. The software has the potential to study a variety of dynamical astrophysical phenomena in collaboration with other imaging and simulation tools.
RJObject provides a general approach to trans-dimensional Bayesian inference problems, using trans-dimensional MCMC embedded within a Nested Sampling algorithm. This allows exploration of the posterior distribution and calculattion of the marginal likelihood (summed over N) even if the problem contains a phase transition or other difficult features such as multimodality.
RJ-plots uses a moments of inertia method to disentangle a 2D structure's elongation from its centrally over/under-density, thus providing a means for the automated and objective classification of such structures. It may be applied to any 2D pixelated image such as column density maps or moment zero maps of molecular lines. This method is a further development of J-plots (ascl:2009.007).
riptide implements the Fast Folding Algorithm (FFA) to identify periodic signals from time series data. In order to identify faint pulsars, the code provides access to a library of functions and classes for processing dedispersed radio signals. The FFA approaches the theoretical optimum for sensitivity to periodic signals regardless of pulse period and duty cycle.
riddler automates fitting of type Ia supernovae spectral time series. The code is comprised of a series of neural networks trained to emulate radiative transfer simulations from TARDIS (ascl:1402.018). Emulated spectra are then fit to observations using nested sampling implemented in UltraNest (ascl:1611.001) to estimate the posterior distributions of model parameters and evidences.
RID (Relativistic Image Doubling in water Cherenkov detectors) uses Monte Carlo simulations to find the relative fraction of charged, relativistic particles entering a HAWC-like Water Cherenkov Detector that can cause a Relativistic Image Doubling (RID) effect visible to at least one of the internal detectors. The technique is available in C++ and Fortran; RID also includes python code for the horizontal incidence of the muon inside the tank.
RichValues transforms numeric values with uncertainties and upper/lower limits to create "rich values" that can be written in plain text documents in an easily readable format and used to propagate uncertainties automatically. Rich values can also be exported in the same formatting style as the import. The RichValues library uses a specific formatting style to represent the different kinds of rich values with plain text; it can also be used to create rich values within a script. Individual rich values can be used in, for example, tuples, lists, and dictionaries, and also in arrays and tables.
RICH (Racah Institute Computational Hydrodynamics) is a 2D hydrodynamic code based on Godunov's method. The code, largely based on AREPO (ascl:1909.010), acts on an unstructured moving mesh. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Though not universally true, in many cases a moving mesh gives better results than a static mesh: where matter moves one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving), a static mesh gives better results than a moving mesh. RICH is designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes.
The RHT (Rolling Hough Transform) measures linear intensity as a function of orientation in images. This machine vision algorithm works on any image-space (2D) data, and quantifies the presence of linear structure as a function of orientation. The RHT can be used to identify linear features in images, to quantify the orientation of structure in images, and to map image intensity from 2D x-y space to 3D x-y-orientation space. An option in the code allows the user to quantify intensity as a function of direction (modulo 2pi) rather than orientation (modulo pi). The RHT was first used to discover that filamentary structures in neutral hydrogen emission are aligned with the ambient magnetic field.
RhoPop identifies compositionally distinct populations of small planets (R≲2R⊕). It employs mixture models in a hierarchical framework and the dynesty (ascl:1809.013) nested sampler for parameter and evidence estimates. RhoPop includes a density-mass grid of water-rich compositions from water mass fraction (WMF) 0-1.0 and a grid of volatile-free rocky compositions over a core mass fraction (CMF) range of 0.006-0.95. Both grids were calculated using the ExoPlex mass-radius-composition calculator (ascl:2404.029).
RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.
RH 1.5D performs Zeeman multi-level non-local thermodynamical equilibrium calculations with partial frequency redistribution for an arbitrary amount of chemical species. Derived from the RH code and written in C, it calculates spectra from 3D, 2D or 1D atmospheric models on a column-by-column basis (or 1.5D). It includes optimization features to speed up or improve convergence, which are particularly useful in dynamic models of chromospheres. While one should be aware of its limitations, the calculation of spectra using the 1.5D or column-by-column is a good approximation in many cases, and generally allows for faster convergence and more flexible methods of improving convergence. RH 1.5D scales well to at least tens of thousands of CPU cores.
RGW is a lightweight R-language implementation of the affine-invariant Markov Chain Monte Carlo sampling method of Goodman & Weare (2010). The implementation is based on the description of the python package emcee (ascl:1303.002).
rfpipe supports Python-based analysis of radio interferometric data (especially from the Very Large Array) and searches for fast radio transients. This extends on the rtpipe library (ascl:1706.002) with new approaches to parallelization, acceleration, and more portable data products. rfpipe can run in standalone mode or be in a cluster environment.
Rfits reads and writes FITS images, tables, and headers. Written in R, Rfits works with all types of compressed images, and both ASCII and binary tables. It uses CFITSIO (ascl:1010.001) for all low level FITS IO, so in general should be as fast as other CFITSIO-based software. For images, Rfits offers fully featured memory mapping and on-the-fly subsetting (by pixel and coordinate) and sparse pixel sampling, allowing for efficient inspection of very large (larger than memory) images.
Residual Feature Extraction Pipeline carries out feature extraction of residual substructure within the residual images produced by popular galaxy structural-fitting routines such as GALFIT (ascl:1104.010) and GIM2D (ascl:1004.001). It extracts faint low surface brightness features by isolating flux-wise and area-wise significant contiguous pixels regions by rigorous masking routine. The code accepts the image cubes (original image, model image, residual image) and generates several data products, such as an image with extracted features, a source extraction based segmentation map, and the background sky mask and the residual extraction mask. It uses a Monte Carlo approach-based area threshold above which the extracted features are identified. The pipeline also creates a catalog entry indicating the surface brightness and its error.
RFCDE provides an implementation of random forests designed for conditional density estimation. It computes a kernel density estimate of y with nearest neighbor weightings defined by the location of the evaluation point x relative to the leaves in the random forest.
rfast ingests tables of opacities and generates synthetic spectra of worlds and retrieves real or simulated spectral observations. It can add noise, perform inverse modeling, and plot results. The tool can be applied to simulated and real observations spanning reflected-light, thermal emission, and transit transmission. Retrieval parameters can be toggled and parameters can be retrieved in log or linear space and adopt a Gaussian or flat prior.
REVOLVER reconstructs real space positions from redshift-space tracer data by subtracting RSD through FFT-based reconstruction (optional) and applies void-finding algorithms to create a catalogue of voids in these tracers. The tracers are normally galaxies from a redshift survey but could also be halos or dark matter particles from a simulation box. Two void-finding routines are provided. The first is based on ZOBOV (ascl:1304.005) and uses Voronoi tessellation of the tracer field to estimate the local density, followed by a watershed void-finding step. The second is a voxel-based method, which uses a particle-mesh interpolation to estimate the tracer density, and then uses a similar watershed algorithm. Input data files can be in FITS format, or ASCII- or NPY-formatted data arrays.
resonances identifies mean-motion resonances of small bodies. It uses the REBOUND integrator (ascl:1110.016) and automatically identifies two-body and three-body mean-motion resonance in the Solar system. The package can be used for other possible planetary systems, including exoplanets. resonances accurately differentiates different types of resonances (pure, transient, uncertain) and provides an interface for mass tasks, such as finding resonant areas in a planetary system. The software can also plot time series and periodograms.
RESOLVE is a Bayesian inference algorithm for image reconstruction in radio interferometry. It is optimized for extended and diffuse sources. Features include parameter-free Bayesian reconstruction of radio continuum data with a focus on extended and weak diffuse sources, reconstruction with uncertainty propagation dependent on measurement noise, and estimation of the spatial correlation structure of the radio astronomical source. RESOLVE provides full support for measurement sets and includes a simulation tool (if uv-coverage is provided).
RequiSim computes the Variance Weighted Overlap, which is a measure of the bias on the lensing signal from power spectrum modelling bias for any non-linear model. It assumes that the bias on the power spectrum is Gaussian with a covariance described by a user-provided knowledge matrix that describes the covariance in the bias on the power spectrum. The data from the Euclid wide-field survey are included.
REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshift.
reproject implements image reprojection (resampling) methods for astronomical images using various techniques via a uniform interface. Reprojection re-grids images from one world coordinate system to another (for example changing the pixel resolution, orientation, coordinate system). reproject works on celestial images by interpolation, as well as by finding the exact overlap between pixels on the celestial sphere. It can also reproject to/from HEALPIX projections by relying on the astropy-healpix package.
The RePrimAnd library supports numerical simulations of general relativistic magnetohydrodynamics. It provides methods for recovering primitive variables such as pressure and velocity from the variables evolved in quasi-conservative formulations. Further, it provides a general framework for handling matter equations of state (EOS). Python bindings are automatically built together with the library, provided a Python3 installation containing the pybind11 package is detected. RePrimAnd also provides an (experimental) thorn that builds the library within an Einstein Toolkit (ascl:1102.014) environment using the ExternalLibraries mechanism.
repack re-packs and compresses line-transition data for radiative-transfer calculations. It identifies the strong lines that dominate the spectrum from the large-majority of weaker lines, returning a binary line-by-line (LBL) file with the strong lines info (wavenumber, Elow, gf, and isotope ID), and an ASCII file with the combined contribution of the weaker lines compressed into a continuum extinction coefficient (in cm-1 amagat-1) as function of wavenumber and temperature.
reMASTERed reconstructs ensemble-averaged pseudo-$C_\ell$ to effectively exact precision, with significant improvements over traditional estimators for cases where the map and mask are correlated. The code can compute the results given an arbitrary map and mask; it can also compute the results in the ensemble average for certain types of threshold masks.
relxill self-consistently connects an angle-dependent reflection model constructed with XILLVER with the relativistic blurring code RELLINE (ascl:1505.021). It calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account.
relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).
RelicFast computes the scale-dependent bias induced by relics of different masses, spins, and temperatures, through spherical collapse and the peak-background split. The code determines halo bias in under a second, making it possible to include this effect for different cosmologies, and light relics, at little computational cost.
RELAGN creates spectral models for the calculation of AGN SEDs, ranging from the Optical/UV (outer accretion disc) to the Hard X-ray (Innermost X-ray Corona). The code is available in two languages, Python and Fortran. The Fortran version is written to be used with the spectral fitting software XSPEC (ascl:9910.005), and is the preferred version for analyzing X-ray spectral data. The Python version provides more flexibility for modeling. Whereas the Fortran version produces only a spectrum, the Python implementation can extract the physical properties of the system (such as the physical mass accretion rate, disc size, and efficiency parameters) since these are all stored as attributes within the model. Both versions require a working installation of HEASOFT (ascl:1408.004).
The C code ReionYuga generates the Epoch of Reionization (EoR) neutral Hydrogen (HI) field (successively the redshifted 21-cm signal) within a cosmological simulation box using semi-numerical techniques. The code is based on excursion set formalism and uses a three parameter model. It is designed to work with PMN-body (ascl:2107.003) and FoF-Halo-finder (ascl:2107.004).
RegPT computes the power spectrum in flat wCDM class models based on the RegPT treatment when provided with either of transfer function or matter power spectrum. It then gives the multiple-redshift outputs for power spectrum, and optionally provides correlation function data. The Fortran code has two major options for power spectrum calculations; -fast, which quickly computes the power spectrum at two-loop level (typically a few seconds) using the pre-computed data set of PT kernels for fiducial cosmological models, and -direct, in which the code first applies the fast method, and then follows the regularized expression for power spectrum to directly evaluate the multi-dimensional integrals. The output results are the power spectrum of direct calculation and difference of the results between fast and direct method. The code also gives the data set of PT diagrams necessary for power spectrum calculations from which the power spectrum can be constructed.
RegiStax is software for alignment/stacking/processing of images; it was released over 10 years ago and continues to be developed and improved. The current version is RegiStax 6, which supports the following formats: AVI, SER, RFL (RegiStax Framelist), BMP, JPG, TIF, and FIT. This version has a shorter and simpler processing sequence than its predecessor, and optimizing isn't necessary anymore as a new image alignment method optimizes directly. The interface of RegiStax 6 has been simplified to look more uniform in appearance and functionality, and RegiStax 6 now uses Multi-core processing, allowing the user to have up to have multiple cores(recommended to use maximally 4) working simultaneous during alignment/stacking.
Reflex provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. It allows graphically specifying the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches. It eases inspection of the intermediate and final data products and allows repetition of selected processing steps to optimize the data reduction. The data organization necessary to reduce the data is built into the system and is fully automatic; advanced users can plug their own modules and steps into the data reduction sequence. Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so users can immediately start experimenting and familiarize themselves with the system.
redvsblue measures a precise redshift given a broad redshift prior. For each emission line or the full spectrum, the software runs a coarse chi2 scan as a function of redshift, using the input PCA+broadband Legendre polynomials, and finds three local minima, and does a finer chi2 scan in each minima. It then defines the global PCA redshift (ZPCA) from the best minimum of the three; ZPCA is a redshift estimator biased toward the computation of the PCA. The redshift of the line (ZLINE) is defined from the maximum of the best-fit model of the line. ZLINE is a redshift estimator un-biased toward the velocity of the line, but can be biased with respect to the cosmological redshift. The output is a FITS file, with one HDU per redshift type.
The astronomical data reduction package REDUCEME reduces and analyzes long-slit spectroscopic data. The package uses the unformatted FORTRAN raw data format, so requires FITS files be transformed to REDUCEME format; the reverse operation (from REDUCEME to FITS format) is also available. The package is a set of programs written in FORTRAN 77 and includes shell scripts (using the C shell syntax) to perform routine tasks; it can be extended by the inclusion of external programs. REDUCEME uses PGPLOT (ascl:1103.002) for line plots and images, and a subset of subroutines, called BUTTON, enables the user to communicate interactively with the image display employing graphic buttons. One advantage of using REDUCEME is that for each image an associated error image can also be processed throughout the reduction process, allowing for a careful control of the error propagation.
REDSPEC is an IDL based reduction package designed with NIRSPEC in mind though can be used to reduce data from other spectrographs as well. REDSPEC accomplishes spatial rectification by summing an A+B pair of a calibration star to produce an image with two spectra; the image is remapped on the basis of polynomial fits to the spectral traces and calculation of gaussian centroids to define their separation, producing straight spectral traces with respect to the detector rows. The raw images are remapped onto a coordinate system with uniform intervals in spatial extent along the slit and in wavelength along the dispersion axis.
redshifts collects all unique spectroscopic redshifts from online databases such as VizieR and NED. It can perform a flexible search within a radius of a given set of (RA, DEC) coordinates and uses column names and descriptions (including UCD keywords) to identify columns containing spectroscopic redshifts or velocities. It weeds out photometric redshifts and duplicates and returns a unique list of best spectroscopic redshift measurements. redshifts can be used standalone from the terminal, and can take a number of optional command line arguments, or from Python.
The RedPipe collection of Python scripts performs optical photometric and spectroscopic data reduction. There are scripts on preprocessing, photometry, calibration, spectroscopy, analysis and plotting. The photometry and spectroscopy codes use pyraf (ascl:1207.011) and hence require an already existing installation of Image Reduction and Analysis Facility (IRAF, ascl:9911.002).
Time series are commonly unevenly spaced in time make it difficult to obtain an accurate estimate of their typical red-noise spectrum. REDFIT overcomes this problem by fitting a first-order autoregressive (AR1) process directly to unevenly spaced time series. Hence, interpolation in the time domain and its inevitable bias can be avoided. The program can be used to test if peaks in the spectrum of a time series are significant against the red-noise background from an AR1 process.
Redback provides end-to-end interpretation and parameter estimation of electromagnetic transients. Using data downloaded by the code or provided by the user, the code processes the data into a homogeneous transient object. Redback implements several different types of electromagnetic transients models, ranging from simple analytical models to numerical surrogates, fits models implemented in the package or provided by the user, and plots lightcurves. The code can also be used as a tool to simulate realistic populations without having to fit anything, as models are implemented as functions and can be used to simulate populations. Redback uses Bilby (ascl:1901.011) for sampling and can easily switch samplers and likelihoods.
RECFAST calculates the recombination of H, HeI, and HeII in the early Universe; this involves a line-by-line treatment of each atomic level. It differs in comparison to previous calculations in two major ways: firstly, the ionization fraction x_e is approximately 10% smaller for redshifts <~800, due to non-equilibrium processes in the excited states of H, and secondly, HeI recombination is much slower than previously thought, and is delayed until just before H recombines. RECFAST enables fast computation of the ionization history (and quantities such as the power spectrum of CMB anisotropies which depend on it) for arbitrary cosmologies.
REBOUNDx incorporates additional physics into REBOUND (ascl:1110.016) simulations. Users can add effects from a list of pre-implemented astrophysical forces or contribute new ones. The main code is written in C, and a Python wrapper is provided for interfacing with other libraries. The REBOUNDx source code is machine independent and a binary format to save REBOUNDx configurations interfaces with the SimulationArchive class in REBOUND, making it possible to share and reproduce results bit by bit.
REBOUND is a multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond.
REBOUND comes with symplectic integrators WHFast, WHFastHelio, SEI, and LEAPFROG. It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles.
The freely available Monte Carlo code REAS for modelling radio emission from cosmic ray air showers has evolved to include the full complexity of air shower physics. REAS3 improves the calculation of the emission contributions, which was not fully consistent in earlier versions of REAS, by incorporating the missing radio emission due to the variation of the number of charged particles during the air shower evolution using an "end-point formalism". With the inclusion of these emission contributions, the structure of the simulated radio pulses changes from unipolar to bipolar, and the azimuthal emission pattern becomes nearly symmetric. Remaining asymmetries can be explained by radio emission due to the variation of the net charge excess in air showers, which is automatically taken into account in the new implementation. REAS3 constitutes the first self-consistent time-domain implementation based on single particle emission taking the full complexity of air shower physics into account, and is freely available for all interested users. REAS3 has been superseded by CoREAS (ascl:1406.003).
RealSim generates survey-realistic synthetic images of galaxies from hydrodynamical simulations of galaxy formation and evolution. The main functionality of this code inserts "idealized" simulated galaxies into Sloan Digital Sky Survey (SDSS) images in such a way that the statistics of sky brightness, resolution, and crowding are matched between simulated galaxies and observed galaxies in the SDSS. The suite accepts idealized synthetic images in calibrated AB surface brightnesses and rebins them to the desired redshift and CCD angular scale; RealSim can add Poisson noise, if desired, by adopting generic values of photometric calibrations in survey fields. Images produced by the suite can be inserted into real image fields to incorporate real skies, PSF degradation, and contamination by neighboring sources in the field of view. The RealSim methodology can be applied to any existing galaxy imaging survey.
RealSim-IFS generates survey-realistic integral-field spectroscopy (IFS) observations of galaxies from numerical simulations of galaxy formation. The tool is designed primarily to emulate current and experimental observing strategies for IFS galaxy surveys in astronomy, and can reproduce both the flux and variance propagation of real galaxy spectra to cubes. RealSim-IFS has built-in functions supporting SAMI and MaNGA IFU footprints, but supports any fiber-based IFU design, in general.
REALMAF is a maximum-a-posteriori code to measure magnetic power spectra from Faraday rotation data. It uses a sophisticated model for the magnetic autocorrelation in real space, thus alleviating the need for simplifying assumptions in the processing. REALMAF treats the divergence relation of the magnetic field with a multiplicative factor in Fourier space, which allows modeling the magnetic autocorrelation as a spherically symmetric function.
ReadPDS reads in and visualizes data from the Planetary Data System in PDS4 format. Tools are available in Python as PDS4Viewer and in IDL as PDS4-IDL. These tools support PDS4 data, including images, spectra, and arrays and provide multiple views of the data, including summary, image, plot, and table views in addition to easy access to metadata such as structure labels and spectral characteristics.
ReACT extends the Copter (ascl:1304.022) and MG-Copter packages, which calculate redshift and real space large scale structure observables for a wide class of gravity and dark energy models. Additions to Copter include spherical collapse in modified gravity, halo model power spectrum for general theories, and real and redshift space LSS 2 point statistics for modified gravity and dark energy. ReACT also includes numerical perturbation theory kernel solvers, real space bispectra in modified gravity, and a numerical perturbation theory kernel solver up to 4th order for 1-loop bispectrum.
RDGEN is a collection of routines for data handling, display, and adjusting, with a facility which helps to set up files for using with VPFIT (ascl:1408.015); it is included in the VPFIT distribution file. It is useful for setting region boundaries and initial guesses for VPFIT, for displaying the accumulated results, for examining by eye particular redshift systems and fits to them, testing that the error array is a true reflection of the rms scatter in the data, comparing spectra and generally examining and even modifying the data.
RCR provides advanced outlier rejection that is easy to use. Both sigma clipping, the simplest form of outlier rejection, and traditional Chauvenet rejection make use of non-robust quantities, the mean and standard deviation, which are sensitive to the outliers that they are being used to reject. This limits such techniques to samples with small contaminants or small contamination fractions. RCR instead first makes use of robust replacements for the mean, such as the median and the half-sample mode, and similar robust replacements for the standard deviation. RCR has been carefully calibrated and can be applied to samples with both large contaminants and large contaminant fractions (sometimes in excess of 90% contaminated).
rcosmo provides information processing, visualization, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data stored in or converted to HEALPix coordinates. The package has more than 100 different functions, and can perform spherical geometry, manipulate CMB and other spherical data, and visualize HEALPix data. rcosmo can also perform statistical analysis of CMB and spherical data, and transforme spherical data in cartesian and geographic coordinates into HEALPix format.
The Roman Coronagraph Exposure Time Calculator (Roman_Coronagraph_ETC for short) is the public version of the exposure time calculator of the Coronagraph Instrument aboard the Nancy Grace Roman Space Telescope funded by NASA. The methods used to estimate the integration times are based upon peer reviewed research articles (see Bibliography) and a collection of instrumental and modeling parameters of both the Coronagraph Instrument and the Nancy Grace Roman Space Telescope. The code is written in python. Visit https://github.com/hsergi/Roman_Coronagraph_ETC for more information.
The RC3 mosaicking pipeline creates color composite images and scientifically-calibrated FITS mosaics in all SDSS imaging bands for all the RC3 galaxies that lie within the survey’s footprint and on photographic plates taken by the Digitized Palomar Observatory Sky Survey (DPOSS) for the B, R, IR bands. The pipeline uses SExtractor (ascl:1010.064) for extraction and STIFF (ascl:1110.006) to generating color images. The mosaicking program uses a recursive algorithm for positional update first to correct the positional inaccuracy inherent in the RC3 catalog, then conducts the mosaicking procedure using the Astropy (ascl:1304.002) wrapper to IPAC's Montage (ascl:1010.036) software. The program is generalized into a pipeline that can be easily extended to future survey data or other source catalogs; an online interface is available at
http://lcdm.astro.illinois.edu/data/rc3/search.html.
raynest, written in Python, computes Bayesian evidences and probability distributions using parallel chains.
The 3-D convection code Rayleigh enables study of dynamo behavior in spherical geometry. It evolves the incompressible and anelastic MHD equations in spherical geometry using a pseudo-spectral approach. Rayleigh employs spherical harmonics in the horizontal direction and Chebyshev polynomials in the radial direction and has undergone extensive accuracy testing.
Time-distance helioseismology aims to measure and interpret the travel times of waves propagating between two points located on the solar surface. The travel times are then inverted to infer sub-surface properties that are encoded in the measurements. The trajectory of the waves generally follows that of the infinite-frequency ray path, although they are sensitive to perturbations off of this path. Finite-frequency sensitivity kernels are thus needed to give more accurate inversion results.
Ray tracing codes calculate travel time kernels for a ray. There are three main codes which calculate the group time as a function of distance, the ray paths as well as the phase and group times along the path, and the ray kernels for the sound speed squared.
RATRAN is a numerical method and computer code to calculate the radiative transfer and excitation of molecular lines. The approach is based on the Monte Carlo method, and incorporates elements from Accelerated Lambda Iteration. It combines the flexibility of the former with the speed and accuracy of the latter. Convergence problems known to plague Monte Carlo methods at large optical depth (>100) are avoided by separating local contributions to the radiation field from the overall transfer problem. The random nature of the Monte Carlo method serves to verify the independence of the solution to the angular, spatial, and frequency sampling of the radiation field. This allows the method to be used in a wide variety of astrophysical problems without specific adaptations. Moreover, the code can be applied to all atoms or molecules for which collisional rate coefficients are available and any axially symmetric source model. Continuum emission and absorption by dust is explicitly taken into account but scattering is neglected. We expect this program to be an important tool in analyzing data from present and future infrared and (sub-)millimeter telescopes.
rate computes thermochemical-equilibrium abundances for a H-C-N-O system with known pressure, temperature, and elemental abundances. The output abundances are H2O, CH4, CO, CO2, NH3, C2H2, C2H4, HCN, and N2, H2, H, and He.
RASSINE normalizes merged 1D spectra using the concept of convex hulls. The code uses six parameters that can be fine-tuned, and provides an interactive interface, including graphical feedback, for easily choosing the parameters. RASSINE can also provide a first guess for the parameters that are derived directly from the merged 1D spectrum based on previously performed calibrations.
The massively parallel code RASCAS (RAdiative SCattering in Astrophysical Simulations) performs radiative transfer on an adaptive mesh with an octree structure using the Monte Carlo technique. The code features full MPI parallelization, domain decomposition, adaptive load-balancing, and a standard peeling algorithm to construct mock observations. The radiative transport of resonant line photons through different mixes of species (e.g. HI, SiII, MgII, FeII), including their interaction with dust, is implemented in a modular fashion to allow new transitions to be easily added to the code. RASCAS may also be used to propagate photons at any wavelength (e.g. stellar continuum or fluorescent lines), and has been designed to be easily customizable and to process simulations of arbitrarily large sizes on large supercomputers.
RascalC quickly estimates covariance matrices from two- or three-point galaxy correlation functions. Given an input set of random particle locations and a two-point correlation function (or input set of galaxy positions), RascalC produces an estimate of the associated covariance for a given binning strategy, with non-Gaussianities approximated by a ‘shot-noise-rescaling’ parameter. For the 2PCF, the rescaling parameter can be calibrated by dividing the particles into jackknife regions and comparing sample to theoretical jackknife covariance. RascalC can also be used to compute Legendre-binned covariances and cross-covariances between different two-point correlation functions.
RAPTOR produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime, is hardware-agnostic and may be compiled and run on both GPUs and CPUs. RAPTOR is useful for studying accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fastlight and slow-light paradigms.
Rapster (RAPid cluSTER evolution) models binary black hole population synthesis and the evolution of star clusters based on simple, yet realistic prescriptions. The code can generate large populations of dynamically formed binary black holes. Rapster uses SEVN (ascl:2206.019) to model the initial black hole mass spectrum and PRECESSION (ascl:1611.004) to model the mass, spin, and gravitational recoil of merger remnants.
RAPP is a robust automated photometry pipeline for blurred images. RAPP requires that the observed images contain at least three stars and applies bias, dark, and flat field correction on blurred observational raw data; it also uses the median of adjacent pixels to eliminate outliers. It also uses star enhancement and robust image matching, extracts stars, and performs aperture photometry to extract information from blurred images.
RAPOC (Rosseland and Planck Opacity Converter) uses molecular absorption measurements (i.e., wavelength-dependent opacities) for a given temperature, pressure, and wavelength range to calculate Rosseland and Planck mean opacities for use in atmospheric modeling. The code interpolates between discrete data points and can use ExoMol and DACE data, or any user-defined data provided in a readable format. RAPOC is simple, straightforward, and easily incorporated into other codes.
RAPID (Real-time Automated Photometric IDentification) classifies multiband photometric light curves into several different transient classes. It uses a deep recurrent neural network to produce time-varying classifications, and because it does not rely on deriving computationally expensive features from the data, it is well suited for processing alerts that wide-field surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST) will produce.
RandomQuintessence integrates the Klein-Gordon and Friedmann equations for quintessence models with random initial conditions and functional forms for the potential. Quintessence models generically impose non-trivial structure on observables like the equation of state of dark energy. There are three main modules; montecarlo_nompi.py sets initial conditions, loops over a bunch of randomly-initialised models, integrates the equations, and then analyses and saves the resulting solutions for each model. Models are defined in potentials.py; each model corresponds to an object that defines the functional form of the potential, various model parameters, and functions to randomly draw those parameters. All of the equation-solving code and methods to analyze the solution are kept in solve.py under the base class DEModel(). Other files available analyze and plot the data in a variety of ways.
The ramses2hsim pipeline converts a simulated galaxy in a RAMSES (ascl:1011.007) output into an 3D input data cube for HSIM (ascl:1912.006). The code incorporates gas kinematics (both bulk and turbulence), line emission and line width for Hα, and accounts for dust extinction.
A new N-body and hydrodynamical code, called RAMSES, is presented. It has been designed to study structure formation in the universe with high spatial resolution. The code is based on Adaptive Mesh Refinement (AMR) technique, with a tree based data structure allowing recursive grid refinements on a cell-by-cell basis. The N-body solver is very similar to the one developed for the ART code (Kravtsov et al. 97), with minor differences in the exact implementation. The hydrodynamical solver is based on a second-order Godunov method, a modern shock-capturing scheme known to compute accurately the thermal history of the fluid component. The accuracy of the code is carefully estimated using various test cases, from pure gas dynamical tests to cosmological ones. The specific refinement strategy used in cosmological simulations is described, and potential spurious effects associated to shock waves propagation in the resulting AMR grid are discussed and found to be negligible. Results obtained in a large N-body and hydrodynamical simulation of structure formation in a low density LCDM universe are finally reported, with 256^3 particles and 4.1 10^7 cells in the AMR grid, reaching a formal resolution of 8192^3. A convergence analysis of different quantities, such as dark matter density power spectrum, gas pressure power spectrum and individual haloes temperature profiles, shows that numerical results are converging down to the actual resolution limit of the code, and are well reproduced by recent analytical predictions in the framework of the halo model.
RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.
The RADEX Line Fitter provides a Python 3 interface that calls RADEX (ascl:1010.075) to make a non-LTE fit to a set of observed lines and derive the column density of the molecule that produced the lines and optionally also the molecular hydrogen (H2) number density or the kinetic temperature of the molecule. This code requires RADEX to be installed locally.
The RAiSERed (Radio AGN in Semi-analytic Environments: Redshifts) code implements the RAiSE analytic model for Fanaroff-Riley type II sources, using a Bayesian prior for their host cosmological environments, to measure the redshift of active galactic nuclei lobes based on radio-frequency observations. The Python code provides a class for the user to store measured attributes for each radio source, and to which model derived redshift probability density functions are returned. Systematic uncertainties in the analytic model can be calibrated by specifying a subset of radio sources with spectroscopic redshifts. Functions are additionally provided to plot the redshift probability density functions and assess the success of the model calibration.
Rainbow is a black-body parametric model for transient light curves. It uses Bazin function as a model for bolometric flux evolution and a logistic function for the temperature evolution; it provides seven fit parameters and goodness of fit (reduced χ2) and is well-suited for transient objects. Also included is RainbowRisingFit, suitable for rising transient objects, which offers six fit parameters. It is based on a rising sigmoid bolometric flux and a sigmoid temperature evolution. These implementations are implemented in the light-curve processing toolbox (ascl:2107.001) for Python.
Raga (Relaxation in Any Geometry) is a Monte Carlo simulation method for gravitational dynamics of non-spherical stellar systems. It is based on the SMILE software (ascl:1308.001) for orbit analysis. It can simulate stellar systems with a much smaller number of particles N than the number of stars in the actual system, represent an arbitrary non-spherical potential with a basis-set or spline spherical-harmonic expansion with the coefficients of expansion computed from particle trajectories, and compute particle trajectories independently and in parallel using a high-accuracy adaptive-timestep integrator. Raga can also model two-body relaxation by local (position-dependent) velocity diffusion coefficients (as in Spitzer's Monte Carlo formulation) and adjust the magnitude of relaxation to the actual number of stars in the target system, and model the effect of a central massive black hole.
Radynversion infers solar atmospheric properties during a solar flare. The code is based on an Invertible Neural Network (INN) that is trained to learn an approximate bijective mapping between the atmospheric properties of electron density, temperature, and bulk velocity (all as a function of altitude), and the observed Hα and Ca II λ8542 line profiles. As information is lost in the forward process of radiation transfer, this information is injected back into the model during the inverse process by means of a latent space; the training allows this latent space to be filled using an n-dimensional unit Gaussian distribution, where n is the dimensionality of the latent space. The code is based on a model trained by simulations made by RADYN, a 1D non-equilibrium radiation hydrodynamic model with good optically thick radiation treatment that does not consider magnetic effects.
RadVel models Keplerian orbits in radial velocity (RV) time series. The code is written in Python with a fast Kepler's equation solver written in C. It provides a framework for fitting RVs using maximum a posteriori optimization and computing robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel can perform Bayesian model comparison and produces publication quality plots and LaTeX tables.
RADTRAN calculates the transmission, absorption or emission spectra emitted by planetary atmospheres using either line-by-line integration, spectral band models, or 'correlated-K' approaches. Part of the NEMESIS project (ascl:2210.009), the code also incorporates both multiple scattering and single scattering calculations. RADTRAN is general purpose and not hard-wired to any specific planet.
The RADPACK package, written in IDL, contains both data and software. The data are the constraints on the cosmic microwave background (CMB) angular power spectrum from all published data as of 9/99. A unique aspect of this compilation is that the non-Gaussianity of the uncertainties has been characterized. The most important program in the package, written in the IDL language, is called chisq.pro and calculates $chi^2$, for an input power spectrum, according to the offset log-normal form of Bond, Jaffe and Knox (astro-ph/9808264). chisq.pro also outputs files that are useful for examining the residuals (the difference between the predictions of the model and the data). There is an sm macro for plotting up the residuals, and a histogram of the residuals. The histogram is actually for the 'whitenend' residuals ---a linear combination of the residuals which leaves them uncorrelated and with unit variance. The expectation is that the whitened residuals will be distributed as a Gaussian with unit variance.
radon performs a Fast Radon Transform (FRT) on image data for streak detection. The software finds short streaks and multiple streaks, convolves the images with a given PSF, and tracks the best S/N results and find a automatic threshold. It also calculates the streak parameters in the input image and the streak parameters in the input image. radon has a simulator that can make multiple streaks of different intensities and coordinates, and can simulate random streaks with parameters chosen uniformly in a user-defined range.
RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.
RADMC-3D is a software package for astrophysical radiative transfer calculations in arbitrary 1-D, 2-D or 3-D geometries. It is mainly written for continuum radiative transfer in dusty media, but also includes modules for gas line transfer and gas continuum transfer. RADMC-3D is a new incarnation of the older software package RADMC (ascl:1108.016).
RADLite is a raytracer that is optimized for producing infrared line spectra and images from axisymmetric density structures, originally developed to function on top of the dust radiative transfer code RADMC. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. It includes functionality for simulating telescopic images for optical/IR/midIR/farIR telescopes. It takes advantage of multi-threaded CPUs and includes an escape-probability non-LTE module.
RADIS resolves spectra with millions of lines within seconds on a single-CPU and can be GPU-accelerated. It supports HITRAN, HITEMP and ExoMol out-of-the-box (auto-download), and therefore is particularly suitable to compute cross-sections or transmission spectra at high-temperature. RADIS includes equilibrium calculations for all species, and non-LTE for CO2 and CO.
radiowinds calculates the radio emission produced by the winds around stars. The code calculates thermal bremsstrahlung that is emitted from the wind, which depends directly on the density and temperature of the stellar wind plasma. The program takes input data in the form of an interpolated 3d grid of points (of the stellar wind) containing position, temperature and density data. From this it calculates the thermal free-free emission expected from the wind at a range of user-defined frequencies.
This paper introduces RadioSunPy, an open-source Python package developed for accessing, visualizing, and analyzing multi-band radio observations of the Sun from the RATAN-600 solar complex. The advancement of observational technologies and software for processing and visualizing spectro-polarimetric microwave data obtained with the RATAN-600 radio telescope opens new opportunities for studying the physical characteristics of solar plasma at the levels of the chromosphere and corona. These levels remain some difficult to detect in the ultraviolet and X-ray ranges. The development of these methods allows for more precise investigation of the fine structure and dynamics of the solar atmosphere, thereby deepening our understanding of the processes occurring in these layers. The obtained data also can be utilized for diagnosing solar plasma and forecasting solar activity. However, using RATAN-600 data requires extensive data processing and familiarity with the RATAN-600. The package offers comprehensive data processing functionalities, including direct access to raw data, essential processing steps such as calibration and quiet Sun normalization, and tools for analyzing solar activity. This includes automatic detection of local sources, identifying them with NOAA (National Oceanic and Atmospheric Administration) active regions, and further determining parameters for local sources and active regions. By streamlining data processing workflows, RadioSunPy enables researchers to investigate the fine structure and dynamics of the solar atmosphere more efficiently, contributing to advancements in solar physics and space weather forecasting.
RadioSED uses nested sampling to perform a Bayesian analysis of radio SEDs constructed from radio flux density measurements obtained as part of large area surveys (or in some limited cases, as part of targeted followup campaigns). It is a pure Python implementation, and is essentially a wrapper around Bilby (ascl:1901.011), the Bayesian inference library. RadioSED uses dynesty (ascl:1809.013) to perform the sampling steps, though other samplers could also be used. Users can make use of a pre-defined set of models and surveys from which to draw flux density measurements, or they can define their own models and provide their own input flux density measurements. All flux density measurements are referenced against the RACS-LOW survey, and source names and IDs from the survey catalogue are used as identifiers.
RadioLensfit measures star-forming galaxy ellipticities using a Bayesian model fitting approach. The software uses an analytical exponential Sersic model and works in the visibility domain avoiding Fourier Transform. It also simulates visibilities of observed SF galaxies given a source catalog and Measurement Sets containing the description of the radio interferometer and of the observation. It provides both serial and MPI versions.
RadioFisher is a Fisher forecasting code for cosmology with intensity maps of the redshifted 21cm emission line of neutral hydrogen. It uses CAMB (ascl:1102.026) to produce a high-resolution P(k) for the fiducial cosmology when the code is first run and caches the results, making subsequent runs faster and more efficient. It includes specifications for a large number of experiments, as well as survey parameters and the fiducial cosmological parameters, and can run a forecast for a galaxy redshift survey rather than an IM survey. RadioFisher also contains a number of options for plotting results.
RADICAL is a multi-purpose 2-D radiative transfer code for axi-symmetric circumstellar (or circum-black-hole) envelopes /disks / tori etc. It has been extensively tested and found reliable and accurate. The code has recently been supplemented with a Variable Eddington Tensor module which enables it to solve dust continuum radiative transfer problems from very low up to extremely high optical depths with only a few (about 7) iterations at most.
RadFil is a radial density profile building and fitting tool for interstellar filaments. The software uses an image array and (in most cases) a boolean mask array that delineates the boundary of the filament to build and fit a radial density profile for the filaments.
The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. Radex calculates the intensities of atomic and molecular lines produced in a uniform medium, based on statistical equilibrium calculations involving collisional and radiative processes and including radiation from background sources. Optical depth effects are treated with an escape probability method. The program makes use of molecular data files maintained in the Leiden Atomic and Molecular Database (LAMDA), which will continue to be improved and expanded. The performance of the program is compared with more approximate and with more sophisticated methods. An Appendix provides diagnostic plots to estimate physical parameters from line intensity ratios of commonly observed molecules. This program should form an important tool in analyzing observations from current and future radio and infrared telescopes.
raccoon implements the cross-correlation function (CCF) method. It builds weighted binary masks from a stellar spectrum template, computes the CCF of stellar spectra with a mask, and derives radial velocities (RVs) and activity indicators from the CCF. raccoon is mainly implemented in Python 3; it also uses some Fortran subroutines that are called from Python.
rec-2d models the distribution of water vapor in protoplanetary disks. Given a distribution of gas and dust, rac-2d first solves the dust temperature distribution with a Monte Carlo method and then solves the gas temperature distribution and chemical composition. Although the geometry is symmetric with respect to rotation around the central axis and reflection about the midplane, the photon propagation is done in full three dimensions. After establishing the dust temperature distribution, the disk chemistry is evolved for 1 Myr; the heating and cooling processes are coupled with chemistry, allowing the gas temperature to be evolved in tandem with chemistry based on the heating and cooling rates.
Rabacus performs analytic radiative transfer calculations in simple geometries relevant to cosmology and astrophysics; it also contains tools to calculate cosmological quantities such as the power spectrum and mass function. With core routines written in Fortran 90 and then wrapped in Python, the execution speed is thousands of times faster than equivalent routines written in pure Python.
R3D was developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk.
R3D unifies the reduction techniques for the different IFS instruments to a single one, in order to allow the general public to reduce different instruments data in an homogeneus, consistent and simple way. Although still in its prototyping phase, it has been proved to be useful to reduce PMAS (both in the Larr and the PPAK modes), VIMOS and INTEGRAL data. The current version has been coded in Perl, using PDL, in order to speed-up the algorithm testing phase. Most of the time critical algorithms have been translated to C, and it is our intention to translate all of them. However, even in this phase R3D is fast enough to produce valuable science frames in reasonable time.
r-Java performs r-process nucleosynthesis calculations. It has a simple graphical user interface and is carries out nuclear statistical equilibrium (NSE) as well as static and dynamic r-process calculations for a wide range of input parameters. r-Java generates an abundance pattern based on a general entropy expression that can be applied to degenerate as well as non-degenerate matter, which allows tracking of the rapid density and temperature evolution of the ejecta during the initial stages of ejecta expansion.
QYMSYM is a GPU accelerated 2nd order hybrid symplectic integrator that identifies close approaches between particles and switches from symplectic to Hermite algorithms for particles that require higher resolution integrations. This is a parallel code running with CUDA on a video card that puts the many processors on board to work while taking advantage of fast shared memory.
Qwind3 models radiation-driven winds originating from accretion discs. An improvement over Qwind (ascl:2112.013), it derives the wind initial conditions and has significantly improved ray-tracing to calculate the wind absorption self consistently given the extended nature of the UV emission. It also corrects the radiation flux for relativistic effects, and assesses the impact of this on the wind velocity.
Qwind simulates the launching and acceleration phase of line-driven winds in the context of AGN accretion discs. The wind is modeled as a set of streamlines originating on the surface of the AGN accretion disc, and evolved following their equation of motion, given by the balance between radiative and gravitational force.
Quokka is a two-moment radiation hydrodynamics code that uses the piecewise-parabolic method, with AMR and subcycling in time. It runs on CPUs (MPI+vectorized) or NVIDIA GPUs (MPI+CUDA) with a single-source codebase. The hydrodynamics solver is an unsplit method, using the piecewise parabolic method for reconstruction in the primitive variables, the HLLC Riemann solver for flux computations, and a method-of-lines formulation for the time integration. The order of reconstruction is reduced in zones where shocks are detected in order to suppress spurious oscillations in strong shocks. Quokka's radiation hydrodynamics formulation is based on the mixed-frame moment equations. The radiation subsystem is coupled to the hydrodynamic subsystem via operator splitting, with the hydrodynamic update computed first, followed by the radiation update, with the latter update including the source terms corresponding to the radiation four-force applied to both the radiation and hydrodynamic variables. A method-of-lines formulation is also used for the time integration, with the time integration done by the same integrator chosen for the hydrodynamic subsystem.
QuickSip quickly projects Survey Image Properties (e.g. seeing, sky noise, airmass) into Healpix sky maps with flexible weighting schemes. It was initially designed to produce observing condition "systematics" maps for the Dark Energy Survey (DES), but will work with any multi-epoch survey and images with valid WCS. QuickSip can reproduce the Mangle (ascl:1202.005) magnitude limit maps at sub-percent accuracy but doesn't support additional masks (stars, trails, etc), in which case Mangle should be used. Thus, QuickSip can be seen as a simplified Mangle to project image properties into Healpix maps in a fast and more flexible manner.
QuickReduce quickly reduces data for ODI and is optimized for a first data inspection during acquisition at the the telescope. When installed on the ODI observer's interface, QuickReduce, coded in Python, performs all basic reduction steps as well as more advanced corrections for pupil-ghost removal, fringe correction and masking of persistent pixels and is capable enough for science-quality data reductions. It can also add an accurate astrometric WCS solution based on the 2MASS reference system as well as photometric zeropoint calibration for frames covered by the SDSS foot-print. The pipeline makes use of multiple CPU-cores wherever possible, resulting in an execution time of only a few seconds per frame, thus offering the ODI observer a convenient way to closely monitor data quality.
QUICKCV is an IDL sample variance/cosmic variance calculator for some geometry for galaxies in given stellar mass bins as a function of mean redshift and redshift bin size.
Quickclump finds clumps in a 3D FITS datacube. It is a fast, accurate, and automated tool written in Python. Though Quickclump is primarily intended for decomposing observations of interstellar clouds into individual clumps, it can also be used for finding clumps in any 3D rectangular data.
QuickCBC is a robust end-to-end low-latency Bayesian parameter estimation algorithm for binary mergers. It reads in calibrated strain data, performs robust on-source spectral estimation, executes a rapid search for compact binary coalescence (CBC) signals, uses wavelet de-noising to subtract any glitches from the search residuals, produces low-latency sky maps and initial parameter estimates, followed by full Bayesian parameter estimation.
QUESTFIT fit the Spitzer mid-infrared spectra of the QUEST (Quasar ULIRG and Evolution STudy) sample. It uses two PAH templates atop an extincted and absorbed continuum model to fit the mid-IR spectra of galaxies that are heavily-absorbed. It also fits AGN with silicate models. The current version of QUESTFIT is optimized for processing spectra from the CASSIS (Combined Atlas of Sources with Spitzer IRS Spectra) portal to produce PAH fluxes for heavily absorbed sources.
qubefit fits an observed data cube to generate a model cube from a user-defined emission model. The model cube is convolved with the observed beam, after which residuals between the convolved model and the observed data cube are minimized using a Markov chain Monte Carlo approach. qubefit also determines estimates of the uncertainty for each parameter of the model.
QuasarNET is a deep convolutional neural network that performs classification and redshift estimation of astrophysical spectra with human-expert accuracy. It is trained on data of low signal-to-noise and medium resolution, typical of current and future astrophysical surveys, and could be easily applied to classify spectra from current and upcoming surveys such as eBOSS, DESI and 4MOST.
QuartiCal is the successor to CubiCal (ascl:1805.031). It implements a suite of fast radio interferometric calibration routines exploiting complex optimization. Unlike CubiCal, QuartiCal allows for any available Jones terms to be combined. It can also be deployed on a cluster.
QuantifAI reconstructs radio interferometric images using scalable Bayesian uncertainty quantification relying on data-driven (learned) priors. It relies on the convex accelerated optimization algorithms in CRR (ascl:2401.016) and is built on top of PyTorch. QuantifAI also includes MCMC algorithms for posterior sampling.
QtClassify is a GUI that helps classify emission lines found in integral field spectroscopic data. Input needed is a datacube as well as a catalog with emission lines and a signal-to-noise cube, such at that created by LSDCat (ascl:1612.002). The main idea is to take each detected line and guess what line it could be (and thus the redshift of the object). You would expect to see other lines that might not have been detected but are visible in the cube if you know where to look, which is why parts of the spectrum are shown where other lines are expected. In addition, monochromatic layers of the datacube are displayed, making it easy to spot additional emission lines.
QSOSIM realistically simulates high-resolution quasar spectra using a set of basic parameters (magnitude, redshift, and spectral index). The simulated spectra include physical effects seen in the real data: the power-law quasar continuum, the narrow and broad emission lines, absorption by neutral hydrogen (HI) in the Lyman alpha forest, and heavy element transitions along the line of sight. The code uses empirical HI column density, redshift, and b-parameter distributions to simulate absorption in the Lyman alpha forest. All absorbers with column densities larger than log [N(HI)/cm2]>17 have heavy element absorption, for which the column densities are calculated using the plasma simulation code CLOUDY (ascl:9910.001) and the radiative transfer code CUBA. The code also simulates the clustering of the intergalactic medium along the line of sight, the proximity effect of the quasar, and the effect of the cosmic ultraviolet background. Each simulated spectrum is saved in a single FITS file in as a noiseless R=100000 spectrum, as well as a spectrum convolved with Sloan Digital Sky Survey resolution (R=10000) and realistic noise.
The QSOGEN collection of Python code models quasar colors, magnitudes and SEDs. It implements an empirically-motivated parametric model to efficiently account for the observed emission-line properties, host-galaxy contribution, dust reddening, hot dust emission, and IGM suppression in the rest-frame 900-30000A wavelength range for quasars with a wide range of redshift and luminosity.
The code is packaged with a set of empirically-derived emission-line templates and an empirically-derived quasar dust extinction curve which are publicly released.
QSFit performs automatic analysis of Active Galactic Nuclei (AGN) optical spectra. It provides estimates of: AGN continuum luminosities and slopes at several restframe wavelengths; luminosities, widths and velocity offsets of 20 emission lines; luminosities of iron blended lines at optical and UV wavelengths; host galaxy luminosities. The whole fitting process is customizable for specific needs, and can be extended to analyze spectra from other data sources. The ultimate purpose of QSFit is to allow astronomers to run standardized recipes to analyze the AGN data, in a simple, replicable and shareable way.
qrpca uses QR-decomposition for fast principal component analysis. The software is particularly suited for large dimensional matrices. It makes use of torch for internal matrix computations and enables GPU acceleration, when available. Written in both R and python languages, qrpca provides functionalities similar to the prcomp (R) and sklearn (python) packages.
qp manipulates parametrizations of 1-dimensional probability distribution functions, as suitable for photo-z PDF compression. The code helps determine a parameterization for storing a catalog of photo-z PDFs that balances the available storage resources against the accuracy of the photo-z PDFs and science products reconstructed from the stored parameters.
qnm computes the Kerr quasinormal mode frequencies, angular separation constants, and spherical-spheroidal mixing coefficients. The qnm package includes a Leaver solver with the Cook-Zalutskiy spectral approach to the angular sector, and a caching mechanism to avoid repeating calculations. A large cache of low ℓ, m, n modes is available for download and can be installed with a single function call and interpolated to provide good initial guess for root-polishing at new values of spin.
Quadratic Monte Carlo generates ensembles of models and confines fitness landscapes without relying on linear stretch moves; it works very efficiently for ring potential and Rosenbrock density. The method is general and can be implemented into any existing MC software, requiring only a few lines of code.
Matching stars in astronomical images is an essential step in data reduction. This work includes some matching programs implemented by Python: simple matching, fast matching, and triangle matching. For two catalogs with m and n objects, the simple method has a time and space complexity of O(m*n) but is fast for fewer n or m. The time complexity of the fast method is O(mlogm+nlogn). The triangle method will work between rotated and scaled images. All methods are applied in pipelines and work well. This package is published to the PyPI with the name 'qmatch'.
QLF derives full posterior distributions for and analyzes luminosity functions models; it also models hydrogen and helium reionization. Used with the included homogenized data, the derived luminosity functions can be easily compared with theoretical models or future data sets.
Qhull computes the convex hull, Delaunay triangulation, Voronoi diagram, halfspace intersection about a point, furthest-site Delaunay triangulation, and furthest-site Voronoi diagram. The source code runs in 2-d, 3-d, 4-d, and higher dimensions. Qhull implements the Quickhull algorithm for computing the convex hull. It handles roundoff errors from floating point arithmetic. It computes volumes, surface areas, and approximations to the convex hull.
QFitsView is a FITS file viewer that can display one, two, and three-dimensional FITS files. It has three modes of operation, depending of what kind of data is being displayed. One-dimensional data are shown in an x-y plot. Two-dimensional images are shown in the main window. Three-dimensional data cubes can be displayed in a variety of ways, with the third dimension shown as a x-y plot at the bottom of the image display. QFitsView was written in C++ and uses the Qt widget library, which makes it available for all major platforms: Windows, MAC OS X, and many Unix variants.
Quantum ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization) is an integrated suite of codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials. QE performs ground-state calculations such as self-consistent total energies, forces, stresses and Kohn-Sham orbitals, Car-Parrinello and Born-Oppenheimer molecular dynamics, and quantum transport such as ballistic transport, coherent transport from maximally localized Wannier functions, and Kubo-Greenwood electrical conductivity. It can also determine spectroscopic properties and examine time-dependent density functional perturbations and electronic excitations, and has a wide range of other functions.
QDPHOT is a fast CCD stellar photometry task which quickly produces CCD stellar photometry from two CCD images of a star field. It was designed to be a data mining tool for finding high-quality stellar observations in the data archives of the National Virtual Observatory. QDPHOT typically takes just a few seconds to analyze two Hubble Space Telescope WFPC2 observations of Local Group star clusters. It is also suitable for real-time data-quality analysis of CCD observations; on-the-fly instrumental color-magnitude diagrams can be produced at the telescope console during the few seconds between CCD readouts.
QATS detects transiting extrasolar planets in time-series photometry. It relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits.
QAC (Quick Array Combinations) is a front end to CASA (ascl:1107.013) and calls tools and tasks to help in combining data from a single dish and interferometer. QAC hides some of the complexity of writing CASA scripts and provides a simple interface to array combination tools and tasks in CASA. This project was conceived alongside the TP2VIS (ascl:1904.021) project, where it was used to provide an easier way to call CASA and perform regression tests.
q3dfit performs PSF decomposition and spectral analysis for high dynamic range JWST IFU observations, allowing the user to create science-ready maps of relevant spectral features. The software takes advantage of the spectral differences between quasars and their host galaxies for maximal-contrast subtraction of the quasar point-spread function (PSF) to reveal and characterize the faint extended emission of the host galaxy. Host galaxy emission is carefully fit with a combination of stellar continuum, emission and absorption of dust and ices, and ionic and molecular emission lines.
Q3C (Quad Tree Cube) enables fast cone, ellipse and polygonal searches and cross-matches between large astronomical catalogs inside a PostgreSQL database. The package supports searches even if objects have proper motions.
pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.
PyXspec is an object oriented Python interface to the XSPEC (ascl:9910.005) spectral-fitting program. It provides an alternative to Tcl, the sole scripting language for standard Xspec usage. With PyXspec loaded, a user can run Xspec with Python language scripts or interactively at a Python shell prompt; everything in PyXspec is accessible by importing the package xspec into your Python script. PyXspec can be utilized in a Python script or from the command line of the plain interactive Python interpreter. PyXspec does not implement its own command handler, so it is not intended to be run as the Python equivalent of a traditional interactive XSPEC session (which is really an enhanced interactive Tcl interpreter).
pyXSIM simulates X-ray observations from astrophysical sources. X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM generates synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), to particle-based codes such as Gadget (ascl:0003.001) and AREPO (ascl:1909.010), and even from datasets that have been created “by hand”, such as from NumPy arrays. pyXSIM can also manipulate the synthetic observations it produces in various ways and export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories. pyXSIM is an implementation of the PHOX (ascl:1112.004) algorithm and was initially the photon_simulator analysis module in yt (ascl:1011.022); it is dependent on yt.
Pyxel hosts and pipelines models (analytical, numerical, statistical) simulating different types of detector effects on images produced by Charge-Coupled Devices (CCD), Monolithic, and Hybrid CMOS imaging sensors. Users can provide one or more input images to Pyxel, set the detector and model parameters, and select which effects to simulate, such as cosmic rays, detector Point Spread Function (PSF), electronic noises, Charge Transfer Inefficiency (CTI), persistence, dark current, and charge diffusion, among others. The output is one or more images including the simulated detector effects combined. The Pyxel framework, written in Python, provides basic image analysis tools, an input image generator, and a parametric mode to perform parametric and sensitivity analysis. It also offers a model calibration mode to find optimal values of its parameters based on a target dataset the model should reproduce.
PyXel models astronomical X-ray imaging data; it provides a common set of image analysis tools for astronomers working with extended X-ray sources. PyXel can model surface brightness profiles from X-ray satellites using a variety of models and statistics. PyXel can, for example, fit a broken power-law model to a surface brightness profile, and fit a constant to the sky background level in the direction of the merging galaxy cluster.
PyWST performs statistical analyses of two-dimensional data with the Wavelet Scattering Transform (WST) and the Reduced Wavelet Scattering Transform (RWST). The WST/RWST provides convenient sets of coefficients for describing non-Gaussian data in a comprehensive way.
PyWPF (Waterfall Principal Component Analysis Folding) finds periodicity in one-dimensional timestream data sets; it is particularly designed for very high noise situations where traditional methods may fail. Given a timestream, with each point being the arrival times of a source, the software computes the estimated period. The core function of the package requires several initial parameters to run, and using the best known period of the source (T_init) is recommended.
PyWiFeS is a Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). Its core data processing routines are built on standard scientific Python packages commonly used in astronomical applications. It includes an implementation of a global optical model of the spectrograph which provides wavelengths solutions accurate to ˜0.05 Å (RMS) across the entire detector. Through scripting, PyWiFeS can enable batch processing of large quantities of data.
PyWD2015 provides a modern graphical user interface (GUI) for the 2015 version of the Wilson-Devinney (WD) code (ascl:2004.004). The GUI is written in Python 2.7 and uses the Qt4 interface framework. At its core, PyWD2015 generates lcin and dcin files from user inputs and sends them to WD, then reads and visualizes the output in a user-friendly way. It also includes tools that make the technical aspects of the modeling process significantly easier.
PyVO provides access to remote data and services of the Virtual observatory (VO) using Python. It allows archive searches for data of a particular type or related to a particular topic and query submissions to obtain data to a particular archive to download selected data products. PyVO supports querying the VAO registry; simple data access services (DAL) to access images (SIA), source catalog records (Cone Search), spectra (SSA), and spectral line emission/absorption data (SLAP); and object name resolution (for converting names of objects in the sky into positions). PyVO requires both AstroPy (ascl:1304.002) and NumPy.
pyuvdata defines a pythonic interface to interferometric data sets; it supports the development of and interchange of data between calibration and foreground subtraction pipelines. It can read and write MIRIAD (ascl:1106.007), uvfits, and uvh5 files and reads CASA (ascl:1107.013) measurement sets and FHD (ascl:2205.014) visibility save files. Particular focus has been paid to supporting drift and phased array modes.
pyUPMASK is an unsupervised clustering method for stellar clusters that builds upon the original UPMASK (ascl:1504.001) package. Its general approach makes it applicable to analyses that deal with binary classes of any kind, as long as the fundamental hypotheses are met. The core of the algorithm follows the method developed in UPMASK but introducing several key enhancements that make it not only more general, they also improve its performance.
PyUltraLight computes non-relativistic ultralight dark matter dynamics in a static spacetime background. It uses pseudo-spectral methods to compute the evolution of a complex scalar field governed by the Schrödinger-Poisson system of coupled differential equations. Computations are performed on a fixed-grid with periodic boundary conditions, allowing for a decomposition of the field in momentum space by way of the discrete Fourier transform. The field is then evolved through a symmetrized split-step Fourier algorithm, in which nonlinear operators are applied in real space, while spatial derivatives are computed in Fourier space. Fourier transforms within PyUltraLight are handled using the pyFFTW pythonic wrapper around FFTW (ascl:1201.015).
PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.
PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.
PyTorchDIA is a Difference Image Analysis tool. It is built around the PyTorch machine learning framework and uses automatic differentiation and (optional) GPU support to perform fast optimizations of image models. The code offers quick results and is scalable and flexible.
PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Python-qucs automates the process of preparing input data, running simulations and exporting results of QUCS (Quasi Universal Circuit Simulator) simulations.
Python-CPL is a framework to configure and execute pipeline recipes written with the Common Pipeline Library (CPL) (ascl:1402.010) with Python2 or Python3. The input, calibration and output data can be specified as FITS files or as astropy.io.fits objects in memory. The package is used to implement the MUSE pipeline in the AstroWISE data management system.
The “sgp4” module is a Python wrapper around the C++ version of the standard SGP4 algorithm for propagating Earth satellite positions from the element sets published by organizations like SpaceTrak and Celestrak. The code is the most recent version, including all of the corrections and bug fixes described in the paper _Revisiting Spacetrack Report #3_ (AIAA 2006-6753) by Vallado, Crawford, Hujsak, and Kelso. The test suite verifies that the Python wrapper returns exactly the coordinates specified in the C++ test cases.
pyTANSPEC extracts XD-mode spectra automatically from data collected by the TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on India's ground-based 3.6-m Devasthal Optical Telescope at Nainital, India. The TANSPEC offers three modes of observations, imaging with various filters, spectroscopy in the low-resolution prism mode with derived R~ 100-400 and the high-resolution cross-dispersed mode (XD-mode) with derived median R~ 2750 for a slit of width 0.5 arcsec. In the XD-mode, ten cross-dispersed orders are packed in the 2048 x 2048 pixels detector to cover the full wavelength regime. The XD-mode is most utilized; pyTANSPEC provides a dedicated pipeline for consistent data reduction for all orders and to reduces data reduction time. The code requires nominal human intervention only for the quality assurance of the reduced data. Two customized configuration files are used to guide the data reduction. The pipeline creates a log file for all the fits files in a given data directory from its header, identifies correct frames (science, continuum and calibration lamps) based on the user input, and offers an option to the user for eyeballing and accepting/removing of the frames, does the cleaning of raw science frames and yields final wavelength calibrated spectra of all orders simultaneously.
pysynphot is a synthetic photometry software package suitable for either library or interactive use. Intended as a modern-language successor to the IRAF/STSDAS synphot package, it provides improved algorithms that address known shortcomings in synphot, and its object-oriented design is more easily extensible than synphot's task-oriented approach. It runs under PyRAF (ascl:1207.011), and a backwards compatibility mode is provided that recognizes all spectral and throughput tables, obsmodes, and spectral expressions used by synphot, to facilitate the transition for legacy code.
pysymlog provides utilities for binning, normalizing colors, wrangling tick marks, and other tasks, in symmetric logarithm space. For numbers spanning positive and negative values, the code works in log scale with a transition through zero, down to some threshold. This is useful for representing data that span many scales such as standard log-space that include values of zero or even negative values. pysymlog provides convenient functions for creating 1D and 2D histograms and symmetric log bins, generating logspace-like arrays through zero and managing matplotlib major and minor ticks in symlog space, as well as bringing symmetric log scaling functionality to plotly.
pySYD detects solar-like oscillations and measures global asteroseismic parameters. The code is a python-based implementation of the IDL-based SYD pipeline by Huber et al. (2009), which was extensively used to measure asteroseismic parameters for Kepler stars, and adapts the well-tested methodology from SYD and also improves these existing analyses. It also provides additional capabilities, including an automated best-fit background model selection, parallel processing, the ability to samples for further analyses, and an accessible and command-line friendly interface. PySYD provides best-fit values and uncertainties for the granulation background, frequency of maximum power, large frequency separation, and mean oscillation amplitudes.
pystortion provides support for distortion measurements in astronomical imagers. It includes classes to support fitting of bivariate polynomials of arbitrary degree and helper functions for crossmatching catalogs. The crossmatching uses an iterative approach in which a two-dimensional distortion model is fit at every iteration and used to continuously refine the position of extracted sources.
PySSED (Python Stellar Spectral Energy Distributions) downloads and extracts data on multi-wavelength catalogs of astronomical objects and regions of interest and automatically proceses photometry into one or more stellar SEDs. It then fits those SEDs with stellar parameters. PySSED can be run directly from the command line or as a module within a Python environment. The package offers a wide variety plots, including Hertzsprung–Russell diagrams of analyzed objects, angular separation between sources in specific catalogs, and two-dimensional offset between cross-matches.
PySR performs Symbolic Regression; it uses machine learning to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. Symbolic regression works best on low-dimensional datasets, but one can also extend these approaches to higher-dimensional spaces by using "Symbolic Distillation" of Neural Networks. Here, one essentially uses symbolic regression to convert a neural net to an analytic equation. Thus, these tools simultaneously present an explicit and powerful way to interpret deep neural networks.
pySPEDAS (Python-based Space Physics Environment Data Analysis Software) supports multi-mission, multi-instrument retrieval, analysis, and visualization of heliophysics time series data. A Python implementation of SPEDAS (ascl:2405.001), it supports most of the capabilities of SPEDAS; it can load heliophysics data sets from more than 30 space-based and ground-based missions, coordinate transforms, interpolation routines, and unit conversions, and provide interactive access to numerous data sets. pySPEDAS also creates multi-mission, multi-instrument figures, includes field and wave analysis tools, and performs magnetic field modeling, among other functions.
pySpectrum calculates the power spectrum and bispectrum for galaxies, halos, and dark matter.
PySpecKit is a Python spectroscopic analysis and reduction toolkit meant to be generally applicable to optical, infrared, and radio spectra. It is capable of reading FITS-standard and many non-standard file types including CLASS spectra. It contains procedures for line fitting including gaussian and voigt profile fitters, and baseline-subtraction routines. It is capable of more advanced line fitting using arbitrary model grids. Fitting can be done both in batch mode and interactively. PySpecKit also produces publication-quality plots with TeX axis labels and annotations. It is designed to be extensible, allowing user-written reader, writer, and fitting routines to be "plugged in." It is actively under development and currently in the 'alpha' phase, with plans for a beta release.
pysovo contains basic tools to work with VOEvents. Though written for specific needs, others interested in VOEvents may find it useful to examine.
The pYSOVAR code calculates properties for a stack of lightcurves, including simple descriptive statistics (mean, max, min, ...), timing (e.g. Lomb-Scargle periodograms), variability indixes (e.g. Stetson), and color properties (e.g. slope in the color-magnitude diagram). The code is written in python and is closely integrated with astropy tables. Initially, pYSOVAR was written specifically for the analysis of two clusters in the YSOVAR project, using the (not publicly released) YSOVAR database as an input. Additional functionality has been added and the code has become more general; it is now useful for other clusters in the YSOVAR dataset or for other projects that have similar data (lightcurves in one or more bands with a few hundred points for a few thousand objects), though may not work out-of-the-box for different datasets.
PYSOLATOR removes the orbital modulation from a binary pulsar and/or its companion. In essence, it subtracts the predicted Roemer delay for the given orbit and then resamples the time series so as to make the signal appear as if it were emitted from the barycenter of the binary system, making the search for pulses easier and faster.
PySME is a partial reimplementation of Spectroscopy Made Easy (SME, ascl:1202.013), which fits an observed spectrum of a star with a model spectrum. The IDL routines of SME used to call a dynamically linked library of compiled C++ and Fortran programs have been rewritten in Python. In addition, an object oriented paradigm and continuous integration practices, including build automation, self-testing, and frequent builds, have been added.
PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs.
pySIDES generates mock catalogs of galaxies in the (sub-)millimeter domain and associates spectral cubes (e.g., for intensity mapping experiments). It produces both continuum and CO, [CII], and [CI] line emissions. pySIDES is the Python version of the Simulated Infrared Dusty Extragalactic Sky (SIDES).
Pyshellspec models binary systems with circumstellar matter (e.g. accretion disk, jet, shell), computes the interferometric observables |V2|, arg T3, |T3|, |dV|, and arg dV, and performs comparisons of light curves, spectro-interferometry, spectra, and SED with observations, and both global and local optimization of system parameters. The code solves the inverse problem of finding the stellar and orbital parameters of the stars and circumstellar medium. Pyshellspec is based on the long-characteristic LTE radiation transfer code Shellspec (ascl:1108.017).
PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).
pySDR performs local gradient clustering-based sharpened dimensionality reduction (SDR). The library uses the C++ LGCDR_v1 code as its backend.
The Python Satellite Data Analysis Toolkit (pysat) provides a simple and flexible interface for downloading, loading, cleaning, managing, processing, and analyzing space science data. The toolkit supports in situ satellite observations and many different types of ground- and space-based measurements. Its analysis routines are independent of instrument and data source.
PySAP (Python Sparse data Analysis Package) provides a common API for astronomical and neuroimaging datasets and access to iSAP's (ascl:1303.029) Sparse2D executables with both wrappers and bindings. It also offers a graphical user interface for exploring the provided functions and access to application specific plugins.
The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.
Would you like to view a random code?