easyspec is a tool designed to streamline long-slit spectroscopy, offering an intuitive framework for reducing, extracting, and analyzing astrophysical spectra.
γ-Cascade (also called GCascade) uses a semi-analytic approach to model gamma-ray propagation through cosmological distances accounting for attenuation, the formation of electromagnetic cascades,and cosmological redshifting. V4 implements an assortment of the most widely used EBL models, significantly improves computational precision, and provides new core functionality. Additionally, GCascadeV4 uses a new method to estimate the uncertainty due to the EBL model.
lintsampler performs linear interpolant sampling to create a set of sample points from a density function. The code uses the evaluation of the density at the two endpoints of 1D interval, or the four corners of a 2D rectangle, or generally the 2k vertices of a dimensional hyperbox (or a series of such hyperboxes, e.g., the cells of a k-dimensional grid) to draw random samples within the hyperbox. lintsampler works by evaluating a given PDF on the nodes of a grid (or grid-like structure, such as a tree); the number of evaluations (and memory occupancy) grows exponentially with the number of dimensions.
POSEIDON models and retrieves 1D, 2D, and 3D exoplanet transmission spectra. Given a set of observed exoplanet spectra from space-based or ground-based telescopes, the code uses Bayesian techniques to infer the atmospheric properties of the planet. POSEIDON also includes disk-integrated thermal emission and reflection spectra modeling and retrievals for both secondary eclipses and directly-imaged substellar objects.
Mister plotter (mr-plotter) creates paper-quality mass-radius diagrams based on a wide range of state-of-the-art models of planetary interiors and atmospheres. It can be used to contextualize planets and infer their possible internal structures. It can also be used to search for correlations at a population level with its color-coding option based on any property collected in the NASA Exoplanet Archive, PlanetS, and Exoplanet.eu catalogs. mr-plotter can also produce article-ready two-column plots.
The visualization tool MARDIGRAS (Mass-Radius DIaGRAm with Sliders) enables simple and intuitive manipulation of mass-radius relationships (also known as iso-composition curves) using interactive sliders. It infers composition based on mass and radius (and other parameters). As a result, it requires use of actual measurements of mass and radius; values that are upper/lower limits, derived from empirical mass-radius relations, or are somewhat controversial should not be used. MARDIGRAS screen captures can be used for general scientific communication but are not of suitable quality for article publication.
The euclidlib python package is an unofficial tool designed to read products from the Euclid Consortium Science Ground Segment. Euclidlib offers user-friendly reading and writing routines, and effectively enables to work overall with Large-Scale Structure cosmological products.
squishyplanet produces realistic lightcurves and phase curves of non-spherical exoplanets. The code generates models of triaxial planets; fitting for the triaxial shape can provide additional constraints on the planet’s interior properties and evolution. squishyplanet also handles complex limb darkening profiles while also accounting for the planet’s non-circular, potentially time-varying, projected shape.
CLOWN (CLOud Watcher at Night) detects and monitors clouds in real time. The software can be used with any type of all-sky camera even without knowing its parameters; parameters are stored instead in a configuration file. CLOWN correctly traces cloud positions in the sky and provides accurate pointing information to the observation planning of the optical telescope to avoid cloudy areas.
cogsworth merges rapid population synthesis and galactic dynamics together; the code can evolve a population of stars using population synthesis while self-consistently integrating their orbits with a chosen galactic potential. This enables exploration of the full evolutionary history (both stellar and orbital) of a population of stars and the ability to make predictions for present day kinematics and other distributions. cogsworth also provides tools for transforming the intrinsic populations into observables and for classifying the nature of each system.
ForestFlow emulates the linear biases and small-scale deviation parameters of the 3D flux power spectrum of the Lyman-alpha forest. The parameters are modeled as a function of cosmology – the small-scale amplitude and slope of the linear power spectrum – and the physics of the intergalactic medium.
BlendingToolKit (BTK) generates images of blended objects and evaluate performance metrics on various detection, deblending and measurement algorithms. The toolkit is a convenient way to produce multi-band postage stamp images of blend scenes and evaluate the performance of deblending algorithms, as well as train samples for machine learning algorithms.
Combustion Toolbox (CT) models thermodynamic properties of the gaseous species with the ideal gas equation of state (EoS). Written in MATLAB, this thermochemical code is modular and has three main modules: CT-EQUIL, CT-SD, and CT-ROCKET. CT-EQUIL computes the composition at the equilibrium of multi-component gas mixtures that undergo canonical thermochemical transformations from an initial state (reactants). CT-SD solves steady-state shock and detonation waves in either normal or oblique incidence, and CT-ROCKET computes the theoretical performance of rocket engines under highly idealized conditions. Modules can be accessed through user-friendly GUI or from MATLAB’s command line in plain code mode.
FitTeD solves time-dependent general relativistic disc equations to fit multi-band light curves and spectra. It includes relativistic optics effects such as Doppler and gravitational energy shifting, and gravitational lensing, and can include non-disc light curve and spectral components to, for example, model the early time rise and decay of tidal disruption event light curves in optical-to-UV bands. FitTeD also provides Monte Carlo Markov Chain fitting procedures that return posterior distributions of black hole and disc parameters.
gwforge generates mock gravitational wave detector data using user-defined population and arbitrary detector sensitivity. The code can, for example, simulate a wide range of binary source populations by specifying parameters such as the local merger rate, distribution functions, and additional keyword arguments, and simulate coloured Gaussian or zero noise using a provided or default power spectrum to represent the detector noise. gwforge can also inject gravitational wave signal(s) into the generated detector data using the previously generated population and a chosen waveform model.
Particle_spray models the position and velocity distributions of newly-escaped stream particles that emerge from globular clusters (GCs). Rather than computing the detailed internal cluster dynamics, which is computationally expensive, the code directly draws tracer particles from these distributions. This algorithm is fast and accurate, and is implemented in a series of notebooks for several galactic dynamics codes, including AGAMA (ascl:1805.008) and galpy (ascl:1411.008).
WD_models transforms white dwarf (WD) photometry to physical parameters (i.e., mass, cooling age, and Teff) and vice versa, based on interpolation of existing WD atmosphere grid and cooling models. The code converts the coordinates of Gaia (and other passbands) H--R diagram into WD parameters and plots contours of WD parameters on the Gaia (and other passbands) H--R diagram. WD_models also provides tools to transform any desired WD parameters and compare the results of different WD models. In addition, the user may customize many parameters, such as the choice of cooling models and setting details of plotting.
The Payne precisely and simultaneously determines numerous stellar labels from observed spectra based on fitting physical spectral models. It fits all all labels (stellar parameters and element abundances) simultaneously, and uses spectral models where the atmosphere structure and the radiative transport are consistently calculated to reflect the stellar labels. The Payne leads to both precise and accurate estimates of stellar labels, based on physical models and without re-calibration.
Siril reduces reduction and improves the signal/noise ratio of an image from multiple captures. It can can align automatically or manually, and stack and enhance pictures from various file formats, even image sequence files (films and SER files). Its Graphical User Interface (GUI) allows manual processing of images in addition to scripts or typing commands. Siril provides astrometry and photometry options and performs geometric transformations in addition to many other tools.
Spectuner identifies spectral lines of interstellar molecules automatically. The code uses XCLASS (ascl:1810.016) for the spectral line model and SciPy for the peak finder. Spectral fitting is performed using article swarm optimization and the peak matching loss function. From frequency in a unit of MHz and temperature in a unit of K, Spectuner returns the combined spectrum, identification of the combined spectrum, and the identification of all candidates.
CosmoFlow automatically computes cosmological correlators. The Cosmological Flow approach is based on computing cosmological correlators by solving differential equations in time governing their time evolution through the entirety of the spacetime during inflation, from their origin as quantum fluctuations in the deep past to the end of inflation. This method takes into account all physical effects at tree-level without approximation. Specifically, CosmoFlow computes the two- and three-point correlators of fields and/or conjugate momenta X a in Fourier space that includes an arbitrary number of degrees of freedom with any propagation speeds, couplings, and time-dependencies.
DIES calculates equilibrium dust temperatures and the resulting dust emission spectra. It handles spherical models (cells are spherical shells), computes dust temperatures (equilibrium temperatures only), and returns spectra for different impact parameters. The code uses the immediate re-emission method; it is not suitable for problems where the stochastic heating of the grains is important. DIES can assume constant dust properties throughout the model, and also offers an alternative script that allows dust properties to be set cell by cell. The program uses OpenCL libraries and is recommended to be run on GPUs.
exoTEDRF (Exoplanet Transit and Eclipse Data Reduction Framework) reduces and analyzes JWST exoplanet time series observations. The code is modular and tunable, which makes it easy to run multiple reductions of a given dataset, and therefore ascertain whether the spectral features driving atmosphere inferences are robust or are sensitive to the peculiarities of a given reduction. exoTEDRF has full support for TSOs with NIRISS/SOSS and can run the ATOCA extraction algorithm to explicitly model the SOSS order overlap.
Codex Africanus presents radio astronomy algorithms to the user as modular functions accepting NumPy inputs and producing NumPy outputs. Internally, it uses Numba to accelerate these codes and Dask to parallelize and distribute them. The library contains functions for plotting convolution filters and tapers associated with convolution filters and can compute the discretised direct Fourier transform (DFT) for an ideal interferometer. Codex Africanus has routines for gridding or degridding complex visibilities onto or from an image, includes deconvolution algorithms and coordinate transforms, and many other functions.
nifty-ls evaluates the Lomb-Scargle periodogram very quickly and accurately. The Lomb-Scargle periodogram, used for identifying periodicity in irregularly-spaced observations, is useful but computationally expensive. However, when it is phrased mathematically as a pair of non-uniform FFTs (NUFFTs), FINUFFT (ascl:2412.007), which is really fast, can be leveraged to improve performance. It also enables GPU (CUDA) support and is several orders of magnitude more accurate than Astropy's (ascl:1304.002) Lomb Scargle with default settings.
FINUFFT (Flatiron Institute Nonuniform Fast Fourier Transform) computes the three standard types of nonuniform FFT to a specified precision, in one, two, or three dimensions. It can be run on a multi-core shared-memory machine or on a GPU. It is extremely fast and has very simple interfaces to most major numerical languages (such as C/C++, Fortran, MATLAB, octave, Python, and Julia). FINUFFT also provides more advanced (vectorized and “guru”) interfaces that allow multiple strength vectors and the reuse of FFT plans.
Coport computes covariant polarized radiation transfer in any spacetime. It is particularly useful for imaging black hole accretion systems. Written in Julia, it contains functions for handling the computation of all rays and a single ray, and deriving initial ray directions. Coport also has functions for interpolating GRMHD data, obtaining covariant emission, absorption, and Faraday rotation coefficients, and projecting the polarization tensor at the observer's screen, among other tasks.
pmwd simulates and models cosmological evolutionary history. The code includes reverse time integration in addition to traditional forward simulation, enabling symmetrical dynamics analysis using the adjoint method. The pmwd particle-mesh model supports fully-differentiable analytic, semi-analytics, and deep learning components in parallel. Based on JAX (ascl:2111.002), pmwd is optimized for PU computation.
BADASS (Bayesian AGN Decomposition Analysis for SDSS Spectra) decomposes Sloan Digital Sky Survey (SDSS) spectra and fits Type 1 ("broad line") Active Galactic Nuclei (AGN) in the optical. The fitting process uses the Bayesian affine-invariant Markov-Chain Monte Carlo sampler emcee (ascl:1303.002) for robust parameter and uncertainty estimation, as well as autocorrelation analysis to access parameter chain convergence. Out of the box, BADASS fits SDSS spectra, and MANGA IFU cube data; the code can be modified to fit user-input spectra of any instrument.
dask-ms constructs xarray datasets from CASA tables, thus providing a data access layer for Measurement Set v2.0 data. It supports the CASA Data Table System, Zarr and Apache Arrow formats, but abstracts them away from the developer at the xarray dataset level. It therefore serves as a basis for writing distributed PyData Radio Astronomy applications and supports writing variables back to the respective column in the Table. The intention behind dask-ms is to support the Measurement Set as a data source and sink for the purposes of writing parallel, distributed radio astronomy algorithms.
Stimela2 develops data reduction workflows and is a significant update of Stimela (ascl:2305.007). Though designed for radio astronomy data, it can be adapted for other data processing applications. Stimela2 represents workflows by linear, concise and intuitive YAML-format "recipes". Atomic data reduction tasks (binary executables, Python functions and code, and CASA tasks) are described by YAML-format "cab definitions" detailing each task's "schema" (inputs and outputs). Stimela2 provides a rich syntax for chaining tasks together, and encourages a high degree of modularity: recipes may be nested into other recipes, and configuration is cleanly separated from recipe logic. Tasks can be executed natively or in isolated environments using containerization technologies such as Apptainer. Stimela2 facilitates the deployment of scalable, distributed workflows by interfacing with the Slurm scheduler and the Kubernetes API, the latter allowing workflows to be readily deployed in the cloud.
Twinkle calculates and plots the stellar spectral energy distribution (SED) using empirical photometric data and stellar model grids. The code was originally created to help calculate the excess infrared (IR) flux from a star; the presence of an IR excess indicates dust orbiting the star. This dust likely results from the grinding and collisions of asteroids, influenced by a larger planetary object—pointing to the potential for finding planets. Twinkle quickly calculates the temperature and location of the dust to first order by fitting the assumed blackbody or modified blackbody function to the broadband excess emission.
Colume (COLUMn to vOLUME) uses the statistical and spatial distribution of a column density map to infer a likely volume density distribution along each line of sight. This Python package incorporates all pre-processing (in particular re-sampling) functions needed to efficiently work on the column density maps. Colume's outputs are saved in Numpy format.
This project presents a comprehensive spectroscopic analysis of O and B-type stars, neutron stars, and white dwarfs, with a focus on the detection of helium (He) and oxygen (O) in stellar atmospheres. By leveraging data from the Sloan Digital Sky Survey (SDSS) and utilizing tools such as Astropy, Astroquery, and Specutils, the project aims to identify key spectral lines of helium and oxygen, as well as the formation of heliox (OHe) molecules. The methodology involves querying SDSS for relevant spectral data, filtering and analyzing it based on stellar classification, and visualizing the results using advanced techniques. The findings contribute to the understanding of stellar evolution, chemical processes, and the role of these elements in various stellar classes. Additionally, the project incorporates interactive data exploration with Aladin Lite and Simbad, offering a robust framework for future astrophysical research.
This notebook provides a comprehensive approach for analyzing and visualizing astronomical data from FITS (Flexible Image Transport System) files, focusing on moment maps derived from molecular line emissions within the galaxy NGC 0628. The analysis involves applying various image processing techniques to handle corrupted pixels, reconstruct images, and enhance the quality of moment maps. The notebook also demonstrates how to simulate super-resolution to improve the spatial resolution of the data. By utilizing Gaussian filtering, median filtering, and contrast enhancement, the approach improves the clarity and precision of the data, making it suitable for detailed astrophysical studies. This tool serves as an efficient method for processing and visualizing large-scale astronomical datasets for further analysis and scientific interpretation.
NEMESISPY infers the atmospheric properties of exoplanets, such as chemical composition, using spectroscopic data. The package calculates radiative transfer using the correlated-k approximation and for parametric atmospheric modelling. NEMESISPY is a Python implementation of the well-established Fortran NEMESIS library (ascl:2210.009), which has been applied to the atmospheric retrievals of both solar system planets and exoplanets employing numerous different observing geometries.
IcyDwarf calculates the coupled physical-chemical evolution of an icy dwarf planet or moon. The code calculates the thermal evolution of an icy planetary body (moon or dwarf planet), with no chemistry, but with rock hydration, dehydration, hydrothermal circulation, core cracking, tidal heating, and porosity; the depth of cracking and a bulk water:rock ratio by mass in the rocky core are also computed. It also calculates whether cryovolcanism is possible by the exsolution of volatiles from cryolavas. IcyDwarf also determines the equilibrium fluid and rock chemistries resulting from water-rock interaction in subsurface oceans in contact with a rocky core, up to 200ºC and 1000 bar.
SMINT (Structure Model INTerpolator) obtains posterior distributions on the H/He or H2O mass fraction of a planet; its interface is user-friendly. The parameters of the planet of interest are input with specifications on the priors that should be used. SMINT returns publication-ready plots presenting the joint parameters constraints obtained from interpolating the interior models grid of interest as well as confidence intervals for each parameter.
DarkMatters calculates multi-frequency and multi-messenger emissions from WIMP annihilation and decay. This can be done both for standard channels and custom models, with the ability to produce surface brightnesses and integrated fluxes as well as maps in FITS format to compare to actual data. DarkMatters uses an accelerated ADI solver such as GALPROP (ascl:1010.028) for electron diffusion with an innovative sparse matrix approach. Additionally, there is the option to use a Green's function approximate solution (implemented in both C++ and Python).
The numerical modeling code DustPOL-py calculates the multi-wavelength polarization degree of absorption and thermal dust emission based on Radiative Torque alignment (RAT-A), Magnetically enhanced RAT (MRAT) and Radiative Torque Disruption (RAT-D). The code saves the output files (wavelength and degree of polarization) for further analysis and is idealization for diffuse ISM, molecular clouds and star-forming regions; it also predicts the polarization spectrum for one- or two-dust layers. A web-interface GUI for DustPOL-py is also available.
DArk Matter SPIkes (DAMSPI) analyzes dark matter spikes around Intermediate Mass Black Holes (IMBHs) in the Milky Way. It extracts an IMBH catalog with the corresponding dark matter spike parameters from EAGLE simulations to probe a potential gamma-ray signal from dark matter self-annihilation. The catalog includes, among others, the coordinates, mass, formation redshift, and spike parameters for each individual IMBH.
jaxspec performs statistical inference on X-ray spectra. It loads an X-ray spectrum (in the OGIP standard), defines a spectral model from the implemented components, and calculates the best parameters using state-of-the-art Bayesian approaches. The code is built on top of JAX (ascl:2111.002) to provide just-in-time compilation and automatic differentiation of the spectral models, enabling the use of sampling algorithms. jaxspec is written in pure Python and is not dependent on HEASoft (ascl:1408.004).
mochi_class extends the hi_class code (ascl:1808.010), itself a patch to the Einstein-Boltzmann solver CLASS (ascl:1106.020). It replaces α-functions by stable basis to ensure stability and takes general functions of time as input, including the dark energy equation of state or its normalized background energy-density. mochi_class provides stability test checking for mathematical (classical) instabilities in the scalar field fluctuations, and also includes a GR approximation scheme, among other new capabilities.
HIILines analytically models lines emitted by the ionized interstellar medium (ISM). It covers [OIII], [OII], Hα, and Hβ lines. The strength of HIILines is its high computational efficiency. It can be used for galaxy spectroscopic survey measurement interpolations assuming a one-zone picture and galaxy line emission measurement design and forecasts. HIILines also performs post-processing of hydrodynamical galaxy formation simulations for ISM emission lines.
McFine performs complex, multi-component hyperfine spectra fitting in astronomical data. It turns line intensities into gas conditions using a fully automated Bayesian method. Written in Python, the code uses Markov chain Monte Carlo (MCMC) to characterize model denegeracies. It handles local thermodynamic equilibrium (LTE) and radiative-transfer (RT) models and can fit individual spectra and data cubes; given a data cube, it can also use the neighboring information to attempt a better fit. McFine also fits the minimum number of distinct components to avoid overfitting.
The spectral classification code Diagnose assigns one of four classifications (star, galaxy, quasar, or unknown) to each source and returns a redshift estimate for the galaxies and quasars and a velocity estimate for the stars. The code uses a chi-squared minimization for linear combinations of principal component templates to determine a best-fit spectral classification and redshift estimate. It computes three best-fit chi-squared values: one for stellar type and velocity, one for galaxy type and redshift, and one for a quasar and redshift. Diagnose then compares the best fit of these three reduced chi-squared values to the second best fit and evaluates the difference against a statistical threshold.
The Unicorn pipeline produces data products from the 3D-HST grism survey of four CANDELS fields. It extracts interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. It then fits the 2D spectra and multi-band photometry to determine redshifts and emission line strengths. Unicorn is built on threedhst (ascl:2411.018) and has been superseded by grizli (ascl:1905.001).
threedhst reduces WFC3 grism exposures. It is essentially a wrapper around aXe (ascl:1109.016) and produces a catalog and other useful files; extracted 1D spectra are placed in a single file, and 2D spectra are in individual files. The code produces an HTML table with thumbnails of the direct images, 1D, and 2D spectra and supports the pipeline Unicorn (ascl:2411.019), which produces data products from the 3D-HST grism survey of four CANDELS fields. threedhst has been superceded by Grizli (ascl:1905.001).
CLASS LVDM modifies the CLASS code (ascl:1106.020) to incorporate the cosmological model of Lorentz invariance violation (LV) in gravity and dark matter. Compared to the usual CLASS code, it contains four new parameters: alpha, beta, and lambda characterize LV in the gravity sector , and Y characterizes LV in the dark matter sector.
fits_warp smoothly removes the distorting effect of the ionosphere and restores sources to their reference positions in both the catalog and image domain. Image warping uses pixel offsets derived from a catalog of cross-matched sources. Though initially written for low-frequency radio astronomy, fits_warp can be used to de-distort any image distorted by some vector field which is sampled by some sparse pierce-points.
atlas-fit amends the results of spectroflat (ascl:2411.014) with calibration against a solar atlas. Data for wavelength calibration and continuum-correction is generated from flat field information and selected solar atlantes. The atlas-fit package provides two tools: one to generate a list of lines from the atlas and data to use for finding a wavelength solution (dispersion), and another to amend the calibration results from the spectroflat library.
Spectroflat flat fields spectro-polarimetric data. It can be plugged into existing Python-based data reduction pipelines or used as a standalone calibration and performance analysis tool. The code includes smile distortion correction and flat field extraction. The library expects the spatial domain on the vertical-axis and the spectral domain on the horizontal axis. Spectroflat does not include any file reading/writing routines and expects numpy arrays as input.
NE2001p is a fully Python implementation of the NE2001 Galactic electron density model. The code forward models the dispersion and scattering of compact radio sources, including pulsars, fast radio bursts, AGNs, and masers, and the model predicts the distances of radio sources that lack independent distance measures.
BSAVI (Bayesian Sample Visualizer) aids likelihood analysis of model parameters where samples from a distribution in the parameter space are used as inputs to calculate a given observable. For example, selecting a range of samples will allow you to easily see how the observables change as you traverse the sample distribution. At the core of BSAVI is the Observable object, which contains the data for a given observable and instructions for plotting it. It is modular, so you can write your own function that takes the parameter values as inputs, and BSAVI will use it to compute observables on the fly. It also accepts tabular data, so if you have pre-computed observables, simply import them alongside the dataset containing the sample distribution to start visualizing. Though BSAVI was developed for use in theoretical cosmology, it can be customized to fit a wide range of visualization needs.
MMLPhoto-z estimates the photo-z of quasars using a cross-modal contrastive learning approach. This method employs adversarial training and contrastive loss functions to promote the mutual conversion between multi-band photometric data features (magnitude, color) and photometric image features, while extracting modality-invariant features. MMLPhoto-z can also be applied to tasks like photo-z estimation for galaxies with missing magnitudes. Overall, this method proves effective in enhancing the photo-z estimation across diverse datasets and conditions.
ReverseDiff implements methods to take gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object) using reverse mode automatic differentiation (AD). While performance can vary depending on the functions you evaluate, the algorithms implemented by ReverseDiff generally outperform non-AD algorithms in both speed and accuracy.
Pycosmicstar studies the star formation history for different cosmological models. The package contains two abstract classes, cosmology and structureabstract. The class cosmology is passed as a parameter for the classes that implement structureabstract. This approach takes polymorphism into account. The modeling of structures and star formation are not strongly dependent on the cosmology. Pycosmicstar generates a new cosmological class that implements the methods of abstract class cosmology that is useful to study, for example, the role of dark energy in the cosmic star formation rate evolution.
Astrocats enables astronomers to construct their own curated catalogs of astronomical data with the intention of producing shareable catalogs of that data in human-readable formats. Astrocats is used by several existing open astronomy catalogs, including the Open Supernova Catalog, Open TDE Catalog, Open Nova Catalog, and the Open Black Hole Catalog.
EFTofPNG (Effective Field Theory of Post-Newtonian Gravity) performs high precision computations in the effective field theory of post-Newtonian (PN) Gravity, including spins. Written in Mathematica, it provides computer-algebra tools to derive analytical input for gravitational-wave source modelling relevant to current observatories. EFTofPNG has been used to derive of all currently known spin-dependent conservative interaction potentials in the post-Newtonian (PN) approximation to General Relativity (GR).
HBSGSep (Hierarchical Bayesian Star-Galaxy Separations) classifies stars and galaxies photometrically by fitting templates and hierarchically learning their prior weights. The hierarchical Bayesian algorithms are unsupervised and do not use a training set nor are priors set in advance of running the algorithms; the priors for the templates are inferred from the data themselves.
GAz calculates photometric redshifts for low redshift galaxies. It finds optimal polynomial forms to fit to data. It explores the very large space of high order polynomials while only requiring optimization of a small number of terms. Tested with the 2SLAQ LRG data set, GAz generalizes well to various data sets and redshift ranges.
DarkRayNet uses recurrent neural networks (RNNs) to quickly simulate antiprotons, antideuterons, protons and Helium cosmic ray (CR) spectra at Earth for an extensive range of parameters. The corresponding neural networks are trained on GALPROP (ascl:1010.028) simulations. DarkRayNet can also simulate the cosmic ray fluxes for antideuterons; the spectra can be predicted for a signal from dark matter annihilation DM Antideuterons and for secondary emission Secondary Antideuterons.
PyMerger detects binary black hole mergers from the Einstein Telescope based on a Deep Residual Neural Network (ResNet) model; the model was trained on combined data from all three proposed sub-detectors of ET (TSDCD). The model achieved high BBH detection rates. Though not trained on BNS and BHNS mergers, PyMerger successfully detected 11,477 BNS and 323 BHNS mergers in ET-MDC, indicating its potential for broader applicability.
flashcurve estimates the necessary time windows for adaptive binning light curves in Fermi-LAT data using raw photon data. Fluxes coming from Gamma rays measured by the Fermi-LAT satellite are extremely variable. Gamma-ray light curves produced by flashcurve, which uses deep learning, optimally use adaptive bin sizes to retrieve information about the source dynamics and to combine gamma-ray observations in a multi-messenger perspective.
Mosaic characterizes the beam shape and generate efficient tilings for efficient multi-beam observations. It consists of an interferometric pattern simulator and characterizer, an optimized tiling generator, and a beamforming weights calculator. It is being used in the filter-banking beamformer in the MeerKAT telescope; more than 200 pulsars have been discovered from the multiple beam observations supported by Mosaic.
**Finalflash** is a Python package designed for primary beam corrections of uGMRT radio interferometric images. The software uses frequency-dependent beam models and FITS file handling to improve the accuracy of radio astronomical data. It is open source and available under the MIT License. The code is hosted at https://github.com/arpan-52/Finalflash.
Extensible spacetime agnostic general relativistic ray-tracing (GRRT): Gradus.jl is a suite of tools related to tracing geodesics and calculating observational signatures of accreting compact objects. Gradus.jl requires only a specification of the non-zero metric components of a chosen spacetime in order to solve the geodesic equation and compute a wide variety of trajectories and orbits. Various algorithms for calculating physical quantities are implemented generically, so they may be used with different classes of spacetime with minimal effort.
Falcon-DM simulates intermediate mass ratio inspirals in DM spikes. This lightweight N-body code is written in C++ and is specifically tuned for simulating IMRIs embedded in dark matter (DM) spikes. It features a 2nd order Drift-Kick-Drift integrator using the symplectic HOLD scheme and symmetrized, individual, time-steps for accurate time-integration. Falcon-DM also offers post-Newtonian (PN) effects up to PN2.5 using the auxiliary velocity algorithm.
Heracles manages harmonic-space statistics on the sphere. It takes catalogs of positions and function values on the sphere and turns them into angular power spectra and mixing matrices. Heracles is both a Python library, to be used in notebooks or data processing pipelines, and a tool for running measurements from the command line using a configuration file.
fastPTA forecasts the sensitivity of future Pulsar Timing Array (PTA) configurations and assesses constraints on Stochastic Gravitational Wave Background (SGWB) parameters. The code can generate mock PTA catalogs with noise levels compatible with current and future PTA experiments. These catalogs can then be used to perform Fisher forecasts of MCMC simulations.
StellarSpectraObservationFitting (SSOF) measures radial velocities and creates data-driven models (with fast, physically-motivated Gaussian Process regularization) for the time-variable spectral features for both the telluric transmission and stellar spectrum measured by Extremely Precise Radial Velocity (EPRV) spectrographs (while accounting for the wavelength-dependent instrumental line-spread function). Written in Julia, SSOF provides two methods for estimating the uncertainties on the RVs and model scores based on the photon uncertainties in the original data. For quick estimates of the uncertainties, the code looks at the local curvature of the likelihood space; the second method for estimating errors is via bootstrap resampling.
Gaspery uses the Fisher Information Matrix (FIM) to evaluate different radial velocity (RV) observing strategies; this assists observational exoplanet astronomers in constructing the observing strategy that maximizes information (or minimizes uncertainty) on the RV semi-amplitude K. The code is flexible and generalizable, however, and can maximize information on any free parameter from any model, given a time series support (x-axis).
Kamodo provides access to, interpolation of, and visualization of space weather models and data. The code allows model developers to represent simulation results as mathematical functions which may be manipulated directly. As the software does not generate model outputs, users must acquire the desired model outputs before these outputs can be functionalized by the software. Kamodo handles unit conversion transparently and supports interactive science discovery through Jupyter notebooks with minimal coding.
CloudCovErr.jl debiases fluxes and improves error bar estimates for photometry on top of structured filamentary backgrounds. It first estimates the covariance matrix of the residuals from a previous photometric model and then computes corrections to the estimated flux and flux uncertainties. Using an infilling technique to estimate the background and its uncertainty dramatically improves flux and flux uncertainty estimates for stars in images of fields with significant nebulosity.
ARK implements Computational Fluid Dynamics applications, such as Euler and all-Mach regime, on a Cartesian grid with MPI+Kokkos. It provides a performance-portable Kokkos implementation for compressible hydrodynamics and performs simulations of convection without any approximation of Boussinesq nor anelastic type. It adapts an all-Mach number scheme into a well-balanced scheme for gravity, which preserves arbitrary discrete equilibrium states up to the machine precision. The low-Mach correction in the numerical flux allows ARK to be more precise in the low-Mach regime; the code is well suited for studying highly stratified and high-Mach convective flows.
The 1D radiative-equilibrium model Exo-REM simulates young gas giants far from their star and brown dwarfs. Fluxes are calculated using the two-stream approximation assuming hemispheric closure. The radiative-convective equilibrium is solved assuming that the net flux (radiative + convective) is conservative. The conservation of flux over the pressure grid is solved iteratively using a constrained linear inversion method. Rayleigh scattering from H2, He, and H2O, as well as absorption and scattering by clouds (calculated from extinction coefficient, single scattering albedo, and asymmetry factor interpolated from precomputed tables for a set of wavelengths and particle radii), are also taken into account.
DGEM compares different computation methods for three-dimensional dust continuum radiative transfer. This simple code is based on mcpolar, translated to C++, and refactored to realize and compare radiative transfer techniques, namely Monte Carlo, Quasi-Monte-Carlo, and the Directions Grid Enumeration Method (DGEM). DGEM uses precalculated directions of the photons propagation instead of the random ones to speed up the calculations process. The code also offers a gnuplot script for plotting the resulting images.
lensitbiases is an rFFT-based N1 lensing bias calculation and tests. It is tuned for TT, P-only or MV (GMV) like quadratic estimators. It performs rFFT-based N1 and N1 matrix calculations in ~ O(ms) time per lensing multipole for Planck-like config, which allows on-the-fly evaluation of the bias. It also calculates 5 rFFT's of moderate size per L for N1 TT, 20 for PP, and 45 for MV or GMV. lensitbiases is not particularly efficient for low lensing L's, since in this case one must use large boxes.
DIRTY (DustI Radiative Transfer, Yeah!) computes the radiative transfer and dust emission from arbitrary distributions of dust illuminated by arbitrary distributions of sources (usually stars). It uses Monte Carlo methods to solve the radiative transfer problem in full 3D including non-equilibrium and equilibrium thermal dust emission. As are other similar models, DUSTY is computationally intensive; as a result, it is written in C++.
solar-vSI performs Monte Carlo integration of multi-body phase space efficiently. The calculation of solar antineutrino spectra from 8B decay requires the integration of five-body phase space. Though there is no simple analytical approach to this problem, recursive relations can be used to facilitate numerical evaluations.
measure_extinction measures extinction due to dust absorbing photons or scattering photons out of the line-of-sight. Extinction applies to the case for a star seen behind a foreground screen of dust. This package provides the tools to measure dust extinction curves using observations of two effectively identical stars, differing only in that one is seen through more dust than the other.
Forcepho infers the fluxes and shapes of galaxies from astronomical images. It models the appearance of multiple sources in multiple bands simultaneously and compares to observed data via a likelihood function. Gradients of this likelihood allow for efficient maximization of the posterior probability or sampling of the posterior probability distribution via Hamiltonian Monte Carlo. The model intrinsic galaxy shapes and positions are shared across the different bands, but the fluxes are fit separately for each band. Forcepho does not perform detection; initial locations and (very rough) parameter estimates must be supplied by the user.
BayeSED implements full Bayesian interpretation of spectral energy distributions (SEDs) of galaxies and AGNs. It performs Bayesian parameter estimation using posteriori probability distributions (PDFs) and Bayesian SED model comparison using Bayesian evidence. Its latest version BayeSED3 supports various built-in SED models and can emulate other SED models using machine learning techniques.
iPIC3D performs kinetic plasma simulations at magnetohydrodynamics time scales. This three-dimensional parallel code uses the implicit Particle-in-Cell method; implicit integration in time of the Vlasov–Maxwell system removes the numerical stability constraints. Written in C++, iPIC3D can be run with CUDA acceleration and supports MPI, OpenMP, and multi-node multi-GPU simulations.
vortex-p analyzes the velocity fields of astrophysical simulations of different natures (for example, SPH, moving-mesh, and meshless) usually spanning many orders of magnitude in scales involved. The code performs Helmholtz-Hodge decomposition (HHD); that is, it can decompose the velocity field into a solenoidal and an irrotational/compressive part Helmholtz-Hodge decomposition. vortex-p internally uses an AMR representation of the velocity field and can, in principle, capture the full dynamical range of the simulation. The package can also perform Reynolds decomposition (i.e., the decomposition of the velocity field into a bulk and a turbulent part). This is achieved by means of a multi-scale filtering of the velocity field, where the filtering scale around each point is determined by the local flow properties. vortex-p expands the vortex (ascl:2206.001) code, which had been coupled to the outputs of the MASCLET code, to a fully stand-alone tool capable of working with the outcomes of a broad range of simulation methods.
pysymlog provides utilities for binning, normalizing colors, wrangling tick marks, and other tasks, in symmetric logarithm space. For numbers spanning positive and negative values, the code works in log scale with a transition through zero, down to some threshold. This is useful for representing data that span many scales such as standard log-space that include values of zero or even negative values. pysymlog provides convenient functions for creating 1D and 2D histograms and symmetric log bins, generating logspace-like arrays through zero and managing matplotlib major and minor ticks in symlog space, as well as bringing symmetric log scaling functionality to plotly.
This paper introduces RadioSunPy, an open-source Python package developed for accessing, visualizing, and analyzing multi-band radio observations of the Sun from the RATAN-600 solar complex. The advancement of observational technologies and software for processing and visualizing spectro-polarimetric microwave data obtained with the RATAN-600 radio telescope opens new opportunities for studying the physical characteristics of solar plasma at the levels of the chromosphere and corona. These levels remain some difficult to detect in the ultraviolet and X-ray ranges. The development of these methods allows for more precise investigation of the fine structure and dynamics of the solar atmosphere, thereby deepening our understanding of the processes occurring in these layers. The obtained data also can be utilized for diagnosing solar plasma and forecasting solar activity. However, using RATAN-600 data requires extensive data processing and familiarity with the RATAN-600. The package offers comprehensive data processing functionalities, including direct access to raw data, essential processing steps such as calibration and quiet Sun normalization, and tools for analyzing solar activity. This includes automatic detection of local sources, identifying them with NOAA (National Oceanic and Atmospheric Administration) active regions, and further determining parameters for local sources and active regions. By streamlining data processing workflows, RadioSunPy enables researchers to investigate the fine structure and dynamics of the solar atmosphere more efficiently, contributing to advancements in solar physics and space weather forecasting.
ysoisochrone is a Python3 package that handles the isochrones for young stellar objects (YSOs), and utilize isochrones to derive the stellar mass and ages. Our primary method is a Bayesian inference approach, and the Python code builds on the IDL version developed in Pascucci et al. (2016). The code estimates the stellar masses, ages, and associated uncertainties by comparing their stellar effective temperature, bolometric luminosity, and their uncertainties with different stellar evolutionary models, including those specifically developed for YSOs. User-developed evolutionary tracks can also be utilized when provided in the specific format described in the code documentation.
The kete tools are intended to enable the simulation of all-sky surveys of solar system objects. This includes multi-body physics orbital dynamics, thermal and optical modeling of the objects, as well as field of view and light delay corrections. These tools in conjunction with the Minor Planet Centers (MPC) database of known asteroids can be used to not only plan surveys but can also be used to predict what objects are visible for existing or past surveys.
The primary goal for kete is to enable a set of tools that can operate on the entire MPC catalog at once, without having to do queries on specific objects. It has been used to simulate over 10 years of survey time for the NEO Surveyor mission using 10 million main-belt and near-Earth asteroids.
GalCraft creates mock integral-field spectroscopic (IFS) observations of the Milky Way and other hydrodynamical/N-body simulations. It conducts all the procedures from inputting data and spectral templates to the output of IFS data cubes in FITS format. The produced mock data cubes can be analyzed in the same way as real IFS observations by many methods, particularly codes like Voronoi binning (ascl:1211.006), pPXF (ascl:1210.002), line-strength indices, or a combination of them (e.g., the GIST pipeline, ascl:1907.025). The code is implemented using Python-native parallelization. GalCraft will be particularly useful for directly comparing the Milky Way with other MW-like galaxies in terms of kinematics and stellar population parameters and ultimately linking the Galactic and extragalactic to study galaxy evolution.
pyRRG measures the 2nd and 4th order moments using a TinyTim model to correct for PSF distortions. The code is invariant to the number exposures and orientation of the drizzle images. pyRRG uses a machine learning algorithm to automatically classify stars and galaxies; this can also be done manually if greater accuracy is needed.
Padé simulates protoplanetary disk hydrodynamics in cylindrical coordinates. Written in Fortran90, it is a finite-difference code and the compact 4th-order standard Padé scheme is used for spatial differencing. Padé differentiation is known to have spectral-like resolving power. The z direction can be periodic or non-periodic. The 4th order Runge-Kutta is used for time advancement. Padé implements a version of the FARGO technique to eliminate the time-step restriction imposed by Keplerian advection, and capturing of shocks that are not too strong can be done by using artificial bulk viscosity.
PySR performs Symbolic Regression; it uses machine learning to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. Symbolic regression works best on low-dimensional datasets, but one can also extend these approaches to higher-dimensional spaces by using "Symbolic Distillation" of Neural Networks. Here, one essentially uses symbolic regression to convert a neural net to an analytic equation. Thus, these tools simultaneously present an explicit and powerful way to interpret deep neural networks.
WISE2MBH uses infrared cataloged data from the Wide-field Infrared Survey Explorer (WISE) to estimate the mass of supermassive black holes (SMBH). It implements a Monte Carlo approach for error propagation, considering mean photometric errors from WISE magnitudes, errors in fits of scaling relations used and scatter of those relations, if available.
PyExoCross, a Python adaptation of ExoCross (ascl:1803.014), post-processes molecular line lists generated by ExoMol, HITRAN, and HITEMP and other similar initiatives. It generates absorption and emission spectra and other properties, including partition functions, specific heats, and cooling functions, based on molecular line lists. The code also calculates cross sections with four line profiles: Doppler, Gaussian, Lorentzian, and Voigt. PyExoCross can convert data format between ExoMol and HITRAN, and supports importing and exporting line lists in the ExoMol and HITRAN/HITEMP formats.
GASTLI (GAS gianT modeL for Interiors) calculates the interior structure models for gas giants exoplanets. The code computes mass-radius curves, thermal evolution curves, and interior composition retrievals to fit a interior structure model to your mass, radius, age, and if available, atmospheric metallicity data. GASTLI can also plot the results, including internal and atmospheric profiles, a pressure-temperature diagram, mass-radius relations, and thermal evolution curves.
symbolic_pofk provides simple Python functions and a Fortran90 routine for precise symbolic emulations of the linear and non-linear matter power spectra and for the conversion σ 8 ↔ A s as a function of cosmology. These can be easily copied, pasted, and modified to other languages. Outside of a tested k range, the fit includes baryons by default; however, this can be switched off.
planetMagFields accesses and analyzes information about magnetic fields of planets in our solar system and visualizes them in both 2D and 3D. The code provides access to properties of a planet, such as dipole tilt, Gauss coefficients, and computed radial magnetic field at surface, and has methods to plot the field and write a vts file for 3D visualization. planetMagFields can be used to produce both 2D and 3D visualizations of a planetary field; it also provides the option of potential extrapolation.
The software framework AMReX is designed for building massively parallel block-structured adaptive mesh refinement (AMR) applications. Key features of AMReX include C++ and Fortran interfaces; 1-, 2- and 3-D support; and support for cell-centered, face-centered, edge-centered, and nodal data. The framework also supports hyperbolic, parabolic, and elliptic solves on hierarchical adaptive grid structure, optional subcycling in time for time-dependent PDEs, and parallelization via flat MPI, OpenMP, hybrid MPI/OpenMP, or MPI/MPI, and parallel I/O. AMReX supports the plotfile format with AmrVis, VisIt (ascl:1103.007), ParaView (ascl:1103.014), and yt (ascl:1011.022).
ClassiPyGRB downloads, processes, visualizes, and classifies GRBs in the Swift/BAT database. Users can query light curves for any GRB and use tools to preprocess the data, including noise/duration reduction and interpolation. The package provides a set of facilities and tutorials for classifying GRBs based on their light curves using a method based on a dimensionality reduction of the data using t-Distributed Stochastic Neighbour Embedding (TSNE); results are visualized using a Graphical User Interface (GUI). ClassiPyGRB also plots and animates the results of the TSNE analysis for a deeper hyperparameter grid search.
BeyonCE (Beyond Common Eclipsers) explores the large parameter space of eclipsing disc systems. The fitting code reduces the parameter space encompassed by the transit of circumsecondary disc (CSD) systems with azimuthally symmetric, non-uniform optical-depth profiles to constrain the size and orientation of discs with a complex sub-structure. BeyonCE does this by rejecting disc geometries that do not reproduce the measured gradients within their light curves.
resonances identifies mean-motion resonances of small bodies. It uses the REBOUND integrator (ascl:1110.016) and automatically identifies two-body and three-body mean-motion resonance in the Solar system. The package can be used for other possible planetary systems, including exoplanets. resonances accurately differentiates different types of resonances (pure, transient, uncertain) and provides an interface for mass tasks, such as finding resonant areas in a planetary system. The software can also plot time series and periodograms.
cloudyfsps is a Python interface between FSPS (ascl:1010.043) and Cloudy (ascl:9910.001). It compiles FSPS models for use as ionizing sources (Stellar SED grids) within Cloudy and generates Cloudy input files, single-parameter or grids of parameters. It runs Cloudy models in parallel and formats the output, which is nebular continuum and nebular line emission, for FSPS input and for explorative manipulation and plotting within Python. cloudyfsps includes pre-packaged plots for BPT diagrams (NII, SII, OI, OII) with observed data from HII regions and SDSS galaxies, and also provides comparisons with MAPPINGS III (ascl:1306.008) models.
Stardust extracts galaxy properties by fitting their multiwavelength data to a set of linearly combined templates. This Python package brings three different families of templates together: 1.) UV+Optical emission from dust unobscured stellar light; 2.) AGN heated dust in the MIR; and 3.) IR dust reprocessed stellar light in the NIR-FIR. Stardust's template fitting does not rely on energy balance. As a result, the total luminosity of dust obscured and dust unobscured stellar light do not rely on each other, and it is possible to fit objects such as SMGs where the energy balance approach might not be applicable.
PICASSO (Python Inpainter for Cosmological and AStrophysical SOurces) provides a suite of inpainting methodologies to reconstruct holes on images (128x128 pixels) extracted from a HEALPIX map. Three inpainting techniques are included; these are divided into two main groups: diffusive-based methods (Nearest-Neighbors), and learning-based methods that rely on training DCNNs to fill the missing pixels with the predictions learned from a training data-set (Deep-Prior and Generative Adversarial Networks). PICASSO also provides scripts for projecting from full sky HEALPIX maps to flat thumbnails images, performing inpainting on GPUs and parallel inpainting on multiple processes, and for projecting from flat images to HEALPIX. Pretrained models are also included.
MCMole3D (Monte-Carlo MOlecular Line Emission) simulates the 3D molecular cloud emission in the Milky Way. In particular, it can simulate both the unpolarized and polarized emission coming from the first rotational line of Carbon Monoxide (CO, J=1-0). MCMole3D seeks to compare the simulated emission with that observed by full sky surveys from the Planck satellite.
FGCluster runs spectral clustering onto Healpix maps for parametric foreground removal, using a map encoding the feature to cluster as inputs. Pixel similarity is given by the geometrical affinity of each pixel in the sphere. FGCluster can also take an uncertainty map as an input, in which case the adjacency is modified in such a way that the pixel similarity accounts also for the statistical significance given by the pixel values in a map and the uncertainties.
SUSHI (Semi-blind Unmixing with Sparsity for hyperspectral images) performs non-stationary unmixing of hyperspectral images. The typical use case is to map the physical parameters such as temperature and redshift from a model with multiple components using data from hyperspectral images. Applying a spatial regularization provides more robust results on voxels with low signal to noise ratio. The code has been used on X-ray astronomy but the method can be applied to any integral field unit (IFU) data cubes.
UltraDark.jl simulates cosmological scalar fields. Written in Julia, it is inspired by PyUltraLight (ascl:1810.009) and designed to be simple to use and extend. It solves a non-interacting scalar field Gross-Pitaevskii equation coupled to Poisson's equation for gravitational potential. The scalar field describes scalar dark matter in models including ultralight dark matter, fuzzy dark matter, axion-like particles and the like. It also describes an inflaton field in the reheating epoch of the early universe.
Written in Python, DarsakX is used to design and analyze the imaging performance of a multi-shell X-ray telescope with an optical configuration similar to Wolter-1 optics for astronomical purposes. It can also assess the impact of figure error on the telescope's imaging performance and optimize the optical design to improve angular resolution for wide-field telescopes. By default, DarsakX uses DarpanX (ascl:2101.015) to calculate the mirror's reflectivity.
SAQQARA analyzes stochastic gravitational wave background signals. This Simulation-based Inference (SBI) library is built on top of the swyft code (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Simulation-based inference combined with implicit marginalization (over nuisance parameters) has been shown to be well suited for SGWB data analysis.
21cmFirstCLASS extends 21cmFAST (ascl:1102.023) and interfaces with CLASS (ascl:1106.020) to generate initial conditions at recombination that are consistent with the input cosmological model. These initial conditions can be set during the time of recombination, allowing one to compute the 21cm signal (and its spatial fluctuations) throughout the dark ages, as well as in the proceeding cosmic dawn and reionization epochs, just as in the standard 21cmFAST. 21cmFirstCLASS tracks both the CDM density field δc as well as the baryons density field δb. In addition, the user interface in 21cmFirstCLASS has been improved and allows one to easily plot the 21cm power spectrum while including noise from the output of 21cmSense (ascl:1609.013).
GRBoondi simulates generalized Proca fields on arbitrary analytic fixed backgrounds; it is based on the publicly available 3+1D numerical relativity code GRChombo (ascl:2306.039). GRBoondi reduces the prerequisite knowledge of numerical relativity and GRChombo in the numerical studies of generalized Proca theories. The main steps to perform a study are inputting the additions to the equations of motion beyond the base Proca theory; GRBoondi can then automatically incorporate the higher-order terms in the simulation. The code is written entirely in C++14 and uses hybrid MPI/OpenMP parallelism. GRBoondi inherits all of the capabilities of the main GRChombo code, which makes use of the Chombo library (ascl:1202.008) for adaptive mesh refinement.
RadioSED uses nested sampling to perform a Bayesian analysis of radio SEDs constructed from radio flux density measurements obtained as part of large area surveys (or in some limited cases, as part of targeted followup campaigns). It is a pure Python implementation, and is essentially a wrapper around Bilby (ascl:1901.011), the Bayesian inference library. RadioSED uses dynesty (ascl:1809.013) to perform the sampling steps, though other samplers could also be used. Users can make use of a pre-defined set of models and surveys from which to draw flux density measurements, or they can define their own models and provide their own input flux density measurements. All flux density measurements are referenced against the RACS-LOW survey, and source names and IDs from the survey catalogue are used as identifiers.
M_SMiLe computes an approximation of the probability of magnification for a lens system consisting of microlensing by compact objects within a galaxy cluster. It specifically focuses on the scenario where the galaxy cluster is strongly lensing a background galaxy and the compact objects, such as stars, are sensitive to this microlensing effect. The microlenses responsible for this effect are stars and stellar remnants, though exotic objects such as compact dark matter candidates (including PBHs and axion mini-halos) can contribute to this effect.
BELTCROSS2 calculates the closest approaches of asteroid to the mean orbits of meteoroid streams. It is especially useful to check if an asteroid, which was observed to become active, passed through a meteoroid stream, and through which stream, a short time before the beginning of the activity. The basic characteristics of the closest encounter of the asteroid with the stream are provided by BELTCROSS2.
Cue interprets nebular emission across a wide range of ionizing conditions of galaxies. The software, based on Cloudy (ascl:9910.001), emulates a neural net. It does not require a specific ionizing spectrum as a source, instead approximating the ionizing spectrum with a 4-part piece-wise power-law. Along with the flexible ionizing spectra, Cue allows freedom in [O/H], [N/O], [C/O], gas density, and total ionizing photon budget.
HaloFlow uses a machine learning approach to infer Mh and stellar mass, M∗, using grizy band magnitudes, morphological properties quantifying characteristic size, concentration, and asymmetry, total measured satellite luminosity, and number of satellites.
LADDER (Learning Algorithm for Deep Distance Estimation and Reconstruction) reconstructs the “cosmic distance ladder” by analyzing sequential cosmological data; it can also be applied to other sequential datasets with associated covariance information. It uses the apparent magnitude data from the Pantheon Type Ia supernovae compilation, fully incorporating covariance information to accurately predict mean values and uncertainties. It offers model-independent consistency checks for datasets such as Baryon Acoustic Oscillations (BAO) and can calibrate high-redshift datasets such as Gamma Ray Bursts (GRBs) without assuming any underlying cosmological model. Additionally, LADDER serves as a model-independent mock catalog generator for forecast-based cosmological studies.
Sonification extends the Astronify software (ascl:2408.005) to sonify a spatially distributed dataset. The package contains scripts to convert images into scatterplots and sonifications. The reproduce_image.py script takes an image file and reproduces it as a scatterplot by converting the input image to grayscale, extracting pixel values and generating scatter data based on these values, and then plotting the scatter data to create a visual representation of the image. The sonifications script converts the scatterplot data into an audio series and adjusts the note spacing and sonification range to customize an auditory representation. Sonification accepts images in PNG and JPG formats.
Astronify contains tools for sonifying astronomical data, specifically data series. Data series sonification takes a data table and maps one column to time, and one column to pitch. This technique is commonly used to sonify light curves, where observation time is scaled to listening time and flux is mapped to pitch. While Astronify’s sonification uses the columns “time” and “flux” by default, any two columns can be supplied and a sonification created.
Sailfish simulates accreting binary systems, including binary protostars, post-AGN stellar binaries, mass-transferring X-ray binaries, and double black hole systems. The binary components are "on the grid" rather than excised, and are evolved according to the Kepler two-body problem, modified to account for gravitational wave losses or self-consistent forcing from the orbiting gas. The solvers are shock-capturing and are second order accurate in space and time. Gravity is fully Newtonian. Thermodynamics can be treated using a gamma-law equation of state with a blackbody cooling term, or in the locally isothermal approximation, in which the gas temperature is set to a constant times the local free-fall speed. Sailfish is fully Cartesian and has extensive diagnostic capabilities to facilitate accurate calculations of gas-driven orbital evolution or the extraction of electromagnetic disk signatures. The code is extremely efficient, reaching more than one billion zone updates per second on an NVIDIA A100 GPU, enabling extremely high resolution of complex flows around the binary components.
Global mm-VLBI Array (GMVA) observations are accompanied by a lot of metadata (i.e., the so-called 'ANTAB' files) that contain the system temperature (Tsys) and the gain values of the individual GMVA antennas. These data are required for the amplitude calibration of GMVA data which is an essential part in the data reduction. Unfortunately, Tsys measurements in the ANTAB files are not perfect and there are almost always erroneous values in some of the ANTAB files (particularly in the VLBA data). This could lead to incorrect results in the amplitude calibration and thus need to be corrected with proper data inspection/treatment. However, every GMVA station provides the ANTAB file in their own data format which makes the examination tricky. AntabGMVA was designed to resolve these issues and allows GMVA users to manage the GMVA ANTAB files easily and efficiently. Using AntabGMVA, one can perform extraction/inspection/visualization/correction of the Tsys data from the ANTAB files and finally generate one single ANTAB file which includes all the final products.
SHARC (SHArpened Dimensionality Reduction and Classification) performs local gradient clustering-based sharpened dimensionality reduction (SDR) using neural network projections and uses these projections to make classifications. The library also contains functions for finding the optimal SDR parameters and for consolidating classification results obtained through multiple classifiers. It requires pySDR (ascl:2408.002). SHARC provides accurate and physically insightful classification of astronomical objects based on their broadband colors.
pySDR performs local gradient clustering-based sharpened dimensionality reduction (SDR). The library uses the C++ LGCDR_v1 code as its backend.
Sharpened dimensionality reduction (SDR) sharpens original data before dimensionality reduction to create visually segregrated sample clusters. user-guided labeling. Each distinct cluster can then be labeled and used to further analyze an otherwise unlabeled data set. Written in C++, SDR scales well with large high-dimensional data.
Package‑X instantly solves one loop Feynman integrals in full generality. Written in Mathematica and extensively tested and adopted, the package computes dimensionally regulated one-loop integrals with up to four distinct propagators of arbitrarily high rank, calculates traces of Dirac matrices in d dimensions for closed fermion loops, or carries out Dirac algebra for open fermion lines. Package‑X also generates analytic results for any kinematic configuration (e.g., at zero external momentum or physical threshold) for real masses and external invariants, provides analytic expressions for UV-divergent, IR-divergent and finite parts either separately or all together, and computes discontinuities across cuts of one-loop integrals, among other tasks.
The High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) instrument at the Very Large Telescope (VLT) combines the exoplanet imager SPHERE with the high-resolution spectrograph CRIRES using single-mode fibers. HiRISE has been designed to enable the characterization of known, directly-imaged planetary companions in the H band at a spectral resolution on the order of R = λ/∆λ = 140 000. The hipipe package is a custom python pipeline used to reduce the HiRISE data and produce high-level science products that can be used for astrophysical interpretation.
pony3d statistically identifies islands of contiguous emission inside a three-dimensional volume. The primary functionality is the rapid and reliable creation of masks for the deconvolution of radio interferometric radio spectral line emission. It has been designed to run on the output of the wsclean imager (ascl:1408.023) whereby the individual FITS image per frequency plane enables a high degree of parallelism, but can work on any image set providing this criterion is met. Single channel island rejection is offered, along with 3D mask dilation and boxcar averaging. pony3d is also a prototype source-finding and extraction tool.
The photGalIMF code calculates the evolution of stellar mass and luminosity for a galaxy model, based on the PARSEC stellar evolution model (ascl:1502.005). It requires input lists specifying the age, mass, metallicity, and initial mass function (IMF) of single stellar populations. These input parameters can be provided by the companion galaxy chemical simulation code GalIMF (ascl:1903.010), which generates realistic sets of inputs.
ELISA is a Python library designed for efficient spectral modeling and robust statistical inference. With user-friendly interface, ELISA streamlines the spectral analysis workflow.
The modeling framework of ELISA is flexible, allowing users to construct complex models by combining models of ELISA and XSPEC, as well as custom models. Parameters across different model components can also be linked. The models can be fitted to the spectral datasets using either Bayesian or maximum likelihood approaches. For Bayesian fitting, ELISA incorporates advanced Markov Chain Monte Carlo (MCMC) algorithms, including the No-U-Turn Sampler (NUTS), nested sampling, and affine-invariant ensemble sampling, to tackle the posterior sampling problem. For maximum likelihood estimation (MLE), ELISA includes two robust algorithms: the Levenberg-Marquardt algorithm and the Migrad algorithm from Minuit. The computation backend is based on Google's JAX, a high-performance numerical computing library, which can reduce the runtime for fitting procedures like MCMC, thereby enhancing the efficiency of analysis.
After fitting, goodness-of-fit assessment can be done with a single function call, which automatically conducts posterior predictive checks and leave-one-out cross-validation for Bayesian models, or parametric bootstrap for MLE. These methods offer greater accuracy and reliability than traditional fit-statistic/dof measures, and thus better model discovery capability. For comparing multiple candidate models, ELISA provides robust Bayesian tools such as the Widely Applicable Information Criterion (WAIC) and the Leave-One-Out Information Criterion (LOOIC), which are more reliable than AIC or BIC. Thanks to the object-oriented design, collecting the analysis results should be simple. ELISA also provide visualization tools to generate ready-for-publication figures.
ELISA is an open-source project and community contributions are welcome and greatly appreciated.
Heimdall uses direct, tree, and sub-band dedispersion algorithms on massively parallel computing architectures (GPUs) to speed up real-time detection of radio pulsar and other transient events.
Flash-X simulates physical phenomena in several scientific domains, primarily those involving compressible or incompressible reactive flows, using Eulerian adaptive mesh and particle techniques. It derives some of its solvers from and is a descendant of FLASH (ascl:1010.082). Flash-X has a new framework that relies on abstractions and asynchronous communications for performance portability across a range of heterogeneous hardware platforms, including exascale machines. It also includes new physics capabilities, such as the Spark general relativistic magnetohydrodynamics (GRMHD) solver, and supports interoperation with the AMReX mesh framework, the HYPRE linear solver package, and the Thornado neutrino radiation hydrodynamics package, among others.
AstroCLIP performs contrastive pre-training between two different kinds of astronomical data modalities (multi-band imaging and optical spectra) to yield a meaningful embedding space which captures physical information about galaxies and is shared between both modalities. The embeddings can be used as the basis for competitive zero- and few-shot learning on a variety of downstream tasks, including similarity search, redshift estimation, galaxy property prediction, and morphology classification.
PFFT computes massively parallel, fast Fourier transformations on distributed memory architectures. PFFT can be understood as a generalization of FFTW-MPI (ascl:1201.015) to multidimensional data decomposition; in fact, using PFFT is very similar to FFTW. The library is written in C and MPI; a Fortran interface is also available.
cola_halo generates hundreds of realizations on the fly. This parallel cosmological N-body simulation code generates random Gaussian initial condition using 2LPTIC (ascl:1201.005), time evolves N-body particles with colacode (ascl:1602.021), and finds dark-matter halos with the Friends-of-Friends code (ascl:2407.012).
Fof uses the friends-of-friends method to find groups. A particle belongs to a friends-of-friends group if it is within some linking length of any other particle in the group. After all such groups are found, those with less than a specified minimum number of group members are rejected. The program takes input files in the TIPSY (ascl:1111.015) binary format and produces a single ASCII output file called fof.grp. This output file is in the TIPSY array format and contains the group number to which each particle belongs. A group number of zero means that the particle does not belong to a group. The fof.grp file can be read in by TIPSY and used to color each particle by group number to visualize the groups. Simulations with periodic boundary conditions can also be handled by fof by specifying the period in each dimension on the command line.
bigfile stores data from cosmology simulations from HPC systems and beyond. It provides a hierarchical structure of data columns via File, Dataset and Column. A Column stores a two dimensional table. Numerical typed columns are supported; attributes can be attached to a Column and both numerical attributes and string attributes are supported. Type casting is performed on-the-fly if read/write operations request a different data type than the file has stored.
UFalcon rapidly post-processes N-body code output into signal maps for many different cosmological probes. The package is able to produce maps of weak-lensing convergence, linear-bias galaxy over-density, cosmic microwave background (CMB) lensing convergence and the integrated Sachs-Wolfe temperature perturbation given a set of N-body lightcones. It offers high flexibility for lightcone construction, such as user-specific survey-redshift ranges, redshift distributions and single-source redshifts. UFalcon also computes the galaxy intrinsic alignment signal, which can be treated as an additive component to the cosmological signal.
ATM (Asteroid Thermal Modeling) models asteroid flux measurements to estimate an asteroid's size, surface temperature distribution, and emissivity, and creates model spectral energy distributions for the different thermal models. After downloading lookup tables for relevant models, it can also fit observations of asteroids.
RealSim generates survey-realistic synthetic images of galaxies from hydrodynamical simulations of galaxy formation and evolution. The main functionality of this code inserts "idealized" simulated galaxies into Sloan Digital Sky Survey (SDSS) images in such a way that the statistics of sky brightness, resolution, and crowding are matched between simulated galaxies and observed galaxies in the SDSS. The suite accepts idealized synthetic images in calibrated AB surface brightnesses and rebins them to the desired redshift and CCD angular scale; RealSim can add Poisson noise, if desired, by adopting generic values of photometric calibrations in survey fields. Images produced by the suite can be inserted into real image fields to incorporate real skies, PSF degradation, and contamination by neighboring sources in the field of view. The RealSim methodology can be applied to any existing galaxy imaging survey.
GRDzhadzha evolves matter on curved spacetimes with an analytic time and space dependence. Written in C++14, it uses hybrid MPI/OpenMP parallelism to achieve good performance. The code is based on publicly available 3+1D numerical relativity code GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which uses the Chombo library for adaptive mesh refinement.
provabgs infers full posterior distributions of galaxy properties for galaxies in the DESI Bright Galaxy Survey using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and photometry. provabgs includes a state-of-the-art stellar population synthesis (SPS) model based on non-parametric prescription for star formation history, a metallicity history that varies over the age of the galaxy, and a flexible dust prescription. It has a neural network emulator for the SPS model that enables accelerated inference. Full posteriors of the 12 SPS parameters can be derived in ~10 minutes. The emulator is currently designed for galaxies from 0 < z < 0.6. provabgs also includes a Bayesian inference pipeline that is based on zeus (ascl:2008.010).
BaCoN (BAyesian COsmological Network) trains and tests Bayesian Convolutional Neural Networks in order to classify dark matter power spectra as being representative of different cosmologies, as well as to compute the classification confidence. It supports the following theories: LCDM, wCDM, f(R), DGP, and a randomly generated class. Additional cosmologies can be easily added.
Forklens measures weak gravitational lensing signal using a deep-learning methoe. It measures galaxy shapes (shear) and corrects the smearing of the point spread function (PSF, an effect from either/both the atmosphere and optical instrument). It contains a custom CNN architecture with two input branches, fed with the observed galaxy image and PSF image, and predicts several features of the galaxy, including shape, magnitude, and size. Simulation in the code is built directly upon GalSim (ascl:1402.009).
pycosie is analysis code used for Technicolor Dawn (TD), a Gadget-3 derived cosmological radiative SPH simulation suite. The target analyses are to complement what is done with TD and other analysis software in its suite. pycosie creates power spectrum from generated Lyman-alpha forests spectra, links absorbers to potential host galaxies, grids gas information for each galaxy, and reads specific output files from software such as Rockstar (ascl:1210.008) and SKID (ascl:1102.020).
Python Fully Automated TiRiFiC (pyFAT) wraps around the tilted ring fitting code (TiRiFiC, ascl:1208.008) to fully automate the process of fitting simple tilted ring models to line emission cubes. pyFAT is the successor to the IDL/GDL FAT (ascl:1507.011) code and offers improved handling and fitting as well as several new features. PyFAT fits simple rotationally symmetric discs with asymmetric warps and surface brightness distributions, providing a base model that can can be used in TiRiFiC to explore large scale motions. pyFAT delivers much more control over the fitting procedure, which is made possible by the new modular setup and the use of omegaconf for the input and default settings.
MAKEE (MAuna Kea Echelle Extraction) reduces data from the HIRES and ESI instruments at Keck Observatory. It is optimized for the spectral extraction of single, unresolved point sources and is designed to run non-interactively using a set of default parameters. Taking the raw HIRES FITS files as input, the code determines the position (or trace) of each echelle order, defines the object and background extraction boundaries, optimally extracts a spectrum for each order, and computes wavelength calibrations. MAKEE produces FITS format "spectral images" (each row is a separate echelle order spectrum) and the data values are in arbitrary (relative) flux units. MAKEE will reduce data from all HIRES formats, including the single CCD format, the single CCD with Red and UV cross dispersers, and the current 3 CCD system. It can handle a variety of pixel binnings, including 1x1, 1x2, 1x4 (column x row).
WinNet, a single zone nuclear reaction network, calculates many different nucleosynthesis processes, including r-process, nup-process, and explosive nucleosynthesis, and many more). It reads in a user-defined file with runtime parameters, then chooses the evolution mode, which is dependent on temperature. The temperature, density, and neutrino quantities are updated, after which the reaction network equations are solved numerically. If convergence is not achieved, the step size is halved and the iteration is repeated. Once convergence is reached, the output is generated and the time is evolved; the final output such as the final abundances and mass fractions are written.
Exovetter is an open-source, pip-installable python package which calculates metrics on high cadence time series photometry to distinguish between exoplanet transit signals and false positives. The package standardizes the implementation of metrics developed for the TESS, Kepler, and K2 missions such as Odd-Even, Multiple Event Statistic, and Centroid Offset (see “Planetary Candidates Observed by Kepler. VIII.”, Thompson et al. 2018.). Metrics can be run individually or together as part of a pipeline. Exovetter also includes several visualizations to further evaluate the transits and metrics.
AutoPhOT (AUTOmated Photometry Of Transients) produces publication-quality photometry of transients quickly. Written in Python 3, this automated pipeline's capabilities include aperture and PSF-fitting photometry, template subtraction, and calculation of limiting magnitudes through artificial source injection. AutoPhOT is also capable of calibrating photometry against either survey catalogs (e.g., SDSS, PanSTARRS) or using a custom set of local photometric standards.
Redback provides end-to-end interpretation and parameter estimation of electromagnetic transients. Using data downloaded by the code or provided by the user, the code processes the data into a homogeneous transient object. Redback implements several different types of electromagnetic transients models, ranging from simple analytical models to numerical surrogates, fits models implemented in the package or provided by the user, and plots lightcurves. The code can also be used as a tool to simulate realistic populations without having to fit anything, as models are implemented as functions and can be used to simulate populations. Redback uses Bilby (ascl:1901.011) for sampling and can easily switch samplers and likelihoods.
The phi-GPU (Parallel Hermite Integration on GPU) high-order N-body parallel dynamic code uses the fourth-order Hermite integration scheme with hierarchical individual block time-steps and incorporates external gravity. The software works directly with GPU, using only NVIDIA GPU and CUDA code. It creates numerical simulations and can be used to study galaxy and star cluster evolution.
Faceted-HyperSARA images radio-interferometric wideband intensity data. Written in MATLAB, the library offers a collection of utility functions and scripts from data extraction from an RI measurement set MS Table to the reconstruction of a wideband intensity image over the field of view and frequency range of interest. The code achieves high precision imaging from large data volumes and supports data dimensionality reduction via visibility gridding and estimation of the effective noise level when reliable noise estimates are not available. Faceted-HyperSASA also corrects the w-term via w-projection and incorporates available compact Fourier models of the direction dependent effects (DDEs) in the measurement operator.
PowerSpecCovFFT computes the non-Gaussian (regular trispectrum and its shot noise) part of the analytic covariance matrix of the redshift-space galaxy power spectrum multipoles using an FFTLog-based method. The galaxy trispectrum is based on a tree-level standard perturbation theory but with a slightly different galaxy bias expansion. The code computes the non-Gaussian covariance of the power spectrum monopole, quadrupole, hexadecapole, and their cross-covariance up to kmax ~ 0.4 h/Mpc.
GRINN (Gravity Informed Neural Network) solves the coupled set of time-dependent partial differential equations describing the evolution of self-gravitating flows in one, two, and three spatial dimensions. It is based on physics informed neural networks (PINNs), which are mesh-free and offer a fundamentally different approach to solving such partial differential equations. GRINN has solved for the evolution of self-gravitating, small-amplitude perturbations and long-wavelength perturbations and, when modeling 3D astrophysical flows, provides accuracy on par with finite difference (FD) codes with an improvement in computational speed.
This python code automatically detects solar active regions (AR). Based on morphological operation and region growing, it uses synoptic magnetograms from SOHO/MDI and SDO/HMI and calculates the parameters that characterize each AR, including the latitude and longitude of the flux-weighted centroid of two polarities and the whole AR, the area, and the flux of each polarity, and the initial and final dipole moments.
Phazap post-processes gravitational-wave (GW) parameter estimation data to obtain the phases and polarization state of the signal at a given detector and frequency. It is used for low-latency identification of strongly lensed gravitational waves via their phase consistency by measuring their distance in the detector phase space. Phazap builds on top of the IGWN conda enviroment which includes the standard GW packages LALSuite (ascl:2012.021) and bilby (ascl:1901.011), and can be applied beyond lensing to test possible deviations in the phase evolution from modified theories of gravity and constrain GW birefringence.
Photochem models the photochemical and climate composition of a planet's atmosphere. It takes inputs such as the stellar UV flux and atmospheric temperature structure to find the steady-state chemical composition of an atmosphere, or evolve atmospheres through time. Photochem also contains 1-D climate models and a chemical equilibrium solver.
LeHaMoC simulates high-energy astrophysical sources. It simulates the behavior of relativistic pairs, protons interacting with magnetic fields, and photons in a spherical region. The package contains numerous physical processes, including synchrotron emission and self-absorption, inverse Compton scattering, photon-photon pair production, and adiabatic losses. It also includes proton-photon pion production, proton-photon (Bethe-Heitler) pair production, and proton-proton collisions. LeHaMoC can model expanding spherical sources with a variable magnetic field strength. In addition, three types of external radiation fields can be defined: grey body or black body, power-law, and tabulated.
Magnification bias estimation estimates magnification bias for a galaxy sample with a complex photometric selection for the example of SDSS BOSS. The code works for CMASS and the LOWZ, z1 and z3 samples. A template for applying the approach to other surveys is included; requirements include a galaxy catalog that provides magnitudes (used for photometric selection) and the exact conditions used for the photometric selection.
SuperLite produces synthetic spectra for astrophysical transient phenomena affected by circumstellar interaction. It uses Monte Carlo methods and multigroup structured opacity calculations for semi-implicit, semirelativistic radiation transport in high-velocity shocked outflows, and can reproduce spectra of typical Type Ia, Type IIP, and Type IIn supernovae. SuperLite also generates high-quality spectra that can be compared with observations of transient events, including superluminous supernovae, pulsational pair-instability supernovae, and other peculiar transients.
ytree reads and works with merger tree data from multiple formats. An extension of yt (ascl:1011.022), which can analyze snapshots from cosmological simulations, ytree can be thought of as the yt of merger trees. ytree's online documentation lists supported formats; support for additional formats can be added, as in principle, any type of tree-like data where an object has one or more ancestors and a single descendant can be supported.
BiaPy provides deep-learning workflows for a large variety of image analysis tasks, including 2D and 3D semantic segmentation, instance segmentation, object detection, image denoising, single image super-resolution, self-supervised learning and image classification. Though developed specifically for bioimages, it can be used for watershed-based instance segmentation for friends-of-friends proto-haloes.
FLORAH generates the assembly history of halos using a recurrent neural network and normalizing flow model. The machine-learning framework can be used to combine multiple generated networks that are trained on a suite of simulations with different redshift ranges and mass resolutions. Depending on the training, the code recovers key properties, including the time evolution of mass and concentration, and galaxy stellar mass versus halo mass relation and its residuals. FLORAH also reproduces the dependence of clustering on properties other than mass, and is a step towards a machine learning-based framework for planting full merger trees.
EVA (Excess Variability-based Age) computes the VarX values and VarX90 ages for a given list of stars. The package retrieves information from Gaia, performs basic var90 calculations, then calculates the age of the group in a given band or overall (by combining all three bands). EVA then analyzes and plots the results.
The ALeRCE anomaly detector cross-validates six anomaly detection algorithms for three classes (transient, periodic, and stochastic) of anomalous sources within the Zwicky Transient Facility (ZTF) data stream using the ALeRCE light curve features. A machine and deep learning-based framework is used for anomaly detection. For each class, a distinct anomaly detection model is constructed using only information about the known objects (i.e., inliers) for training. An anomaly score is computed using the probabilities to determine whether the light curve corresponds to a transient, stochastic, or periodic nature.
Quadratic Monte Carlo generates ensembles of models and confines fitness landscapes without relying on linear stretch moves; it works very efficiently for ring potential and Rosenbrock density. The method is general and can be implemented into any existing MC software, requiring only a few lines of code.
Color transformations calculator determines the magnitude of a galaxy in a needed photometric band, given its color and magnitude in the original band. It supports various optical and near intrared surveys, including SDSS, DECaLS, DELVE, UKIDSS, VHS, and VIKING, and provides conversions for both total and aperture magnitudes with apertures of 1.5", 2" or 3" diameters. The source code, useful for performing bulk calculations, is available in Python and IDL; the calculator is also offered as a web service.
PRyMordial offers fast and precise evaluation of both the Big Bang Nucleosynthesis (BBN) light-element abundances and the effective number of relativistic degrees of freedom. It can be used within and beyond the Standard Model. The package calculates Neff and helium-4, deuterium, helium-3 and lithium-7 abundances. PRyMordial corrects for QED plasma effects, neutron lifetime, and incomplete neutrino decoupling, and includes an optional module that re-elaborates all the ODE systems of the code in Julia.
CBiRd (Code for Bias tracers In Redshift space) provides correlators in the Effective Field Theory of Large-Scale Structure (EFTofLSS) in a ready-to-use pipeline for cosmological analysis of galaxy-redshift surveys data. It provides a core calculation package (C++BiRd), a Python implementation of a Taylor expansion of the power spectrum around a reference cosmology for efficient evaluation (TBiRd), and libraries to correct for observational systematics. CBiRd also provides MCMC samplers (MCBiRd) for a power spectrum and bispectrum analysis of galaxy-redshift surveys data based on emcee (ascl:1303.002), and can provide an earlybird pass to explore the cosmos with LSS surveys.
sphereint calculates the numerical volume in a sphere. It provides a weight for each grid position based on whether or not it is in (weight = 1), out (weight = 0), or partially in (weight in between 0 and 1) a sphere of a given radius. A cubic cell is placed around each grid position and the volume of the cell in the sphere (assuming a flat surface in the cell) is calculated and normalized by the cell volume to obtain the weight.
CARDiAC (Code for Anisotropic Redshift Distributions in Angular Clustering) computes the impact of anisotropic redshift distributions on a wide class of angular clustering observables. It supports auto- and cross-correlations of galaxy samples and cosmic shear maps, including galaxy-galaxy lensing. The anisotropy can be present in the mean redshift and/or width of Gaussian distributions, as well as in the fraction of galaxies in each component of multi-modal distributions. Templates of these variations can be provided by the user or simulated internally within the code.
The anzu package offers two independent codes for hybrid Lagrangian bias models in large-scale structure. The first code measures the hybrid "basis functions"; the second takes measurements of these basis functions and constructs an emulator to obtain predictions from them at any cosmology (within the bounds of the training set). anzu is self-contained; given a set of N-body simulations used to build emulators, it measures the basis functions. Alternatively, given measurements of the basis functions, anzu should in principle be useful for constructing a custom emulator.
Lenser estimates weak gravitational lensing signals, particularly flexion, from real survey data or realistically simulated images. Lenser employs a hybrid of image moment analysis and an Analytic Image Modeling (AIM) analysis. In addition to extracting flexion measurements by fitting a (modified Sérsic) model to a single image of a galaxy, Lenser can do multi-band, multi-epoch fitting. In multi-band mode, Lenser fits a single model to multiple postage stamps, each representing an exposure of a single galaxy in a particular band.
candl (CMB Analysis With A Differentiable Likelihood) analyzes CMB power spectrum measurements using a differentiable likelihood framework. It is compatible with JAX (ascl:2111.002), though JAX is optional, allowing for fast and easy computation of gradients and Hessians of the likelihoods, and candl provides interface tools for working with other cosmology software packages, including Cobaya (ascl:1910.019) and MontePython (ascl:1805.027). The package also provides auxiliary tools for common analysis tasks, such as generating mock data, and supports the analysis of primary CMB and lensing power spectrum data.
SMART (Spectral energy distributions Markov chain Analysis with Radiative Transfer models) implements a Bayesian Markov chain Monte Carlo (MCMC) method to fit the ultraviolet to millimeter spectral energy distributions (SEDs) of galaxies exclusively with radiative transfer models. The models constitute four types of pre-computed libraries, which describe the starburst, active galactic nucleus (AGN) torus, host galaxy and polar dust components.
Scaling Relations Finder finds the scaling relations between magnetic field properties and observables for a model of galactic magnetic fields. It uses observable quantities as input: the galaxy rotation curve, the surface densities of the gas, stars and star formation rate, and the gas temperature to create galactic dynamo models. These models can be used to estimate parameters of the random and mean components of the magnetic field, as well as the gas scale height, root-mean-square velocity and the correlation length and time of the interstellar turbulence, in terms of the observables.
GAStimator implements a Python MCMC Gibbs-sampler with adaptive stepping. The code is simple, robust, and stable and well suited to high dimensional problems with many degrees of freedom and very sharp likelihood features. It has been used extensively for kinematic modeling of molecular gas in galaxies, but is fully general and may be used for any problem MCMC methods can tackle.
CosmoPower develops Bayesian inference pipelines that leverage machine learning to solve inverse problems in science. While the emphasis is on building algorithms to accelerate Bayesian inference in cosmology, the implemented methods allow for their application across a wide range of scientific fields. CosmoPower provides neural network emulators of matter and Cosmic Microwave Background power spectra, which can replace Boltzmann codes such as CAMB (ascl:1102.026) or CLASS (ascl:1106.020) in cosmological inference pipelines, to source the power spectra needed for two-point statistics analyses. This provides orders-of-magnitude acceleration to the inference pipeline and integrates naturally with efficient techniques for sampling very high-dimensional parameter spaces.
ndcube manipulates, inspects, and visualizes multi-dimensional contiguous and non-contiguous coordinate-aware data arrays. A sunpy (ascl:1401.010) affiliated package, it combines data, uncertainties, units, metadata, masking, and coordinate transformations into classes with unified slicing and generic coordinate transformations and plotting and animation capabilities. ndcube handles data of any number of dimensions and axis types (e.g., spatial, temporal, and spectral) whose relationship between the array elements and the real world can be described by World Coordinate System (WCS) translations.
raccoon implements the cross-correlation function (CCF) method. It builds weighted binary masks from a stellar spectrum template, computes the CCF of stellar spectra with a mask, and derives radial velocities (RVs) and activity indicators from the CCF. raccoon is mainly implemented in Python 3; it also uses some Fortran subroutines that are called from Python.
blackthorn generates spectra of dark matter annihilations into right-handed (RH) neutrinos or into particles that result from their decay. These spectra include photons, positrons, and neutrinos. The code provides support for varied RH-neutrino masses ranging from MeV to TeV by incorporating hazma, PPPC4DMID, and HDMSpectra models to compute dark matter annihilation cross sections and mediator decay widths. blackthorn also computes decay branching fractions and partial decay widths.
PALpy provides a Python interface to PAL, the positional Astronomy Library (ascl:1606.002), which is written in C. All arguments modified by the C API are returned and none are modified. The one routine that is different is palObs, which returns a simple dict that can be searched using standard Python. The keys to the dict are the short names and the values are another dict with keys name, long, lat and height.
tapify implements a suite of multitaper spectral estimation techniques for analyzing time series data. It supports analysis of both evenly and unevenly sampled time series data. The multitaper statistic tackles the problems of bias and consistency, which makes it an improvement over the classical periodogram for evenly sampled data and the Lomb-Scargle periodogram for uneven sampling. In basic statistical terms, this estimator provides a confident look at the properties of a time series in the frequency or Fourier domain.
coronagraph provides a Python noise model for directly imaging exoplanets with a coronagraph-equipped telescope. Based on the original IDL code for this coronagraph model, coronograph_noise (ascl:2405.018), the Python version has been expanded in a few key ways. Most notably, the Telescope, Planet, and Star objects used for reflected light coronagraph noise modeling can now be used for transmission and emission spectroscopy noise modeling, making this model a general purpose exoplanet noise model for many different types of observations.
coronagraph_noise simulates coronagraph noise. Written in IDL, the code includes a generalized coronagraph routine and simulators for the WFIRST Shaped Pupil Coronagraph in both spectroscopy and imaging modes. Functions available include stellar and planetary flux functions, planet photon and zodiacal light count rates, planet-star flux ratio, and clock induced charge count rate, among others. coronagraph_noise also includes routines to smooth a plot by convolving with a Gaussian profile to convolve a spectrum with a given instrument resolution and to take a spectrum that is specified at high spectral resolution and degrade it to a lower resolution. A Python implementation of coronagraph_noise, coronagraph (ascl:2405.019), is also available.
AFINO (Automated Flare Inference of Oscillations) finds oscillations in time series data using a Fourier-based model comparison approach. The code analyzes the date and generates a results file in either JSON or Pickle format, which contains numerous properties of the data and analysis, and a summary plot.
autoregressive-bbh-inference, written in Python, models the distributions of binary black hole masses, spins, and redshifts to identify physical features appearing in these distributions without the need for strongly-parametrized population models. This allows not only agnostic study of the “known unknowns” of the black hole population but also reveals the “unknown unknowns," the unexpected and impactful features that may otherwise be missed by the standard building-block method.
sunbather simulates the upper atmospheres of exoplanets and their observational signatures. The code constructs 1D Parker wind profiles using p-winds (ascl:2111.011) to simulate these with Cloudy (ascl:9910.001), and postprocesses the output with a custom radiative transfer module to predict the transmission spectra of exoplanets.
EF-TIGRE (Effective Field Theory of Interacting dark energy with Gravitational REdshift) constrains interacting Dark Energy/Dark Matter models in the Effective Field Theory framework through Large Scale Structures observables. In particular, the observables include the effect of gravitational redshift, a distortion of time from galaxy clustering. This generates a dipole in the correlation function which is detectable with two distinct populations of galaxies, thus making it possible to break degeneracies among parameters of the EFT description.
LTdwarfIndices studies spectral indices to determine whether one or more brown dwarfs are photometric variable candidates. For a single brown dwarf, it analyzes a given set of indices and outputs the number of graphs the object appears in in the variable area, whether it is a variable or non-variable candidate, and, optionally, an index-index or histogram plot. Using another code module, LTdwarftIndices can also analyze a set of sample indices for many brown dwarfs.
fitramp fits a ramp to a series of nondestructive reads and detects and rejects jumps. The software performs likelihood-based jump detection for detectors read out up-the-ramp; it uses the entire set of reads to compute likelihoods. The code compares the χ2 value of a fit with and without a jump for every possible jump location. fitramp can fit ramps with and without fitting the reset value (the pedestal), and fit and mask jumps within or between groups of reads. It can also compute the bias of ramp fitting.
DirectSHT performs direct spherical harmonic transforms for point sets on the sphere. Given a set of points, defined by arrays of theta and phi (in radians) and weights, it provides the spherical harmonic transform coefficients alm. JAX (ascl:2111.002) can be used to speed up the computation; the code will automatically fall back to numpy if JAX is not present. The code is much faster when run on GPUs. When they are available and JAX is installed, the code automatically distributes computation and memory across them.
riddler automates fitting of type Ia supernovae spectral time series. The code is comprised of a series of neural networks trained to emulate radiative transfer simulations from TARDIS (ascl:1402.018). Emulated spectra are then fit to observations using nested sampling implemented in UltraNest (ascl:1611.001) to estimate the posterior distributions of model parameters and evidences.
morphen performs image analysis, multi-Sersic image fitting decomposition, and radio interferometric self-calibration, thus measuring basic image morphology and photometry. The code provides a state-of-the-art Python-based image fitting implementation based on the Sersic function. Geared, though not exclusively, toward radio astronomy, morphen's tools involve pure python, but also are integrated with CASA (ascl:1107.013) in order to work with common casatasks as well as WSClean (ascl:1408.023).
i-SPin simulates 3-component Schrodinger systems with and without gravity and with and without self-interactions while obeying SO(3) symmetry. The code allows the user to input desired parameters, along with initial conditions for the Schrodinger fields. Its three function modules then perform the main (drift-kick-drift) steps of the algorithm, track the fractional changes in total mass and spin in the system, and then plot results. The default plots are mass and spin density projections along with total mass and spin fractional changes.
GauPro fits a Gaussian process regression model to a dataset. A Gaussian process (GP) is a commonly used model in computer simulation. It assumes that the distribution of any set of points is multivariate normal. A major benefit of GP models is that they provide uncertainty estimates along with their predictions.
ICPertFLRW, a Cactus code (ascl:1102.013) thorn, provides as initial conditions an FLRW metric perturbed with the comoving curvature perturbation Rc in the synchronous comoving gauge. Rc is defined as a sum of sinusoidals (20 in each x, y, and z direction) whose amplitude, wavelength, and phase shift are all parameters in param.ccl. While the metric and extrinsic curvature only have first order scalar perturbations, the energy density is computed exactly in full from the Hamiltonian constraint, hence vector and tensor perturbations are initially present at higher order. These are then passed to the CT_Dust thorn to be evolved.
pySPEDAS (Python-based Space Physics Environment Data Analysis Software) supports multi-mission, multi-instrument retrieval, analysis, and visualization of heliophysics time series data. A Python implementation of SPEDAS (ascl:2405.001), it supports most of the capabilities of SPEDAS; it can load heliophysics data sets from more than 30 space-based and ground-based missions, coordinate transforms, interpolation routines, and unit conversions, and provide interactive access to numerous data sets. pySPEDAS also creates multi-mission, multi-instrument figures, includes field and wave analysis tools, and performs magnetic field modeling, among other functions.
pyADfit models accretion discs around astrophysical objects. The code provides functions to calculate physical quantities related to accretion disks and perform parameter estimation using observational data. The accretion disc model is the alpha-disc model while the parameter estimation can be performed with Nessai (ascl:2405.002), Raynest (ascl:2405.003), or CPnest (ascl:2205.021).
raynest, written in Python, computes Bayesian evidences and probability distributions using parallel chains.
nessai performs nested sampling for Bayesian Inference and incorporates normalizing flows. It is designed for applications where the Bayesian likelihood is computationally expensive. nessai uses PyTorch and also supports the use of bilby (ascl:1901.011).
The SPEDAS (Space Physics Environment Data Analysis Software) framework supports multi-mission data ingestion, analysis and visualization for the Space Physics community. It standardizes the retrieval of data from distributed repositories, the scientific processing with a powerful set of legacy routines, the quick visualization with full output control and the graph creation for use in papers and presentations. SPEDAS includes a GUI for ease of use by novice users, works on multiple platforms, and though based on IDL, can be used with or without an IDL license. The framework supports plugin modules for multiple projects such as THEMIS, MMS, and WIND, and provides interfaces for software modules developed by the individual teams of those missions. A Python implementation of the framework, PySPEDAS (ascl:2405.005), is also available.
Swiftest is a software package designed to model the long-term dynamics of system of bodies in orbit around a dominant central body, such a planetary system around a star, or a satellite system around a planet. The main body of the program is written in Modern Fortran, taking advantage of the object-oriented capabilities included with Fortran 2003 and the parallel capabilities included with Fortran 2008 and Fortran 2018. Swiftest also includes a Python package that allows the user to quickly generate input, run simulations, and process output from the simulations. Swiftest uses a NetCDF output file format which makes data analysis with the Swiftest Python package a streamlined and flexible process for the user. Building off a strong legacy, including its predecessors Swifter and Swift, Swiftest takes the next step in modeling the dynamics of planetary systems by improving the performance and ease of use of software, and by introducing a new collisional fragmentation model. Currently, Swiftest includes the four main symplectic integrators included in its predecessors: WHM, RMVS, HELIO, and SyMBA. In addition, Swiftest also contains the Fraggle model for generating products of collisional fragmentation.
We present a module built into the PypeIt Python package to reduce high resolution Y, J, H, K, and L band spectra from the W. M. Keck Observatory NIRSPEC spectrograph. This data reduction pipeline is capable of spectral extraction, wavelength calibration, and telluric correction of data taken before and after the 2018 detector upgrade, all in a single package. The procedure for reducing data is thoroughly documented in an expansive tutorial.
RhoPop identifies compositionally distinct populations of small planets (R≲2R⊕). It employs mixture models in a hierarchical framework and the dynesty (ascl:1809.013) nested sampler for parameter and evidence estimates. RhoPop includes a density-mass grid of water-rich compositions from water mass fraction (WMF) 0-1.0 and a grid of volatile-free rocky compositions over a core mass fraction (CMF) range of 0.006-0.95. Both grids were calculated using the ExoPlex mass-radius-composition calculator (ascl:2404.029).
ExoPlex is a thermodynamically self-consistent mass-radius-composition calculator. Users input a bulk molar composition and a mass or radius, and ExoPlex will calculate the resulting radius or mass. Additionally, it will produce the planet's core mass fraction, interior mineralogy and the pressure, adiabatic temperature, gravity and density profiles as a function of depth.
binary_precursor models light curves of supernova (SN) precursors powered by a pre-SN outburst accompanying accretion onto a compact object companion. Though it is only one of the possible models, it is useful for interpretations of (bright) SN precursors highly exceeding the Eddington limit of massive stars, which are observed in a fraction of SNe with dense circumstellar matter (CSM) around the progenitor. It offers a number of editable parameters, including compact object mass, progenitor mass, progenitor radii, and opacity. Initial CSM velocity can be normalized by the progenitor escape velocity (xi parameter), and the CSM mass, ionization temperature, and binary separation can also be specified.
S2FFT computes Fourier transforms on the sphere and rotation group using JAX (ascl:2111.002) or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g., GPUs and TPUs). More specifically, S2FFT provides support for spin spherical harmonic and Wigner transforms (for both real and complex signals), with support for adjoint transformations where needed, and comes with different optimisations (precompute or not) that one may select depending on available resources and desired angular resolution L.
LEO-vetter automatically vets transit signals found in light curve data. Inspired by the Kepler Robovetter (ascl:2012.006), LEO-vetter computes vetting metrics to be compared to a series of pass-fail thresholds. If a signal passes all tests, it is considered a planet candidate (PC). If a signal fails at least one test, it may be either an astrophysical false positive (FP; e.g., eclipsing binary, nearby eclipsing signal) or false alarm (FA; e.g., systematic, stellar variability). Pass-fail thresholds can be changed to suit individual research purposes, and LEO-vetter produces vetting reports for manual inspection of signals. Flux-level vetting can be applied to any light curve dataset (such as Kepler, K2, and TESS), including light curves with mixes of cadences, while pixel-level vetting has been implemented for TESS.
stringgen creates emulations of cosmic string maps with statistics similar to those of a single (or small ensemble) of reference simulations. It uses wavelet phase harmonics to calculate a compressed representation of these reference simulations, which may then be used to synthesize new realizations with accurate statistical properties, e.g., 2 and 3 point correlations, skewness, kurtosis, and Minkowski functionals.
Written in Python, pAGN solves AGN disk model equations. The code is highly customizable and, with the correct inputs, provides a fully evolved AGN disk model through parametric 1D curves for key disk parameters such as temperature and density. pAGN can be used to study migration torques in AGN disks, simulations of compact object formation inside gas disks, and comparisons with new, more complex models of AGN disks.
mhealpy extends the functionalities of the HEALPix (ascl:1107.018) wrapper healpy (ascl:2008.022) to handle single and multi-resolution maps (a.k.a. multi-order coverage maps or MOC maps). In addition to creating and analyzes MOC maps, it supports arithmetic operations, adaptive grids, resampling of existing multi-resolution maps, and plotting, among other functions, and reads and writes to FITS, which enables sharing spatial information for multiwavelength and multimessenger analyses.
jetsimpy creates hydrodynamic simulations of relativistic blastwaves with tabulated angular energy and Lorentz factor profiles and efficiently models Gamma-Ray Burst afterglows. It supports tabulated angular energy and tabulated angular Lorentz factor profiles. jetsimpy also supports ISM, wind, and mixed external density profile, including synthetic afterglow light curves, apparent superluminal motion, and sky map and Gaussian equivalent image sizes. Additionally, you can add your own emissivity model by defining a lambda function in a c++ source file, allowing the package to be used for more complicated models such as Synchrotron self-absorption.
cuDisc simulates the evolution of protoplanetary discs in both the radial and vertical dimensions, assuming axisymmetry. The code performs 2D dust advection-diffusion, dust coagulation/fragmentation, and radiative transfer. A 1D evolution model is also included, with the 2D gas structure calculated via vertical hydrostatic equilibrium. cuDisc requires a NVIDIA GPU.
NbodyIMRI uses N-body simulations to study Dark Matter-dressed intermediate-mass ratio inspirals (IMRI) and extreme mass ratio inspiral (EMRI) systems. The code calculates all BH-BH forces and BH-DM forces directly while neglecting DM-DM pairwise interactions. This allows the code to scale up to very large numbers of DM particles in order to study stochastic processes like dynamical friction.
PySSED (Python Stellar Spectral Energy Distributions) downloads and extracts data on multi-wavelength catalogs of astronomical objects and regions of interest and automatically proceses photometry into one or more stellar SEDs. It then fits those SEDs with stellar parameters. PySSED can be run directly from the command line or as a module within a Python environment. The package offers a wide variety plots, including Hertzsprung–Russell diagrams of analyzed objects, angular separation between sources in specific catalogs, and two-dimensional offset between cross-matches.
GPUniverse models quantum fields in finite dimensional Hilbert spaces with Generalised Pauli Operators (GPOs) and overlapping degrees of freedom. In addition, the package can simulate sets of qubits that are only quasi independent (i.e., the Pauli algebras of different qubits have small, but non-zero anti-commutator), which is useful for validating analytical results for holographic versions of the Weyl field.
pyilc implements the needlet internal linear combination (NILC) algorithm for CMB component separation in pure Python; it also implements harmonic-space ILC. The code can also perform Cross-ILC, where the covariance matrices are computed only from independent splits of the maps. In addition, pyilc includes an inpainting code, diffusive_inpaint, that diffusively inpaints a masked region with the mean of the unmasked neighboring pixels.
The Machine Learning Telescope Pointing Correction code trains and tests machine learning models for correcting telescope pointing. Using historical APEX data from 2022, including pointing corrections, and other data such as weather conditions, position and rotation of the secondary mirror, pointing offsets observed during pointing scans, and the position of the sun, among other data, the code treats the data in two different ways to test which factors are the most likely to account for pointing errors.
EBWeyl computes the electric and magnetic parts of the Weyl tensor, Eαβ and Bαβ, using a 3+1 slicing formulation. The module provides a Finite Differencing class with 4th (default) and 6th order backward, centered, and forward schemes. Periodic boundary conditions are used by default; otherwise, a combination of the 3 schemes is available. It also includes a Weyl class that computes for a given metric the variables of the 3+1 formalism, the spatial Christoffel symbols, spatial Ricci tensor, electric and magnetic parts of the Weyl tensor projected along the normal to the hypersurface and fluid flow, the Weyl scalars and invariant scalars. EBWeyl can also compute the determinant and inverse of a 3x3 or 4x4 matrice in every position of a data box.
astroNN creates neural networks for deep learning using Keras for model and training prototyping while taking advantage of Tensorflow's flexibility. It contains tools for use with APOGEE, Gaia and LAMOST data, though is primarily designed to apply neural nets on APOGEE spectra analysis and predict luminosity from spectra using data from Gaia parallax with reasonable uncertainty from Bayesian Neural Net. astroNN can handle 2D and 2D colored images, and the package contains custom loss functions and layers compatible with Tensorflow or Keras with Tensorflow backend to deal with incomplete labels. The code contains demo for implementing Bayesian Neural Net with Dropout Variational Inference for reasonable uncertainty estimation and other neural nets.
Meanoffset performs astronomical image alignment. The code uses the means of the rows and columns of an original image for alignment and finds the optimal offset corresponding to the maximum similarity by comparing different offsets between images. The similarity is evaluated by the standard deviation of the quotient divided by the means. The code is fast and robust.
EffectiveHalos provides models of the real-space matter power spectrum, based on a combination of the Halo Model and Effective Field Theory, which are 1% accurate up to k = 1 h/Mpc, across a range of cosmologies, including those with massive neutrinos. It can additionally compute accurate halo count covariances (including a model of halo exclusion), both alone and in combination with the matter power spectrum.
BayeSN performs hierarchical Bayesian SED modeling of type Ia supernova light curves. This probabilistic optical-NIR SED model analyzes the population distribution of physical properties as well as cosmology-independent distance estimation for individual SNe. BayeSN is built with NumPyro and Jax (ascl:2111.002) and provides support for GPU acceleration.
Panphasia computes a very large realization of a Gaussian white noise field. The field has a hierarchical structure based on an octree geometry with 50 octree levels fully populated. The code sets up Gaussian initial conditions for cosmological simulations and resimulations of structure formation. Panphasia provides an easy way to publish the linear phases used to set up cosmological simulation initial conditions; publishing phases enriches the literature and makes it easier to reproduce and extend published simulation work.
The superABC sampling method obtains cosmological constraints from supernova light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. It provides an interface to two forward model simulations, SNCosmo (ascl:1611.017) and SNANA (ascl:1010.027), for supernova cosmology.
LensIt enables CMB lensing and CMB delensing using the flat-sky approximation. The package can find the maximum posterior estimation of CMB lensing deflection maps from temperature and/or polarization maps and perform Wiener filtering of masked CMB data and allow for inhomogenous noise, including lensing deflections, using a multigrid preconditioner. It contains fast and accurate simulation libraries for lensed CMB skies, and standard quadratic estimator lensing reconstruction tools. LensIt also includes CMB internal delensing tools, including internal delensing biases calculation for temperature and/or polarization maps.
WignerFamilies generates families of Wigner 3j and 6j symbols by recurrence relation. These exact methods are orders of magnitude more efficient than strategies such as prime factorization for problems which require every non-trivial symbol in a family, and are very useful for large quantum numbers. WignerFamilies is thread-safe and very fast, beating the standard Fortran routine DRC3JJ from SLATEC by a factor of 2-4.
PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.
GalMOSS performs two-dimensional fitting of galaxy profiles. This Python-based, Torch-powered tool seamlessly enables GPU parallelization and meets the high computational demands of large-scale galaxy surveys. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on over 8,000 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, GalMOSS completed classical Sérsic profile fitting in about 10 minutes. Benchmark tests show that GalMOSS achieves computational speeds that are significantly faster than those of default implementations.
TAT-pulsar (Timing Analysis Toolkit for Pulsars) analyzes, processes, and visualizes pulsar data, thus handling the scientific intricacies of pulsar timing. By leveraging observational data from pulsars, along with the associated physical processes and statistical characteristics, the package integrates a suite of Python-based tools and data analysis scripts specifically developed for both isolated pulsars and binary systems. This enables swift analysis and the detailed presentation of timing properties in the high-energy pulsar field. Developed and implemented completely independently from other pulsar timing software such as Stingray (ascl:1608.001) and PINT (ascl:1902.007), TAT-pulsar serves as a valuable cross-checking and supplementary tool for data analysis.
KCWIKit extends the official KCWI DRP (ascl:2301.019) with a variety of stacking tools and DRP improvements. The software offers masking and median filtering scripts to be used while running the KCWI DRP, and a step-by-step KCWI_DRP implementation for finer control over the reduction process. Once the DRP has finished, KCWIKit can be used to stack the output cubes via the Montage package. Various functions cross-correlate and mosaic the constituent cubes and the final stacked cubes are WCS corrected. Helper functions can then be used to deproject the stacked cube into lower-dimensional representations should the user desire.
PIPE (PSF Imagette Photometric Extraction) extracts PSF (point-spread function) photometry from data acquired by the space telescope CHEOPS (CHaracterisation of ExOPlanetS). Advantages of PSF photometry over standard aperture photometry include reduced sensitivity to contaminants such as background stars, cosmic ray hits, and hot/bad pixels. For CHEOPS, an additional advantage is that photometry can be extracted from an imagette, a small window around the target that is downlinked at a shorter cadence than the larger-sized subarray used for aperture photometry. These advantages make PIPE particularly well suited for targets brighter or fainter than the nominal G = 7-11 mag range of CHEOPS, i.e., where short-cadence imagettes are available (bright end) or when contamination becomes a problem (faint end). Within the nominal range, PIPE usually offers no advantage over the standard aperture photometry.
cbeam models the propagation of guided light through slowly-varying few-mode waveguides using the coupled-mode theory (CMT). When compared with more general numerical methods for waveguide simulation, such as the finite-differences beam propagation method (FD-BPM), numerical implementations of the CMT can be much more computationally efficient. Written in Python and Julia, the package provides a Pythonic class structure to define waveguides, with simple classes for directional couplers and photonic lanterns already provided. cbeam also doubles as a finite-element eigenmode solver.
Obsplanning is a suite of tools to help plan astronomical observations from ground-based observatories, for traditional single-site as well as multi-station (VLBI) observing. Conveniently determine observability of objects in the sky from your observatory, and produce plots to help you prepare for your observations over the course of a session. Celestial source coordinates (including solar system objects) can be queried or created, and transformed. Calibrator or reference sources can be selected by proximity, and slew order can be optimized to save valuable telescope time. Plots and visualizations can be easily made to chart source elevation and transits, source proximity to the Sun and Moon, concurrent 'up time' of sources at multiple sites (for VLBI or tandem observations), 'dark time' at a telescope site for a given year, finder plots made from real images (with options to query online databases), and more.
The DensityFieldTools toolset manipulates density fields and measures power spectra and bispectra using a very simple interface. After loading a density field, it computes the power spectrum and the bispectrum for a desired binning. The bispectrum estimator also automatically computes the power spectrum for the chosen binning, to facilitate, for example, shot-noise subtraction. DensityFieldTools also provides a quick way to measure (cross-)power spectra directly from density fields.
CLASS-PT modifies the CLASS (ascl:1106.020) code to compute the non-linear power spectra of dark matter and biased tracers in one-loop cosmological perturbation theory, for both Gaussian and non-Gaussian initial conditions. CLASS-PT can be interfaced with the MCMC sampler MontePython (ascl:1805.027) using the (new and improved) custom-built likelihoods found here.
OneLoopBispectrum computes the one-loop bispectrum of galaxies in redshift space. It computes and simplifies the bispectrum kernels using Mathematica; this is cosmology-independent. The code also computes the full and flattened bispectrum templates, given the pre-computed integration kernels. OneLoopBispectrum uses Mathematica to read in and combine the bispectrum templates, and Python to interpolate and extract the one-loop bispectrum.
URecon reconstructs the initial conditions of N-body simulations from late time (e.g., z=0) density fields. This simple UNET architecture is implemented in TensorFlow and requires Pylians3 (ascl:2403.012) for measuring power spectrum of density fields. The package includes weights trained on Quijote fiducial cosmology simulations.
Pylians3 (Python3 libraries for the analysis of numerical simulations) provides a Python 3 version of Pylians (ascl:1811.008), which analyzes numerical simulations (both N-body and hydrodynamic); parts of the codebase are also written in cython and C. It computes density fields, power spectra, bispectra, and correlation functions, identifies voids, and populates halos with galaxies using an HOD. Pylians3 also applies HI+H2 corrections to the output of hydrodynamic simulations, make 21cm maps, computes DLAs column density distribution functions, and can plot density fields and make movies.
LtU-ILI (Learning the Universe Implicit Likelihood Inference) performs machine learning parameter inference. Given labeled training data or a stochastic simulator, the LtU-ILI piepline automatically trains state-of-the-art neural networks to learn the data-parameter relationship and produces robust, well-calibrated posterior inference. The package comes with a wide range of customizable complexity, including posterior-, likelihood-, and ratio-estimation methods for ILI, including sequential learning analogs, and various neural density estimators, including mixture density networks, conditional normalizing flows, and ResNet-like ratio classifiers. It offers fully-customizable, exotic embedding networks, including CNNs and Graph Neural Networks, and a unified interface for multiple ILI backends such as sbi, pydelfi, and lampe. LtU-ILI also handles multiple marginal and multivariate posterior coverage metrics, and offers Jupyter and command-line interfaces and a parallelizable configuration framework for efficient hyperparameter tuning and production runs.
FitCov estimates the covariance of two-point correlation functions in a way that requires fewer mocks than the standard mock-based covariance. Rather than using an analytically fixed correction to some terms that enter the jackknife covariance matrix, the code fits the correction to a mock-based covariance obtained from a small number of mocks. The fitted jackknife covariance remains unbiased, an improvement over other methods, performs well both in terms of precision (unbiased constraints) and accuracy (similar uncertainties), and requires significant less computational power. In addition, FitCov can be easily implemented on top of the standard jackknife covariance computation.
pycorr wraps two-point counter engines such as Corrfunc (ascl:1703.003) to estimate the correlation function. It supports theta (angular), s, s-mu, rp-pi binning schemes, analytical two-point counts with periodic boundary conditions, and inverse bitwise weights (in any integer format) and (angular) upweighting. It also provides MPI parallelization and jackknife estimate of the correlation function covariance matrix.
s4cmb (Systematics For Cosmic Microwave Background) studies the impact of instrumental systematic effects on measurements of CMB experiments based on bolometric detector technology. s4cmb provides a unified framework to simulate raw data streams in the time domain (TODs) acquired by CMB experiments scanning the sky, and to inject in these realistic instrumental systematics effect.
The MINDS hybrid pipeline is based on the JWST pipeline and routines from the VIP package (ascl:1603.003) for the reduction of JWST MIRI-MRS data. The pipeline compensates for some of the known weaknesses of the official JWST pipeline to improve the quality of spectrum extracted from MIRI-MRS data. This is done by leveraging the capabilities of VIP, another large data reduction package used in the field of high-contrast imaging.
The front end of the pipeline is a highly automated Jupyter notebook. Parameters are typically set in one cell at the beginning of the notebook, and the rest of the notebook can be run without any further modification. The Jupyter notebook format provides flexibility, enhanced visibility of intermediate and final results, more straightforward troubleshooting, and the possibility to easily incorporate additional codes by the user to further analyze or exploit their results.
fkpt computes the 1-loop redshift space power spectrum for tracers using perturbation theory for LCDM and Modified Gravity theories using "fk"-Kernels. Though implemented for the Hu-Sawicky f(R) modified gravity model, it is straightforward to use it for other models.
Poke (pronounced /poʊˈkeɪ/ or po-kay) uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization to bridge the gap between ray trace models and diffraction models. It operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. Poke provides two propagation physics modules, Gaussian Beamlet Decomposition and Polarization Ray Tracing, that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that integrates physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.
BTSbot automates real-time identification of bright extragalactic transients in Zwicky Transient Facility (ZTF) data. A multi-modal convolutional neural network, BTSbot provides a bright transient score to individual ZTF detections using their image data and 25 extracted features. The package eliminates the need for daily visual inspection of new transients by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates. BTSbot recovers all bright transients in our test split and performs on par with human experts in terms of identification speed (on average, ∼1 hour quicker than scanners).
kinematic_scaleheight uses MCMC methods to kinematically estimate the vertical distribution of clouds in the Galactic plane, including the least squares analysis of Crovisier (1978), an updated least squares analysis using a modern Galactic rotation model, and a Bayesian model sampled via MCMC as described in Wenger et al. (2024).
DistClassiPy uses different distance metrics to classify objects such as light curves. It provides state-of-the-art performance for time-domain astronomy, and offers lower computational requirements and improved interpretability over traditional methods such as Random Forests, making it suitable for large datasets. DistClassiPy allows fine-tuning based on scientific objectives by selecting appropriate distance metrics and features, which enhances its performance and improves classification interpretability.
Pynkowski computes Minkowski Functionals and other higher order statistics of input fields, as well as their expected values for different kinds of fields. This package supports Minkowski functionals, and maxima and minima distributions. Supported input formats include scalar HEALPix maps such as those used by healpy (ascl:2008.022) and polarization HEALPix maps in the SO(3) formalism. Pynkowski also supports various theoretical fields, including Gaussian (e.g., CMB Temperature or the initial density field), Chi squared (e.g., CMB polarization intensity), and spin 2 maps in the SO(3) formalism.
2cosmos is a modification of Monte Python (ascl:1307.002) and allows the user to write likelihood modules that can request two independent instances of CLASS (ascl:1106.020) and separate dictionaries and structures for all cosmological and nuisance parameters. The intention is to be able to evaluate two independent cosmological calculations and their respective parameters within the same likelihood. This is useful for evaluating a likelihood using correlated datasets (e.g. mutually exclusive subsets of the same dataset for which one wants to take into account all correlations between the subsets).
SkyLine generates mock line-intensity maps (both in 3D and 2D) in a lightcone from a halo catalog, accounting for the evolution of clustering and astrophysical properties, and observational effects such as spectral and angular resolutions, line-interlopers, and galactic foregrounds. Using a given astrophysical model for the luminosity of each line, the code paints the signal for each emitter and generates the map, adding coherently all contributions of interest. In addition, SkyLine can generate maps with the distribution of Luminous Red Galaxies and Emitting Line Galaxies.
star_shadow automatically analyzes space based light curves of eclipsing binaries and provide a measurement of eccentricity, among other parameters. It measures the timings of eclipses using the time derivatives of the light curves, using a model of orbital harmonics obtained from an initial iterative prewhitening of sinusoids. Since the algorithm extracts the harmonics from the rest of the sinusoidal variability eclipse timings can be measured even in the presence of other (astrophysical) signals, thus determining the orbital eccentricity automatically from the light curve along with information about the other variability present in the light curve. The output includes, but is not limited to, a sinusoid plus linear model of the light curve, the orbital period, the eccentricity, argument of periastron, and inclination.
ECLIPSR fully and automatically analyzes space based light curves to find eclipsing binaries and provide some first order measurements, such as the binary star period and eclipse depths. It provides a recipe to find individual eclipses using the time derivatives of the light curves, including eclipses in light curves of stars where the dominating variability is, for example, pulsations. Since the algorithm detects each eclipse individually, even light curves containing only one eclipse can (in principle) be successfully analyzed and classified. ECLIPSR can find eclipsing binaries among both pulsating and non-pulsating stars in a homogeneous and quick manner and process large amounts of light curves in reasonable amounts of time. The output includes, among other things, the individual eclipse markers, the period and time of first (primary) eclipse, and a score between 0 and 1 indicating the likelihood that the analyzed light curve is that of an eclipsing binary.
polarizationtools converts, analyzes, and simulates polarization data. The different python scripts (1) convert Stokes parameters into linear polarization parameters with proper treatment of the uncertainties and vice versa; (2) shift electric vector position angle (EVPA) data points in time series to account for the 180 degrees ambiguity; (3) identify rotations of the EVPA e.g. in blazar polarization monitoring data according to various rotation definitions; and (4) simulate polarization time series as a random walk in the Stokes Q-U plane.
MGPT (Modified Gravity Perturbation Theory) computes 2-point statistics for LCDM model, DGP and Hu-Sawicky f(R) gravity. Written in C, the code can be easily modified to include other models. Specifically, it computes the SPT matter power spectrum, SPT Lagrangian-biased tracers power spectrum, and the CLPT matter correlation function. MGPT also computes the CLPT Lagrangian-biased tracers correlation function and a set of Q and R functionsfrom which other statistics, as leading order bispectrum, can be constructed.
CCBH-Numerics (previously called CCBH-PLPP) computes the probability of the existence of a single cosmologically coupled black hole (BH) with a formation mass below a specified threshold for given observational data of binary black holes (BBHs) from gravitational waves. The code uses the unbiased population of BBHs, as given by the power-law-plus-peak (PLPP) profile, as the observational input, and assumes that the detected BBHs are formed from stellar evolution, not primordial BHs. CCBH-Numerics also works with individual data from BBHs and for NSBH pairs as well.
Rwcs offers access to all the projection and distortion systems of WCSLIB (ascl:1108.003) in R. This can be used directly for, for example, pixel lookups, or for higher level general distortion and projection.
Rfits reads and writes FITS images, tables, and headers. Written in R, Rfits works with all types of compressed images, and both ASCII and binary tables. It uses CFITSIO (ascl:1010.001) for all low level FITS IO, so in general should be as fast as other CFITSIO-based software. For images, Rfits offers fully featured memory mapping and on-the-fly subsetting (by pixel and coordinate) and sparse pixel sampling, allowing for efficient inspection of very large (larger than memory) images.
NMMA probes nuclear physics and cosmology with multimessenger analysis. This fully featured, Bayesian multi-messenger pipeline targets joint analyses of gravitational-wave and electromagnetic data (focusing on the optical). Using bilby (ascl:1901.011) as the back-end, the software uses a variety of samplers to sampling these data sets. NMMA uses chiral effective field theory based neutron star equation of states when performing inference, and is also capable of estimating the Hubble Constant.
escatter.py performs Monte Carlo simulations of electron scattering events. The code was developed to better understand the emission lines from the interacting supernova SN 2021adxl, specifically the blue excess seen in the Hα 6563A emission line. escatter follows a photon that was formed in a thin interface between the supernova ejecta and surrounding material as it travels radially outwards through the dense material, scattering electrons outwards until it reaches an optically thin region, and plots a histogram of the emergent photons.
StructureFunction determines the X-ray Structure Function of a population of Active Galactic Nuclei (AGN) for which two epoch X-ray observations are available and are separated by rest frame time interval. The calculation of the X-ray structure function is Bayesian. The sampling of the likelihood uses Stan (ascl:1801.003) for statistical modeling and high-performance statistical computation.
tidalspin uses a Bayesian approach to infer posterior distributions of a black hole's parameters (mass and spin) in an observed tidal disruption event, given a prior estimate of the black hole’s mass (e.g., from a galactic scaling relationship, or the tidal disruption event’s observed properties). These posterior distributions will only utilize the properties of tidal forces in their inference. tidalspin can be applied to the population of tidal disruption events already discovered.
QuantifAI reconstructs radio interferometric images using scalable Bayesian uncertainty quantification relying on data-driven (learned) priors. It relies on the convex accelerated optimization algorithms in CRR (ascl:2401.016) and is built on top of PyTorch. QuantifAI also includes MCMC algorithms for posterior sampling.
CRR (Convex Ridge Regularizer) takes the gradient of regularizers that are the sum of convex-ridge functions and parameterizes them using a neural network that has a single hidden layer with increasing and learnable activation functions. The neural network is trained within a few minutes as a multistep Gaussian denoiser, and offers improvements for denoising and image reconstruction over other methods with similar reliability.
maskfill inward extrapolates edge pixels just outside masked regions, using iterative median filtering and the full information contained in the edge pixels. This provides seamless transitions between masked pixels and good pixels, and allows high fidelity reconstruction of gaps in continuous narrow features. An image and a mask the only required inputs.
LoRD (Locate Reconnection Distribution) identifies the locations and structures of 3D magnetic reconnection within discrete magnetic field data. The toolkit contains three main functions; the first, ARD (Analyze Reconnection Distribution) locates the grids undergoing reconnection without null points and also recognizes the local configurations of reconnection sites. ANP (Analyze Null Points) locates and classifies the 3D null points, and APNP (Analyze Projected Null Points) analyzes the 2D neutral points projected on a plane near a cell. LoRD is written in Matlab and the toolkit contains demo scripts.
SolarKAT mitigates solar interference in MeerKAT data and recovers the visibilities rather than discarding them; this solar imaging pipeline takes 1GC calibrated data in Measurement Set format as input. Written in Python, the pipeline employs solar tracking, subtraction, and peeling techniques to enhance data quality by significantly reducing solar radio interference. This is achieved while preserving the flux measurements in the main field. SolarKAT is versatile and can be applied to general radio astronomy observations and solar radio astronomy; additionally, generated solar images can be used for weather forecasting. SolarKAT is deployed in Stimela (ascl:2305.007). It is based on existing radio astronomy software, including CASA (ascl:1107.013), breizorro (ascl:2305.009), WSclean (ascl:1408.023), Quartical (ascl:2305.006), and Astropy (ascl:1304.002).
baryon-sweep produces a robust outlier rejection while simultaneously preserving the signal of the science target. The code works as a standalone solution or as a supplement to the current pipeline software. baryon-sweep creates the 2D pixel mask and mask layers, processes the sky (non-science target) spaxels, and creates a post-processed cube ready for use.
Ostrich emulates surrogate models for complex and expensive functions using Principal Component Analysis (PCA) to decompose a signal, then interpolate the PCA weights over the parameters θ using a Gaussian Process interpolator. The code is trained on samples from the expensive functions, recreating and interpolating between those training samples with reduced computational cost, and recalculating for each use.
The Feed Forward Neural Network SYSNet models the relationship between the imaging maps, such as stellar density and the observed galaxy density field, in order to mitigate the systematic effects and to make a robust galaxy clustering measurements. The cost function is Mean Squared Error and a L2 regularization term, and the optimization algorithm is Adaptive Moment (ADAM).
harmonic learns an approximate harmonic mean estimator (referred to as a "learnt harmonic mean estimator") from posterior distribution samples to compute the marginal likelihood required for Bayesian model selection. Using a large number of independent Markov chain Monte Carlo (MCMC) chains from another package such as emcee (ascl:1303.002), harmonic uses importance sampling to learn a new target distribution in order to optimize an approximate harmonic estimator while minimizing its variance.
DARC (Dirac Atomic R-matrix Codes) enables the study of continuum processes for a general atomic system. The suite of programs calculate electron-atom or electron-ion collision cross-sections. In addition, the programs include code for bound-state and photoionization calculations.
deal.II computes solutions to partial differential equations (PDEs) using adaptive finite elements. The code provides an interface for processing PDEs accessible to both laptops and supercomputers, and has been used to investigate the local and global waveform effects of gravitational waves by numerical simulation. deal.II supports massively parallel computing of very large linear systems of equations and provides access to triangulation of various geometries of the simulation domain.
LoSoTo (LOFAR Solution Tool) performs a variety of operations on H5parm data, which is based on the HDF5 format; it isolates direction independent systematic effects and can therefore be transferred to the target field. Subsets of data can be selected for each operation using lists of axes values, regular expressions, or intervals. The LoSoTo package stores solutions in arrays organized in a hierarchical fashion; this provides flexibility and preserves performance. The code can, for example, extract Faraday rotation from RR/LL phase solutions or a rotation matrix, clip solutions around the median, and calculate the ionospheric structure function. LoSoTo includes an outlier flagging procedure, normalizes solutions to a given value, and offers an advanced plotting routine, and many other operations.
CosmosCanvas creates perception-based color maps for different astrophysical properties such as spectral index and velocity fields. Three tutorials demonstrate how to use python code to exploit and adjust the boundaries in these divergent colour schemes. Intended to work with human physiology, each tutorial offers at least one default scheme that is monotonic in value both as a redundancy for supporting data information and an aid for colour blind viewers. This library relies on Gilles Ferrand's colourspace library.
pyPETAL produces cross-correlation functions, discrete correlation functions, and mean time lags from multi-band AGN time-series data, combining multiple different codes (including pyCCF (ascl:1805.032), pyZDCF, PyROA (ascl:2107.012), and JAVELIN (ascl:1010.007)) used for active galactic nuclei (AGN) reverberation mapping (RM) analysis into a unified pipeline. This pipeline also implements outlier rejection using Damped Random Walk Gaussian process fitting, and detrending through the LinMix algorithm. pyPETAL implements a weighting scheme for all lag-producing modules, mitigating aliasing in peaks of time lag distributions between light curves. pyPETAL scales to any combination of internal code modules, supporting a variety of computational workflows.
LUNA generates dynamically accurate lightcurves from a planet-moon pair, analytically accounting for shadow overlaps, stellar limb darkening, and planet-moon dynamical motion. The code takes transit timing/duration variations and ingress/egress asymmetries into consideration not only for the planet, but also the moon. LUNA was designed to be analytical and dynamical and to incorporate limb darkening (including non-linear laws) and account for all orbital elements, including eccentricity and longitude of the ascending node. Because the software is precise and analytic, LUNA is a highly potent tool for exomoon detection.
The 3-D convection code Rayleigh enables study of dynamo behavior in spherical geometry. It evolves the incompressible and anelastic MHD equations in spherical geometry using a pseudo-spectral approach. Rayleigh employs spherical harmonics in the horizontal direction and Chebyshev polynomials in the radial direction and has undergone extensive accuracy testing.
tomso loads and saves input and output files for and from stellar evolution and oscillation codes. The functions are bundled together in modules that correspond with a specific stellar evolution code, stellar oscillation code, or file format. tomso supports the FGONG format and various input/output files for ADIPLS (ascl:1109.002), GYRE (ascl:1308.010), MESA (ascl:1010.083), and STARS (ascl:1107.008). tomso's main purpose is to provide a compact interface for manipulating input and output data in these formats and simplify research that uses them.
The SubGen2 subhalo population generator works for both CDM and WDM of arbitrary DM particle mass. It can be used to generate a population of subhaloes according to the joint distribution of subhalo bound mass, infall mass and halo-centric distance in a halo of a given mass. SubGen2 is an extension to SubGen (ascl:2312.035), which works only for CDM subhaloes.
SubGen generates Monte-Carlo samples of dark matter subhaloes. It fully describes the joint distribution of subhaloes in final mass, infall mass, and radius; it can be used to predict derived distributions involving combinations of these quantities, including the universal subhalo mass function, the subhalo spatial distribution, the gravitational lensing profile, the dark matter annihilation radiation profile and boost factor. SubGen works only for CDM subhaloes; for an extension of the code to also work with WDM subhaloes, see SubGen2 (ascl:2312.036).
pycheops analyzes CHEOPS light curve data. The models in the package can also be applied to other types of data. pycheops includes a "cook book" and examples; in addition, it provides a command-line tool that aids in the preparation of observing requests for CHEOPS observers.
RADIS resolves spectra with millions of lines within seconds on a single-CPU and can be GPU-accelerated. It supports HITRAN, HITEMP and ExoMol out-of-the-box (auto-download), and therefore is particularly suitable to compute cross-sections or transmission spectra at high-temperature. RADIS includes equilibrium calculations for all species, and non-LTE for CO2 and CO.
gaia_tools contains codes for working with the ESA/Gaia data and related data sets (APOGEE, GALAH, LAMOST DR2, and RAVE). Written in Python, it includes tools to read catalogs, perform cross-matching, read RVS or XP spectra, and query the Gaia archive. gaia_tools also contains various matching recipes, such as matching APOGEE or APOGEE-RC to Gaia DR2, and RAVE to TGAS (taking into account the epoch difference).
AM3 simulates lepto-hadronic interactions in astrophysical environments. It solves the time-dependent partial differential equations for the energy spectra of electrons, positrons, protons, neutrons, photons, neutrinos as well as charged secondaries (pions and muons), immersed in an isotropic magnetic field. The code accounts for the emission of photons and charged secondaries in electromagnetic and hadronic interactions feed back into the interaction rates in a time-dependent manner, therefore grasping non-linear effects including electromagnetic cascades. AM3 is computationally efficient, making it possible to scan vast source parameter scans and fit the observational data, and has been deployed to explain multi-wavelength observations from blazars, gamma-ray bursts and tidal disruption events.
matvis simulates radio interferometric visibilities at the necessary scale with both CPU and GPU implementations. It is matrix-based and applicable to wide field-of-view instruments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), as it does not make any approximations of the visibility integral (such as the flat-sky approximation). The only approximation made is that the sky is a collection of point sources, which is valid for sky models that intrinsically consist of point-sources, but is an approximation for diffuse sky models. The matvix matrix-based algorithm is fast and scales well to large numbers of antennas. The code supports both CPU and GPU implementations as drop-in replacements for each other and also supports both dense and sparse sky models.
RRLFE generates and applies calibrations for retrieving [Fe/H] from low-res spectra of RR Lyrae variable stars. The code can generate a metallicity calibration anew, from real or synthetic spectra; it can also apply a metallicity calibration to low-resolution (R ~2000) RR Lyrae spectra spanning 3911 to 4950 angstroms.
SAGE corrects the time-dependent impact of stellar activity on transmission spectra. It uses a pixelation approach to model the stellar surface with spots and faculae, while accounting for limb-darkening and rotational line-broadening. The code can be used to evaluate stellar contamination for F to M-type hosts, test various spot sizes and locations, and quantify the impact of limb-darkening. SAGE can also retrieve the properties and distribution of active regions on the stellar surface from photometric monitoring, and connect the photometric variability to the stellar contamination of transmission spectra.
galclaim identifies association between astrophysical transient sources and host galaxy. This association is made by estimating the chance alignment between a given transient sky localization and nearby galaxies. The code can be used with various catalogs, including Pan-STARRS, HSC, AllWISE and GLADE. galclaim also pre-checks for nearby bright galaxy using the RC3 catalog (https://heasarc.gsfc.nasa.gov/w3browse/all/rc3.html). When a nearby galaxy is found, a warning is raised and the properties of the galaxy are saved in a dedicated output file. The package can create plots displaying the computed pval for the found objects for each transient and each catalog; plots are stored in the result/plots directory.
CloudFlex models observational signatures associated with the small-scale structure of the circumgalactic medium. It populates cool gas structures in the CGM as a complex of cloudlets using a Monte Carlo method. Various parameters can be set to describe the structure of the cloudlet complexes, including cloudlet mass, density, velocity, and size. Functionality exists for generating the observational signatures of sightlines piercing these cloudlet complexes, borrowing heavily from the Trident code (ascl:1612.019).
pyC2Ray updates C2-Ray (ascl:2312.022), an astrophysical radiative transfer code used to simulate the Epoch of Reionization (EoR). pyC2Ray includes a new raytracing method, ASORA, developed for GPUs, and provides a Python interface for customizable use of the code. The core features of C2-Ray, written in Fortran90, are wrapped using f2py as a Python extension module, while the raytracing library ASORA is implemented in C++ using CUDA. Both are native Python C-extensions and can be directly accessed from any Python script.
C2-Ray3Dm1D_Helium is the hydrogen + helium version of the radiative transfer photo-ionization code C2-Ray. It combines the 1D and 3D versions of the code.
C2-Ray3Dm performs time-dependent photo-ionization calculations for 3D multiple sources, and for hydrogen only. Based on C2-Ray (ascl:2312.022), it runs under both MPI and OpenMP. The length of subroutines has been reduced to make the code more manageable and easier to read.
C2-Ray calculates spherical symmetric time-dependent photo-ionization in 1D with the source at the origin for hydrogen only. The code is explicitly photon-conserving and uses an analytical relaxation solution for the ionization rate equations for each time step, thus enabling integration of the equation of transfer along a ray with fewer cells and time steps than previous methods. It is suitable for coupling radiative transfer to gas and N-body dynamics methods on fixed or adaptive grids. C2-Ray is not parallelized but contains an MPI module for compatibility with the 3D version (C2-Ray3Dm).
PyRaTE (Python Radiative Transfer Emission) post-processes astrochemical simulations. This multilevel radiative transfer code uses the escape probablity method to calculate the population densities of the species under consideration. The code can handle all projection angles and geometries and can also be used to produce mock observations of the Goldreich-Kylafis effect. PyRaTE is written in Python; it uses a parallel strategy and relies on the YT analysis toolkit (ascl:1011.022), mpi4py and numba.
The ProPane package comes with key utilities for warping between different WCS systems: propaneWarp (for warping individual frames once). ProPane also contains the various functions for creating large stacks of many warped frames (which is of class ProPane, which is roughly meant to suggest the idea of many panes of glass being stacked together). It uses the wcslib C library (ascl:1108.003) for projections (all legal ones are supported) via the Rwcs package, and uses the threaded Cimg C++ library via the imager library to do image warping. ProPane also contains functions converted from older (deprecated) Rwcs and ProFound (ascl:1804.006) related functions.
Rainbow is a black-body parametric model for transient light curves. It uses Bazin function as a model for bolometric flux evolution and a logistic function for the temperature evolution; it provides seven fit parameters and goodness of fit (reduced χ2) and is well-suited for transient objects. Also included is RainbowRisingFit, suitable for rising transient objects, which offers six fit parameters. It is based on a rising sigmoid bolometric flux and a sigmoid temperature evolution. These implementations are implemented in the light-curve processing toolbox (ascl:2107.001) for Python.
PyMsOfa accesses the International Astronomical Union’s SOFA library (ascl:1403.026) from Python. It offers a wrapper package based on a foreign function library for Python (ctypes), a wrapper with the foreign function interface for Python calling C code (cffi), and a package directly written in pure Python codes from SOFA subroutines. PyMsOfa is suitable for the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission and for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.
LimberJack.jl performs cosmological analyses of 2 point auto- and cross-correlation measurements from galaxy clustering, CMB lensing and weak lensing data. Written in Julia, it obtains gradients for its outputs faster than traditional finite difference methods, making the code greatly synergistic with gradient-based sampling methods such as Hamiltonian Monte Carlo. LimberJack.jl can efficiently exploring parameter spaces with hundreds of dimensions.
The Farmer contains photometry routines geared towards deep, multi-wavelength galaxy surveys. It fits simple parametric surface brightness profiles provided by The Tractor (ascl:1604.008) to measure precision photometry even in deeply crowded fields when provided with a suitable high resolution detection image. The Farmer has been used to build a number of galaxy survey catalogs including COSMOS202, SHELA, and H20.
SUNBIRD trains neural-network-based models for galaxy clustering. It also incorporates pre-trained emulators for different summary statistics, including galaxy two-point correlation function, density-split clustering statistics, and old-galaxy cross-correlation function. These models have been trained on mock galaxy catalogs, and were calibrated to work for specific samples of galaxies. SUNBIRD implements routines with PyTorch to train new neural-network emulators.
GRFolres performs simulations in modified theories of gravity. It is based on GRChombo (ascl:2306.039) and inherits all of the capabilities of the main GRChombo code, which makes use of the Chombo library (ascl:1202.008) for adaptive mesh refinement. The code implements the 4∂ST theory of modified gravity and the cubic Horndeski theory in (3+1)-dimensional numerical relativity. GRFolres can be used for stable gauge evolution, solving the modified energy and momentum constraints for initial conditions, and monitoring the constraint violation and calculating the energy densities associated with the different scalar terms in the action. It can also extract data for the tensor and scalar gravitational waveforms.
21cmEMU emulates 21cmFAST (ascl:1102.023) summary statistics, among them the 21-cm power spectrum, 21-cm global brightness temperature, IGM spin temperature, and neutral fraction. It also emulates the Thomson scattering optical depth and UV luminosity functions. With 21cmFAST installed, parameters can be supplied direction to 21cmEMU, and 21cmEMU can be used for, for example, analytic calculations of taue and UV luminosity functions. The code is included as an alternative simulator in 21cmMC (ascl:1608.017).
The folding pipeline PulsarX searches for pulsars. The code includes radio frequency interference mitigation, de-dispersion, folding, and parameter optimization, and supports both psrfits and filterbank data formats. The toolset has two implementations of the folding pipelines; one uses a brute-force de-dispersion algorithm, and the other an algorithm that becomes more efficient than the brute-force de-dispersion algorithm as the number of candidates increases. PulsarX is appropriate for large-scale pulsar surveys.
PhotochemPy finds the steady-state chemical composition of an atmosphere or evolves atmospheres through time. Given inputs such as the stellar UV flux and atmospheric temperature structure, the code creates a photochemical model of a planet's atmosphere. PhotochemPy is a distant fork of Atmos (ascl:2106.039). It provides a Python wrapper to Fortran source code but can also be used exclusively in Fortran.
FORECAST generates realistic astronomical images and galaxy surveys by forward modeling the output snapshot of any hydrodynamical cosmological simulation. It exploits the snapshot by constructing a lightcone centered on the observer's position; the code computes the observed fluxes of each simulated stellar element, modeled as a Single Stellar Population (SSP), in any chosen set of pass-band filters, including k-correction, IGM absorption, and dust attenuation. These fluxes are then used to create an image on a grid of pixels, to which observational features such as background noise and PSF blurring can be added. FORECAST provides customizable options for filters, size of the field of view, and survey parameters, thus allowing the synthetic images to be tailored for specific research requirements.
The non-parametric Jeans code GravSphere models discrete data and can be used to model dark matter distributions in galaxies. It can also recover the density ρ(r) and velocity anisotropy β(r) of spherical stellar systems, assuming only that they are in a steady state. Real or mock data are prepared by using the included binulator.py code; the repository also includes many examples for exploring the GravSphere's capabilities.
The CompressedFisher library tests whether Fisher forecasts using simulated components are converged. The library contains tools to compute standard Fisher estimates, estimate the level of bias due to the finite number of simulations, and compute the compressed Fisher information. Typical usage of CompressedFisher requires two ensembles of simulations: one set of simulations is given at the fiducial parameters (𝜃) to estimate the covariance matrix. The second is a set of simulated derivatives; these can either be in the form of realizations of the derivatives themselves or simulations evaluate at a set of point in the neighborhood of the fiducial point that the code can use to estimate the derivatives.
CosmoLED computes Hawking evaporation from black holes and set constraints on the fraction of black holes in dark matter. Based on ExoCLASS (ascl:1106.020), the code provides a DarkAges_LED module and C codes in class_LED to compute the evolution and energy deposition functions from LED black holes. Though CosmoLED is designed for large extra dimension black holes, it can also be used to study 4D black holes.
SolarAxionFlux quantifies systematic differences and statistical uncertainties in the calculation of the solar axion flux from axion-photon and axion-electron interactions. Determining the limitations of these calculations can be used to identify potential improvements and help determine axion model parameters more accurately.
LyaCoLoRe uses CoLoRe (ascl:2111.009) simulations to generate simulated Lyman alpha forest spectra. The code takes the output files from CoLoRe as an input, carries out several stages of processing, and produces realistic skewers of transmitted flux fraction as an output. The repository includes tools to tune the parameters within LyaCoLoRe's transformation, and to measure the 1D power spectrum of output skewers quickly.
DENSe enables Bayesian non-parametric inferences of densities of Poisson data counts. Its framework of stateless methods is written in Python, although it relies on NIFTy (ascl:1302.013, ascl:1903.008) for the heavy lifting. DENSe utilizes all available information in the data by modeling the inherent correlation structure using a Matérn kernel. The inference of the density from count data can be written in a single line of python code. The fitting method takes a multidimensional numpy array as input and returns multidimensional arrays of the same dimensions encoding the density field.
BUQO solves large-scale imaging inverse problems. It leverages probability concentration phenomena and the underlying convex geometry to formulate the Bayesian hypothesis test as a convex problem that is then efficiently solved by using scalable optimization algorithms. This allows scaling to high-resolution and high-sensitivity imaging problems that are computationally unaffordable for other Bayesian computation approaches.
PROSPECT infers cosmological parameters using profile likelihoods. It constructs an approximate profile likelihood from an MCMC and optimizes it using simulated annealing, a gradient-free stochastic optimization algorithm. It employs an automatic tuning of the step size parameter and binned covariance matrices from the MCMC to achieve efficient optimizations of the profile likelihood.
smops interpolates input sub-band model FITS images, such as those produced by WSClean (ascl:1408.023), into more finely channelized sub-band model FITS images, thus generating model images at a higher frequency resolution. It is a Python-based command line tool. For example, given input model FITS images initially created from sub-dividing a given bandwidth into four, smops can subdivide that bandwidth further, resulting in more finely channelized model images, to a specified frequency resolution. This smooths out the stepwise behavior of models across frequency, which can improve the results of self-calibration with such models.
prodimopy is an open-source Python package to read, analyze and plot modelling results of the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel, https://prodimo.iwf.oeaw.ac.at). It also includes tools to run ProDiMo in 1D slap model mode, to run simple ProDimo model grids and to interface ProDiMo with 1D and 2D disk codes (i.e. use input structure from hydrodynamic models).
prodimopy can also be used independently of ProDiMo (no ProDiMo installation is required) and hence is also useful to extract information from already available ProDiMo models (e.g. as input for other codes) or for model comparison.
The numerical code RoSSBi3D (Rotating Systems Simulation Code for Bi-fluids) is designed for protoplanetary discs study at 2D and 3D. It is a finite volume code which is second order in time, features self-gravity (2D), and uses an exact Riemann solver to account for discontinuities. This FORTRAN 90 code solves the fully compressible inviscid Euler, continuity and energy conservation equations in polar coordinates for an ideal gas orbiting a central object. Solid particles are treated as a pressureless fluid and interact with the gas through aerodynamic forces. The code works on high performance computers thanks to the MPI standard (CPU).
nemiss calculates neutrino emission from an astrophysical jet. nemiss works as part of the PLUTO-nemiss-rlos pipeline. PLUTO (ascl:1010.045) produces a hydrodynamical jet. Then, nemiss calculates beamed neutrino emission at each eligible cell along a given direction in space. Finally, rlos (ascl:1811.009) produces a synthetic neutrino image of the jet along the given direction, taking into consideration the finite nature of the speed of light.
FASMA delivers the atmospheric stellar parameters (effective temperature, surface gravity, metallicity, microturbulence, macroturbulence, and rotational velocity) based on the spectral synthesis technique. This technique relies on the comparison of synthetic spectra with observations to yield the best-fit parameters under a χ2 minimization process. FASMA also delivers chemical abundances of 13 elements. Written in Python, the code is wrapped around MOOG (ascl:1202.009) which calculates the synthetic spectra. FASMA includes two grids of models in MOOG readable format, Kurucz and marcs, that cover the parameter space for both dwarf and giant stars with metallicity limit of -5.0 dex.
pygwb analyzes laser interferometer data and designs a gravitational wave background (GWB) search pipeline. Its modular and flexible codebase is tailored to current ground-based interferometers such as LIGO Hanford, LIGO Livingston, and Virgo, but can be generalized to other configurations. It is based on GWpy (ascl:1912.016) and bilby (ascl:1901.011) for optimal integration with widely-used gravitational wave data analysis tools. pygwb also includes a set of scripts to analyze data and perform large-scale searches on a high-performance computing cluster efficiently.
CosmoLattice performs lattice simulations of field dynamics in an expanding universe. The code can simulate the dynamics of interacting scalar field theories, Abelian U(1) gauge theories, and non-Abelian SU(2) gauge theories, either in flat spacetime or an expanding FLRW background, including the case of self-consistent expansion sourced by the fields themselves. It can also compute gravitational waves sourced by U(1) Abelian Gauge fields. The CosmoLattice platform can implement any system of dynamical equations suitable for discretization on a lattice, as it introduces its own language describing fields and operations between them, and hence can implement new libraries to solve arbitrary field problems (related or not to cosmology).
PIPPIN (PDI pipeline for NACO data) reduces the polarimetric observations made with the VLT/NACO instrument. It applies the Polarimetric Differential Imaging (PDI) technique to distinguish the polarized, scattered light from the (largely) un-polarized, stellar light. As a result, circumstellar dust can be uncovered. PIPPIN appropriately handles various instrument configurations, including half-wave plate and de-rotator usage, Wollaston beam-splitter, and wiregrid observations. As part of the PDI reduction, PIPPIN performs various levels of corrections for instrumental polarization and crosstalk.
FPFS (Fourier Power Function Shaplets) is a fast, accurate shear estimator for the shear responses of galaxy shape, flux, and detection. Utilizing leading-order perturbations of shear (a vector perturbation) and image noise (a tensor perturbation), the code determines shear and noise responses for both measurements and detections. Unlike methods that distort each observed galaxy repeatedly, the software employs analytical shear responses of select basis functions, including Shapelets basis and peak basis. FPFS is efficient and can process approximately 1,000 galaxies within a single CPU second, and maintains a multiplicative shear estimation bias below 0.5% even amidst blending challenges.
Hi-COLA runs fast approximate N-body simulations of non-linear structure formation in reduced Horndeski gravity (Horndeski theories with luminal gravitational waves). It is generic with respect to the reduced Horndeski class. Given an input Lagrangian, Hi-COLA's front-end dynamically constructs the appropriate field equations and consistently solves for the cosmological background, linear growth, and screened fifth force of that theory. This is passed to the back-end, which runs a hybrid N-body simulation at significantly reduced computational and temporal cost compared to traditional N-body codes. By analyzing the particle snapshots, one can study the formation of structure through statistics such as the matter power spectrum.
IQRM implements the Inter-Quartile Range Mitigation (IQRM) interference flagging algorithm for radio pulsar and transient searches. This module provides only the algorithm that infers a channel mask from some spectral statistic that measures the level of RFI contamination in a time-frequency data block. It should be useful as a reference implementation to developers who wish to integrate IQRM into an existing pipeline or search code.
Tensiometer provides non-Gaussian tension estimators that extend GetDist (ascl:1910.018) capabilities to test the level of agreement or disagreement between different posterior distributions by using kernel density estimates. The code has been used to study the level of internal agreement between different measurements of the clustering of cosmological structures from the Dark Energy Survey and the Planck satellite.
MONDPMesh provides a particle-mesh method to calculate the time evolution of an system of point masses under modified gravity, namely the AQUAL formalism. This is done by transforming the Poisson equation for the potential into a system of four linear PDEs, and solving these using fast Fourier transforms. The accelerations on the point masses are calculated from this potential, and the system is propagated using Leapfrog integration. The time complexity of the code is O(N⋅p⋅log(p)) for p pixels and N particles, which is the same as for a Newtonian particle-mesh code.
The NEOexchange web portal and Target and Observation Manager ingests solar system objects, including Near-Earth Object (NEO) candidates from the Minor Planet Center, schedules observations on the Las Cumbres Observatory global telescope network and reduces, displays, and analyzes the resulting data. NEOexchange produces calibrated photometry from the imaging data and uses Source Extractor (ascl:1010.064) and SCAMP (ascl:1010.063) to perform object detection and astrometric fitting and calviacat (ascl:2207.015) to perform photometric calibration against photometric catalogs. It also has the ability to perform image registration and subtraction using SWARP (ascl:1010.068) and HOTPANTS (ascl:1504.004) and image stacking, alignment, and faint feature detection using gnuastro (ascl:1801.009).
The KvW code applies the Kwee Van Woerden (KvW) method for eclipse or transit minimum timing, with an improved error calculation that avoids underestimated errors in minimum times that may appear in the original method. This is particularly the case for low-noise eclipse or transit lightcurves from space or from modern ground instrumentation. The code requires an input light curve of near-equidistant points that contains only the eclipse, without any off-eclipse points, and is available in python and IDL. Both implementaitons return an eclipse minimum time with its error and provide optional text output and plots, as well as several levels of debug information.
The landscape of high- and ultra-high-energy astrophysics has changed in the last decade, largely due to the inflow of data collected by large-scale cosmic-ray, gamma-ray, and neutrino observatories. At the dawn of the multimessenger era, the interpretation of these observations within a consistent framework is important to elucidate the open questions in this field. CRPropa 3.2 is a Monte Carlo code for simulating the propagation of high-energy particles in the Universe. This version represents a major leap forward, significantly expanding the simulation framework and opening up the possibility for many more astrophysical applications. This includes, among others: efficient simulation of high-energy particles in diffusion-dominated domains, self-consistent and fast modelling of electromagnetic cascades with an extended set of channels for photon production, and studies of cosmic-ray diffusion tensors based on updated coherent and turbulent magnetic-field models. Furthermore, several technical updates and improvements are introduced with the new version, such as: enhanced interpolation, targeted emission of sources, and a new propagation algorithm (Boris push). The detailed description of all novel features is accompanied by a discussion and a selected number of example applications.
The IDL code Special-Blurring compares models of quantum-foam-induced blurring with the full dataset of gamma-ray burst localizations available from the NASA High Energy Astrophysics Science Research Archive (as of 1 November 2022). This includes GRB221009A, which was especially bright and detected in extremely high energy TeV gamma-rays. An upper limit of the parameter alpha (giving the maximal strength of quantum blurring) can be entered, which is scaled in the model of blurring (called "Phi") operating much like "seeing" from the ground in the optical, and those calculations are plotted against the observations.
VCAL-SPHERE, for VIP-based Calibration of VLT/SPHERE data, is a versatile pipeline for high-contrast imaging of exoplanets and circumstellar disks. The pipeline covers all steps of data reduction, including raw calibration, pre-processing and post-processing (i.e., modeling and subtraction of the stellar halo), for the IFS, IRDIS-DBI and IRDIS-CI modes (and combinations thereof) of the VLT instrument SPHERE. The three main steps of the reduction correspond to different modules, where the first follows the recommended EsoRex (ascl:1504.003) workflow and associated recipes with occasional inclusion of VIP (ascl:1603.003) routines (e.g., for PCA-based sky subtraction), while the other two stages fully rely on the VIP toolbox. Although the default parameters of the pipeline should yield a good reduction in most cases, these can be tuned using JSON parameter files for each stage of the pipeline for optimal reduction of specific datasets.
The graphical user interface Wavelength Calibrator facilitates wavelength calibration. Although developed for astronomical data reduction, it can also be used in any place where wavelength calibration is needed.
GRIZZLY simulates reionization using a 1D radiative transfer scheme. The code enables the efficient exploration of the parameter space for evaluating 21cm brightness temperature fluctuations near the cosmic dawn. GRIZZLY builds upon the BEARS algorithm for generating simulated reionization maps with density and velocity fields, which are useful for profiling dark matter halos and cosmological density fields.
AI-Feynman fits analytical expressions to data sets via symbolic regression, mapping the target variable to different features supplied in the data array. Using a neural network with constraints in the number of parameters utilized, the code provides the ability to obtain analytical expressions for normalized features that are used to predict a Pareto-optimal target. AI-Feynman is robust in handling noisy data, recursively generating multidimensional symbolic expressions that match data from an unknown functions.
riptide implements the Fast Folding Algorithm (FFA) to identify periodic signals from time series data. In order to identify faint pulsars, the code provides access to a library of functions and classes for processing dedispersed radio signals. The FFA approaches the theoretical optimum for sensitivity to periodic signals regardless of pulse period and duty cycle.
IQRM-APOLLO cleans narrow-band radio frequency interference (RFI) using the Inter-Quartile Range Mitigation (IQRM) algorithm. By masking this interference, the code reduces the number of false positive pulsar candidates and increases sensitivity for pulsar detection. The IQRM algorithm is an outlier detection algorithm that is both non-parametric and robust to the presences of trends in time series data. Using short-duration data blocks, IQRM-APOLLO computes a spectral statistic that correlates with the presence of RFI, removing high outliers from the input signal.
clfd (clean folded data) implements GPU-accelerated smart interference removal algorithms to be used on folded pulsar search and pulsar timing data. The code converts each source profile to a small set of representative features, flagging outliers in the resulting feature space. clfd further visualizes the outlier flagging process, as well as the resulting two-dimensional time-frequency mask that is applied to the clean archive. The code provides access to cleaning algorithms that were initially developed for the High Time Resolution Universe (HTRU) survey which found several pulsars.
zCluster measures galaxy cluster photometric redshifts using data from broadband photometry in large public surveys, given a priori knowledge of the cluster position. The code retrieves and uses redshift probability distributions in order to create a projected two-dimensional density map of a targeted galaxy cluster, which is later convolved with a Gaussian kernel to smooth the map. zCluster also produces photometric redshift estimates and galaxy density maps for any point in the sky using the included zField tool.
MAGPy-RV (Modelling stellar Activity with Gaussian Processes in Radial Velocity) models data with Gaussian Process regression and affine invariant Monte Carlo Markov Chain parameter searching. Developed to model intrinsic, quasi-periodic variations induced by the host star in radial velocity (RV) surveys for the detection of exoplanets and the accurate measurements of their orbital parameters and masses, it now includes a variety of kernels and models and can be applied to any timeseries analysis. MAGPy-RV includes publication level plotting, efficient posterior extraction, and export-ready LaTeX results tables. It also handles multiple datasets at once and can model offsets and systematics from multiple instruments. MAGPy-RV requires no external dependencies besides basic python libraries and corner (ascl:1702.002).
The DustPyLib library contains auxiliary modules for the dust evolution software DustPy (ascl:2207.016), which simulates the evolution of dust and gas in protoplanetary disks. DustPyLib includes interfaces to radiative transfer codes and modules with extensions to the DustPy defaults.
q3dfit performs PSF decomposition and spectral analysis for high dynamic range JWST IFU observations, allowing the user to create science-ready maps of relevant spectral features. The software takes advantage of the spectral differences between quasars and their host galaxies for maximal-contrast subtraction of the quasar point-spread function (PSF) to reveal and characterize the faint extended emission of the host galaxy. Host galaxy emission is carefully fit with a combination of stellar continuum, emission and absorption of dust and ices, and ionic and molecular emission lines.
wwz provides a python3 implementation of the Foster weighted wavelet z-transform, a wavelet-based method for periodicity analysis of unevenly sampled data.
lcsim creates artificial light curves using two algorithms. The first simulates Gaussian distributed light curves following a specific power spectral density (PSD) freely selectable by the user. The second algorithm simulates light curves following a specific PSD and matching a specific probability density function (PDF). The package provides methods to resample the simulated light curves and add "observational" noise. Furthermore, the package provides an interface to a SQLite3-based database to store and access the simulations.
celerite2 is a re-write of celerite (ascl:1709.008), an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension. celerite2 improves numerical stability and integration with various machine learning frameworks. The implementation includes interfaces in Python and C++, with full support for PyMC (ascl:1610.016) and JAX (ascl:2111.002).
PlanetSlicer fits brightness maps to phase curves using the "orange-slice" method and works both for self-luminous objects and those that diffuse reflected light assuming Lambertian reflectance. In both cases, the model supposes that a spherical object can be divided into slices of constant brightness (or albedo) which may be integrated to yield the total flux observed, given the angles of observation. The package contains two key functions: toPhaseCurve and fromPhaseCurve; the former integrates the brightness for each slice to calculate the observed total flux from the object, given the longitude of observation. The latter does the opposite, estimating the brightness of the slices from a set of observed total flux (the phase curve).
FRISBHEE (FRIedmann Solver for Black Hole Evaporation in the Early-universe solves the Friedmann - Boltzmann equations for Primordial Black Holes + SM radiation + BSM Models. Considering the collapse of density fluctuations as the PBH formation mechanism, the code handles monochromatic and extended mass and spin distributions. FRISBHEE can return the full evolution of the PBH, SM and Dark Radiation comoving energy densities, together with the evolution of the PBH mass and spin as a function of the log10 at scale factor, and can determine the relic abundance in the case of Dark Matter produced from BH evaporation for monochromatic and extended distributions.
The finite volume hydro code Sprout uses a simple expanding Cartesian grid to track outflows for several orders of magnitudes in expansion. It captures shocks whether they are aligned or misaligned with the grid, and provides second-order convergence for smooth flows. The code's expanding mesh capability reduces numerical diffusion drastically for outflows, especially when the analytic nature of the bulk flow is known beforehand. Sprout can be used to study fluid instabilities in expanding flows, such as in SN explosions and jets; it resolves fine fluid structures at small length scales and expand the mesh gradually as the structures grow.
ChEAP (Chemical Evolution Analytic Package) implements an analytic solution for the chemical evolution model of the Galaxy that extends the instantaneous recycling approximation with the contribution of Type Ia SNe. The code works for different prescriptions of the delay time distributions (DTDs), including the single and double degenerate scenarios, and allows the inclusion of an arbitrary number of pristine gas infalls. The required functions are contained in the CheapTools.py file, which is imported as a Python library. ChEAP also includes code to illustrate, with a random-parameter chemical evolution model, the accuracy of this analytic solution compared to one using numerical integration.
PEREGRINE performs full parameter estimation on gravitational wave signals. Using an internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and building upon the swyft (ascl:2302.016) code to efficiently access marginal posteriors, PEREGRINE conducts a sequential simulation-based inference approach to support the analysis of both transient and continuous gravitational wave sources. The code can fully reconstruct the posterior distributions for all parameters of spinning, precessing compact binary mergers using waveform approximants.
bskit, built upon the nbodykit (ascl:1904.027) simulation analysis package, measures density bispectra from snapshots of cosmological N-body or hydrodynamical simulations. It can measure auto or cross bispectra in a user-specified set of triangle bins (that is, triplets of 3-vector wavenumbers). Several common sets of bins are also implemented, including all triangle bins for specified k_min and k_max, equilateral triangles between specified k_min and k_max, isosceles triangles, and squeezed isosceles triangles.
fitScalingRelation fits galaxy cluster scaling relations using orthogonal or bisector regression and MCMC. It takes into account errors on both variables and intrinsic scatter. Although it geared for fitting galaxy cluster scaling relations of all kinds, it can be used for any kind of regression problem with errors on both variables and intrinsic scatter.
maszcal calibrates the observable-mass relation for galaxy clusters, with a focus on the thermal Sunyaev-Zeldovich signal's relation to mass. maszcal explicitly models baryonic matter density profiles, differing from most previous approaches that treat galaxy clusters as purely dark matter. To do this, it uses a generalized Nararro-Frenk-White (GNFW) density to represent the baryons, while using the more typical NFW profile to represent dark matter.
The python photometry suite StarbugII provides accurate photometry on point-like sources embedded in complex diffuse emissions. The tool has a simple modular interface with a wide range of photometric routines including embedded source detection, aperture and PSF photometry, diffuse background emission estimation, catalog matching and artificial star testing. The core is built around Photutils (ascl:1609.011).
The Periodogram Comparison for Optimizing Small Transiting Planet Detection R code compares two periodogram algorithms for detecting transiting exoplanets: the Box-fitting Least Squares (BLS) and the Transit Comb Filter (TCF). It calculates the False Alarm Probability (FAP) based on extreme value theory and signal-to-noise ratio (SNR) metrics to quantify periodogram peak significance. The comparison approach is aimed at optimizing the detection of small transiting planets in future transiting exoplanet surveys. The code can be extended for comparing any set of periodograms.
pymccorrelation calculates correlation coefficients for data, using bootstrapping and/or perturbation to estimate the uncertainties on the correlation coefficient and p-value. The code supports Pearson's r, Spearman's rho, and Kendall's tau. Calculations of Kendall's tau additionally support censored data. This code supercedes and expands the deprecated code pymcspearman (ascl:2309.009).
pymcspearman is a python implementation of MCSpearman (ascl:1504.008) and calculates Spearman's rank correlation coefficient for data, using bootstrapping and/or perturbation to estimate the uncertainties on the correlation coefficient. This software project has migrated (and expanded) to pymccorrelation (ascl:2309.010).
INSPECTA (formerly sdhdfProc) is a software package to read, manipulate and process radio astronomy data in Spectral-Domain Hierarchical Data Format (SDHDF). It is available as part of the 'sdhdf_tools' repository.
Working with a GUI, or adding interaction in plotting, will help a lot in data analysis. However, the common GUI of Python is OS-dependent, while manually adding interactive codes is too complex. A pseudo-GUI tool is introduced in this work. It will help to add buttons/checkers in the graph and assign callback functions to them. The remaining problem is that the documents in this package are in Chinese and will be in English in the next version. This program is published to the PyPI, and can be installed by 'pip install pltgui'.
Matching stars in astronomical images is an essential step in data reduction. This work includes some matching programs implemented by Python: simple matching, fast matching, and triangle matching. For two catalogs with m and n objects, the simple method has a time and space complexity of O(m*n) but is fast for fewer n or m. The time complexity of the fast method is O(mlogm+nlogn). The triangle method will work between rotated and scaled images. All methods are applied in pipelines and work well. This package is published to the PyPI with the name 'qmatch'.
Calibration solutions for the LOFAR radio telescope are stored in a 5-dimensional (time, frequency, station, polarisation and direction in the sky) HDF5 table. H5plot is a GUI application focussing on interactive visual inspection of these calibration solutions.
Plages Identification identifies solar plages from Ca II K photographic observations irrespective of noise level, brightness, and other image properties. The code provides an efficient, reliable method for identifying solar plages. The output of the algorithm is an image highlighting the plages and the calculated plage index. Plages Identification is also deployed as a webapp, allowing users to experiment with different hyperparameters and visualize their impact on the output image in real time.
The injection-recovery MATRIX (Multi-phAse Transits Recovery from Injected eXoplanets) Toolkit creates grids of scenarios with a set of periods, radii, and epochs of synthetic transiting exoplanet signals in a provided light curve. Typical injection-recovery executions consist of 2-dimensional scenarios, where only one epoch (random or hardcoded) was used for each period and radius, which may reduce accuracy. MATRIX performs multi-phase analyses needing only a few parameters in a configuration file and running one line of code.
CoLFI (Cosmological Likelihood-Free Inference) estimates parameters directly from the observational data sets using neural density estimators (NDEs); it is a fully ANN-based framework that differs from the Bayesian inference. The package contains three NDEs that are used to estimate parameters: an artificial neural network (ANN), a mixture density network (MDN), and a mixture neural network (MNN). CoLFI can learn the conditional probability density using samples generated by models, and the posterior distribution can be obtained for given observational data.
The feed-forward neural network DeepGlow emulates BOXFIT (ascl:2306.059) simulation data of gamma-ray burst (GRB) afterglows. The package provides an easy interface to generate GRB afterglow spectra and light curves mimicking those generated through BOXFIT with high accuracy. The code used to generate the training data and to train the neural networks is also included.
GWSim generates mock gravitational waves (GW) events corresponding to different binary black holes (BBHs) population models. It can incorporate scenarios of GW mass models, GW spin distributions, the merger rate, and the cosmological parameters. GWSim generates samples of binary compact objects for a fixed amount of observation time, duty cycle, and configurations of the detector network; the universe created by the code is uniform in comobile volume.
Swiftbat retrieves, analyzes, and displays data from NASA's Swift spacecraft, especially data from the Swift Burst Alert Telescope (BAT). All BAT data are available from the Swift data archive; however, a few routines in this library use data access methods not available to the general public and thus are useful only to Swift team members. The package also installs a command-line program 'swinfo' that provides Swift Information such as what the MET (onboard-clock) time is, where Swift was pointing, and whether a specific source was above the horizon and/or in the field of view.
Uncertain_blackholemass predicts virial black hole masses using a neural network model and quantifies their uncertainties. The scripts retrieve data and run feature extraction and uncertainty quantification for regression. They can be used separately or deployed to existing machine learning methods to generate prediction intervals for the black hole mass predictions.
TRES simulates hierarchical triple systems with stellar and planetary components, including stellar evolution, stellar winds, tides, general relativistic effects, mass transfer, and three-body dynamics. It combines stellar evolution and interactions with three-body dynamics in a self-consistent way. The code includes the effects of common-envelope evolution, circularized stable mass transfer, tides, gravitational wave emission and up-to-date stellar evolution through SeBa (ascl:1201.003). Other stellar evolution codes, such as SSE (ascl:1303.015), can also be used. TRES is written in the AMUSE (ascl:1107.007) software framework.
FishLSS computes the Fisher information matrix for a set of observables and model parameters. It can model the redshift-space power spectrum of any biased tracer of the CDM+baryon field and the post-reconstruction galaxy power spectrum. The code also models the projected cross-correlation of galaxies with the CMB lensing convergence, the projected galaxy power spectrum, and the CMB lensing convergence power spectrum. FishLSS requires pyFFTW (ascl:2109.009), velocileptors (ascl:2308.014), and CLASS (ascl:1106.020).
velocileptors computes the real- and redshift-space power spectra and correlation functions of biased tracers using 1-loop perturbation theory (with effective field theory counter terms and up to cubic biasing) as well as the real-space pairwise velocity moments. It provides simple computation of the power spectrum wedges or multipoles, and uses a reduced set of parameters for computing the most common case of the redshift-space power spectrum. In addition, velocileptors offers two "direct expansion" modules available in LPT and EPT.
Driftscan simulates and analyzes transit radio interferometers, with a particular focus on 21cm cosmology. Given a design of a telescope, it generates a set of products used to analyze data from it and simulate timestreams. Driftscan also constructs a filter to extract cosmological 21 cm emission from astrophysical foregrounds, such as our galaxy and radio point sources, and estimates the 21cm power spectrum using an optimal quadratic estimator.
KeplerFit fits a Keplerian velocity distribution model to position-velocity (PV) data to obtain an estimate of the enclosed mass. The code extracts the scales of the pixels in both directions, spatial and spectral, then extracts the most extreme velocity at each position; this returns two arrays of positions and velocities. KeplerFit then models the extracted PV data and returns a set of the best-fit parameters, the standard deviations in each of the parameters, and the total residual of the fit.
glmnet efficiently fits the entire lasso or elastic-net regularization path for linear regression (gaussian), multi-task gaussian, logistic and multinomial regression models (grouped or not), Poisson regression and the Cox model. The algorithm uses cyclical coordinate descent in a path-wise fashion.
BCMemu provides emulators to model the suppression in the power spectrum due to baryonic feedback processes. These emulators are based on the baryonification model, where gravity-only N-body simulation results are manipulated to include the impact of baryonic feedback processes. The package also has a three parameter barynification model; the first assumes all the three parameters to be independent of redshift while the second assumes the parameters to be redshift dependent.
Caput (Cluster Astronomical Python Utilities) contains utilities for handling large datasets on computer clusters. Written with radio astronomy in mind, the package provides an infrastructure for building, managing and configuring pipelines for data processing. It includes modules for dynamically importing and utilizing mpi4py, in-memory mock-ups of h5py objects, and infrastructure for running data analysis pipelines on computer clusters. Caput features a generic container for holding self-documenting datasets in memory with straightforward syncing to h5py files, and offers specialization for holding time stream data. Caput also includes tools for MPI-parallel analysis and routines for converting between different time representations, dealing with leap seconds, and calculating celestial times.
Rapster (RAPid cluSTER evolution) models binary black hole population synthesis and the evolution of star clusters based on simple, yet realistic prescriptions. The code can generate large populations of dynamically formed binary black holes. Rapster uses SEVN (ascl:2206.019) to model the initial black hole mass spectrum and PRECESSION (ascl:1611.004) to model the mass, spin, and gravitational recoil of merger remnants.
DiskMINT (Disk Model for INdividual Targets) models individual disks and derives robust disk mass estimates. Built on RADMC-3D (ascl:1202.015) for continuum (and gas line) radiative transfer, the code includes a reduced chemical network to determine the C18O emission. DiskMINT has a Python3 module that generates a self-consistent 2D disk structure to satisfy VHSE (Vertical Hydrostatic Equilibrium). It also contains a Fortran code of the reduced chemical network that contains the main chemical processes necessary for C18O modeling: the isotopologue-selective photodissociation, and the grain-surface chemistry where the CO converting to CO2 ice is the main reaction.
Nemo detects millimeter-wave Sunyaev-Zel'dovich galaxy clusters and compact sources. Originally developed for the Atacama Cosmology Telescope project, the code is capable of analyzing the next generation of deep, wide multifrequency millimeter-wave maps that will be produced by experiments such as the Simons Observatory. Nemo provides several modules for analyzing ACT/SO data in addition to the command-line programs provided in the package.
FastSpecFit models the observed-frame optical spectroscopy and broadband photometry of extragalactic targets using physically grounded stellar continuum and emission-line templates. The code handles data from the Dark Energy Spectroscopic Instrument (DESI) Survey, which is amassing spectrophotometry for an unprecedented 40 million extragalactic targets, although the algorithms are general enough to accommodate other upcoming, massively multiplexed spectroscopic surveys. FastSpecFit extracts nearly 800 observed- and rest-frame quantities from each target, including light-weighted ages and stellar velocity dispersions based on the underlying stellar continuum; line-widths, velocity shifts, integrated fluxes, and equivalent widths for nearly 40 rest-frame ultraviolet, optical, and near-infrared emission lines arising from both star formation and active galactic nuclear activity; and K-corrections and rest-frame absolute magnitudes and colors. Moreover, FastSpecFit is designed with speed and parallelism in mind, enabling it to deliver robust model fits to tens of millions of targets.
AstroPhot quickly extracts detailed information from complex astronomical data for individual images or large survey programs. It fits models for sky, stars, galaxies, PSFs, and more in a principled chi^2 forward optimization, recovering Bayesian posterior information and covariance of all parameters. The code optimizes forward models on CPU or GPU, across images that are large, multi-band, multi-epoch, rotated, dithered, and more. Models are optimized together, thus handling overlapping objects and including the covariance between parameters (including PSF and galaxy parameters). AstroPhot includes several optimization algorithms, including Levenberg-Marquardt, Gradient descent, and No-U-Turn MCMC sampling.
SIMBI simulates heterogeneous relativistic gas dynamics up to 3d for special relativistic hydrodynamics and up to 2D Newtonian hydrodynamics. It supports user-defined mesh expansion and contraction, density, momentum, and energy density terms outside of grid; the code also supports source terms in the Euler equations and source terms at the boundaries. Boundary conditions, which include periodic, reflecting, outflow, and inflow boundaries, are given as an array of strings. If an inflow boundary condition is set but no inflow boundary source terms are given, SIMBI switches to outflow boundary conditions to prevent crashes. The code can track a single passive scalar, insert an immersed boundary, and is impermeable by default. SIMBI USES the Cython framework to blend together C++, CUDA, HIP, and Python.
FLATW'RM (FLAre deTection With Ransac Method) detects stellar flares in light curves using a classical machine-learning method. The code tries to find a rotation period in the light curve and splits the data to detection windows. The light curve sections are fit with the robust fitting algorithm RANSAC (Random sample consensus); outlier points (flare candidates) above the pre-set detection level are marked for each section. For the given detection window, only those flare candidates that have at least a given number of consecutive points (three by default) are kept and marked as flares. When using FLATW’RM, the code's output should be checked to determine whether changes to the default settings are needed to account for light curve noise, data sampling frequency, and scientific needs.
MOOG_SCAT, a redevelopment of the LTE radiative transfer code MOOG (ascl:1202.009), contains modifications that allow for the treatment of isotropic, coherent scattering in stars. MOOG_SCAT employs a modified form of the source function and solves radiative transfer with a short charactersitics approach and an acclerated lambda iteration scheme.
FABADA (Fully Adaptive Bayesian Algorithm for Data Analysis) performs non-parametric noise reduction using Bayesian inference. It iteratively evaluates possible smoothed models of the data to estimate the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence E and the χ2 statistic of the last smooth model, and the expected value of the signal is computed as a weighted average of the smooth models. Though FABADA was written for astronomical data, such as spectra (1D) or images (2D), it can be used as a general noise reduction algorithm for any one- or two-dimensional data; the only requisite of the input data is an estimation of its associated variance.
connect (COsmological Neural Network Emulator of CLASS using TensorFlow) emulates cosmological parameters using neural networks. This includes both sampling of training data and training of the actual networks using the TensorFlow library. connect aids in cosmological parameter inference by immensely speeding up the process, which is achieved by substituting the cosmological Einstein-Boltzmann solver codes, needed for every evaluation of the likelihood, with a neural network with a 102 to 103 times faster evaluation time. The code requires CLASS (ascl:1106.020) and Monte Python (ascl:1307.002) if iterative sampling is used.
MBASC (Multi-Band AGN-SFG Classifier) classifies sources as Active Galactic Nuclei (AGNs) and Star Forming Galaxies (SFGs). The algorithm is based on the light gradient-boosting machine ML technique. MBASC can use a wide range of multi-wavelength data and redshifts to predict a classification for sources.
orbitN generates accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems with a dominant mass M0. The code focuses on hierarchical systems without close encounters but can be extended to include additional features. Among other features, the package includes M0's quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due to M0 (fast symplectic implementation). To reduce numerical roundoff errors, orbitN features Kahan compensated summation.
APOLLO forward models the radiative transfer of light through a planetary (or brown dwarf) atmosphere; it also forward models transit and emission spectra and retrieves atmospheric properties of extrasolar planets. The code has two operational modes: one to compute a planetary spectrum given a set of parameters, and one to retrieve those parameters based on an observed spectrum. The package uses emcee (ascl:1303.002) to find the best fit to a spectrum for a given parameter set. APOLLO is modular and offers many options that may be turned on and off, including the type of observations, a flexible molecular composition, multiple cloud prescriptions, multiple temperature-pressure profile prescriptions, multiple priors, and continuum normalization.
species (spectral characterization and inference for exoplanet science) provides a coherent framework for spectral and photometric analysis of directly imaged exoplanets and brown dwarfs which builds on publicly-available data and models from various resources. species contains tools for grid and free retrievals using Bayesian inference, synthetic photometry, interpolating a variety atmospheric and evolutionary model grids (including the possibility to add a custom grid), color-magnitude and color-color diagrams, empirical spectral analysis, spectral and photometric calibration, and analysis of emission lines.
HELA performs atmospheric retrieval on exoplanet atmospheres using a Random Forest algorithm. The code has two stages: training (which includes testing), and predicting. It requires a training set that matches the format of the data to be analyzed, with the same number of points and a sample spectrum for each parameter. The number of trees used and the number of jobs are editable. The HELA package includes a training set and data as examples.
plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.
LEFTfield forward models cosmological matter density fields and biased tracers of large-scale structure. The model, written in C++ code, is centered around classes encapsulating scalar, vector, and tensor grids. It includes the complete bias expansion at any order in perturbations and captures general expansion histories without relying on the EdS approximation; however, the latter is also implemented and results in substantially smaller computational demands. LEFTfield includes a subset of the nonlinear higher-derivative terms in the bias expansion of general tracers.
Directly imaged planet candidates (high contrast point sources near bright stars) are often validated, among other supporting lines of evidence, by comparing their observed motion against the projected motion of a background source due to the proper motion of the bright star and the parallax motion due to the Earth's orbit. Often, the "background track" is constructed assuming an interloping point source is at infinity and has no proper motion itself, but this assumption can fail, producing false positive results, for crowded fields or insufficient observing time-baselines (e.g. Nielsen et al. 2017). `backtrack` is a tool for constructing background proper motion and parallax tracks for validation of high contrast candidates. It can produce classical infinite distance, stationary background tracks, but was constructed in order to fit finite distance, non-stationary tracks using nested sampling (and can be used on clusters). The code sets priors on parallax based on the relations in Bailer-Jones et al. 2021 that are fit to Gaia eDR3 data, and are therefore representative of the galactic stellar density. The public example currently reproduces the results of Nielsen et al. 2017 and Wagner et al. 2022, demonstrating that the motion of HD 131399A "b" is fit by a finite distance, non-stationary background star, but the code has been tested and validated on proprietary datasets. The code is open source, available on github, and additional contributions are welcome.
EVolve calculates the chemical composition and surface pressure of a ID atmosphere on a rocky planet that is being produced by volcanic activity, as it grows over time. Once the initial volatile content of the planet's mantle and the composition and resultant surface pressure of any pre-existing atmosphere is set, the volcanic degassing model EVo (ascl:2307.052) calculates the amount and speciation of any volcanic gases released into the atmosphere over each time step. Atmospheric processing is calculated using FastChem (ascl:1804.025); thermochemical equilibrium is assumed so the final chemical composition of the atmosphere is calculated according to the pre-set surface temperature.
EVo calculates the speciation and volume of a volcanic gas phase erupting in equilibrium with its parent magma. Models can be run to calculate the gas phase in equilibrium with a melt at a single pressure, or the melt can be decompressed from depth rising to the surface as a closed-system case. Single pressure and decompression can be run for OH, COH, SOH, COHS and COHSN systems. EVo can calculate gas phase weight and volume fraction within the system, gas phase speciation as mole fraction or weight fraction across numerous compounds, and the volatile content of the melt at each pressure. It also calculates melt density, f02 of the system, and more. EVo can be set up using either melt volatile contents, or for a set amount of atomic volatile which is preferable for conducting experiments over a wide range of fO2 values.
WeakLensingQML implements the Quadratic Maximum Likelihood (QML) estimator and applies it to simulated cosmic shear data and compares the results to a Pseudo-Cl implementation. The package computes and saves relevant data files for later processes, such as the fiduciary cosmic shear power spectrum used in the analysis, the sky mask, and computing an analytic version of the QML's covariance matrix. The core of the package implements a conjugate-gradient approach for the quadratic estimator, and is parallelized for maximum performance. The code relies on the Eigen linear algebra package and the HealPix spherical harmonic transform library. A post-processing script analyzes the results and compares the QML's estimates with those from the Pseudo-Cl estimator; it then produces an array of plots highlighting the results.
νHawkHunter explores the prospects of detecting neutrinos produced by the evaporation of primordial black holes in ground-based experiments. It makes use of neutrino fluxes from Hawking radiation computed with BlackHawk (ascl:2012.020). νHawkHunter is also be used for Diffuse Supernova Neutrino Background or similar studies by replacing the signal fluxes by the proper ones.
reMASTERed reconstructs ensemble-averaged pseudo-$C_\ell$ to effectively exact precision, with significant improvements over traditional estimators for cases where the map and mask are correlated. The code can compute the results given an arbitrary map and mask; it can also compute the results in the ensemble average for certain types of threshold masks.
NaMaster computes full-sky angular cross-power spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a pseudo-Cl (aka MASTER) approach. The code also implements E/B-mode purification and offers both full-sky and flat-sky modes. NaMaster is available as a C library, Python module, and standalone program.
GWDALI focuses on parameter estimations of gravitational waves generated by compact object coalescence (CBC). This software employs both Gaussian (Fisher Matrix) and Beyond-Gaussian methods to approximate the likelihood of gravitational wave events. GWDALI also addresses the challenges posed by Fisher Matrices with zero determinants. Additionally, the Beyond-Gaussian approach incorporates the Derivative Approximation for Likelihoods (DALI) algorithm, enabling a more reliable estimation process.
HAYASHI (Halo-level AnalYsis of the Absorption Signal in HI) computes the number of absorption features of the 21cm forest using a semianalytic formalism. It includes the enhancement of the signal due to the presence of substructures within minihalos and supports non-standard cosmologies with impact in the large scale structure, such as warm dark matter and primordial black holes. HAYASHI is written in Python3 and uses the cosmological computations package Colossus (ascl:1501.016).
NAVanalysis studies the non-baryonic, or non-Newtonian, contribution to galaxy rotation curves straight from a given data sample. Conclusions on the radial profile of a given model can be drawn without individual galaxy fits to provide an efficient sample comparison. The method can be used to eliminate model parameter regions, find the most probable parameter regions, and uncover trends not easy to find from standard fits. Further, NAVanalysis can compare different approaches and models.
The centrifugal deformation program RUBIS (Rotation code Using Barotropy conservation over Isopotential Surfaces) takes an input 1D model (with spherical symmetry) and returns its deformed version by applying a conservative rotation profile specified by the user. The code needs only the density as a function of radial distance from the reference model in addition to the surface pressure to be imposed to perform the deformation; preserving the relation between density and pressure when going from the 1D to the 2D structure makes this lightness possible. By solving Poisson's equation in spheroidal rather than spherical coordinates whenever a discontinuity is present, RUBIS can deform both stellar and planetary models, thereby dealing with potential discontinuities in the density profile.
EAGLES (Estimating AGes from Lithium Equivalent widthS) implements an empirical model that predicts the lithium equivalent width (EW) of a star as a function of its age and effective temperature. The code computes the age probability distribution for a star with a given EW and Teff, subject to an age probability prior that may be flat in age or flat in log age. Data for more than one star can be entered; EAGLES then treats these as a cluster and determines the age probability distribution for the ensemble. The code produces estimates of the most probable age, uncertainties and the median age; output files consisting of probability plots, best-fit isochrone plots, and tables of the posterior age probability distribution(s).
LIMpy models and analyzes multi-line intensity maps of CII (158 µ), OIII (88 µ), and CO (1-0) to CO (13-12) transitions. It can be used as an analytic model for star formation rate, to simulate line intensity maps based on halo catalogs, and to calculate the power spectrum from simulated maps and the cross-correlated signal between two separate lines. Among other things, LIMpy can also create multi-line luminosity models and determine the multi-line intensity power spectrum.
EFTCAMB patches the public Einstein-Boltzmann solver CAMB (ascl:1102.026) to implement the Effective Field Theory approach to cosmic acceleration. It can be used to investigate the effect of different EFT operators on linear perturbations and to study perturbations in any specific DE/MG model that can be cast into EFT framework. To interface EFTCAMB with cosmological data sets, it is equipped with a modified version of CosmoMC (ascl:1106.025), EFTCosmoMC, to create a bridge between the EFT parametrization of the dynamics of perturbations and observations.
pycrires runs the CRIRES+ recipes of EsoRex. The pipeline organizes the raw data, creates SOF and configuration files, runs the calibration and science recipes, and creates plots of the images and extracted spectra. Additionally, it corrects remaining inaccuracies in the wavelength solution and the spectrum curvature. pycrires also provides dedicated routines for the extraction, calibration, and detection of spatially-resolved objects such as directly imaged planets.
adiabatic-tides evaluates the tidal stripping of dark matter (sub)haloes in the adiabatic limit. It exactly reproduces the remnant of an NFW halo that is exposed to a slowly increasing isotropic tidal field and approximately reproduces the remnant for an anisotropic tidal field. adiabatic-tides also predicts the asymptotic mass loss limit for orbiting subhaloes and differently concentrated host-haloes with and without baryonic components, and can be used to improve predictions of dark matter annihilation.
WarpX is an advanced electromagnetic & electrostatic Particle-In-Cell code. It supports many features including Perfectly-Matched Layers (PML), mesh refinement, and the boosted-frame technique. A highly-parallel and highly-optimized code, WarpX can run on GPUs and multi-core CPUs, includes load balancing capabilities, and scales to the largest supercomputers.
WDMWaveletTransforms implements the fast forward and inverse WDM wavelet transforms in Python from both the time and frequency domains. The frequency domain transforms are inherently faster and more accurate. The wavelet domain->frequency domain and frequency domain->wavelet domain transforms are nearly exact numerical inverses of each other for a variety of inputs tested, including Gaussian random noise. WDMWaveletTransforms has both command line and Python interfaces.
binary_c-python provides a manager for and interface to the binary_c framework (ascl:2307.035), and rapidly evolves individual systems and populations of stars. It provides functions such as data processing tools and initial distribution functions for stellar properties. binary_c-python also includes tools to run large grids of (binary) stellar systems on servers or distributed systems.
The binary_c software framework models the evolution of single, binary and multiple stars, including stellar evolution and nucleosynthesis. Stellar evolution includes wind mass loss, rotation, thermal pulses, magnetic braking, pre-main sequence evolution, supernovae and kicks, and neutron stars; binary-star evolution includes mass transfer, gravitational-wave losses, tides, novae, circumbinary discs, and merging stars. binary_c natively includes nucleosynthesis, and, as it is designed for stellar population calculations, it is lightweight and versatile. binary_c works in standalone, virtual and HPC environments, and its support software contains tools for development and data analysis. A version in Python, binary_c-python (ascl:2307.036), is also available.
Guacho is a 3D hydrodynamical/magnetohydrodynamical code suited for astrophysical fluids. The hydrodynamic equations are evolved with a number of approximate Riemann solvers. Gaucho includes various modules to deal with different cooling regimes, and a radiation transfer module based on a Monte Carlo ray tracing method. The code can run sequentially or in parallel with MPI.
Imber simulates spectroscopic and photometric observations with both a gridded numerical simulation and analytical model. Written in Python, it is specifically designed to predict Extremely Large Telescope instrument (such as ELT/METIS and TMT/MODHIS) Doppler imaging performance, and has also been applied to existing, archival observations of spectroscopy and photometry.
AmpF numerically calculates the amplification factor for solar lensing. The import parameters are the gravitational-wave frequency and the source angular position with respect to the solar center; the code outputs are the amplification factor and its geometrical-optics limit. AmpF accepts variables for several attributes and the overall amplitude of the lensing potential can be changed as needed. The method has been implemented in both C and Python.
HilalPy analyzes lunar crescent visibility criteria. Written in Python, the code uses more than 8000 lunar crescent visibility records extracted from literature and websites of lunar crescent observation, descriptive statistics, contradiction rate percentage, and regression analysis in its analysis to predict the visibility of a lunar crescent.
SAMUS (Simulator of Asteroid Malformation Under Stress) simulates the deformation of minor bodies, assuming that they are homogenous incompressible fluid masses. They are initialized as ellipsoids and the Navier-Stokes equations are interatively solved to investigate the deformation of the body over time. The software is modular and allows for user-defined output functions, size, and trajectories. Structured as a single large class, SAMUS can store variables and handle arbitrary function calls, which eases debugging and investigation, especially for lengthy high-fidelity simulation runs.
SIMPLE (Simple Intensity Map Producer for Line Emission) generates intensity maps that include observational effects such as noise, anisotropic smoothing, sky subtraction, and masking. Written in Python, it is based on a lognormal simulation of galaxies and random assignment of luminosities to these galaxies and generates mock intensity maps that can be used to study survey systematics and calculate covariance matrices of power spectra. The code is modular, allowing its components to be used independently.
TidalPy performs semi-analytic calculations of tidal dissipation and subsequent orbit-spin evolution for rocky and icy worlds. It can be used as a black box, in which an Object-Oriented Programming (OOP) scheme performs many calculations with very little user input from the user, making it easy to get started with the package, or as a toolbox, as it contains many efficient functions to perform calculations relevant to tides and thermal-orbital coupling, which can be quickly imported and used in a custom scripts. In general, TidelPy's toolbox (functional) scheme provides much higher performance, flexibility, and extensibility than the OOP scheme. It also makes assumptions more visible to the user. The downside is the user may need to be more familiar with the underlying physics.
CosmicFish obtains expected bounds on cosmological parameters for a wide range of models and observables for cosmological forecasting. The package includes a Fortran library to produce Fisher matrices, a Python library that performs operations on the produced Fisher matrices, and a full set of plotting utilities. It works with many models, including CAMB (ascl:1102.026) and MGCAMB (ascl:1106.013), and can interface with any Boltzmann solver. The user can choose within a wide range of possible cosmological observables, including cosmic microwave background, weak lensing tomography, galaxy clustering, and redshift drift. CosmicFish is easy to customize; it provides a flexible package system and users can produce their own analyses and plotting pipelines following the default Python apps.
gyrointerp calculates gyrochronal ages by interpolating between open cluster rotation sequences. The framework, written in Python, can be used to find the gyrochronological age posterior of single or many stars. It can also produce a visual interpolation for a star’s age to determine where the star falls in the rotation-temperature plane in comparison to known reference clusters. gyrointerp models the ensemble evolution of rotation periods for main-sequence stars with temperatures of 3800-6200 K (masses of 0.5-1.2 solar) and is not applicable for subgiant or giant stars, and should be used cautiously with binary stars, as they can observationally bias temperature and rotation period measurements.
pyhalomodel computes halo-model power spectra for any desired tracer combination. The software requires only halo profiles for the tracers to be specified; these could be matter profiles, galaxy profiles, or something else, such as electron-pressure or HI profiles. pyhalomodel makes it easier to perform basic calculations using the halo model by reducing the changes of variables required to integrate halo profiles against halo mass functions, which can be confusing and tedious.
SHARK solves the hydrodynamic equations for gas and dust mixtures accounting for dust coagulation and fragmentation (among other things). The code is written in Fortran and is capable of handling both 1D and 2D Cartesian geometries; 1D simulations with spherical geometry are also possible. SHARK is versatile and can be used to model various astrophysical environments.
PyIMRPhenomD estimates the population of stellar origin black hole binaries for LISA observations using a Bayesian parameter estimation algorithm. The code reimplements IMRPhenomD (ascl:2307.019) in a pure Python code, compiled with the Numba just-in-time compiler. The module implements the analytic first and second derivatives necessary to compute t(f) and t'(f) rather than computing them numerically. Using the analytic derivatives increases the code complexity but produces faster and more numerically accurate results; the improvement in numerical accuracy is particularly significant for t'(f).
The TOAST software framework simulates and processes timestream data collected by telescopes. The framework can distribute data among many processes and perform operations on the local pieces of the data, and has generic operators for common processing tasks such as filtering, pointing expansion, and map-making. In addition to offering I/O for a limited set of formats, it provides well-defined interfaces for adding custom I/O classes and processing operators. TOAST is written in C++ with a public Python interface, and contains utilities for controlling the runtime environment, logging, timing, streamed random number generation, quaternion operations, FFTs, and special function evaluation.
FGBuster (ForeGroundBuster) separates frequency maps into component maps and forecasts component separation both when the model is correct and when it is incorrect. FGBuster can be used for SED evaluation, intermediate component separation, multi-resolution separation, and forecasting, among other tasks.
PolyBin estimates the binned power spectrum, bispectrum, and trispectrum for full-sky HEALPix maps such as the CMB. This can include both spin-0 and spin-2 fields, such as the CMB temperature and polarization, or galaxy positions and galaxy shear. Alternatively, one can use only scalar maps. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. For the second case, a Fisher matrix must be computed; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin can compute both the parity-even and parity-odd components, accounting for any leakage between the two, for the bispectrum and trispectrum.
The IMRPhenomD model generates gravitational wave signals for merging black hole binaries with non-precessing spins. The waveforms are produced in the frequency domain and include the inspiral, merger and ringdown parts for the dominant spherical harmonic mode of the signal. Part of LALSuite (ascl:2012.021) and also available as an independent code, IMRPhenomD is written in C and is calibrated against data from numerical relativity simulations. A re-implementation of IMRPhenomD in Python, PyIMRPhenomD (ascl:2307.023), is available.
IMRIpy simulates an Intermediate Mass Ratio Inspiral (IMRI) by gravitational wave emission with a Dark Matter(DM) halo or a (baryonic) Accretion Disk around the central Intermediate Mass Black Hole(IMBH). It can use different density profiles (such as DM spikes), and different interactions, such as dynamical friction with and without HaloFeedback models or accretion, to produce the simulation.
Veusz produces a wide variety of publication-ready 2D and 3D plots. Plots are created by building up plotting widgets with a consistent object-based interface, and the package provides many options for customizing plots. Veusz can import data from text, CSV, HDF5 and FITS files; datasets can also be entered within the program and new datasets created via the manipulation of existing datasets using mathematical expressions and more. The program can also be extended, by adding plugins supporting importing new data formats, different types of data manipulation or for automating tasks, and it supports vector and bitmap output, including PDF, Postscript, SVG and EMF.
DataComb combines radio interferometric and single dish observations and obtains quantitative measures of how different techniques perform to obtain better fidelity images. The package relies on CASA (ascl:1107.013) for the combinations and on AstroPy (ascl:1304.002) for making quantitative
comparisons between different images produced by different methods. Model images and simulations are also used to assess the different combination methods.
BOWIE (Binary Observability With Illustrative Exploration) performs graphical analysis of binary signals from gravitational waves. It takes gridded data sets and produces different types of plots in customized arrangements for detailed analysis of gravitational wave sensitivity curves and/or binary signals. BOWIE offers three main tools: a gridded data generator, a plotting tool, and a waveform generator for general use. The waveform generator creates PhenomD waveforms for binary black hole inspiral, merger, and ringdown. Gridded data sets are created using the PhenomD generator for signal-to-noise (SNR) analysis. Using the gridded data sets, customized configurations of plots are created with the plotting package.
Synthetic LISA simulates the LISA science process at the level of scientific and technical requirements. The code generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables, and provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI, including the motion of the LISA array, and the temporal and directional dependence of the armlengths.
SIRENA (Software Ifca for Reconstruction of EveNts for Athena X-IFU) reconstructs the energy of incoming X-ray photons after their detection in the X-IFU TES detector. It is integrated in the SIXTE (ascl:1903.002) end-to-end simulations environment where it currently runs over SIXTE simulated data. This is done by means of a tool called tesreconstruction, which is mainly a wrapper to pass a data file to the SIRENA tasks.
mnms (Map-based Noise ModelS) creates map-based models of Simons Observatory Atacama Cosmology Telescope (ACT) data. Each model supports drawing map-based simulations from data splits with independent realizations of the noise or equivalent, similar to an independent set of time-domain sims. In addition to the ability to create on-the-fly simulations, mnms also includes ready-made scripts for writing a large batch of products to disk in a dedicated SLURM job.
DiscVerSt calculates the vertical structure of accretion discs around neutron stars and black holes. Different classes represent the vertical structure for different types of EoS and opacity, temperature gradient and irradiation scheme; the code includes an interface for initializing the chosen structure type. DiscVerSt also contains functions to calculate S-curves and the vertical and radial profile of a stationary disc.
Coniferest is a Python package designed for implementing anomaly detection algorithms and interactive active learning tools. The centerpiece of the package is an Isolation Forest algorithm, known for its superior scoring performance and multi-threading evaluation. This robust anomaly detection algorithm operates by constructing random decision trees.
In addition to the Isolation Forest algorithm, Coniferest also offers two modified versions for active learning: AAD Forest and Pineforest. The AAD Forest modifies the Isolation Forest by reweighting its leaves based on responses from human experts, providing a faster alternative to the ad_examples package.
On the other hand, Pineforest, developed by the SNAD team, employs a filtering algorithm that builds and dismantles trees with each new human-machine iteration step.
Coniferest provides a user-friendly interface for conducting interactive human-machine sessions, facilitating the use of these active anomaly detection algorithms. The SNAD team maintains and utilizes this package primarily for anomaly detection in the field of astronomy, with a particular focus on light-curve data from large time-domain surveys.
baccoemu provides a collection of emulators for large-scale structure statistics over a wide range of cosmologies. The emulators provide fast predictions for the linear cold- and total-matter power spectrum, the nonlinear cold-matter power spectrum, and the modifications to the cold-matter power spectrum caused by baryonic physics in a wide cosmological parameter space, including dynamical dark energy and massive neutrinos.
The three-phase pnautilus chemical code finds the abundance of each species by solving rate equations for gas-phase and grain surface chemistries. It performs gas–grain simulations in which both the icy mantle and the surface are considered active, taking into account mantle photodissociation, diffusion, and reactions; the code also considers the competition among reaction, diffusion and evaporation.
21cmvFAST demonstrates that including dark matter (DM)-baryon relative velocities produces velocity-induced acoustic oscillations (VAOs) in the 21-cm power spectrum. Based on 21cmFAST (ascl:1102.023) and 21CMMC (ascl:1608.017), 21cmvFAST accounts for molecular-cooling haloes, which are expected to drive star formation during cosmic dawn, as both relative velocities and Lyman-Werner feedback suppress halo formation. This yields accurate 21-cm predictions all the way to reionization (z>~10).
AGNvar calculates the expected reverberation signal in any given energy band, for a given spectral energy distribution (SED), assuming variable X-ray emission. The code predicts the shape of the re-processed continuum by modeling the time-averaged SED according to input parameters, which include geometry, mass, and mass accretion rate; generally the input parameters are based off typical XSPEC (ascl:9910.005) models. It evaluates the SED response to an input driving light-curve (assumed to originate in the X-ray corona) and creates a set of time-dependent SEDs. It then takes the results from the set of time-dependent SEDs and extracts the light-curve in a given band pass.
pyPplusS calculates the light curves for ringed, oblate or spherical exoplanets in both the uniform and limb darkened cases. It can constrain the oblateness of planets using photometric data only. This code can be used to model light curves of more complicated configurations, including multiple planets, oblate planets, moons, rings, and combinations of these, while properly and efficiently taking into account overlapping areas and limb darkening.
axionHMcode computes the non-linear matter power spectrum in a mixed dark matter cosmology with ultra-light axion (ULA) component of the dark matter. This model uses some of the fitting parameters and is inspired by HMcode (ascl:1508.001). axionHMcode uses the full expanded power spectrum to calculate the non-linear power spectrum; it splits the axion overdensity into a clustered and linear component to take the non clustering of axions on small scales due to free-streaming into account.
alf fits the absorption line optical—NIR spectrum. Initially written to constrain the stellar IMF in old massive galaxies, the code now also offers theoretical age and metallicity-dependent response functions covering 19 elements, nuisance parameters to capture uncertainties in stellar evolution, and parameters to capture uncertainties in the data, including modeling telluric absorption and sky line residuals. alf can fit stellar populations with metallicities from approximately -2.0 to +0.3 and performs well when fitting stellar populations ranging from metal-poor globular clusters to brightest cluster galaxies. The software works in continuum-normalized space and so does not make any use of the shape of the continuum (nor of corresponding photometry). Fitting is handled with emcee (ascl:1303.002); the code is MPI parallelized and runs efficiently on many processors, though fitting data with alf is time intensive.
RelicFast computes the scale-dependent bias induced by relics of different masses, spins, and temperatures, through spherical collapse and the peak-background split. The code determines halo bias in under a second, making it possible to include this effect for different cosmologies, and light relics, at little computational cost.
BE-HaPPY (Bias Emulator for Halo Power spectrum Python) facilitates future large scale surveys analysis by providing an accurate, easy to use and computationally inexpensive method to compute the halo bias in the presence of massive neutrinos. Provided with a linear power spectrum, the package will compute a new power spectrum according to the chosen configuration. BE-HaPPY handles linear, polynomial, and perturbation theory bias models. The code also handles Kaiser and Scoccimarro redshifts; other available options include real or redshift space, the total neutrino mass, and a choice of mass bin or scale array, among others.
Jdaviz provides data viewers and analysis plugins that can be flexibly combined as desired to create interactive applications. It offers Specviz (ascl:1902.011) for visualization and quick-look analysis of 1D astronomical spectra; Mosviz for visualization of astronomical spectra, including 1D and 2D spectra as well as contextual information, and Cubeviz for visualization of spectroscopic data cubes (such as those produced by JWST MIRI). Imviz, which provides visualization and quick-look analysis for 2D astronomical images, is also included. Jdaviz is designed with instrument modes from the James Webb Space Telescope (JWST) in mind, but the tool is flexible enough to read in data from many astronomical telescopes, and the documentation provides a complete table of all supported modes.
The fast N-body code SCF-FDPS (Self-Consistent Field-Framework for Developing Particle Simulators) simulates disk-halo systems. It combines a self-consistent field (SCF) code, which provides scalability, and a tree code that is parallelized using the Framework for Developing Particle Simulators (FDPS) (ascl:1604.011). SCF-FDPS handles a wide variety of halo profiles and can be used to study extensive dynamical problems of disk-halo systems.
BOXFIT calculates light curves and spectra for arbitrary observer times and frequencies and of performing (broadband) data fits using the downhill simplex method combined with simulated annealing. The flux value for a given observer time and frequency is a function of various variables that set the explosion physics (energy of the explosion, circumburst number density and jet collimation angle), the radiative process (magnetic field generation efficiency, electron shock-acceleration efficiency and synchrotron power slope for the electron energy distribution) and observer position (distance, redshift and angle). The code can be run both in parallel and on a single core. Because a data fit takes many iterations, this is best done in parallel. Single light curves and spectra can readily be done on a single core.
The Global Extinction Reduction IDL codes compare optical photometry from the twin Gemini North and South Multi-Object Spectrographs (GMOS-N and GMOS-S) against the expected worsening of atmospheric transparency due to global climate change. Data from the Gemini instruments are first reduced by DRAGONS (ascl:1811.002). GER then calibrates them against the Sloan Digital Sky Survey (SDSS) and Gaia G-band catalogs; image rotation and alignment is accomplished via identification of sufficiently-bright stars in Gaia. A simple model of Gemini and their site characteristics is generated, including meteorology, cloudy-fractions, number of reflections, dates of re-coatings modulated by rate of efficiency decay, together with response of detectors and associated zeropoints, and can be compared with the decline of transparency due to rising temperature and associated humidity increase.
pybranch calculates experimental branching fractions and transition probabilities from measurements of atomic spectra. Though the program is usually used with spectral line lists from intensity-calibrated spectra from Fourier transform spectrometers, it can in principle be used with any calibrated spectra that meet the input requirements. pybranch takes a set of linelists, computes a weighted average branching fraction (Fki) for each line, combines these branching fractions with the level lifetime to obtain the transition probability, and then prints the calibrated intensities and S/N ratios for all the lines observed from a particular upper level in each spectrum. One line can be chosen to use as a reference to put all of the intensities on the same scale. pybranch can use calculated transition probabilities to calculate a residual from lines that have not been observed.
PSFMachine creates models of instrument effective Point Spread Functions (ePSFs), also called Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. PSFMachine is able to quickly derive photometry from stacks of Kepler and TESS images and separate crowded sources.
ESSENCE (Evaluating Statistical Significance undEr Noise CorrElation) evaluates the statistical significance of image analysis and signal detection under correlated noise in interferometric images (e.g., ALMA, NOEMA). It measures the noise autocorrelation function (ACF) to fully characterize the statistical properties of spatially correlated noise in the interferometric image, computes the noise in the spatially integrated quantities (e.g., flux, spectrum) with a given aperture, and simulates noise maps with the same correlation property. ESSENSE can also construct a covariance matrix from noise ACF, which can be used for a 2d image or 3d cube model fitting.
threepoint models the third-order aperture statistics, the natural components of the shear three-point correlation function and the covariance of third-order aperture statistics. Third-order weak lensing statistics extract cosmological information in the non-Gaussianity of the cosmic large-scale structure, making them a promising tool for cosmological analyses.
TiDE (TIdal Disruption Event) computes the light curves or spectrum of tidal disruption events. Written in C++, it can compute the monochromatic light curve without diffusion, including the total luminosity, wind luminosity and disk luminosity, and the monochromatic light curve with diffusion. TiDE can also model the bolometric luminosity and calculate the spectrum at a given time, including the wind luminosity and disk luminosity. This code can be used to explore the possible parameter space and reveal potential biases caused by the model assumptions, and can be extended with new models, allowing one to compare and test different prescriptions and model assumptions under the same circumstances.
kilopop produces binary neutron star kilonovae in the grey-body approximation. It can also create populations of these objects useful for forecasting detection and testing observing scenarios. Additionally, it uses an emulator for the grey-opacity of the material calibrated against a suite of numerical radiation transport simulations with the code SuperNu (ascl:2103.019).
Hitomi provides a comprehensive set of codes for cosmological analysis of anisotropic galaxy distributions using two- and three-point statistics: two-point correlation function (2PCF), power spectrum, three-point correlation function (3PCF), and bispectrum. The code can measure the Legendre-expanded 2PCF and power spectrum from an observed sample of galaxies, and can measure the 3PCF and bispectrum expanded using the Tripolar spherical harmonic (TripoSH) function. Hitomi is basically a serial code, but can also implement MPI parallelization. Hitomi uses MPI to read multiple different input parameters simultaneously.
SubgridClumping derives the parameters for the global, in-homogeneous and stochastic clumping model and then computes the clumping factor for large low-resolution N-body simulations smoothed on a regular grid. Written for the CUBEP3M simulation, the package contains two main modules. The first derives the three clumping model parameters for a given small high-resolution simulation; the second computes a clumping factor cube (same mesh-size as input) for the three models for the given density field of a large low-resolution simulation.
ARPACK-NG provides a common repository with maintained versions and a test suite for the ARPACK (ascl:1311.010) code, which is no longer updated; it is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. ARPACK-NG offers routines for banded matrices, singular value decomposition, single and double precision real arithmetic versions for symmetric, non-symmetric standard or generalized problems, and a reverse communication interface (RCI). It also provides example driver routines that may be used as templates to implement numerous shift-invert strategies for all problem types, data types and precision, in addition to other tools. The ARPACK-NG project, started by Debian, Octave, and Scilab, is now a community project maintained by volunteers.
MG-PICOLA is a modified version of L-PICOLA (ascl:1507.004) that extends the COLA approach for simulating cosmological structure formation to theories that exhibit scale-dependent growth. It can compute matter power-spectra (CDM and total), redshift-space multipole power-spectra P0,P2,P4 and do halofinding on the fly.
COLASolver creates Particle-Mesh (PM) N-body simulations; the code is fast and very flexible, and can compute a wide range of models. For models with complex dynamics (screened models), it provides several options from doing it exactly to approximate but fast to just simulating linear theory equations. Every time-consuming operation is parallelized over MPI and OpenMP. It uses a slab-based parallelization that works well for fast approximate (COLA) simulations but does not perform as well for high resolution simulations. COLASolver can also be used as an analysis code for results from other simulations.
CHIPS (Complete History of Interaction-Powered Supernovae) simulates the circumstellar matter and light curves of interaction-powered transients. Coupled with MESA (ascl:1010.083), the combined codes can obtain the circumstellar matter profile and light curves of the interaction-powered supernovae. CHIPS generates a realistic CSM from a model-agnostic mass eruption calculation, which can serve as a reference for observers to compare with various observations of the CSM. The code can also generate bolometric light curves from CSM interaction, which can be compared with observed light curves. The calculation of mass eruption and light curve typically takes respectively half a day and half an hour on modern CPUs.
nuPyProp simulates tau neutrino and muon neutrino interactions in the Earth and predicts the spectrum of the τ-leptons and muons that emerge. The code produces tables of charged lepton exit probabilities and energies that can be used directly or as inputs to nuSpaceSim (ascl:2306.043), which is designed to simulate optical and radio signals from extensive air showers induced by the emerging charged leptons.
nuSpaceSim simulates upward-going extensive air showers caused by neutrino interactions with the atmosphere. It is an end-to-end, neutrino flux to space-based signal detection, modeling tool for the design of sub-orbital and space-based neutrino detection experiments. This comprehensive suite of modeling packages accepts an experimental design input and then models the experiment's sensitivity to both the diffuse, cosmogenic neutrino flux as well as astrophysical neutrino transient events, such as that postulated from binary neutron star (BNS) mergers. nuSpaceSim calculates the tau neutrino acceptance for the Optical Cherenkov technique; tau propagation is interpolated using included data tables from nupyprop (ascl:2306.044). The simulation is parameterized by an input XML configuration file, with settings for detector characteristics and global parameters; nuSpaceSim also provides a python API for programmatic access.
The end-to-end SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers) pipeline allows users to explore data from space-based missions to search for planetary candidates. It can recover alerted candidates by the automatic pipelines such as SPOC and the QLP, Kepler objects of interest (KOIs) and TESS objects of interest (TOIs), and can search for candidates that remain unnoticed due to detection thresholds, lack of data exploration, or poor photometric quality. SHERLOCK has six different modules to perform its tasks; these modules can be executed by filling in an initial YAML file with some basic information and using a few lines of code sequentially to pass from one step to the next. Alternatively, the user may provide with the light curve in a csv file, where the time, normalized flux, and flux error are provided in columns in comma-separated format.
CONDUCT calculates all components of kinetic tensors in fully ionized electron-ion plasmas at arbitrary magnetic field. It employs a thermal averaging with the Fermi distribution function and can be used when electrons are partially degenerate; it provides, along with the electrical and thermal conductivities, also thermopower (thermoelectric coefficient). CONDUCT takes into account collisions of the electrons with ions and (in solid phase) charged impurities as well as quantum effects on ionic motion in the solid phase. The code's outputs are the longitudinal, transverse, and off-diagonal (Hall) components of electrical and thermal conductivity tensors as well as the components of thermoelectric tensor.
COFFE (COrrelation Function Full-sky Estimator) computes quantities in linear perturbation theory. It computes the full-sky and flat-sky 2-point correlation function (2PCF) of galaxy number counts, taking into account all of the effects, including density, RSD, and lensing. It also determines the full-sky, flat-sky, and redshift-averaged multipoles of the 2PCF, and the flat-sky Gaussian covariance matrix of the multipoles of the 2PCF.
PEPITA (Prediction of Exoplanet Precisions using Information in Transit Analysis) makes predictions for the precision of exoplanet parameters using transit light-curves. The code uses information analysis techniques to predict the best precision that can be obtained by fitting a light-curve without actually needing to perform the fit, thus allowing more efficient planning of observations or re-observations.
GRChombo performs numerical relativity simulations. It uses Chombo (ascl:1202.008) for adaptive mesh refinement and can evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchies and massive parallelism and evolves the Einstein equation using the standard BSSN formalism. GRChombo is written in C++14 and uses hybrid MPI/OpenMP parallelism and vector intrinsics to achieve good performance.
FacetClumps extracts and analyses clumpy structure in molecular clouds. Written in Python and based on the Gaussian Facet model, FacetClumps extracts signal regions using morphology, and segments the signal regions into local regions with a gradient-based method. It then applies a connectivity-based minimum distance clustering method to cluster the local regions to the clump centers. FacetClumps automatically adjusts its parameters to local situations to improve adaptability, and is optimized to detect faint and overlapping clumps.
The machine learning pipeline CADET (CAvity DEtection Tool) finds and size-estimates arbitrary surface brightness depressions (X-ray cavities) on noisy Chandra images of galaxies. The pipeline is a self-standing Python script and inputs either raw Chandra images in units of counts (numbers of captured photons) or normalized background-subtracted and/or exposure-corrected images. CADET saves corresponding pixel-wise as well as decomposed cavity predictions in FITS format and also preserves the WCS coordinates; it also outputs a PNG file showing decomposed predictions for individual scales.
Idefix solves non-relativistic HD and MHD equations on various grid geometries. Based on a Godunov finite-volume method, this astrophysical flows code includes a wide choice of solvers and several modules, including constrained transport, orbital advection, and non-ideal MHD, to address complex astrophysical and fluid dynamics applications. Written in C++, Idefix relies on the Kokkos meta-programming library to guarantee performance portability on a wide variety of architectures.
CONCEPT (COsmological N-body CodE in PyThon) simulates cosmological structure formation. It can simulate matter particles evolving under self-gravity in an expanding background. The code offers multiple gravitational solvers and has adaptive time integration built in. In addition to particles, CONCEPT also evolves fluids at various levels of non-linearity, providing the means for the inclusion of more exotic species such as massive neutrinos, as well as for simulations consistent with general relativistic perturbation theory. Various non-standard species, such as decaying cold dark matter, are fully supported. CONCEPT includes a sophisticated initial condition generator and can output snapshots, power spectra, bispectra ,and several kinds of renders.
COLT (Cosmic Lyman-alpha Transfer) is a Monte Carlo radiative transfer (MCRT) solver for post-processing hydrodynamical simulations on arbitrary grids. These include a plane parallel slabs, spherical geometry, 3D Cartesian grids, adaptive resolution octrees, unstructured Voronoi tessellations, and secondary outputs. COLT also includes several visualization and analysis tools that exploit the underlying ray-tracing algorithms or otherwise benefit from an efficient hybrid MPI + OpenMP parallelization strategy within a flexible C++ framework.
lasso_spectra fits Lasso regression models to data, specifically galaxy spectra. It contains two classes for performing the actual model fitting. GeneralizedLasso is a tensorflow implementation of Lasso regression, which includes the ability to use link functions. SKLasso is a wrapper around the scikit-learn Lasso implementation intended to give the same syntax as GeneralizedLasso. It is much faster and more reliable, but does not support generalized linear models.
CosmoGraphNet infers cosmological parameters or the galaxy power spectrum. It creates a graph from a galaxy catalog with information the 3D position and intrinsic galactic properties. A Graph Neural Network is then applied to predict the cosmological parameters or the galaxy power spectrum.
ECLIPSE (Efficient Cmb poLarization and Intensity Power Spectra Estimator) implements an optimized version of the Quadratic Maximum Likelihood (QML) method for the estimation of the power spectra of the Cosmic Microwave Background (CMB) from masked skies. Written in Fortran, ECLIPSE can be used in a personal computer but also benefits from the capabilities of a supercomputer to tackle large scale problems; it is designed to run parallel on many MPI tasks. ECLIPSE analyzes masked CMB maps in which the signal can be affected by the beam and pixel window functions. The masks of intensity and polarization can be different and the noise can be isotropic or anisotropic. The program can estimate auto and cross-correlation power spectrum, that can be binned or unbinned.
Butterpy simulates star spot emergence, evolution, decay, and stellar rotational light curves. It tests the recovery of stellar rotation periods using different frequency analysis techniques. Butterpy can simulate light curves of stars with variable activity level, rotation period, spot lifetime, magnetic cycle duration and overlap, spot emergence latitudes, and latitudinal differential rotation shear.
Mixclask combines Cloudy (ascl:9910.001) and SKIRT (ascl:1109.003) to predict spectra and gas properties in astrophysical contexts, such as galaxies and HII regions. The main output is the mean intensity of a region filled with stars, gas and dust at different positions, assuming axial symmetry. The inputs for Mixclask are the stellar and ISM data for each region and an file for the positions (x,y,z) that will be output.
rfast ingests tables of opacities and generates synthetic spectra of worlds and retrieves real or simulated spectral observations. It can add noise, perform inverse modeling, and plot results. The tool can be applied to simulated and real observations spanning reflected-light, thermal emission, and transit transmission. Retrieval parameters can be toggled and parameters can be retrieved in log or linear space and adopt a Gaussian or flat prior.
Planetary Ephemeris Program (PEP) computes numerical ephemerides and simultaneously analyzes a heterogeneous collection of astrometric data. Written in Fortran, it is a general-purpose astrometric data-analysis program and models orbital motion in the solar system, determines orbital initial conditions and planetary masses, and has been used to, for example, measure general relativistic effects and test physics theories beyond the standard model. PEP also models pulsar motions and distant radio sources, and can solve for sky coordinates for radio sources, plasma densities, and the second harmonic of the Sun's gravitational field.
The Parthenon framework, derived from Athena++ (ascl:1912.005), handles massively-parallel, device-accelerated adaptive mesh refinement. It provides a device first/device resident approach, transparent packing of data across blocks (to reduce/hide kernel launch latency), and direct device-to-device communication via asynchronous, one-sided MPI communication to enable high performance. Parthenon uses an intermediate abstraction layer to hide complexity of device kernel launches, offers support for particles and abstract variable control via metadata tags, and has a flexible plug-in package system.
ALminer queries, analyzes, and visualizes the ALMA Science Archive. Users can programmatically query the archive for positions, target names, or other keywords in the archive metadata (such as proposal title, abstract, or scientific category). ALminer's plotting routines allow the query results to be visualized, and its analysis functions allow users to filter the results and check whether certain frequencies of interest are covered in the queried observations. The code also allows users to directly download ALMA data products in FITS format and/or the raw data that can be used for manual image processing. ALminer has been designed to make mining the ALMA archive as simple as possible, while being flexible to be customized according to the user's scientific interests. The code is released with a detailed tutorial Jupyter notebook, introducing ALminer's common functions as well as some of its more advanced options.
COpops computes semi-analytically the CO flux of a disc (given initial conditions and age) under the assumption of LTE and optically thick emission. It then runs disc population synthesis using observationally-informed initial conditions. CO fluxes is one of the most easily accessible observables for studying disc evolution; COpops is a faster alternative to running computationally-expensive thermochemical models for hundreds of discs and is accurate, recovering agreement within a factor of three.
RELAGN creates spectral models for the calculation of AGN SEDs, ranging from the Optical/UV (outer accretion disc) to the Hard X-ray (Innermost X-ray Corona). The code is available in two languages, Python and Fortran. The Fortran version is written to be used with the spectral fitting software XSPEC (ascl:9910.005), and is the preferred version for analyzing X-ray spectral data. The Python version provides more flexibility for modeling. Whereas the Fortran version produces only a spectrum, the Python implementation can extract the physical properties of the system (such as the physical mass accretion rate, disc size, and efficiency parameters) since these are all stored as attributes within the model. Both versions require a working installation of HEASOFT (ascl:1408.004).
apollinaire provides functions and a framework for helioseismic and asteroseismic instruments data managing and analysis, and includes all the tools necessary to analyze the acoustic oscillations of solar-like stars. The core of the package is the peakbagging library, which provides a full framework to extract oscillation modes parameters from solar and stellar power spectra.
pipes_vis is an interactive graphical user interface for visualizing SPS spectra. Powered by Bagpipes (ascl:2104.017), it provides real-time manipulation of a model galaxy's star formation history, dust, and other relevant properties through sliders and text boxes.
mockFRBhosts estimates the fraction of FRB hosts that can be cataloged with redshifts by existing and future optical surveys. The package uses frbpoppy (ascl:1911.009) to generate a population of FRBs for a given radio telescope. For each FRB, a host galaxy is drawn from a data base generated by GALFORM (ascl:1510.005). The galaxies' magnitudes in different photometric surveys are calculated as are the number of bands in which they are detected. mockFRBhosts also calculates the follow-up time in a 10-m optical telescope required to do photometry or spectroscopy and provides a simple interface to Bayesian inference methods via MCMC simulations provided in the FRB package (ascl:2306.018).
The transient search pipeline realfast integrates with the real-time environment at the Very Large Array (VLA) to look for fast radio bursts, pulsars, and other rare astrophysical transients. The software monitors multicast messages, catches visibility data, and defines a fast transient search pipeline with rfpipe (ascl:1710.002). It indexes candidate transients and other metadata for the search interface, and writes and archives new visibility files for candidate transients. realfast provides support for GPU algorithms, manages distributed futures, and performs blind injection and management of mock transients, among other tasks, and rapidly distributes data products and transient alerts to the public.
FRB performs calculations, estimations, analysis, and Bayesian inferences for Fast Radio Bursts, including dispersion measure and emission measure calculations, derived properties and spectrums, and Galactic RM.
Zeus21 (Zippy Early-Universe Solver for 21-cm) captures the nonlocal and nonlinear physics of cosmic dawn to create an effective model for the 21-cm power spectrum and global signal. The code takes advantage of the approximate log-normality of the star-formation rate density (SFRD) during cosmic dawn to compute the 21-cm power spectrum analytically. It agrees with more expensive semi-numerical simulations to roughly 10% precision, but has comparably negligible computational cost (~ s) and memory requirements. Zeus21 pairs well with data from HERA, but can be used for any 21-cm inference or prediction. Its capabilities include finding the 21-cm power spectrum (at a broad range of k and z), the global signal, IGM temperatures (Tk, Ts, Tcolor), neutral fraction xHI, Lyman-alpha fluxes, and the evolution of the SFRD; all across cosmic dawn z=5-35. It can also predict UVLFs for HST and JWST. Zeus21 can use three different astrophysical models, one of which emulates 21cmFAST (ascl:1102.023), and can vary the cosmology through CLASS (ascl:1106.020).
SuperRad models ultralight boson clouds that arise through black hole superradiance. It uses numerical results in the relativistic regime combined with analytic estimates to describe the dynamics and gravitational wave signals of ultralight scalar or vector clouds. Written in Python, SuperRad includes a set of testing routines that check the internal consistency of the package; these tests mainly serve the purpose of ensuring functionality of the waveform model but can also be utilized to check that SuperRad works as intended.
Mangrove uses Graph Neural Networks to regress baryonic properties directly from full dark matter merger trees to infer galaxy properties. The package includes code for preprocessing the merger tree, and training the model can be done either as single experiments or as a sweep. Mangrove provides loss functions, learning rate schedulers, models, and a script for doing the training on a GPU.
AIOLOS solves differential equations for hydrodynamics, friction, (thermal) radiation transport and (photo)chemistry for simulating accretion onto, and hydrodynamic escape from, planetary atmospheres. The 1-D multispecies, multiphysics hydrodynamics code, written in C++, compiles in a flexible mode that runs problems with any number of input species, and can be sped up by setting the number of species at compile time, and allows the user to provide initial conditions or boundary conditions if desired. AIOLOS provides output and diagnostic files that give snapshots in time of the state of the simulation. Output files are specific to each species, and diagnostic files contain summary as well as detailed information for, for example, the radiation transport, opacities for all species, and optical cell depths per band, in addition to other information.
SCONCE-SCMS detects cosmic web structures, primarily cosmic filaments and the associated cosmic nodes, from a collection of discrete observations with the extended subspace constrained mean shift (SCMS) algorithms on the unit (hyper)sphere (in most cases, the 2D (RA,DEC) celestial sphere), and the directional-linear products space (most commonly, the 3D (RA,DEC,redshift) light cone).
The subspace constrained mean shift (SCMS) algorithm is a gradient ascent typed method dealing with the estimation of local principal curves, more widely known as density ridges. The one-dimensional density ridge traces over the curves where observational data are highly concentrated and thus serves as a natural model for cosmic filaments in our Universe. Modeling cosmic filaments as density ridges enables efficient estimation by the kernel density estimator (KDE) and the subsequent SCMS algorithm in a statistically consistent way. While the standard SCMS algorithm can identify the density ridges in any "flat" Euclidean space, it exhibits large bias in estimating the density ridges on the data space with a non-linear curvature. The extended SCMS algorithms used in SCONCE-SCMS are adaptive to the spherical and conic geometries and resolve the estimation bias of the standard SCMS algorithm on a 2D (RA,DEC) celestial sphere or 3D (RA,DEC,redshift) light cone.
ZodiPy simulates the zodiacal emission in intensity that an arbitrary solar system observer is predicted to see given an interplanetary dust model, either in the form of timestreams or full-sky HEALPix maps. Written in Python, the code makes zodiacal emission simulations more accessible by providing a simple interface to existing models.
Margarine computes marginal bayesian statistics given a set of samples from an MCMC or nested sampling run. Specifically, the code calculates marginal Kullback-Leibler divergences and Bayesian dimensionalities using Masked Autoregressive Flows and Kernel Density Estimators to learn and sample posterior distributions of signal subspaces in high dimensional data models, and determines the properties of cosmological subspaces, such as their log-probability densities and how well constrained they are, independent of nuisance parameters. Margarine thus allows for direct and specific comparison of the constraining ability of different experimental approaches, which can in turn lead to improvements in experimental design.
MOBSE investigates the demography of merging BHBs. A customized version of the binary stellar evolution code BSE (ascl:1303.014), MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars and upgrades for the evolution of single and binary massive stars.
Albatross analyzes Milky Way stellar streams. This Simulation-Based Inference (SBI) library is built on top of swyft (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Using swyft for its internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and sstrax (ascl:2306.008) for fast simulation and modeling, Albatross provides a modular inference pipeline to support parameter inference on all relevant parts of stellar stream models.
sstrax provides fast simulations of Milky Way stellar stream formation. Using JAX (ascl:2111.002) acceleration to support code compilation, sstrax forward models all aspects of stream formation, including evolution in gravitational potentials, tidal disruption and observational models, in a fully modular way. Although sstrax is a standalone python package, it was also developed to integrate directly with the Albatross (ascl:2306.009) inference pipeline, which performs inference on all relevant aspects of the stream model.
PhotoParallax calculates photometric parallaxes for distant stars in the Gaia TGAS catalog without any use of physical stellar models or stellar density models of the Milky Way. It uses the geometric parallaxes to calibrate a photometric model that is purely statistical, which is a model of the data rather than a model of stars per se.
β-SGP deconvolves an astronomical image with a known Point Spread Function, providing a means for restoration of telescopic images due to issues ranging from atmospheric turbulence to instrumental aberrations. The code supports improved astrometry, deblending of overlapping sources, faint source detection, and identification of point sources near bright extended objects, and other tasks. β-SGP generalizes the Scaled Gradient Projection (SGP) image deconvolution algorithm using β-divergence as a loss function to restore distorted stellar shapes.
Delight infers photometric redshifts in deep galaxy and quasar surveys. It uses a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift, thus leveraging the advantages of both machine- learning and template-fitting methods by building template SEDs directly from the training data. Delight obtains accurate redshift point estimates and probability distributions and can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts.
Latest version of TS (Turbospectrum), with NLTE capabilities.
Computation of stellar spectra (flux and intensities) in 1D or average stellar atmosphere models.
In order to compute NLTE stellar spectra, additional data is needed, downloadable outside GitHub.
See documentation in DOC folder
Python wrappers are available at https://github.com/EkaterinaSe/TurboSpectrum-Wrapper/ and https://github.com/JGerbs13/TSFitPy
They allow interpolation between models and fitting of spectra to derive stellar parameters.
The N-body code TIDYMESS (TIdal DYnamics of Multi-body ExtraSolar Systems) can describe the mass distribution of each body its inertia tensor and directly and self-consistently integrates orbit, spin, and inertia tensors. It manages the deformation of a body follows the tidal Creep model and includes the centrifugal force and tidal force. Written in C++, TIDYMESS is available as a standalone package and also through the AMUSE framework (ascl:1107.007).
SAVED21cm extracts the 21cm signal from the simulated mock observation for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH). Though built for the REACH experiment, this 21cm signal extraction pipeline can in principle can be utilized for any global 21cm experiment. The toolkit is based on a pattern recognition framework using the Singular Value Decomposition (SVD) of the 21cm and foreground training set. SAVED21cm finds the patterns in the training sets and properly models the chromatic distortions with a better basis than the polynomials.
Simulation-based inference is the process of finding parameters of a simulator from observations. The PyTorch package sbi performs simulation-based inference by taking a Bayesian approach to return a full posterior distribution over the parameters, conditional on the observations. This posterior can be amortized (i.e. useful for any observation) or focused (i.e.tailored to a particular observation), with different computational trade-offs. The code offers a simple interface for one-line posterior inference.
HAFFET (Hybrid Analytic Flux FittEr for Transients) analyzes supernovae photometric and spectroscopic data. It handles observational data for a set of targets, estimates their physical parameters, and visualizes the population of inferred parameters. HAFFET defines two classes, snobject for data and fittings for one specific object, and snelist to organize the overall running for a list of objects. The HAFFET package includes utilities for downloading SN data from online sources, intepolating multi band lightcurves, characterizing the first light and rising of SNe with power law fits, and matching epochs of different bands. It can also calculate colors, and/or construct the spectral energy distribution (SED), estimate bolometric LCs and host galaxy extinction, fit the constructed bolometric lightcurves to different models, and identify and fit the absorption minima of spectral lines, in addition to performing other tasks. In addition to utilizing the built-in models, users can add their own models or import models from other python packages.
The Australian Square Kilometre Array Pathfinder (ASKAP) has been enabled by the Commensal Real-time ASKAP Fast Transients Collaboration (CRAFT) to detect Fast Radio Bursts (FRBs) in real-time and save raw antenna voltages containing FRB detections. CELEBI, the CRAFT Effortless Localization and Enhanced Burst Inspection pipeline, extends CRAFT’s existing software to process ASKAP voltages to produce sub-arcsecond precision localizations and polarimetric data at time resolutions as fine as 3 ns of FRB events. CELEBI uses Nextflow (ascl:2305.024) to link together Bash and Python code to perform software correlation, interferometric imaging, and beamforming, thereby making use of common astronomical software packages.
Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and the deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow supports deploying workflows on a variety of execution platforms including local, HPC schedulers, AWS Batch, Google Cloud Life Sciences, and Kubernetes. Additionally, it provides support for workflow dependencies through built-in support for, for example, Conda, Spack, Docker, Podman, Singularity, and Modules.
GLASS (Generator for Large Scale Structure) produces cosmological simulations on the sphere. The full, three-dimensional past light cone of the observer is discretized into a sequence of nested shells, which are further discretized in the angular dimensions into maps of the sphere. GLASS was originally designed to simulate cosmic matter, weak gravitational lensing, and galaxy positions, but its flexible design and open architecture allows it to be used for a wide range of cosmological and astrophysical simulations on the sphere.
GrGadget merges the Particle-Mesh (PM) relativistic GEVOLUTION code (ascl:1608.014) with the TreePM GADGET-4 code (ascl:2204.014) to create a TreePM simulation code that represents metric perturbations at the scales where they are relevant while resolving non-linear structures. The better resolution of the highly non-linear regime improves the representation of the relativistic fields sampled on the mesh with respect to PM-only simulations.
COLIBRÌ (which roughly stands for “Cosmological Libraries”) computes cosmological quantities such as ages, distances, power spectra, and correlation functions. It supports Lambda-CDM cosmologies plus extensions including massive neutrinos, non-flat geometries, evolving dark energy (w0-wa) models, and numerical recipes for f(R) gravity. COLIBRÌ is built especially for large-scale structure purposes and can interact with the Boltzmann solvers CAMB (ascl:1102.026) and CLASS (ascl:1106.020).
JEDI searches for and characterizes coronal dimming in light curves produced from the Solar Dynamics Observatory (SDO) Extreme Ultraviolet (EUV) Variability Experiment (EVE). The suite has a wrapper script that calls other functions, which can also be run independently assuming needed inputs from prior functions are provided. JEDI's functions fit light curves and return the best fit, compute precision for iron light curves, and find the biggest dimming depth and its time in a given light curve. JEDI also includes functions for finding the duration of the dimming, minimum, maximum, and mean slope of dimming of a light curve, and for identifying the biggest peak in two light curves, time shifting them so the peaks are concurrent, scaling them so the peaks are the same magnitude, and then subtracting them, among other useful functions.
The sterile neutrino production code sterile-dm incorporates new elements to the calculations of the neutrino opacity at temperatures 10 MeV ≤ T ≤ 10 GeV and folds the asymmetry redistribution and opacity calculations into the sterile neutrino production computation, providing updated PSDs for the range of parameters relevant to the X-ray excess. The code requires several data files, which are included. With each run, sterile-dm creates a new output sub-directory that contains a parameter file listing the mass, mixing angle, initial lepton asymmetry and other information, a state file, which includes, among other states, the temperature and FRW coordinate time, and a set of snapshot files, one for each line in the state file.
GWSurrogate provides an easy to use interface to gravitational wave surrogate models. Surrogates provide a fast and accurate evaluation mechanism for gravitational waveforms which would otherwise be found through solving differential equations. These equations must be solved in the “building” phase, which was performed using other codes.
Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (e.g., the inclination) or parameters describing an external potential.
The gw_pta_emulator reads in gravitational wave (GW) characteristic strain spectra from black-hole population simulations, re-bins for the user's observing baseline, and constructs new spectra. The user can train a Gaussian process to emulate the spectral behavior at all frequencies across the astrophysical parameter space of supermassive black-hole binary environments.
EIDOS models the primary beam of radio astronomy antennas. The code can be used to create MeerKAT L-band beams from both holographic (AH) observations and EM simulations within a maximum diameter of 10 degrees. The beam model is less accurate at higher frequencies, and performs much better below 1400 MHz. The diagonal terms of the model beam Jones matrix are much better known than the off-diagonal terms. The performance of EIDOS is dependent on the quality of the given AH and EM datasets; as more accurate AH models and EM simulations become available, this pipeline can be used to create more accurate sparse representation of primary beams using Zernike polynomials.
DP3 (the Default Preprocessing Pipeline) is the LOFAR data pipeline processing program and is the successor to DPPP (ascl:1804.003). It performs many kinds of operations on the data in a pipelined way so the data are read and written only once. DP3 preprocesses the data of a LOFAR observation by executing steps such as flagging or averaging. Such steps can be used for the raw data as well as the calibrated data by defining the data column to use. One or more of the following steps can be defined as a pipeline. DP3 has an implicit input and output step. It is also possible to have intermediate output steps. DP3 comes with predefined steps, but also allows the user to plug in arbitrary steps implemented in either C++ or Python.
aartfaac2ms converts raw Aartfaac correlator files to the casacore (ascl:1912.002) measurement set format. It phase rotates the data to a common phase center, and (optionally) flags, averages, and compresses the data. The code includes a tool, afedit, to splice a raw Aartfaac set based on LST.
KERN contains most of the standard tools needed to work with radio telescope data. The suite saves time and reduces frustration in setting up of scientific pipelines, and also improves scientific reproducibility. It includes a wide variety of packages, including 21cmfast (ascl:1102.023), BRATS (ascl:1806.025), CARTA (ascl:2103.031), casacore (ascl:1912.002), CubiCal (ascl:1805.031), DDFacet (ascl:2305.008), PyBDSF (ascl:1502.007),TiRiFiC (ascl:1208.008), WSClean (ascl:1408.023), and many others. KERN can be run on a supported platform such as Ubuntu, with Docker and Singularity, or in a virtual machine.
DarkMappy reconstructs maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem in order to implement hybrid Bayesian dark-matter reconstruction techniques on the plane and on the celestial sphere. These convergence maps support principled uncertainty quantification and provide hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction.
FLAGLET computes flaglet transforms with arbitrary spin direction, probing the angular features of this generic wavelet transform for rapid analysis of signals from wavelet coefficients. The code enables the decomposition of a band-limited signal into a set of flaglet maps that capture all information contained in the initial band-limited map, and it can reconstruct the individual flaglets at varying resolutions. FLAGLET relies upon the SSHT (ascl:2207.034), S2LET (ascl:1211.001), and SO3 codes to provide angular transforms and sampling theorems, as well as the FFTW (ascl:1201.015) code to compute Fourier transforms.
Given a FITS image, breizorro creates a binary mask. The software allows the user control various parameters and functions, such as setting a sigma threshold for masking, merging in or subtracting one or more masks or region files, filling holes, applying dilation within a defined radius of pixels, and inverting the mask.
DDFacet provides a wideband wide-field spectral imaging and deconvolution framework that accounts for generic direction-dependent effects (DDEs). It implements a wide-field coplanar faceting scheme and uses nontrivial facet-dependent w-kernels to correct for noncoplanarity within the facets. In the imaging and deconvolution steps, DDFacet can handle generic, spatially discrete, time-frequency-baseline-direction-dependent full polarization Jones matrices, and computes a direction dependent PSF for use in the minor cycle of deconvolution for time-frequency-baseline dependent Mueller matrices. The code also allows for the effects of time and bandwidth averaging to be explicitly incorporated into deconvolution. DDFacet has been successfully tested with data diverse telescopes such as LOFAR, VLA, MeerKAT AR1, and ATCA.
stimela provides a system-agnostic scripting framework for simulating, processing, and imaging radio interferometric data. The framework executes radio interferometry related tasks such as imaging, calibration, and data synthesis in Docker containers using Python modules. stimela offers a simple interface to packages that perform these tasks rather than doing any data processing, synthesis or analysis itself. stimela only requires Docker and Python. Moreover, because of Docker, a stimela script runs the same way (in the same isolated environment) regardless of the host machine’s settings, thus providing a user-friendly and modular scripting environment that gives general users easy access to novel radio interferometry calibration, imaging, and synthesis packages.
This package is no longer under active development and has been superseded by Stimela2 (ascl:2412.002).
QuartiCal is the successor to CubiCal (ascl:1805.031). It implements a suite of fast radio interferometric calibration routines exploiting complex optimization. Unlike CubiCal, QuartiCal allows for any available Jones terms to be combined. It can also be deployed on a cluster.
killMS implements two very efficient algorithms for solving the Direction-Dependent calibration problem (also known as third generation calibration). This problem naturally arises in the Radio Interferometry Measurement Equation (RIME), but only became overwhelmingly problematic with the construction of the SKA precursors and pathfinders. Solving for the DDE calibration problem basically consists in inverting a number of non-linear equations, while the system is very large and often subject to ill conditioning. The two algorithms killMS uses are based on complex optimization techniques and exploit algorithmic shortcuts; killMS also runs an extended Kalman filter.
katdal interacts with the chunk stores and HDF5 files produced by the MeerKAT radio telescope and its predecessors (KAT-7 and Fringe Finder), which are collectively known as MeerKAT Visibility Format (MVF) data sets. The library uses memory carefully, allowing data sets to be inspected and partially loaded into memory. Data sets may be concatenated and split via a flexible selection mechanism. In addition, katdal provides a script to convert these data sets to CASA MeasurementSets.
extrapops simulates extra-galactic populations of gravitational waves sources and models their emission during the inspiral phase. The code approximately assesses the detectability of individual sources by LISA and computes the background due to unresolved sources in the LISA band using different methods. The simulated populations can be saved in a format compatible with LISA LDC. Simulations are well calibrated to produce accurate background calculations and fair random generation at the tails of the distributions, which is important for accurate probability of detectable events. extrapops uses a number of ad-hoc techniques for rapid simulation and allows room for further optimization up to almost 1 order of magnitude.
Virtual Telescope predicts the signal-to-noise and other parameters of imaging and/or spectroscopic observations as a function of telescope size, detector noise, and other factors for the Next-Generation Space Telescope.
FRIDDA forecasts the cosmological impact of measurements of the redshift drift and the fine-structure constant (alpha) as well as their combination. The code is based on Fisher Matrix Analysis techniques and works for various fiducial cosmological models. Though designed for the ArmazoNes high Dispersion Echelle Spectrograph (ANDES), it is easily adaptable to other fiducial cosmological models and to other instruments with similar scientific goals.
JET (JWST Exoplanet Targeting) optimizes lists of exoplanet targets for atmospheric characterization by the James Webb Space Telescope (JWST). The software uses catalogs of planet detections, either simulated, or actual and categorizes targets by radius and equilibrium temperature; it also estimates planet masses and generates model spectra and simulated instrument spectra. JET then performs a statistical analysis to determine if the instrument spectra can confirm an atmospheric detection and finally ranks the targets within each category by observation time required for detection.
FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A MATLAB implementation of FALCO (ascl:2304.004) is also available.
FALCO (Fast Linearized Coronagraph Optimizer) performs coronagraphic focal plane wavefront correction. It includes routines for pair-wise probing estimation of the complex electric field and Electric Field Conjugation (EFC) control. FALCO utilizes and builds upon PROPER (ascl:1405.006) and rapidly computes the linearized response matrix for each DM, which facilitates re-linearization after each control step for faster DM-integrated coronagraph design and wavefront correction experiments. A Python 3 implementation of FALCO (ascl:2304.005) is also available.
BatAnalysis processes and analyzes Swift Burst Alert Telescope (BAT) survey data in a comprehensive computational pipeline. The code downloads BAT survey data, batch processes the survey observations, and extracts light curves and spectra for each survey observation for a given source. BatAnalysis allows for the use of BAT survey data in advanced analyses of astrophysical sources including pulsars, pulsar wind nebula, active galactic nuclei, and other known/unknown transient events that may be detected in the hard X-ray band. BatAnalysis can also create mosaicked images at different time bins and extract light curves and spectra from the mosaicked images for a given source.
Applefy calculates detection limits for exoplanet high contrast imaging (HCI) datasets. The package provides features and functionalities to improve the accuracy and robustness of contrast curve calculations. Applefy implements the classical approach based on the t-test, as well as the parametric boostrap test for non-Gaussian residual noise. Applefy enables the comparison of imaging results across instruments with different noise characteristics.
ASSIST integrates test particle trajectories in the field of the Sun, Moon, planets, and massive asteroids, with the positions of the masses obtained from the JPL DE441 ephemeris and its associated asteroid perturber file. Using REBOUND's (ascl:1110.016) IAS15 integrator, ASSIST incorporates the most significant gravitational harmonics and general relativistic corrections and accounts for position- and velocity-dependent non-gravitational effects. The first-order variational equations are included for all terms to support orbit fitting and covariance mapping.
HaloGraphNet predicts halo masses from simulations using Graph Neural Networks. Given a dark matter halo and its galaxies, this software creates a graph with information about the 3D position, stellar mass and other properties. It then trains a Graph Neural Network to predict the mass of the host halo. Data are taken from the CAMELS hydrodynamic simulations.
pulsar_spectra provides a pulsar flux density catalog and automated spectral fitting software for finding spectral models. The package can also produce publication-quality plots and allows users to add new spectral measurements to the catalog. The spectral fitting software uses robust statistical methods to determine the best-fitting model for individual pulsar spectra.
MORPHOFIT consists of a series of modules for estimating galaxy structural parameters. The package uses SEXTRACTOR (ascl:1010.064) in forced photometry mode to get an initial estimate of the galaxy structural parameters and create a multiband catalog. It also uses GALFIT (ascl:1010.064), running it on galaxy stamps and galaxy regions from the parent image and also on galaxies from the full image using SEXTRACTOR properties as input. MORPHOFIT has been optimized and tested in both low-density and crowded environments, and can recover the input structural parameters of galaxies with good accuracy.
bajes [baɪɛs] provides a user-friendly interface for setting up a Bayesian analysis for an arbitrary model, and is specialized for the analysis of gravitational-wave and multi-messenger transients. The code runs a parameter estimation job, inferring the properties of the input model. bajes is designed to be simple-to-use and light-weighted with minimal dependencies on external libraries. The user can set up a pipeline for parameters estimation of multi-messenger transients by writing a configuration file containing the information to be passed to the executables. The package also includes tools and methods for data analysis of multi-messenger signals. The pipeline incorporates an interface with reduced-order-quadratude (ROQ) interpolants. In particular, the ROQ pipeline relies on the output provided by PyROQ-refactored.
SatGen generates satellite-galaxy populations for host halos of desired mass and redshift. It combines halo merger trees, empirical relations for galaxy-halo connection, and analytic prescriptions for tidal effects, dynamical friction, and ram-pressure stripping. It emulates zoom-in cosmological hydrosimulations in certain ways and outperforms simulations regarding statistical power and numerical resolution.
The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.
Delphes simulates a fast multipurpose detector response. The simulation includes a tracking system, embedded into a magnetic field, calorimeters and a muon system. The Delphes framework is interfaced to standard file formats (e.g. Les Houches Event File or HepMC) and outputs observables such as isolated leptons, missing transverse energy and collection of jets that can be used for dedicated analyses. The simulation of the detector response takes into account the effect of magnetic field, the granularity of the calorimeters and sub-detector resolutions. Visualization of the final state particles is also built-in using the corresponding ROOT library.
The FastJet package provides fast native implementations of many sequential recombination algorithms, including the longitudinally invariant kt longitudinally invariant inclusive Cambridge/Aachen and anti-kt jet finders. It also provides a uniform interface to external jet finders via a plugin mechanism. FastJet also includes tools for calculating jet areas and performing background (pileup/UE) subtraction and for jet substructure analyses.
EvoEMD evaluates cosmic evolution with or without an early matter dominated (EMD) era. The framework includes global parameter, particle, and process systems, and different methods for Hubble parameter calculation. EvoEMD automatically builds up the Boltzmann equation according to the user's definition of particle and process,solves the Boltzmann equation using 4th order Runge-Kutta method with adaptive steps tailored to cosmology application, and caches the collision rate calculation results for fast evaluation.
Scri manipulates time-dependent functions of spin-weighted spherical harmonics. It implements the BMS transformations of the most common gravitational waveforms, including the Newman-Penrose quantity ψ4, the Bondi news function, the shear spin coefficient σ, and the transverse-traceless metric perturbation h, as well as the remaining Newman-Penrose quantities ψ0 through ψ3.
spinsfast is a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. It permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at π/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L^3), where L is the band limit of the function.
Pandora searches for exomoons by employing an analytical photodynamical model that includes stellar limb darkening, full and partial planet-moon eclipses, and barycentric motion of planet and moon. The code can be used with nested samplers such as UltraNest (ascl:1611.001) or dynesty (ascl:1809.013). Pandora is fast, calculating 10,000 models and log-likelihood evaluation per second (give or take an order of magnitude, depending on parameters and data); this means that a retrieval with 250 Mio. evaluations until convergence takes about 5 hours on a single core. For searches in large amounts of data, it is most efficient to assign one core per light curve.
Comparing galaxies across redshifts via cumulative number densities is a popular way to estimate the evolution of specific galaxy populations. nd-redshift uses abundance matching in the ΛCDM paradigm to estimate the median change in number density with redshift. It also provides estimates for the 1σ range of number densities corresponding to galaxy progenitors and descendants.
PyCom provides function calls for deriving the optimal communication scheme to maximize the data rate between a remote probe and home-base. It includes models for the loss of photons from diffraction, technological limitations, interstellar extinction and atmospheric transmission, and manages major atmospheric, zodiacal, stellar and instrumental noise sources. It also includes scripts for creating figures appearing in the referenced paper.
Gaussian Process Cross-Correlation (GPCC) uses Gaussian processes to estimate time delays for reverberation mapping (RM) of Active Galactic Nuclei (AGN). This statistically principled model delivers a posterior distribution for the delay and accounts for observational noise and the non-uniform sampling of the light curves. Written in Julia, GPCC quantifies the uncertainty and propagates it to subsequent calculations of dependent physical quantities, such as black hole masses. The code delivers out-of-sample predictions, which enables model selection, and can calculate the joint posterior delay for more than two light curves. Though written for RM, the software can also be applied to other fields where cross-correlation analysis is performed.
Blobby3D performs Bayesian inference for gas kinematics on emission line observations of galaxies using Integral Field Spectroscopy. The code robustly infers gas kinematics for regularly rotating galaxies even if the gas profiles have significant substructure. Blobby3D also infers gas kinematic properties free from the effects of beam smearing (where beam smearing is the effect of the observational seeing spatially blurring the gas profiles), which has significant effects on the observed gas kinematic properties, particularly the observed velocity dispersion.
naif extracts frequencies and respective amplitudes from time-series, such as that of an orbital coordinate. Based on the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm and written in Python, naif offers some improvements, particularly in computation time. It also offers functions to plot the power-spectrum before extraction of each frequency, which can be useful for debugging particular orbits.
SeeKAT is a Python implementation of a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once to (sub-)arcsecond precision. It reads in list of detections (RA, Dec, S/N) and the beam PSF and computes a covariance matrix of the S/N value ratios, assuming 1-sigma Gaussian errors on each measurement. It models the aggregate beam response by arranging beam PSFs appropriately relative to each other and calculates a likelihood distribution of obtaining the observed S/N in each beam according to the modeled response. In addition, SeeKAT can plot the likelihood function over RA and Dec with 1-sigma uncertainty, overlaid on the beam coordinates and sizes.
The Python code line_selections reads synthetic "full" spectra and elemental spectra, automatically identifies the detectable lines at a given resolution (provided the linelist used to compute the spectra), and returns a table containing various properties of the lines (e.g., purity, central wavelength, and depth). The code then stores the information in a pandas DataFrame. line_selections demonstrates where chemical information is present in a stellar spectrum, and allows the user to optimize observational strategies, such as choosing resolution and spectra windows, as well as analysis codes with the application of high-quality masks.
World Observatory visualizes S/N-versus-cost tradeoffs for large optical and near-infrared telescopes. Both mid-latitude and Arctic/Antarctic sites can be considered; the intent is a simple simulation to grow intuition for where major capital costs lie relative to key observatory design choices, and against expected scientific performance at various sites. User-defined unit costs for (a possibly "effective") roadway, enclosure, aperture, focal length, and adaptive optics can be scaled up for polar sites, and down for better seeing and lower sky brightness in K-band. Observatory models and results are immediately displayed side-by-side. Either point-source-detection S/N or recovery of bulge-to-total ratios in a simulated galaxy survey are divided by the total project cost, thus providing a universal metric.
The cysgp4 Cython-powered package wraps the C++ SGP4 Library for computing satellite positions from two-line elements (TLE). It provides similar functionality as the sgp4 Python package, though also works well with arrays of TLEs and/or observing times and makes use of multi-core platforms (via OpenMP) to improve processing times.
HDMSpectra computes the decay spectrum for dark matter with masses above the scale of electroweak symmetry breaking, down to Planck scale and including all relevant electroweak interactions. The code determines the distribution of stable states for photons, neutrinos, positrons, and antiprotons.
Diffmah approximates the growth of individual halos as a simple power-law function of time, where the power-law index smoothly decreases as the halo transitions from the fast-accretion regime at early times to the slow-accretion regime at late times. The code has a typical accuracy of 0.1 dex for times greater than one billion years in halos of mass greater than 10e11 M_sun. Diffmah self-consistently captures the mean and variance of halo mass accretion rates across long time scales, and it generates Monte Carlo simulations of cosmologically-representative and differentiable halo histories.
DSPS synthesizes stellar populations, leading to fully-differentiable predictions for galaxy photometry and spectroscopy. The code implements an empirical model for stellar metallicity, and it also supports the Diffstar (ascl:2302.012) model of star formation and dark matter halo history. DSPS rapidly generates and simulates galaxy-halo histories on both CPU and GPU hardware.
AART (Adaptive Analytical Ray Tracing) exploits the integrability properties of the Kerr spacetime to compute high-resolution black hole images and their visibility amplitude on long interferometric baselines. It implements a non-uniform adaptive grid on the image plane suitable to study black hole photon rings (narrow ring-shaped features, predicted by general relativity but not yet observed). The code implements all the relevant equations required to compute the appearance of equatorial sources on the (far) observer's screen.
The RADEX Line Fitter provides a Python 3 interface that calls RADEX (ascl:1010.075) to make a non-LTE fit to a set of observed lines and derive the column density of the molecule that produced the lines and optionally also the molecular hydrogen (H2) number density or the kinetic temperature of the molecule. This code requires RADEX to be installed locally.
AMICAL (Aperture Masking Interferometry Calibration and Analysis Library) processes Aperture Masking Interferometry (AMI) data from major existing facilities, such as NIRISS on the JWST, SPHERE and VISIR from the European Very Large Telescope (VLT) and VAMPIRES from SUBARU telescope. The library cleans the reduced datacube from the standard instrument pipelines, extracts the interferometrical quantities (visibilities and closure phases) using a Fourier sampling approach, and calibrates those quantities to remove the instrumental biases. In addition, two external packages (CANDID and Pymask) are included to analyze the final outputs obtained from a binary-like sources (star-star or star-planet); these stand-alone packages are interfaced with AMICAL to quickly estimate scientific results (e.g., separation, position angle, contrast ratio, and contrast limits) using different approaches.
UBER (Universal Boltzmann Equation Solver) solves the general form of Fokker-Planck equation and Boltzmann equation, diffusive or non-diffusive, that appear in modeling planetary radiation belts. Users can freely specify the coordinate system, boundary geometry and boundary conditions, and the equation terms and coefficients. The solver works for problems in one to three spatial dimensions. The solver is based upon the mathematical theory of stochastic differential equations. By its nature, the solver scheme is intrinsically Monte Carlo, and the solutions thus contain stochastic uncertainty, though the user may dictate an arbitrarily small relative tolerance of the stochastic uncertainty at the cost of longer Monte Carlo iterations.
MADCUBA analyzes astronomical datacubes and multiple spectra from various astronomical facilities, including ALMA, Herschel, VLA, IRAM 30m, APEX, GBT, and others. These telescopes, and in particular ALMA, generate extremely large datacubes (spatial, spectral and polarization). This software combines a user-friendly interface and powerful data analysis system to derive the physical conditions of molecular gas, its chemical complexity and the kinematics from datacubes. Built using the ImageJ (ascl:1206.013) infrastructure, MADCUBA visualizes astronomical datacubes with thousands on spectral channels, and datasets with thousands of spectra; it also identifies molecular species using publicly available molecular catalogs. It can automatically derive the physical parameters of the molecular species: column density, excitation temperature, velocity and linewidths and provides the best non-linear least-squared fit using the Levenberg-Marquardt algorithm, among other tasks.
This library of scripts provides a simple interface for running the CLASS software from GILDAS (ascl:1305.010) in a semi-automatic way. Using these scripts, one can extract and organize spectra from data files in CLASS format (for example, .30m and .40m), reduce them, and even combine or average them once they are reduced. The library contains five Python scripts and two optional Julia scripts.
RichValues transforms numeric values with uncertainties and upper/lower limits to create "rich values" that can be written in plain text documents in an easily readable format and used to propagate uncertainties automatically. Rich values can also be exported in the same formatting style as the import. The RichValues library uses a specific formatting style to represent the different kinds of rich values with plain text; it can also be used to create rich values within a script. Individual rich values can be used in, for example, tuples, lists, and dictionaries, and also in arrays and tables.
swyft implements Truncated Marginal Neural Radio Estimation (TMNRE), a Bayesian parameter inference technique for complex simulation data. The code improves performance by estimating low-dimensional marginal posteriors rather than the joint posteriors of distributions, while also targeting simulations to targets of observational interest via an indicator function. The use of local amortization permits statistical checks, enabling validation of parameters that cannot be performed using sampling-based methods. swyft is also based on stochastic simulations, mapping parameters to observational data, and incorporates a simulator manager.
FCFC (Fast Correlation Function Calculator) computes correlation functions from pair counts. It supports the isotropic 2-point correlation function, anisotropic 2PCF, 2-D 2PCF, and 2PCF Legendre multipoles, among others. Written in C, FCFC takes advantage of three parallelisms that can be used simultaneously, distributed-memory processes via Message Passing Interface (MPI), shared-memory threads via Open Multi-Processing (OpenMP), and single instruction, multiple data (SIMD).
kima fits Keplerian curves to a set of RV measurements, using the Diffusive Nested Sampling (ascl:1010.029) algorithm to sample the posterior distribution for the model parameters. Additionally, the code can calculate the fully marginalized likelihood of a model with a given number of Keplerians and also infer the number of Keplerian signals detected in a given dataset. kima implements dedicated models for different analyses of a given dataset. The models share a common organization, but each has its own parameters (and thus priors) and settings.
SASHIMI-C calculates various subhalo properties efficiently using semi-analytical models for cold dark matter (CDM), providing a full catalog of dark matter subhalos in a host halo with arbitrary mass and redshift. Each subhalo is characterized by its mass and density profile both at accretion and at the redshift of interest, accretion redshift, and effective number (or weight) corresponding to that particular subhalo. SASHIMI-C computes the subhalo mass function without making any assumptions such as power-law functional forms; the only assumed power law is that for the primordial power spectrum predicted by inflation. The code is not limited to numerical resolution nor to Poisson shot noise, and its results are well in agreement with those from numerical N-body simulations.
Diffstar fits the star formation history (SFH) of galaxies to a smooth parametric model. Diffstar differs from existing SFH models because the parameterization of the model is directly based on basic features of galaxy formation physics, including halo mass assembly history, accretion of gas into the dark matter halo, the fraction of gas that is converted into stars, the time scale over which star formation occurs, and the possibility of rejuvenated star formation. The SFHs of a large number of simulated galaxies can be fit in parallel using mpi4py.
The UniverseMachine applies simple empirical models of galaxy formation to dark matter halo merger trees. For each model, it generates an entire mock universe, which it then observes in the same way as the real Universe to calculate a likelihood function. It includes an advanced MCMC algorithm to explore the allowed parameter space of empirical models that are consistent with observations.
SASHIMI-W calculates various subhalo properties efficiently using semi-analytical models for warm dark matter (WDM); the code is based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. The calculated constraints are independent of physics of galaxy formation and free from numerical resolution and the Poisson noise, and its results are well in agreement with those from numerical N-body simulations.
EXOTIC (EXOplanet Transit Interpretation Code) analyzes photometric data of transiting exoplanets into lightcurves and retrieves transit epochs and planetary radii. The software reduces images of a transiting exoplanet into a lightcurve, and fits a model to the data to extract planetary information crucial to increasing the efficiency of larger observational platforms. EXOTIC is written in Python and supports the citizen science project Exoplanet Watch. The software runs on Windows, Macintosh, and Linux/Unix computer, and can also be used via Google Colab.
HawkingNet searches for Hawking points in large Cosmic Microwave Background (CMB) data sets. It is based on the deep residual network ResNet18 and consists of eighteen neural layers. Written in Paython, HawkingNet inputs the CMB data, processes the data through its internal network trained for data classification, and outputs the result in a form of a classification score that indicates how confident it is that a Hawking point is contained in the image patch.
AnalyticLC generates an analytic light-curve, and optionally RV and astrometry data, from a set of initial (free) orbital elements and simultaneously fits these data. Written in MATLAB, the code is fast and efficient, and provides insight into the motion of the orbital elements, which is difficult to obtain from numerical integration. A Python wrapper for AnalyticLC is available separately.
RCR provides advanced outlier rejection that is easy to use. Both sigma clipping, the simplest form of outlier rejection, and traditional Chauvenet rejection make use of non-robust quantities, the mean and standard deviation, which are sensitive to the outliers that they are being used to reject. This limits such techniques to samples with small contaminants or small contamination fractions. RCR instead first makes use of robust replacements for the mean, such as the median and the half-sample mode, and similar robust replacements for the standard deviation. RCR has been carefully calibrated and can be applied to samples with both large contaminants and large contaminant fractions (sometimes in excess of 90% contaminated).
celmech provides a variety of analytical and semianalytical tools for celestial mechanics and dynamical astronomy. The package interfaces closely with the REBOUND N-body integrator (ascl:1110.016), thus facilitating comparisons between calculation results and direct N-body integrations. celmech can isolate the contribution of particular resonances to a system's dynamical evolution, and can develop simple analytical models with the minimum number of terms required to capture a particular dynamical phenomenon.
SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.
PHOTOe simulates the slowing down of photoelectrons in a gas with arbitrary amounts of H, He and O atoms, and thermal electrons, making PHOTOe useful for investigating the atmospheres of exoplanets. The multi-score scheme used in this code differs from other Monte Carlo approaches in that it efficiently handles rare collisional channels, as in the case of low-abundance excited atoms that undergo superelastic and inelastic collisions. PHOTOe outputs include production and energy yields, steady-state photoelectron flux, and estimates of the 'relaxation' time required by the photoelectrons to slow down from the injection energy to the cutoff energy. The model can also estimate the pathlength travelled by the photoelectrons while relaxing.
Deconfuser performs fast orbit fitting to directly imaged multi-planetary systems. It quickly fits orbits to planet detections in 2D images and ensures that all orbits within a certain tolerance are found. The code also tests all groupings of detections by planets (which detection belongs to which planet), and ranks partitions of detections by planets by deciding which assignment of detection-to-planet best fits the data.
nicaea calculates cosmology and weak-lensing quantities and functions from theoretical models of the large-scale structure. Written in C, it can compute the Hubble parameter, distances, and geometry for background cosmology, and linear perturbations, including growth factor, transfer function, cluster mass function, and linear 3D power spectra. It also calculates fitting formulae for non-linear power spectra, emulators, and halo model for Non-linear evolution, and the HOD model for galaxy clustering. In addition, nicaea can compute quantities for cosmic shear such as the convergence power spectrum, second-order correlation functions and derived second-order quantities, and third-order aperture mass moment; it can also calculate CMB anisotropies via CAMB (ascl:1102.026).
PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.
HIPP (HIgh-Performance Package for scientific computation) provides elegant interfaces for some well-known HPC libraries. Some libraries are wrapped with full-OOP interfaces, and many new extensions based on those raw-interfaces are also provided. This C++ toolkit for HPC can significantly reduce the length of your code, making programming more productive.
ALMA3 computes loading and tidal Love numbers for a spherically symmetric, radially stratified planet. Both real (time-domain) and complex (frequency-domain) Love numbers can be computed. The planetary structure can include an arbitrary number of layers, and each layer can have a different rheological law. ALMA3 can model numerous linear rheologies, including Elastic, Maxwell visco-elastic, Newtonian viscous fluid, Kelvin-Voigt solid, Burgers and Andrade transient rheologies.
special (SPEctral Characterization of directly ImAged Low-mass companions) characterizes low-mass (M, L, T) dwarfs down to giant planets at optical/IR wavelengths. It can also be used more generally to characterize any type of object with a measured spectrum, provided a relevant input model grid, regardless of the observational method used to obtain the spectrum (direct imaging or not) and regardless of the format of the spectra (multi-band photometry, low-resolution or medium-resolution spectrum, or a combination thereof). It analyzes measured spectra, calculating the spectral correlation between channels of an IFS datacube and empirical spectral indices for MLT-dwarfs. It fits input spectra to either photo-/atmospheric model grids or a blackbody model, including additional parameters such as (extra) black body component(s), extinction and total-to-selective extinction ratio, and can use emcee (ascl:1303.002), nestle (ascl:2103.022), or UltraNest (ascl:1611.001) samplers infer posterior distributions on spectral model parameters in a Bayesian framework, among other tasks.
Puri-Psi addresses radio interferometric imaging problems using state-of-the-art optimization algorithms and deep learning. It performs scalable monochromatic, wide-band, and polarized imaging. It also provide joint calibration and imaging, and scalable uncertainty quantification. A scalable framework for wide-field monochromatic intensity imaging is also available, which encompasses a pure optimization algorithm, as well as an AI-based method in the form of a plug-and-play algorithm propelled by Deep Neural Network denoisers.
The 2-D wavelet transformation code MGwave detects kinematic moving groups in astronomical data; it can also investigate underdensities which can eventually provide further information about the MW's non-axisymmetric features. The code creates a histogram of the input data, then performs the wavelet transformation at the specified scales, returning the wavelet coefficients across the entire histogram in addition to information about the detected extrema. MGwave can also run Monte Carlo simulations to propagate uncertainties. It runs the wavelet transformation on simulated data (pulled from Gaussian distributions) many times and tracks the percentage of the simulations in which a given extrema is detected. This quantifies whether a detected overdensity or underdensity is robust to variations of the data within the provided errors.
desitarget selects targets for spectroscopic follow-up by Dark Energy Spectroscopic Instrument (DESI). The pipeline uses bitmasks to record that a specific source has been selected by a particular targeting algorithm, setting bit-values in output data files in a number of different columns that indicate whether a particular target meets specific selection criteria. desitarget also outputs a unique TARGETID that allows each target to be tracked throughout the DESI survey. This TARGETID encodes information about each DESI target, such as the catalog the target was selected from, whether a target is a sky location or part of a random catalog, and whether a target is part of a secondary program.
nFITSview is a simple, user-friendly and open-source FITS image viewer available for Linux and Windows. One of the main concepts of nFITSview is to provide an intuitive user interface which may be helpful both for scientists and for amateur astronomers. nFITSview has different color mapping and manipulation schemes, supports different formats of FITS data files as well as exporting them to different popular image formats. It also supports command-line exporting (with some restrictions) of FITS files to other image formats.
The application is written in C++/Qt for achieving better performance, and with every next version the performance aspect is taken into account.
nFITSview uses its own libnfits library (can be used separately as well) for parsing the FITS files.
SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.
PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.
GalCEM (GALactic Chemical Evolution Model) tracks isotope masses as a function of time in a given galaxy. The list of tracked isotopes automatically adapts to the complete set provided by the input yields. The prescription includes massive stars, low-to-intermediate mass stars, and Type Ia supernovae as enrichment channels. Multi-dimensional interpolation curves are extracted from the input yield tables with a preprocessing tool; these interpolation curves improve the computation speeds of the full convolution integrals, which are computed for each isotope and for each enrichment channel. GalCEM also provides tools to track the mass rate change of individual isotopes on a typical spiral galaxy with a final baryonic mass of 5×1010M⊙.
WALDO (Waveform AnomaLy DetectOr) flags possible anomalous Gravitational Waves from Numerical Relativity catalogs using deep learning. It uses a U-Net architecture to learn the waveform features of a dataset. After computing the mismatch between those waveforms and the neural predictions, WALDO isolates high mismatch evaluations for anomaly search.
void-dwarf-analysis analyzes Keck Cosmic Web Imager datacubes to produce maps of kinematic properties (velocity and velocity dispersion), emission line fluxes, and gas-phase metallicities of void dwarf galaxies.
KCWI_DRP, written in Python and based on kderp (ascl:2301.018), is the official DRP for the Keck Cosmic Web Imager at the W. M. Keck Observatory. It provides all of the functionality of the older pipeline and has three execution modes: multi-threading for CPU intensive tasks such as wavelength calibration, and multi-processing for large datasets. It offers vacuum to air and heliocentric or barycentric correction and the ability to use KOA file names or original file names. KCWI_DRP also improves the provenance and traceability of DRP versions and execution steps in the headers over kderp, and has versatile sky subtraction modes including using external sky frames and ability of masking regions.
kderp (KCWI Data Extraction and Reduction Pipeline) reduces data for the Keck Cosmic Web Imager. Written in IDL, it performs basic CCD reduction on raw images to produce bias and overscan subtracted, gain-corrected, trimmed and cosmic ray removed images; it can also subtract the sky. It defines the geometric transformations required to map each pixel in the 2d image into slice, postion, and wavelength, and performs flat field and illumination corrections. It generates cubes, applying the transformations previously solved to the object intensity, variance and mask images output from any of the previous stages, and uses a standard star observation to generate an inverse sensitivity curve which is applied to the corresponding observations to flux calibrate them.
This pipeline has been superseded by KCWI_DRP (ascl:2301.019).
ReACT extends the Copter (ascl:1304.022) and MG-Copter packages, which calculate redshift and real space large scale structure observables for a wide class of gravity and dark energy models. Additions to Copter include spherical collapse in modified gravity, halo model power spectrum for general theories, and real and redshift space LSS 2 point statistics for modified gravity and dark energy. ReACT also includes numerical perturbation theory kernel solvers, real space bispectra in modified gravity, and a numerical perturbation theory kernel solver up to 4th order for 1-loop bispectrum.
FERRE matches physical models to observed data, taking a set of observations and identifying the model parameters that best reproduce the data, in a chi-squared sense. It solves the common problem of having numerical parametric models that are costly to evaluate and need to be used to interpret large data sets. FERRE provides flexibility to search for all model parameters, or hold constant some of them while searching for others. The code is written to be truly N-dimensional and fast. Model predictions are to be given as an array whose values are a function of the model parameters, i.e., numerically. FERRE holds this array in memory, or in a direct-access binary file, and interpolates in it. The code returns, in addition to the optimal set of parameters, their error covariance, and the corresponding model prediction. The code is written in FORTRAN90.
SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.
LBL derives velocity measurements from high-resolution (R>50 000) datasets by accounting for outliers in the spectra data. It is tailored for fiber-fed multi-order spectrographs, both in optical and near-infrared (up to 2.5µm) domains. The domain is split into individual units (lines) and the velocity and its associated uncertainty are measured within each line and combined through a mixture model to allow for the presence of spurious values. In addition to the velocity, other quantities are also derived, the most important being a value (dW) that can be understood (for a Gaussian line) as a change in the line FWHM. These values provide useful stellar activity indicators. LBL works on data from a variety of instruments, including SPIRou, NIRPS, HARPS, and ESPRESSO. The code's output is an rdb table that can be uploaded to the online DACE pRV analysis tool.
pyExoRaMa visualizes and manipulates data related to exoplanets and their host stars in a multi-dimensional parameter space. It enables statistical studies based on the large and constantly increasing number of detected exoplanets, identifies possible interdependence among several physical parameters, and compares observables with theoretical models describing the exoplanet composition and structure.
XGA (X-ray: Generate and Analyse) analyzes X-ray sources observed by the XMM-Newton Space telescope. It is based around declaring different types of source and sample objects which correspond to real X-ray sources, finding all available data, and then insulating the user from the tedious generation and basic analysis of X-ray data products. XGA generates photometric products and spectra for individual sources, or whole samples, with just a few lines of code. Though not a pipeline, pipelines for complex analysis can be built on top of it. XGA provides an easy to use (and parallelized) Python interface with XMM's Science Analysis System (ascl:1404.004), as well as with XSPEC (ascl:9910.005). All XMM products and fit results are read into an XGA source storage structure, thus avoiding the need to leave a Python environment at any point during the analysis. This module also supports more complex analyses for specific object types such as the easy generation of scaling relations, the measurement of gas masses for galaxy clusters, and the PSF correction of images.
Rosetta runs tasks for resource-intensive, interactive data analysis as software containers. The code's architecture frames user tasks as microservices – independent and self-contained units – which fully support custom and user-defined software packages, libraries and environments. These include complete remote desktop and GUI applications, common analysis environments such as the Jupyter Notebooks. Rosetta relies on Open Container Initiative containers, allowing for safe, effective and reproducible code execution. It can use a number of container engines and runtimes and seamlessly supports several workload management systems, thus enabling containerized workloads on a wide range of computing resources.
Fastcc returns color corrections for different spectra for various Cosmic Microwave Background experiments. Available in both Python and IDL, the script is easy to use when analyzing radio spectra of sources with data from multiple wide-survey CMB experiments in a consistent way across multiple experiments.
Xpol computes angular power spectra based on cross-correlation between maps and covariance matrices. The code is written in C and is fully MPI parallelized in CPU and memory using spherical transform by s2hat (ascl:1110.013). It has been used to derive CMB and dust power spectra for Archeops and CMB, dust, CIB, SZ, SZ-CIB for Planck, among others.
HiLLiPoP is a multifrequency CMB likelihood for Planck data. The likelihood is a spectrum-based Gaussian approximation for cross-correlation spectra from Planck 100, 143 and 217GHz split-frequency maps, with semi-analytic estimates of the Cl covariance matrix based on the data. The cross-spectra are debiased from the effects of the mask and the beam leakage using Xpol (ascl:2301.009) before being compared to the model, which includes CMB and foreground residuals. They cover the multipoles from ℓ=30 to ℓ=2500. HiLLiPoP is interfaced with the Cobaya (ascl:1910.019) MCMC sampler.
LoLLiPoP is a Planck low-l polarization likelihood based on cross-power-spectra for which the bias is zero when the noise is uncorrelated between maps. It uses a modified approximation to apply to cross-power spectra and is interfaced with the Cobaya (ascl:1910.019) MCMC sampler. Cross-spectra are computed on the CMB maps from Commander component separation applied on each detset-split Planck frequency maps.
Self-cal produces radio-interferometric images of an astrophysical object. The code is an adaptation of the self-calibration algorithm to optical/infrared long-baseline interferometry, especially to make use of differential phases and differential visibilities. It works together with the Mira image reconstruction software and has been used mainly on VLTI data. Self-cal, written in Yorick, is also available as part of fitsOmatic (ascl:2301.005).
The fitOmatic model-fitting prototyping tool tests multi-wavelength model-fitting and exploits VLTI data. It provides tools to define simple geometrical models and conveniently adjust the model's parameters. Written in Yorick, it takes optical interferometry FITS (oifits) files as input and allows the user to define a model of the source from a set of pre-defined models, which can be combined to make more complicated models. fitOmatic then computes the Fourier Transform of the modeled brightness distribution and synthetic observables are computed at the wavelengths and projected baselines of the observations. fitomatic's strength is its ability to define vector-parameters, i.e., parameters that may depend on wavelength and/or time. The self-cal (ascl:2301.006) component of fitOmatic is also available as a separate code.
HEADSS (HiErArchical Data Splitting and Stitching) facilitates clustering at scale, unlike clustering algorithms that scale poorly with increased data volume or that are intrinsically non-distributed. HEADSS automates data splitting and stitching, allowing repeatable handling, and removal, of edge effects. Implemented in conjunction with scikit's HDBSCAN, the code achieves orders of magnitude reduction in single node memory requirements for both non-distributed and distributed implementations, with the latter offering similar order of magnitude reductions in total run times while recovering analogous accuracy. HEADSS also establishes a hierarchy of features by using a subset of clustering features to split the data.
WF4Py implements frequency-domain gravitational wave waveform models in pure Python, thus enabling parallelization over multiple events at a time. Waveforms in WF4Py are built as classes; the functions take dictionaries containing the parameters of the events to analyze as input and provide Fourier domain waveform models. All the waveforms are accurately checked with their implementation in LALSuite (ascl:2012.021) and are a core element of GWFAST (ascl:2212.001).
Pyxel hosts and pipelines models (analytical, numerical, statistical) simulating different types of detector effects on images produced by Charge-Coupled Devices (CCD), Monolithic, and Hybrid CMOS imaging sensors. Users can provide one or more input images to Pyxel, set the detector and model parameters, and select which effects to simulate, such as cosmic rays, detector Point Spread Function (PSF), electronic noises, Charge Transfer Inefficiency (CTI), persistence, dark current, and charge diffusion, among others. The output is one or more images including the simulated detector effects combined. The Pyxel framework, written in Python, provides basic image analysis tools, an input image generator, and a parametric mode to perform parametric and sensitivity analysis. It also offers a model calibration mode to find optimal values of its parameters based on a target dataset the model should reproduce.
CALSAGOS (Clustering ALgorithmS Applied to Galaxies in Overdense Systems) selects cluster members and searches, finds, and identifies substructures and galaxy groups in and around galaxy clusters using the redshift and position in the sky of the galaxies. The package offers two ways to determine cluster members, ISOMER and CLUMBERI. The ISOMER (Identifier of SpectrOscopic MembERs) function selects the spectroscopic cluster members by defining cluster members as those galaxies with a peculiar velocity lower than the escape velocity of the cluster. The CLUMBERI (CLUster MemBER Identifier) function select the cluster members using a 3D-Gaussian Mixture Modules (GMM). Both functions remove the field interlopers by using a 3-sigma clipping algorithm. CALSAGOS uses the function LAGASU (LAbeller of GAlaxies within SUbstructures) to search, find, and identify substructures and groups in and around a galaxy cluster; this function is based on clustering algorithms (GMM and DBSCAN), which search areas with high density to define a substructure or groups.
unWISE-verse is an integrated Python pipeline for downloading sets of unWISE time-resolved coadd cutouts from the WiseView image service and uploading subjects to Zooniverse.org for use in astronomical citizen science research. This software was initially designed for the Backyard Worlds: Cool Neighbors research project and is optimized for target sets containing low luminosity brown dwarf candidates. However, unWISE-verse can be applied to other future astronomical research projects that seek to make use of unWISE infrared sky maps, such as studies of infrared variable/transient sources.
Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.
CONTROL (CUTE autONomous daTa ReductiOn pipeLine) produces science-quality output with a single command line with zero user interference for CUTE (Colorado Ultraviolet Transit Experiment) data. It can be used for any single order spectral data in any wavelength without any modification. The pipeline is governed by a parameter file, which is available with this distribution. CONTROL is fully automated and works in a series of steps following standard CCD reduction techniques. It creates a reduction log to track processes carried out and any parameters used.
Burning Arrow determines the destabilization of massive particle circular orbits due to thermal radiation, emitted in X-ray, from the hot accretion disk material. This code requires the radiation forces exerted on the material at the point of interest found by running the code Infinity (ascl:2212.021). Burning Arrow begins by assuming a target particle in the disk that moves in a circular orbit. It then introduces the recorded radiation forces from Infinity code for the target region. The forces are subsequently introduced into the target particle equations of motion and the trajectory is recalculated. Burning Arrow then produces images of the black hole - accretion disk system that includes the degenerated particle trajectories that obey the assorted velocity profiles.
Tranquillity creates an observing screen looking toward a black hole - accretion disk system, seeks the object, then searches and locates its contour. Subsequently, it attempts to locate the first Einstein "echo" ring and its location. Finally, it collates the retrieved information and draws conclusions; these include the accretion disk level inclination compared to the line of sight and the main disk and the first echo median. The displacement, and thus the divergence of the latter two, is the required information in order to construct the divergence plots. Other programs can later on automatically read these plots and provide estimations of the central black hole spin.
Elysium creates an observing screen at the desirable distance away from a black hole system. Observers set on every pixel of this screen then photograph the area toward the black hole - accretion disk system and report back what they record. This can be the accretion disk (incoming photons bring in radiation and thus energy), the black hole event horizon, or the empty space outside and beyond the system (there are no incoming photons or energy). The central black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user.
Infinity sets an observer in a black hole - accretion disk system. The black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. This observer can be on the surface of the disk, in its exterior or its interior (if the disk is not opaque). Infinity then scans the entire sky around the observer and investigates whether photons emitted by the hot accretion disk material can reach them. After recording the incoming radiation, the program calculates the stress-energy tensor of the radiation. Afterwards, the program calculates the radiation flux and hence, the radiation force exerted on target particles of various velocity profiles.
Omega solves the photon equations of motion in the environment surrounding a black hole. This black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. The software offers numerous options, such as the geometrical setup of the accretion disk around the black hole (including no disk, band, slab, wedge, among others, the spin parameter of the central black hole, and the thickness of the accretion disk. Other options that can be set includ the azimuthal angle of the photon emission/reception, the poloidal angle of the photon emission/reception, and how far away or close to the system to look.
m2mcluster performs made-to-measure modeling of star clusters, and can fit target observations of a Galactic globular cluster's 3D density profile and individual kinematic properties, including proper motion velocity dispersion, and line of sight velocity dispersion. The code uses AMUSE (ascl:1107.007) to model the gravitational N-body evolution of the system between time steps; GalPy (ascl:1411.008) is also required.
SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.
powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.
The AbundanceMatching Python module creates (interpolates and extrapolates) abundance functions and also provides fiducial deconvolution and abundance matching.
SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.
pyTANSPEC extracts XD-mode spectra automatically from data collected by the TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on India's ground-based 3.6-m Devasthal Optical Telescope at Nainital, India. The TANSPEC offers three modes of observations, imaging with various filters, spectroscopy in the low-resolution prism mode with derived R~ 100-400 and the high-resolution cross-dispersed mode (XD-mode) with derived median R~ 2750 for a slit of width 0.5 arcsec. In the XD-mode, ten cross-dispersed orders are packed in the 2048 x 2048 pixels detector to cover the full wavelength regime. The XD-mode is most utilized; pyTANSPEC provides a dedicated pipeline for consistent data reduction for all orders and to reduces data reduction time. The code requires nominal human intervention only for the quality assurance of the reduced data. Two customized configuration files are used to guide the data reduction. The pipeline creates a log file for all the fits files in a given data directory from its header, identifies correct frames (science, continuum and calibration lamps) based on the user input, and offers an option to the user for eyeballing and accepting/removing of the frames, does the cleaning of raw science frames and yields final wavelength calibrated spectra of all orders simultaneously.
PACMAN (Planetary Atmosphere, Crust, and MANtle geochemical evolution) runs a coupled redox-geochemical-climate evolution model. It runs Monte Carlo calculations over nominal parameter ranges, including number of iterations and number of cores for parallelization, which can be altered to reproduce different scenarios and sensitivity tests. Model outputs and corresponding input parameters are saved in separate files which are used to plot results; the the user can choose which outputs to plot, including all successful outputs, nominal Earth outputs, waterworld false positives, desertworld false positives, and high CO2:H2O false positives. Among other functions, PACMAN contains functions for interpolating the pre-computed Outgoing Longwave Radiation (OLR) grid, the atmosphere-ocean partitioning grid, and the stratospheric water vapor grid, calculating bond albedo and outgassing fluxes.
The BANZAI-NRES pipeline processes data from the Network of Robotic Echelle Spectrographs (NRES) on the Las Cumbres Observatory network and provides extracted, wavelength calibrated spectra. If the target is a star, it provides stellar classification parameters (e.g., effective temperature and surface gravity) and a radial velocity measurement. The automated radial velocity measurements from this pipeline have a precision of ~ 10 m/s for high signal-to-noise observations. The data flow and infrastructure of this code relies heavily on BANZAI (ascl:2207.031), enabling BANZAI-NRES to focus on analysis that is specific to spectrographs. The wavelength calibration is primarily done using xwavecal (ascl:2212.011). The pipeline propagates an estimate of the formal uncertainties from all of the data processing stages and includes these in the output data products. These are used as weights in the cross correlation function to measure the radial velocity.
The xwavecal library automatically wavelength calibrates echelle spectrographs for high precision radial velocity work. The routines are designed to operate on data with extracted 1D spectra. The library provides a convienience function which returns a list of wavelengths from just a list of spectral feature coordinates (pixel and order) and a reference line list. The returned wavelengths are the wavelengths of the measured spectral features under the best fit wavelength model. xwavecal also provides line identification and spectral reduction utilities. The library is modular; each step of the wavelength calibration is a stage which can be disabled by removing the associated line in the config.ini file. Wavelength calibrating data which already have spectra means only using the wavelength calibration stages. Using the full experimental pipeline means enabling the other data reduction stages, such as overscan subtraction.
sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (i.e. with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.
Hazma enables indirect detection of sub-GeV dark matter. It computes gamma-ray and electron/positron spectra from dark matter annihilations, sets limits on sub-GeV dark matter using existing gamma-ray data, and determines the discovery reach of future gamma-ray detectors. The code also derives accurate CMB constraints. Hazma comes with several sub-GeV dark matter models, for which it provides functions to compute dark matter annihilation cross sections and mediator decay widths. A variety of low-level tools are provided to make it straightforward to define new models.
panco2 extracts measurements of the pressure profile of the hot gas inside galaxy clusters from millimeter-wave observations. The extraction is performed using forward modeling the millimeter-wave signal of clusters and MCMC sampling of a posterior distribution for the parameters given the input data. Many characteristic features of millimeter-wave observations can be taken into account, such as filtering (both through PSF smearing and transfer functions), point source contamination, and correlated noise.
PyMCCF (Python Modernized Cross Correlation Function), also known as MCCF, cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. Based on PyCCF (ascl:1805.032) and ICCF, it introduces a new parameter, MAX, to reduce the number of interpolated points used to just those which are not farther from the nearest real one than the MAX. This significantly reduces noise from interpolation errors. The estimation of the errors in PyMCCF is exactly the same as in PyCCF.
GPry efficiently obtains marginal quantities from computationally expensive likelihoods. It works best with smooth (continuous) likelihoods and posteriors that are slow to converge by other methods, which is dependent on the number of dimensions and expected shape of the posterior distribution. The likelihood should be low-dimensional (d<20 as a rule of thumb), though the code may still provide considerable improvements in speed in higher dimensions, despite an increase in the computational overhead of the algorithm. GPry is an alternative to samplers such as MCMC and Nested Sampling with a goal of speeding up inference in cosmology, though the software will work with any likelihood that can be called as a python function. It uses Cobaya's (ascl:1910.019) model framework so all of Cobaya's inbuilt likelihoods work, too.
MTNeedlet uses needlets to filter spherical (Healpix) maps and detect and analyze the maxima population using a multiple testing approach. It has been developed with the CMB in mind, but it can be applied to other spherical maps. It pivots around three basic steps: 1.) The calculation of several types of needlets and their possible use to filter maps; 2.) The detection of maxima (or minima) on spherical maps, their visualization and basic analysis; and 3.) The multiple testing approach in order to detect anomalies in the maxima population of the maps with respect to the expected behavior for a random Gaussian map. MTNeedlet relies on Healpy (ascl:2008.022) to efficiently deal with spherical maps.
FastDF (Fast Distribution Function) integrates relativistic particles along geodesics in a comoving periodic volume with forces determined by cosmological linear perturbation theory. Its main application is to set up accurate particle realizations of the linear phase-space distribution of massive relic neutrinos by starting with an analytical solution deep in radiation domination. Such particle realizations are useful for Monte Carlo experiments and provide consistent initial conditions for cosmological N-body simulations. Gravitational forces are calculated from three-dimensional potential grids, which are obtained by convolving random phases with linear transfer functions using Fast Fourier Transforms. The equations of motion are solved using a symplectic leapfrog integration scheme to conserve phase-space density and prevent the build-up of errors. Particles can be exported in different gauges and snapshots are provided in the HDF5 format, compatible with N-body codes like SWIFT (ascl:1805.020) and Gadget-4 (ascl:2204.014). The code has an interface with CLASS (ascl:1106.020) for calculating transfer functions and with monofonIC (ascl:2008.024) for setting up initial conditions with dark matter, baryons, and neutrinos.
MGCosmoPop implements a hierarchical Bayesian inference method for constraining the background cosmological history, in particular the Hubble constant, together with modified gravitational-wave propagation and binary black holes population models (mass, redshift and spin distributions) with gravitational-wave data. It includes support for loading and analyzing data from the GWTC-3 catalog as well as for generating injections to evaluate selection effects, and features a module to run in parallel on clusters.
Eventdisplay reconstructs and analyzes data from the Imaging Atmospheric Cherenkov Telescopes (IACT). It has been primarily developed for VERITAS and CTA analysis. The package calibrates and parametrizes images, event reconstruction, and stereo analysis, and provides train boosted decision trees for direction and energy reconstruction. It fills and uses lookup tables for mean scaled width and length calculation, energy reconstruction, and stereo reconstruction, and calculates radial camera acceptance from data files and instrument response functions such as effective areas, angular point-spread function, and energy resolution. Eventdisplay offers additional tools as well, including tools for calculating sky maps and spectral energy distribution, and to plot instrument response function, spectral energy distributions, light curves, and sky maps, among others.
GWFAST forecasts the signal-to-noise ratios and parameter estimation capabilities of networks of gravitational-wave detectors, based on the Fisher information matrix approximation. It is designed for applications to third-generation gravitational-wave detectors. It is based on Automatic Differentiation, which makes use of the library JAX (ascl:2111.002). This allows efficient parallelization and numerical accuracy. The code includes a module for parallel computation on clusters.
Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these.
Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering.
Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.
EXCEED-DM (EXtended Calculation of Electronic Excitations for Direct detection of Dark Matter) provides a complete framework for computing DM-electron interaction rates. Given an electronic configuration, EXCEED-DM computes the relevant electronic matrix elements, then particle physics specific rates from these matrix elements. This allows for separation between approximations regarding the electronic state configuration, and the specific calculation being performed.
APERO (A PipelinE to Reduce Observations) performs data reduction for the Canada-France-Hawaii Telescope's near-infrared spectropolarimeter SPIRou and offers different recipes or modules for performing specific tasks. APERO can individually run recipes or process a set of files, such as cleaning a data file of detector effects, collecting all dark files and creating a master dark image to use for correction, and creating a bad pixel mask for identifying and dealing with bad pixels. It can extract out flat images to measure the blaze and produced blaze correction and flat correction images, extract dark frames to provide correction for the thermal background after extraction of science or calibration frames, and correct extracted files for leakage coming from a FP (for OBJ_FP files only). It can also take a hot star and calculate telluric transmission, and then use the telluric transmission to calculate principle components (PCA) for correcting input images of atmospheric absorption, among many other tasks.
ODNet uses a convolutional neural network to examine frames of a given observation, using the flux of a targeted star along time, to detect occultations. This is particularly useful to reliably detect asteroid occultations for the Unistellar Network, which consists of 10,000 digital telescopes owned by citizen scientists that is regularly used to record asteroid occultations. ODNet is not costly in term of computing power, opening the possibility for embedding the code on the telescope directly. ODNet's models were developed and trained using TensorFlow version 2.4.
BiGONLight (Bi-local geodesic operators framework for numerical light propagation) encodes the Bi-local Geodesic Operators formalism (BGO) to study light propagation in the geometric optics regime in General Relativity. The parallel transport equations, the optical tidal matrix, and the geodesic deviation equations for the bilocal operators are expressed in 3+1 form and encoded in BiGONLight as Mathematica functions. The bilocal operators are used to obtain all possible optical observables by combining them with the observer and emitter four-velocities and four-accelerations. The user can choose the position of the source and the observer anywhere along the null geodesic with any four-velocities and four-accelerations.
Korg computes stellar spectra from 1D model atmospheres and linelists assuming local thermodynamic equilibrium and implements both plane-parallel and spherical radiative transfer. The code is generally faster than other codes, and is compatible with automatic differentiation libraries and easily extensible, making it ideal for statistical inference and parameter estimation applied to large data sets.
H-FISTA (Hierarchical Fast Iterative Shrinkage Thresholding Algorithm) retrieves the phases of the wavefield from intensity measurements for pulsar spectroscopy. The code accepts input data in ASCII format as produced by PSRchive's (ascl:1105.014) psrflux function, a FITS file, or a pickle. If using a notebook, any custom reader can be used as long as the data ends up in a NumPy array. H-FISTA obtains sparse models of the wavefield in a hierarchical approach with progressively increasing depth. Once the tail of the noise distribution is reached, the hierarchy terminates with a final unregularized optimization, resulting in a fully dense model of the complex wavefield that permits the discovery of faint signals by appropriate averaging.
PDFchem models the cold ISM at moderate and large scales using functions connecting the quantities of the local and the observed visual extinctions and the local number density with probability density functions. For any given observed visual extinction sampled with thousands of clouds, the algorithm instantly computes the average abundances of the most important species and performs radiative transfer calculations to estimate the average emission of the most commonly observed lines.
The Python module 2DFFTUtils implements tasks associated with measuring spiral galaxy pitch angle with 2DFFT (ascl:1608.015). Since most of the 2DFFT utilities are implemented in one place, it makes preparing images for 2DFFT and dealing with 2DFFT data interactively or in scripts event easier.
gsf fits photometric data points, simultaneously with grism spectra if provided, to get posterior probability of galaxy physical properties, such as stellar mass, dust attenuation, metallicity, as well as star formation and metallicity enrichment histories. Designed for extra-galactic science, this flexible, python-based SED fitting code involves a Markov-Chain Monte-Carlo (MCMC) process, and may take more time (depending on the number of parameters and length of MCMC chains) than other SED fitting codes based on chi-square minimization.
fastSHT performs spherical harmonic transforms on a large number of spherical maps. It converts massive SHT operations to a BLAS level 3 problem and uses the highly optimized matrix multiplication toolkit to accelerate the computation. GPU acceleration is supported and can be very effective. The core code is written in Fortran, but a Python wrapper is provided and recommended.
BlackJAX is a sampling library designed for ease of use, speed, and modularity and works on CPU as well as GPU. It is not a probabilistic programming library (PLL), though it integrates well with PPLs as long as they can provide a (potentially unnormalized) log-probability density function compatible with JAX. BlackJAX is written in pure Python and depends on XLA via JAX (ascl:2111.002). It can be used by those who have a logpdf and need a sampler or need more than a general-purpose sampler. It is also useful for building a sample on GPU and for users who want to learn how sampling algorithms work.
ovejero conducts hierarchical inference of strongly-lensed systems with Bayesian neural networks. It requires lenstronomy (ascl:1804.012) and fastell (ascl:9910.003) to run lens models with elliptical mass distributions. The code trains Bayesian Neural Networks (BNNs) to predict posteriors on strong gravitational lensing images and can integrate with forward modeling tools in lenstronomy to allow comparison between BNN outputs and more traditional methods. ovejero also provides hierarchical inference tools to generate population parameter estimates and unbiased posteriors on independent test sets.
The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.
mgcnn is a Convolutional Neural Network (CNN) architecture for classifying standard and modified gravity (MG) cosmological models based on the weak-lensing convergence maps they produce. It is implemented in Keras using TensorFlow as the backend. The code offers three options for the noise flag, which correspond to noise standard deviations, and additional options for the number of training iterations and epochs. Confusion matrices and evaluation metrics (loss function and validation accuracy) are saved as numpy arrays in the generated output/ directory after each iteration.
baobab generates images of strongly-lensed systems, given some configurable prior distributions over the parameters of the lens and light profiles as well as configurable assumptions about the instrument and observation conditions. Wrapped around lenstronomy (ascl:1804.012), baobab supports prior distributions ranging from artificially simple to empirical. A major use case for baobab is the generation of training and test sets for hierarchical inference using Bayesian neural networks (BNNs); the code can generate the training and test sets using different priors.
unTimely Catalog Explorer searches for and visualizes detections in the unTimely Catalog, a full-sky, time-domain catalog of detections based on WISE and NEOWISE image data acquired between 2010 and 2020. The tool searches the catalog by coordinates to create finder charts for each epoch with overplotted catalog positions and light curves using the unTimely photometry, to overplot these light curves with AllWISE multi-epoch and NEOWISE-R single exposure (L1b) photometry, and to create image blinks with overlaid catalog positions in GIF format.
PAHDecomp models mid-infrared spectra of galaxies; it is based on the popular PAHFIT code (ascl:1210.009). In contrast to PAHFIT, this model decomposes the continuum into a star-forming component and an obscured nuclear component based on Bayesian priors on the shape of the star-forming component (using templates + prior on extinction), making this tool ideally suited for modeling the spectra of heavily obscured galaxies. PAHDecomp successfully recovers properties of Compact Obscured Nuclei (CONs) where the inferred nuclear optical depth strongly correlates with the surface brightness of HCN-vib emission in the millimeter. This is currently set up to run on the short low modules of Spitzer IRS data (5.2 - 14.2 microns) but will be ideal for JWST/MIRI MRS data in the future.
AMBER (Abundance Matching Box for the Epoch of Reionization) models the cosmic dawn. The semi-numerical code allows users to directly specify the reionization history through the redshift midpoint, duration, and asymmetry input parameters. The reionization process is further controlled through the minimum halo mass for galaxy formation and the radiation mean free path for radiative transfer. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies.
The analytic propagator Kepler-Collisions calculates collisions for Keplerian systems. The algorithm maintains a list of collision possibilities and jumps from one collision to the next; since collisions are rare in astronomical scales, jumping from collision to collision and calculating each one is more efficient than calculating all the time steps that are between collisions.
PTAfast calculates the overlap reduction function in Pulsar Timing Array produced by the stochastic gravitational wave background for arbitrary polarizations, propagation velocities, and pulsar distances.
cuvarbase provides a Python library for performing period finding (Lomb-Scargle, Phase Dispersion Minimization, Conditional Entropy, Box-least squares) on astronomical time-series datasets. Speedups over CPU implementations depend on the algorithm, dataset, and GPU capabilities but are typically ~1-2 orders of magnitude and are especially high for BLS and Lomb-Scargle.
paltas conducts simulation-based inference on strong gravitational lensing images. It builds on lenstronomy (ascl:1804.012) to create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. paltas also includes the capability to easily train neural posterior estimators of the parameters of the lensing system and to run hierarchical inference on test populations.
Cloud Killer recovers surface albedo maps by using reflected light photometry to map the clouds and surface of unresolved exoplanets. For light curves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo at a location is a good estimate of its surface albedo. On synthetic data, it shows little bias, good precision, and accuracy, but slightly underestimated uncertainties; exoplanets with large, changing cloud structures observed near quadrature phases are good candidates for Cloud Killer cloud removal.
LensingETC optimizes observing strategies for multi-filter imaging campaigns of galaxy-scale strong lensing systems. It uses the lens modelling software lenstronomy (ascl:1804.012) to simulate and model mock imaging data, forecasts the lens model parameter uncertainties, and optimizes observing strategies.
PGOPHER simulates and fits rotational, vibrational, and electronic spectra. It handles linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin, with a separate mode for vibrational structure. The code performs many sorts of transitions, including Raman, multiphoton, and forbidden transitions. It can simulate multiple species and states simultaneously, including special effects such as perturbations and state dependent predissociation. Fitting can be to line positions, intensities, or band contours. PGOPHER uses a standard graphical user interface and makes comparison with, and fitting to, spectra from various sources easy. In addition to overlaying numerical spectra, it is also possible to overlay pictures from pdf files and even plate spectra to assist in checking that published constants are being used correctly.
tvguide determines whether stars and galaxies are observable by TESS. It uses an object's right ascension and declination and estimates the pointing of TESS's cameras using predicted spacecraft ephemerides to determine whether and for how long the object is observable with TESS. tvguide returns a file with two columns, the first the minimum number of sectors the target is observable for and the second the maximum.
The Faiss library performs efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU.
BornRaytrace uses neural data compression of weak lensing map summary statistics to simulate weak gravitational lensing effects. It can raytrace through overdensity Healpix maps to return a convergence map, include shear-kappa transformation on the full sphere, and also include intrinsic alignments (NLA model).
MCCD (Multi-CCD) generates a Point Spread Function (PSF) model based on stars observations in the field of view. After defining the MCCD model parameters and running and validating the training, the model can recover the PSF at any position in the field of view. Written in Python, MCCD also calculates various statistics and can plot a random test star and its model reconstruction.
The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.
The simulation and analysis framework ixpeobssim was specifically developed for the Imaging X-ray Polarimetry Explorer (IXPE). It produces realistic simulated observations, in the form of event lists in FITS format, that also contain a strict superset of the information included in the publicly released IXPE data products. The framework's core simulation capabilities are complemented by post-processing applications that support the spatial, spectral, and temporal models needed for analysis of typical polarized X-ray sources, allowing implementation of complex, polarization-aware analysis pipelines. Where applicable, the data formats are consistent with the common display and analysis tools used by the community, e.g., the binned count spectra can be fed into XSPEC (ascl:9910.005), along with the corresponding response functions, for doing standard spectral analysis. All ixpeobssim simulation and analysis tools are fully configurable via the command line.
POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.
LavAtmos performs gas-melt equilibrium calculations for a given temperature and melt composition. The thermodynamics of the melt are modeled by the MELTS code as presented in the Thermoengine package (ascl:2208.006). In combination with atmospheric chemistry codes, LavAtmos enables the characterization of interior compositions through atmospheric signatures.
PySME is a partial reimplementation of Spectroscopy Made Easy (SME, ascl:1202.013), which fits an observed spectrum of a star with a model spectrum. The IDL routines of SME used to call a dynamically linked library of compiled C++ and Fortran programs have been rewritten in Python. In addition, an object oriented paradigm and continuous integration practices, including build automation, self-testing, and frequent builds, have been added.
PETSc (Portable, Extensible Toolkit for Scientific Computation) provides a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations, and is intended for use in large-scale application projects. The toolkit includes a large suite of parallel linear, nonlinear equation solvers and ODE integrators that are easily used in application codes written in C, C++, Fortran and Python. PETSc provides many of the mechanisms needed within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc (pronounced PET-see) includes support for managing parallel PDE discretizations.
Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (i.e., spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)
Blacklight postprocesses general-relativistic magnetohydrodynamic simulation data and produces outputs for analyzing data sets, including maps of auxiliary quantities and false-color renderings. The code can use Athena++ (ascl:1912.005) outputs directly, and also supports files in HARM (ascl:1209.005) and iHARM3d (ascl:2210.013) format. Written in C++, Blacklight offers support for adaptive mesh refinement input, slow-light calculations, and adaptive ray tracing.
iharm3D implements the HARM algorithm (ascl:1209.005) with modifications and enables a second-order, conservative, shock-capturing scheme for general-relativistic magnetohydrodynamics (GRMHD). Written in C, it simulates black hole accretion systems in arbitrary stationary spacetimes.
pixmappy provides a Python interface to gbdes pixel map (astrometry) solutions. It reads the YAML format astrometry solutions produced by gbdes (ascl:2210.011) and issues a PixelMap instance, which is a map from one 2d coordinate system ("pixel") to another ("world") 2d system. A PixelMap instance can be used as a function mapping one (or many) coordinate pairs. An inverse method does reverse mapping, and the local jacobian of the map is available also. The type of mapping that can be expressed is very flexible, and PixelMaps can be compounded into chains of tranformations.
gbdes derives photometric and astrometric calibration solutions for complex multi-detector astronomical imagers. The package includes routines to filter catalogs down to useful stellar objects, collect metadata from the catalogs and create a config file holding FITS binary tables describing exposures, instruments, fields, and other available information in the data, and uses a friends-of-friends matching algorithm to link together all detections of common objects found in distinct exposures. gbdes also calculates airmasses and parallactic angles for each exposure, calculates and saves the expected differential chromatic refraction (DCR) needed for precision astrometry, optimizes the parameters of a photometric model to maximize agreement between magnitudes measured in different exposures of the same source, and optimizing the parameters of an astrometric model to maximize agreement among the exposures and any reference catalogs, and performs other tasks. The solutions derived and used by gbdes are stored in YAML format; gbdes uses the Python code pixmappy (ascl:2210.012) to read the astrometric solution files and execute specified transformations.
The time series reconstruction method of massive astronomical catalogs reconstructs all celestial objects' time series data for astronomical catalogs with great accuracy. In addition, the program, which requires a Spark cluster, solves the boundary source leakage problem on the premise of ensuring accuracy, and the user can set different parameters for different data sets to filter the error records in the catalogs.
NEMESIS (Non-linear optimal Estimator for MultivariatE spectral analySIS) is the general purpose correlated-k/LBL retrieval code developed from the RADTRAN project (ascl:2210.008). Originally based on the correlated-k approximation, NEMESIS also works in line-by-line (LBL) mode. It has been designed to be generally applicable to any planet and with any observing mode and so is suitable for both solar-system studies and also exoplanetary studies.
RADTRAN calculates the transmission, absorption or emission spectra emitted by planetary atmospheres using either line-by-line integration, spectral band models, or 'correlated-K' approaches. Part of the NEMESIS project (ascl:2210.009), the code also incorporates both multiple scattering and single scattering calculations. RADTRAN is general purpose and not hard-wired to any specific planet.
COMET (Clustering Observables Modelled by Emulated perturbation Theory) provides emulated predictions of large-scale structure observables from models that are based on perturbation theory. It substantially speeds up these analytic computations without any relevant sacrifice in accuracy, enabling an extremely efficient exploration of large-scale structure likelihoods. At its core, COMET exploits an evolution mapping approach which gives it a high degree of flexibility and allows it to cover a wide cosmology parameter space at continuous redshifts up to z∼3z \sim 3z∼3. Among others, COMET supports parameters for cold dark matter density (ωc\omega_cωc), baryon density (ωb\omega_bωb), Scalar spectral index (nsn_sns), Hubble expansion rate (hhh) and Curvature density (ΩK\Omega_KΩK). The code can obtain the real-space galaxy power spectrum at one-loop order multipoles (monopole, quadrupole, hexadecapole) of the redshift-space, power spectrum at one-loop order, the linear matter power spectrum (with and without infrared resummation), Gaussian covariance matrices for the real-space power spectrum, and redshift-space multipoles and χ2\chi^2χ2's for arbitrary combinations of multipoles. COMET provides an easy-to-use interface for all of these computations.
ExoRad 2.0, a generic point source radiometric model, interfaces with any instrument to provide an estimate of several Payload performance metrics. For each target and for each photometric and spectroscopic channel, the code provides estimates of signals in pixels, saturation times, and read, photon, and dark current noise. ExoRad also provides estimates for the zodiacal background, inner sanctum, and sky foreground.
PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.
Finder_charts creates multi-band finder charts from image data of various partial- and all-sky surveys such as DSS, 2MASS, WISE, UKIDSS, VHS, Pan-STARRS, and DES. It also creates a WISE time series of image data acquired between 2010 and 2021. All images are reprojected so that north is up and east is to the left. The resulting finder charts can be overplotted with corresponding catalog positions. All catalog entries within the specified field of view can be saved in a variety of formats, including ipac, csv, and tex, as can the finder charts in png, pdf, eps, and other common graphics formats. Finder_charts consists of a single Python module, which depends only on well-known packages, making it easy to install.
NIRDust uses K-band (2.2 micrometers) spectra to measure the temperature of the dust heated by an Active Galactic Nuclei (AGN) accretion disk. The package provides several functionalities to pre-process spectra and fit the hot dust component of a AGN K-band spectrum with a blackbody function. NIRDust needs a minimum of two spectra to run: a target spectrum, where the dust temperature will be estimated, and a reference spectrum, where the emission is considered to be purely stellar. The reference spectrum will be used by NIRDust to model the stellar emission from the target spectrum.
SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.
Pulsar Survey Scraper aggregates pulsar discoveries before they are included in the ATNF pulsar catalog and enables searching and filtering based on position and dispersion measure. This facilitates identifying new pulsar discoveries. Pulsar Survey Scraper can be downloaded or run online using the Pulsar Survey Scraper webform.
EleFits is a modern C++ package to read and write FITS files which focuses on safety, user-friendliness, and performance.
FastQSL calculate the squashing factor Q at the photosphere, a cross section, or a box volume, given a 3D magnetic field with Cartesian, uniform or stretched grids. It is available in IDL and in an optimized version using Fortran for calculations and field line tracing. Use of a GPU accelerates a step-size adaptive scheme for the most computationally intensive part, the field line tracing, making the code fast and efficient.
SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.
libTheSky compute the positions of celestial bodies, such as the Moon, planets, and stars, and events, including conjunctions and eclipses, with great accuracy. Written in Fortran, libTheSky can use different reference frames (heliocentric, geocentric, topocentric) and coordinate systems (ecliptic, equatorial, galactic; spherical, rectangular), and the user can choose low- or high-accuracy calculations, depending on need.
SpectraPy collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. It produces two-dimensional wavelength calibrated spectra corrected by instrument distortions. The library is designed to be spectrograph independent and can be used on both longslit (LS) and multi object spectrograph (MOS) data. SpectraPy comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments.
RAPOC (Rosseland and Planck Opacity Converter) uses molecular absorption measurements (i.e., wavelength-dependent opacities) for a given temperature, pressure, and wavelength range to calculate Rosseland and Planck mean opacities for use in atmospheric modeling. The code interpolates between discrete data points and can use ExoMol and DACE data, or any user-defined data provided in a readable format. RAPOC is simple, straightforward, and easily incorporated into other codes.
TauREx 3 (Tau Retrieval for Exoplanets) provides a fully Bayesian inverse atmospheric retrieval framework for exoplanetary atmosphere modeling and retrievals. It is fully customizable, allowing the user to mix and match atmospheric parameters and add additional ones. The framework builds forward models, simulates instruments, and performs retrievals, and provides a rich library of classes for building additional programs and using new atmospheric parameters.
Synthetic Population of Interstellar Objects generates a synthetic population of interstellar objects (orbits and sizes) in arbitrary volume of space around the Sun. The only necessary assumption is that the population of ISOs in the interstellar space (far from any massive body) is homogeneous and isotropic. The assumed distribution of interstellar velocities of ISOs has to be provided as an input. This distribution can be defined analytically, but also in a discrete form. The algorithm, based on the multivariate inverse transform sampling method, is implemented in Python.
wsynphot provides a broad set of filters, including observation facility, instrument, and wavelength range, and functions for imaging stars to produce a filter curve showing the transmission of light for each wavelength value. It can create a filter curve object, plot the curve, and allows the user to do calculations on the filter curve object.
The time dependent Monte-Carlo code URILIGHT, written in Fortran 90, assumes homologous expansion. Energy deposition resulting from the decay of radioactive isotopes is calculated by a Monte-Carlo solution of the γ-ray transport, for which interaction with matter is included through Compton scattering and photoelectric absorption. The temperature is iteratively solved for in each cell by requiring that the total emissivity equals the total absorbed energy.
GaLight (Galaxy shapes of Light) performs two-dimensional model fitting of optical and near-infrared images to characterize the light distribution of galaxies with components including a disk, bulge, bar and quasar. Light is decomposes into PSF and Sersic, and the fitting is based on lenstronomy (ascl:1804.01). GaLight's automated features including searching PSF stars in the FOV, automatically estimating the background noise level, and cutting out the target object galaxies (QSOs) and preparing the materials to model the data. It can also detect objects in the cutout stamp and quickly create Sersic keywords to model them, and model QSOs and galaxies using 2D Sersic profile and scaled point source.
HyPhy maps from dark matter only simulations to full hydrodynamical physics models. It uses a fully convolutional variational auto-encoder (VAE) to synthesize hydrodynamic fields conditioned on dark matter fields from N-body simulations. After training, HyPhy can probabilistically map new dark matter only simulations to corresponding full hydrodynamical outputs and generate posterior samples for studying the variance of the mapping. This conditional deep generative model is implemented in TensorFlow.
GRUMPY (Galaxy formation with RegUlator Model in PYthon) models the formation of dwarf galaxies. When coupled with realistic mass accretion histories of halos from simulations and reasonable choices for model parameter values, this simple regulator-type framework reproduces a broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. GRUMPY matches observational constraints on the stellar mass--halo mass relation and observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate. It also models the general form and diversity of star formation histories (SFHs) of observed dwarf galaxies. The software can be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colors, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies.
PINION (Physics-Informed neural Network for reIONization) predicts the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulations. Trained on C2-Ray simulation outputs with a physics constraint on the reionization chemistry equation, PINION accurately predicts the entire reionization history between z = 6 and 12 with only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path. The network's predictions are in good agreement with simulation to redshift z > 7, though the oversimplified propagation mask degrades the network's accuracy for z < 7.
AMBER (Apertif Monitor for Bursts Encountered in Real-time) detects single-pulse radio phenomena, such as pulsars and fast radio bursts, in real time. It is a fully auto-tuned pipeline that offloads compute-intensive kernels to many-core accelerators; the software automatically tunes these kernels to achieve high performance on different platforms.
KaRMMa (Kappa Reconstruction for Mass MApping) performs curved-sky mass map reconstruction using a lognormal prior from weak-lensing surveys. It uses a fully Bayesian approach with a physically motivated lognormal prior to sample from the posterior distribution of convergence maps. The posterior distribution of KaRMMa maps are nearly unbiased in one-point and two-point functions and peak/void counts. KaRMMa successfully captures the non-Gaussian nature of the distribution of κ values in the simulated maps, and KaRMMa posteriors correctly characterize the uncertainty in summary statistics.
The Shape COnstraint REstoration algorithm (SCORE) is a proximal algorithm based on sparsity and shape constraints to restore images. Its main purpose is to restore images while preserving their shape information. It can, for example, denoise a galaxy image by instanciating SCORE and using its denoise method and then visualize the results, and can deconvolve multiple images with different parameter values.
Cluster Toolkit calculates weak lensing signals from galaxy clusters and cluster cosmology. It offers 3D density and correlation functions, halo bias models, projected density and differential profiles, and radially averaged profiles. It also calculates halo mass functions, mass-concentration relations, Sunyaev-Zel’dovich (SZ) cluster signals, and cluster magnification. Cluster Toolkit consists of a Python front end wrapped around a well optimized back end in C.
DeepMass infers dark matter maps from weak gravitational lensing measurements and uses deep learning to reconstruct cosmological maps. The code can also be incorporated into a Moment Network to enable high-dimensional likelihood-free inference.
Herculens models imaging data of strong gravitational lenses. The package supports various degrees of model complexity, ranging from standard smooth analytical profiles to pixelated models and machine learning approaches. In particular, it implements multiscale pixelated models regularized with sparsity constraints and wavelet decomposition, for modeling both the source light distribution and the lens potential. The code is fully differentiable - based on JAX (ascl:2111.002) - which enables fast convergence to the solution, access to the parameters covariance matrix, efficient exploration of the parameter space including the sampling of posterior distributions using variational inference or Hamiltonian Monte-Carlo methods.
A-SLOTH (Ancient Stars and Local Observables by Tracing Halos) connects the formation of the first stars and galaxies to observables. The model is based on dark matter merger trees, on which A-SLOTH applies analytical recipes for baryonic physics to model the formation of both metal-free and metal-poor stars and the transition between them. The software samples individual stars and includes radiative, chemical, and mechanical feedback. A-SLOTH has versatile applications with moderate computational requirements. It can be used to constrain the properties of the first stars and high-z galaxies based on local observables, predicts properties of the oldest and most metal-poor stars in the Milky Way, can serve as a subgrid model for larger cosmological simulations, and predicts next-generation observables of the early Universe, such as supernova rates or gravitational wave events.
YONDER uses singular value decomposition to perform low-rank data denoising and reconstruction. It takes a tabular data matrix and an error matrix as input and returns a denoised version of the original dataset as output. The approach enables a more accurate data analysis in the presence of uncertainties. Consequently, this package can be used as a simple toolbox to perform astronomical data cleaning.
The toise framework estimates the sensitivity of natural-medium neutrino detectors such as IceCube-Gen2 to sources of high-energy astrophysical neutrinos. It uses parameterizations of a detector's fiducial area or volume, selection efficiency, energy resolution, angular resolution, and event classification efficiency to convert (surface) neutrino fluxes into mean event rates in bins of observable space. These are then used to estimate statistical quantities of interest, e.g., the median sensitivity to some flux (i.e., 90% upper limit assuming the true flux is zero) or the median discovery potential (i.e., the flux level at which the null hypothesis would be rejected at 5 sigma in 50% of realizations).
Cubefit is an OXY class that performs spectral fitting with spatial regularization in a spectro-imaging context. The 3D model is based on a 1D model and 2D parameter maps; the 2D maps are regularized using an L1L2 regularization by default. The estimator is a compound of a chi^2 based on the 1D model, a regularization term based of the 2D regularization of the various 2D parameter maps, and an optional decorrelation term based on the cross-correlation of specific pairs of parameter maps.
PyNAPLE (PYthon Nac Automated Pair Lunar Evaluator) detects changes and new impact craters on the lunar surface using Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC) images. The code enables large scale analyses of sub-kilometer scale cratering rates and refinement of both scaling laws and the luminous efficiency.
GSSP (Grid Search in Stellar Parameters) is based on a grid search in the fundamental atmospheric parameters and (optionally) individual chemical abundances of the star (or binary stellar components) in question. It uses atmosphere models and spectrum synthesis, which assumes a comparison of the observations with each theoretical spectrum from the grid. The code can optimize five stellar parameters at a time (effective temperature, surface gravity, metallicity, microturbulent velocity, and projected rotational velocity of the star) and synthetic spectra can be computed in any number of wavelength ranges. GSSP builds the grid of theoretical spectra from all possible combinations of the above mentioned parameters, and delivers the set of best fit parameters, the corresponding synthetic spectrum, and the ASCII file containing the individual parameter values for all grid points and the corresponding chi-square values.
GStokes performs simple multipolar fits to circular polarization data to provide information about the field strength and geometry. It provides forward calculation of the disc-integrated Stokes parameter profiles as well as magnetic inversions under several widely used simplifying approximations of the polarized line formation. GStokes implements the Unno–Rachkovsky analytical solution of the polarized radiative transfer equation and the weak-field approximation with the Gaussian local profiles. The magnetic field geometry is described with one of the common low-order multipolar field parametrizations. Written in IDL, GStokes provides a user-friendly graphical front-end.
RadioLensfit measures star-forming galaxy ellipticities using a Bayesian model fitting approach. The software uses an analytical exponential Sersic model and works in the visibility domain avoiding Fourier Transform. It also simulates visibilities of observed SF galaxies given a source catalog and Measurement Sets containing the description of the radio interferometer and of the observation. It provides both serial and MPI versions.
EstrellaNueva calculates expected rates of supernova neutrinos in detectors. It provides a link between supernova simulations and the expected events in detectors by calculating fluences and event rates in order to ease any comparison between theory and observation. The software is a standalone tool for exploring many physics scenarios, and offers an option to add analytical cross sections and define any target material.
HOCHUNK3D is an updated version of the HOCHUNK radiative equilibrium code (ascl:1711.013); the code has been converted to Fortran 95, which allows a specification of one-dimensional (1D), 2D, or 3D grids at runtime. The code is parallelized so it can be run on multiple processors on one machine, or on multiple machines in a network. It includes 3-D functionality and several other additional geometries and features. The code calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. HOCHUNK3D also computes spectral energy distributions (SEDs), polarization spectra, and images.
CRPropa3, an improved version of CRPropa2 (ascl:1412.013), provides a simulation framework to study the propagation of ultra-high-energy nuclei up to iron on their voyage through an (extra)galactic environment. It takes into account pion production, photodisintegration, and energy losses by pair production of all relevant isotopes in the ambient low-energy photon fields, as well as nuclear decay. CRPropa3 can model the deflection in (inter)galactic magnetic fields, the propagation of secondary electromagnetic cascades, and neutrinos for a multitude of scenarios for different source distributions and magnetic environments. It enables the user to predict the spectra of UHECR (and of their secondaries), their composition and arrival direction distribution. Additionally, the low-energy Galactic propagation can be simulated by solving the transport equation using stochastic differential equations. CRPropa3 features a very flexible simulation setup with python steering and shared-memory parallelization.
J-comb combines high-resolution data with large-scale missing information with low-resolution data containing the short spacing. Based on uvcombine (ascl:2208.014), it takes as input FITS files of low- and high-resolution images, the angular resolution of the input images, and the pixel size of the input images, and outputs a FITS file of the combined image.
uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.
SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.
DELIGHT (Deep Learning Identification of Galaxy Hosts of Transients) automatically identifies host galaxies of transient candidates using multi-resolution images and a convolutional neural network. This library has a class with several methods to get the most likely host coordinates starting from given transient coordinates. In order to do this, the DELIGHT object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. DELIGHT can also estimate the host's semi-major axis if requested, taking advantage of the multi-resolution images.
POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.
FFD (Flare Frequency Distribution) fits power-laws to FFDs. FFDs relate the frequency (i.e., occurrence rate) of flares to their energy, peak flux, photometric equivalent width, or other parameters. This module was created to handle disparate datasets between which the flare detection limit varies; in essence, the number of flares detected is treated as following a Poisson distribution while the flare energies are treated as following a power law.
LeXInt (Leja interpolation for eXponential Integrators) is a temporal exponential integration package using the method of polynomial interpolation at Leja points. Exponential Rosenbrock (EXPRB) and Exponential Propagation Iterative Runge-Kutta (EPIRK) methods use the Leja interpolation method to compute the functions. For linear PDEs, one can get the exact solution (in time) by directly computing the matrix exponential.
RJ-plots uses a moments of inertia method to disentangle a 2D structure's elongation from its centrally over/under-density, thus providing a means for the automated and objective classification of such structures. It may be applied to any 2D pixelated image such as column density maps or moment zero maps of molecular lines. This method is a further development of J-plots (ascl:2009.007).
VapoRock calculates the equilibrium partial pressures of metal-bearing gas species of specific elements above the magma ocean surface to determine the metal-bearing composition of the atmosphere as a function of temperature and the bulk composition of the magma ocean. It utilizes ENKI's ThermoEngine (ascl:2208.006) and combines estimates for element activities in silicate melts with thermodynamic data for metal and metal oxide vapor species.
ThermoEngine estimates the thermodynamic properties of minerals, fluids, and melts, and calculates phase equilibriums. The Equilibrate module of ThermoEngine provides Python functions and classes for computing equilibrium phase assemblages with focus on MELTS calculations. The Phases module includes Python functions and classes for computing standard thermodynamic calculations utilizing the Berman, Holland and Powell, or Stixrude-Lithgow-Bertelloni endmember databases, and calculations based on solution properties utilized by MELTS. There are many helper functions available in this module that assist in the calculation of pseudosections, univariant equilibria and the construction of phase diagrams.
Asymmetric Uncertainty implements and provides an object class for dealing with uncertainties for physical quantities that are not symmetric. Instances of the class behave appropriately with other numeric objects under most mathematical operations, and the associated errors propagate accordingly. The class also provides utilities such as methods for evaluating and plotting probability density functions, as well as capabilities for handling arrays of such objects. Standard and symmetric uncertainties are also supported.
The TOM Toolkit combines a flexible, searchable database of all information related to a scientific research project, with an observation and data analysis control system, and communication and data visualization tools. This Toolkit includes a fully operational TOM (Target and Observation Manager) system in addition to a range of optional tools for specific tasks, including interfaces to widely-used observing facilities and data archives and data visualization tools. With TOM Toolkit, project teams can develop and customize a system for their own science goals, without needing specialist expertise in databasing.
Scatfit models observed burst signals of impulsive time domain radio signals ( e.g., Fast Radio Bursts (FRBs) or pulsars pulses), which usually are convolution products of various effects, and fits them to the experimental data. It includes several models for scattering and instrumental effects. The code loads the experimental time domain radio data, cleans them, fits an aggregate scattering model to the data, and robustly estimates the model parameters and their uncertainties. Additionally, scatfit determines the scaling of the scattering time with frequency, i.e. the scattering index, and the scattering-corrected dispersion measure of the burst or pulse.
qrpca uses QR-decomposition for fast principal component analysis. The software is particularly suited for large dimensional matrices. It makes use of torch for internal matrix computations and enables GPU acceleration, when available. Written in both R and python languages, qrpca provides functionalities similar to the prcomp (R) and sklearn (python) packages.
BlaST (Blazar Synchrotron Tool) estimates the synchrotron peak of blazars given their spectral energy distribution. It uses a machine-learning algorithm that simplifies the estimation and also provides a reliable uncertainty estimation. The package naturally accounts for additional SED components from the host galaxy and the disk emission. BlaST also supports bulk estimation, e.g. estimating a whole catalog, by providing a directory or zip file containing the seds as well as an output file in which to write the results.
Eidein interactively visualizes a data sample for the selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for deep active learning. The data sample is projected to 2-D with a dimensionality reduction technique. It is visualized in an interactive scatter plot that allows a human expert to select and annotate the data subsample.
BMarXiv scans new (i.e., since the last time checked) submissions from arXiv, ranks submissions based on keyword matches, and produces an HTML page as an output.
The keywords are looked for (with regex capabilities) in the title, abstract, but also the author list, so it is possible to look for people too. The score is calculated for each specific entry but additional (and optional) scoring is performed using the first author recent submissions and/or the other authors' recent submissions.
It is possible to include/exclude any arXiv categories (within astro-ph or not). New astronomical conferences (from CADC by default) and new codes (from ASCL.net) are also checked and can also be scanned for keywords.
A local bibliography file can be scanned to find frequent words/groups of words that could become scanned keywords.
massmappy recovers convergence mass maps on the celestial sphere from weak lensing cosmic shear observations. It relies on SSHT (ascl:2207.034) and HEALPix (ascl:1107.018) to handle sampled data on the sphere. The spherical Kaiser-Squires estimator is implemented.
SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.
piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.
gwdet computes the probability of detecting a gravitational-wave signal from compact binaries averaging over sky-location and source inclination. The code has two classes, averageangles and detectability. averageangles computes the detection probability, averaged over all angles (such as sky location, polarization, and inclination), as a function of the projection parameter. detectability computes the detection probability of a non-spinning compact binary.
BANZAI (Beautiful Algorithms to Normalize Zillions of Astronomical Images) processes raw data taken from Las Cumbres Observatory and produces science quality data products. It is capable of reducing single or multi-extension fits files. For historical data, BANZAI can also reduce the data cubes that were produced by the Sinistro cameras.
This code analyzes a dipole axis in the distribution of galaxy spin directions. The code takes as input a list of galaxies, their equatorial coordinates, and their spin directions. It then determines the statistical significance of possible dipole axis at any point in the sky by comparing the cosine dependence of the spin directions to the mean and standard deviation of the cosine dependence after 2000 runs with random spin directions. A code to analyze the binomial distribution of the spin directions using Monte Carlo simulation is also available.
ParticleGridMapper.jl interpolates particle data onto either a Cartesian (uniform) grid or an adaptive mesh refinement (AMR) grid where each cell contains no more than one particle. The AMR grid can be trimmed with a user-defined maximum level of refinement. Three different interpolation schemes are supported: nearest grid point (NGP), smoothed-particle hydrodynamics (SPH), and Meshless finite mass (MFM). It is multi-threading parallel.
disksurf measures the height of optically thick emission or photosphere in moderately inclined protoplanetary disks. The package is dependent on AstroPy (ascl:1304.002) and uses GoFish (ascl:2011.016) to retrieve data from FITS data cubes and user-specified parameters to return a surface object containing the disk-centric coordinates of the surface and the gas temperature and rotation velocity at those locations. disksurf provides clipping, smoothing, and diagnostic functions as well.
ConeRot extracts velocity perturbations in protoplanetary disks from observed line centroids maps ν∘, by creating axially-symmetric centroid maps. It also derives 3D rotation curves in disk-centered cylindrical coordinates, and can estimate the disk orientation based on line data alone. It approximates the unit opacity surface of an axially symmetric disc by a series of cones whose orientations are fit to the observed velocity centroid in concentric radial domains, or regions, with the disc orientation and the rotation curve both optimized to fit ν∘ in each region. ConeRot extracts the perturbations directly from observations without strong assumptions about the underlying disk model and employs a reduced number of free parameters.
pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.
casa_cube provides an interface to data cubes generated by CASA (ascl:1107.013) or Gildas (ascl:1305.010). It performs simple tasks such as plotting given channel maps, moment maps, and line profile in various units, and also corrects for cloud extinction, reconvolves with a beam taper, and permits quick and easy comparisons with models.
pymcfost provides an interface to and can be used to visualize results from the 3D radiative transfer code MCFOST (ascl:2207.023). pymcfost can set up continuum and line models, read a single model or library of models, plot basic quantities such as density structures and temperature maps, and plot observables, including SEDs, polarization maps, visibilities, and channels maps (with spatial and spectral convolution). It can also convert units (e.g. W.m-2 to Jy or brightness temperature), and it provides an interface to the ALMA CASA simulator (ascl:1107.013).
MCFOST is a 3D continuum and line radiative transfer code based on an hybrid Monte Carlo and ray-tracing method. It is mainly designed to study the circumstellar environment of young stellar objects, but has been used for a wide range of astrophysical problems. The calculations are done exactly within the limitations of the Monte Carlo noise and machine precision, i.e., no approximation are used in the calculations. The code has been strongly optimized for speed.
MCFOST is primarily designed to study protoplanetary disks. The code can reproduce most of the observations of disks, including SEDs, scattered light images, IR and mm visibilities, and atomic and molecular line maps. As the Monte Carlo method is generic, any complex structure can be handled by MCFOST and its use can be extended to other astrophysical objects. For instance, calculations have succesfully been performed on infalling envelopes and AGB stars. MCFOST also includes a non-LTE line transfer module, and NLTE level population are obtained via iterations between Monte Carlo radiative transfer calculations and statistical equilibrium.
triple-stability uses a simple form of an artificial neural network, a multi-layer perceptron, to check whether a given configuration of a triple-star system is dynamically stable. The code is written in Python and the MLP classifier can be imported to other custom Python3 scripts.
BAYGAUD (BAYesian GAUssian Decomposer) implements the decomposition of velocity profiles in a data cube and subsequent classification. It uses MultiNest (ascl:1109.006) for calculating the posterior distribution and the evidence for a given likelihood function. The code models a given line profile with an optimal number of Gaussians based on the Bayesian Markov Chain Monte Carlo (MCMC) techniques. BAYGAUD is parallelized using the Message-Passing Interface (MPI) standard, which reduces the time needed to calculate the evidence using MCMC techniques.
vKompth fits the energy-dependent rms-amplitude and phase-lag spectra of low-frequency quasi-periodic oscillations in low mass black-hole X-ray binaries using a variable Comptonization model. The accretion disc is modeled as a multi-temperature blackbody source emitting soft photons which are then Compton up-scattered in a spherical corona, including feedback of Comptonized photons that return to the disc.
walter calculates the number density of stars detected in a given observation aiming to resolve a stellar population. The code also calculates the exposure time needed to reach certain population features, such as the horizontal branch, and provides an estimate of the crowding limit. walter was written with the expectation that such calculations will be very useful for planning surveys with the Nancy Grace Roman Space Telescope (RST, formerly WFIRST).
pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.
LOTUS (non-LTE Optimization Tool Utilized for the derivation of atmospheric Stellar parameters) derives stellar parameters via Equivalent Width (EW) method with the assumption of 1D non-local thermodynamic equilibrium. It mainly applies on the spectroscopic data from high resolution spectral survey. It can provide extremely accurate measurement of stellar parameters compared with non-spectroscopic analysis from benchmark stars. LOTUS provides a fast optimizer for obtaining stellar parameters based on Differential Evolution algorithm, well constrained uncertainty of derived stellar parameters from slice-sampling MCMC from PyMC3 (ascl:1610.016), and can interpolate the Curve of Growth from theoretical EW grid under the assumptions of LTE and Non-LTE. It also visualizes excitation and ionization balance when at the optimal combination of stellar parameters.
DustPy simulates the radial evolution of gas and dust in protoplanetary disks, involving viscous evolution of the gas disk and advection and diffusion of the dust disk, as well as dust growth by solving the Smoluchowski equation. The package provides a standard simulation and the ability to plot results, and also allows modification of the initial conditions for dust, gas, the grid, and the central star.
calviacat calibrates star photometry by comparison to a catalog, including PanSTARRS 1, ATLAS-RefCat2, and SkyMapper catalogs. Catalog queries are cached so that subsequent calibrations of the same or similar fields can be more quickly executed.
petitRADTRANS (pRT) calculates transmission and emission spectra of exoplanets for clear and cloudy planets. It also incorporates an easy subpackage for running retrievals with nested sampling. It allows the calculation of emission or transmission spectra, at low or high resolution, clear or cloudy, and includes a retrieval module to fit a petitRADTRANS model to spectral data. pRT has two different opacity treatment modes. The low resolution mode runs calculations at λ/Δλ ≤ 1000 using the so-called correlated-k treatment for opacities. The high resolution mode runs calculations at λ/Δλ ≤ 106, using a line-by-line opacity treatment.
MuSCAT2_transit_pipeline provides photometry and transit analysis pipelines for MuSCAT2. It consists of a set of executable scripts and two Python packages: muscat2ph for photometry, and muscat2ta for transit analysis. The MuSCAT2 photometry can be carried out using the scripts only. The transit analysis can also in most cases be done using the main transit analysis script m2fit, but the muscat2ta package also offers high-level classes that can be used to carry out more customized transit analysis as a Python script (or Jupyter notebook).
The Exoplanet Characterization ToolKit (ExoCTK) focuses primarily on the atmospheric characterization of exoplanets and provides tools for time-series observation planning, forward modeling, data reduction, limb darkening, light curve fitting, and retrievals. It contains calculators for contamination, visibility, integrations and groups, and includes several Jupyter Notebooks to aid in learning how to use the various tools included in the ExoCTK package.
The samsam package provides two samplers, a scaled adaptive metropolis algorithm to robustly obtain samples from a target distribution, and a covariance importance sampling algorithm to efficiently compute the model evidence (or other integrals). It also includes tools to assess the convergence of the sam sampler and a few commonly used prior distributions.
Helios-r2 performs atmospheric retrieval of brown dwarf and exoplanet spectra. It uses a Bayesian statistics approach by employing a nested sampling method to generate posterior distributions and calculate the Bayesian evidence. The nested sampling itself is done by Multinest (ascl:1109.006). The computationally most demanding parts of the model have been written in NVIDIA's CUDA language for an increase in computational speed. Successful applications include retrieval of brown dwarf emission spectra and secondary eclipse measurements of exoplanets.
SolAster provides querying, analysis, and calculation methods to independently derive 'sun-as-a-star' RV variations using SDO/HMI data for any time span since SDO has begun observing. Scaling factors are provided in order to calculate RVs comparable to magnitudes measured by ground-based spectrographs (HARPS-N and NEID). In addition, there are routines to calculate magnetic observables to compare with RV variations and determine what is driving Solar activity.
TESS_PRF displays the TESS pixel response function (PRF) at any location on the detector. The package is primarily for estimating how the light from a point source is distributed given its position in a TESS Target Pixel File (TPF) or TESScut postage stamp. By default, it accesses the relevant PRF files on MAST, but can also reference files on a local directory. TESS_PRF assumes the PRF doesn't change considerably within a small TPF. The PRF model can be positioned by passing the relative row and column location within the TPF to the "resample" method. The pixel locations follow WCS convention, that an integer value corresponds to the center of a pixel.
Pyriod provides basic period detection and fitting routines for astronomical time series. Written in Python and designed to be run interactively in a Jupyter notebook, it displays and allows the user to interact with time series data, fit frequency solutions, and save figures from the toolbar. It can display original or residuals time series, fold the time series on some frequency, add selected peaks from the periodogram to the model, and refine the fit by computing a least-squared fit of the model using Lmfit (ascl:1606.014).
MultiModes extracts the most significant frequencies of a sample of classical pulsating stars. The code takes a directory with light curves and initial parameters as input. For every light curve, the code calculates the frequencies spectrum, or periodogram, with the Fast Lomb Scargle algorithm, extracts the higher amplitude peak, and evaluates whether it is a real signal or noise. It fits frequency, amplitude, and phase through non-linear optimization, using a multisine function. This function is redefined with the new calculated parameters. MultiModes then does a simultaneous fit of a number of peaks (20 by default), subtracts them from the original signal, and goes back to the beginning of the loop with the residual, repeating the same process until the stop criterion is reached. After that, the code can filter suspicious spurious frequencies, those of low amplitude below the Rayleigh resolution, and possible combined frequencies.
Echelle diagrams are used mainly in asteroseismology, where they function as a diagnostic tool for estimating Δν, the separation between modes of the same degree ℓ; the amplitude spectrum of a star is stacked in equal slices of Δν, the large separation. The echelle Python code creates and manipulates echelle diagrams. The code provides the ability to dynamically change Δν for rapid identification of the correct value. echelle features performance optimized dynamic echelle diagrams and multiple backends for supporting Jupyter or terminal usage.
Cosmic-kite performs a fast estimation of the TT Cosmic Microwave Background (CMB) power spectra corresponding to a set of cosmological parameters; it can also estimate the maximum-likelihood cosmological parameters from a power spectra. This software is an auto-encoder that was trained and calibrated using power spectra from random cosmologies computed with the CAMB code (ascl:1102.026).
MeSsI performs an automatic classification between merging and relaxed clusters. This method was calibrated using mock catalogues constructed from the millennium simulation, and performs the classification using some machine learning techniques, namely random forest for classification and mixture of gaussians for the substructure identification.
pynucastro interfaces to the nuclear reaction rate databases, including the JINA Reaclib nuclear reactions database. This set of Python interfaces enables interactive exploration of rates and collection of rates (networks) in Jupyter notebooks and easy creation of the righthand side routines for reaction network integration (the ODEs) for use in simulation codes.
MULTIGRIS (also called mgris) uses the sequential Monte Carlo method in PyMC (ascl:1506.005) to extract the posterior distributions of primary grid parameters and predict unobserved parameters/observables. The code accepts either a discrete number of components and/or continuous (e.g., power-law, normal) distributions for any given parameter. MULTIGRIS, written in Python, infers the posterior probability functions of parameters in a multidimensional potentially incomplete grid with some observational tracers defined for each parameter set. Observed values and their potentially asymmetric uncertainties are used to calculate a likelihood which, together with predefined or custom priors, produces the posterior distributions. Linear combinations of parameter sets may be used with inferred mixing weights and nearest neighbor or linear interpolation may be used to sample the parameter space.
Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. In the nonlinear regime of structure formation, cosmological simulations are the primary means of obtaining the required information but the computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. The "Mira-Titan Universe" simulation suite covers the standard six cosmological parameters and, in addition, includes massive neutrinos and a dynamical dark energy equation of state. It is based on 111 cosmological simulations, each covering a (2.1Gpc)^3 volume and evolving 3200^3 particles, and augments these higher-resolution simulations with an additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results to cover scales straddling the linear to mildly nonlinear regimes. The emulator built on this suite, the CosmicEmu, provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters. Presented in: https://arxiv.org/abs/2207.12345.
The software used to transform the tabular USNO/AE98 asteroid ephemerides into a Chebyshev polynomial representations, and evaluate them at an arbitrary time is available. The USNO/AE98 consisted of the ephemerides of fifteen of the largest asteroids, and were used in The Astronomical Almanac from 2000 through 2015. These ephemerides are outdated and no longer available, but the software used to store and evaluate them is still available and provides a robust method for storing compact ephemerides of solar system bodies.
The object of the software is to provide a compact binary representation of solar system bodies with eccentric orbits, which can produce the body's position and velocity at an arbitrary instant within the ephemeris' time span. It uses a modification of the Newhall (1989) algorithm to achieve this objective. The Newhall algorithm is used to store both the Jet Propulsion Laboratory DE and the Institut de mécanique céleste et de calcul des éphémérides INPOP high accuracy planetary ephemerides. The Newhall algorithm breaks an ephemeris into a number time contiguous segments, and each segment is stored as a set of Chebyshev polynomial coefficients. The length of the time segments and the maximum degree Chebyshev polynomial coefficient is fixed for each body. This works well for bodies with small eccentricities, but it becomes inefficient for a body in a highly eccentric orbit. The time segment length and maximum order Chebyshev polynomial coefficient must be chosen to accommodate the strong curvature and fast motion near pericenter, while the body spends most of its time either moving slowly near apocenter or in the lower curvature mid-anomaly portions of its orbit. The solution is to vary the time segment length and maximum degree Chebyshev polynomial coefficient with the body's position. The portion of the software that converts tabular ephemerides into a Chebyshev polynomial representation (CPR) performs this compaction automatically, and the portion that evaluates that representation requires only a modest increase in the evaluation time.
The software also allows the user to choose the required tolerance of the CPR. Thus, if less accuracy is required a more compact, somewhat quicker to evaluate CPR can be manufactured and evaluated. Numerical tests show that a fractional precision of 4e-16 may be achieved, only a factor of 4 greater than the 1e-16 precision of a 64-bit IEEE (2019) compliant floating point number.
The software is written in C and designed to work with the C edition of the Naval Observatory Vector Astrometry Software (NOVAS). The programs may be used to convert tabular ephemerides of other solar system bodies as well. The included READ.ME file provides the details of the software and how to use it.
REFERENCES
IEEE Computer Society 2019, IEEE Standard for Floating-Point Arithmetic. IEEE STD 754-2019, IEEE, pp. 1–84
Newhall, X X 1989, 'Numerical Representation of Planetary Ephemerides,' Celest. Mech., 45, 305 - 310
The Spritz code is a fully general relativistic magnetohydrodynamic code based on the Einstein Toolkit (ascl:1102.014). The code solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical spacetime. Spritz supports tabulated equations of state, takes finite temperature effects into account and allows for the inclusion of neutrino radiation.
DustFilaments paints filaments in the Celestial Sphere to generate a full sky map of the Thermal Dust emission at millimeter frequencies by integrating a population of 3D filaments. The code requires a magnetic field cube, which can be calculated separately or by DustFilaments. With the magnetic field cube as input, the package creates a random filament population with a given seed, and then paints a filament into a healpix map provided as input; the healpix map is updated in place.
ShapePipe processes single-exposure images and stacked images. Input images have to be calibrated beforehand for astrometry and photometry. The code can handle different image and file types, such as single-exposure mosaic, single-exposure single-CCD, stacked images, database catalog files, and PSF files, some of which are created by the pipeline during the analysis, among others. The end product of ShapePipe is a final catalog containing information for each galaxy, including its shape parameters and the ellipticity components :math:e_1 and :math:e_2. This catalog also contains shapes of artificially sheared images. This information is used in post-processing to compute calibrated shear estimates via metacalibration.
CuspCore describes the formation of flat cores in dark matter haloes and ultra-diffuse galaxies from feedback-driven outflow episodes. The halo response is divided into an instantaneous change of potential at constant velocities followed by an energy-conserving relaxation. The core assumption of the model is that the total energy E=U+K is conserved for each shell enclosing a given dark matter mass, which is treated in the code as a least-square minimization of the difference between the final and the initial energy of each shell.
Wavetrack recognizes and tracks CME shock waves, filaments, and other solar objects. The code creates base images by averaging а series of images a few minutes prior to the start of the eruption and constructs base difference images by subtracting base images from the current raw image of the sequence. This enhances the change in intensity caused by coronal bright fronts, omits static details, and reduces noise. Wavetrack then chooses an appropriate intensity interval and decomposes the base difference or running difference image with an A-Trous wavelet transform, where each wavelet coefficient is obtained by convolving the image array with a corresponding iteration of the wavelet kernel. When the maximum value of the wavelet coefficients for a connected set of pixels satisfies certain conditions, this region is considered as a structure on the respective wavelet coefficient. Separate stand-alone object masks are obtained with a clustering algorithm and objects are renumbered according to the number of the quadrant they belong at each iteration.
The spectroscopy analysis pipeline pyPipe3D produces coherent and easy to distribute and compare parameters of stellar populations and ionized gas; it is suited in particular for data from the most recent optical IFS surveys. The pipeline is build using pyFIT3D, which is the main spectral fitting module included in this package.
RealSim-IFS generates survey-realistic integral-field spectroscopy (IFS) observations of galaxies from numerical simulations of galaxy formation. The tool is designed primarily to emulate current and experimental observing strategies for IFS galaxy surveys in astronomy, and can reproduce both the flux and variance propagation of real galaxy spectra to cubes. RealSim-IFS has built-in functions supporting SAMI and MaNGA IFU footprints, but supports any fiber-based IFU design, in general.
PyCASSO runs the STARLIGHT code (ascl:1108.006) in integral field spectra (IFS). Cubes from various instruments are supported, including PMAS/PPAK (CALIFA), MaNGA, GMOS and MUSE. Emission lines can be measured using DOBBY, which is included in the package. The package also includes tools for IFS cubes analysis and plotting.
CCDLAB provides graphical user interface functionality for FITS image viewing and data reduction based on the JPFITS FITS-file interface. It can view, manipulate, and save FITS primary image data and image extensions, view and manipulate FITS image headers, and view FITS Bintable extensions. The code enables batch processing, viewing, and saving of FITS images and searching FITS files on disk. CCDLAB also provides general image reduction techniques, source detection and characterization, and can create World Coordinate Solutions automatically or manually for FITS images.
The population synthesis code SEVN (Stellar EVolution for N-body) includes up-to-date stellar evolution (through look-up tables), binary evolution, and different recipes for core-collapse supernovae. SEVN also provides an up-to-date formalism for pair-instability and pulsational pair-instability supernovae, and is designed to interface with direct-summation N-body codes such as STARLAB (ascl:1010.076) and HiGPUs (ascl:1207.002).
MADYS (Manifold Age Determination for Young Stars) determines the age and mass of young stellar and substellar objects. The code automatically retrieves and cross-matches photometry from several catalogs, estimates interstellar extinction, and derives age and mass estimates for individual objects through isochronal fitting. MADYS harmonizes the heterogeneity of publicly-available isochrone grids and the user can choose amongst several models, some of which have customizable astrophysical parameters. Particular attention has been dedicated to the categorization of these models, labeled through a four-level taxonomical classification.
atoMEC simulates high energy density phenomena such as in warm dense matter. It uses Kohn-Sham density functional theory, in combination with an average-atom approximation, to solve the electronic structure problem for single-element materials at finite temperature.
wdwarfdate derives the Bayesian total age of a white dwarf from an effective temperature and a surface gravity. It runs a chain of models assuming single star evolution and estimates the following parameters and their uncertainties: total age of the object, mass and cooling age of the white dwarf, and mass and lifetime of the progenitor star.
Smart provides pre-processing for LP-VIcode (ascl:1501.007). It computes the accelerations and variational equations given a generic user-defined potential function, eliminating the need to calculate manually the accelerations and variational equations.
SpinSpotter calculates stellar rotation periods from high-cadence photometry. The code uses the autocorrelation function (ACF) to identify stellar rotation periods up to one-third the observational baseline of the data. SpinSpotter includes diagnostic tools that describe features in the ACF and allows tuning of the tolerance with which to accept a period detection.
Smooth calculates several mean quantities for all particles in an N-Body simulation output file. The program produces a file for each type of output specified on the command line. This output file is in ASCII format with one smoothed quantity for each particle. The program uses a symmetric SPH (Smoothed Particle Hydrodynamics) smoothing kernel to find the mean quantities.
WDPhotTools generates color-color diagrams and color-magnitude diagrams in various photometric systems, plots cooling profiles from different models, and computes theoretical white dwarf luminosity functions based on the built-in or supplied models of the (1) initial mass function, (2) total stellar evolution lifetime, (3) initial-final mass relation, and (4) white dwarf cooling time. The software has three main parts: the formatters that handle the output models from various works in the format as they are downloaded; the photometric fitter that solves for the WD parameters based on the photometry, with or without distance and reddening; and the generator of the white dwarf luminosity function in bolometric magnitudes or in any of the photometric systems available from the atmosphere model.
IFSCube performs analysis tasks in data cubes of integral field spectroscopy. It contains routines for fitting spectral features in 1D spectra and data cubes and rotation models to velocity fields; it also contains a routine that inspects the fit results. Though originally intended to make user scripts more concise, analysis can also be performed on the fly by using an interactive interpreter such as ipython. By default, IFSCube assumes data are in the Flexible Image Transport System (FITS) standard, but the package can be modified easily to allow use of other data formats.
FITS File interaction written in Visual Studio C# .Net.
JPFITS is not based upon any other implementation and is written from the ground-up, consistent with the FITS standard, designed to interact with FITS files as object-oriented structures.
JPFITS provides functionality to interact with FITS images and binary table extensions, as well as providing common mathematical methods for the manipulation of data, data reductions, profile fitting, photometry, etc.
JPFITS also implements object-oriented classes for Point Source Extraction, World Coordinate Solutions (WCS), WCS automated field solving, FITS Headers and Header Keys, etc.
The automatic world coordinate solver is based on the trigonometric algorithm as described here:
https://iopscience.iop.org/article/10.1088/1538-3873/ab7ee8
All function parameters, methods, properties, etc., are coded with XML descriptions which will function with Visual Studio. Other code editors may or may not read the XML files.
Everything which is reasonable to parallelize in order to benefit from the computation speed increase for multi-threaded systems has been done so. In all such cases function options are given in order to specify the use of parallelism or not. Generally, most image manipulation functions are highly amenable to parallelism. No parallelism is forced, i.e., any code which may execute parallelized is given a user option to do so or not.
Fastrometry is a Python implementation of the fast world coordinate solution solver for the FITS standard astronomical image. When supplied with the approximate field center (+-25%) and the approximate field scale (+-10%) of the telescope and detector system the astronomical image is from, fastrometry provides WCS solutions almost instantaneously. The algorithm is also originally implemented with parallelism enabled in the Windows FITS image processor and viewer CCDLAB (ascl:2206.021).
pyHIIexplorerV2 extracts the integrated spectra of HII regions from integral field spectroscopy (IFS) datacubes. The detection of HII regions performed by pyHIIexplorer is based on two assumptions: 1) HII regions have strong emission lines that are clearly above the continuum emission and the average ionized gas emission across each galaxy, and 2) the typical size of HII regions is about a few hundreds of parsecs, which corresponds to a usual projected size of a few arcsec at the distance of our galaxies. These assumptions will define clumpy structures with a high Ha emission line contrast in comparison to the continuum. pyHIIexplorerV2 is written in Python; it is based on and is a successor to HIIexplorer (ascl:1603.017).
Craterstats3 analyzes and plots crater count data for planetary surface dating. It is a Python implementation of Craterstats2 (ascl:2206.008) and is designed to replicate the output of the previous version as closely as possible. As before, it produces plots in cumulative, differential, Hartmann, and R-plot styles with possible overlays of crater counts, isochrons, equilibrium functions and epoch boundaries, as well aschronology and impact rate functions. Data can be shown with various binnings or unbinned, and age estimates made by either cumulative fitting, differential fitting, or Poisson timing evaluation. Numerical results can be output as text for further processing elsewhere. A number of published chronology systems are already set up for use, but new ones may be added by the user. The software is designed to be easily integrated into other software, which could allow the addition of a graphical interface or the inclusion of some Craterstats functions into a GIS.
Craterstats2 plots crater counts and determining surface ages. The software plots isochrons in cumulative, differential, R-plot and Hartmann presentations, and makes isochron fits to both cumulative and differential data. Hartmann-style piecewise production functions may also be used. A Python implementation of the software, Craterstats3, is also available.
CircleCraters is a projection independent crater counting plugin for QGIS. It has the flexibility to crater count in a GIS environment on Windows, OS X, or Linux, and uses three-click input to define crater rims as a circle.
MYRaf is a practicable astronomical image reduction and photometry software and interface for IRAF (ascl:9911.002). The library uses IRAF, PyRAF (ascl:1207.011), Ginga (ascl:1303.020), and other python packages with a Qt framework for automated software processing of data from robotic telescopes.
NonnegMFPy solves nonnegative matrix factorization (NMF) given a dataset with heteroscedastic uncertainties and missing data with a vectorized multiplicative update rule; this can be used create a mask and iterate the process to exclude certain new data by updating the mask. The code can work on multi-dimensional data, such as images, if the data are first flattened to 1D.
pystortion provides support for distortion measurements in astronomical imagers. It includes classes to support fitting of bivariate polynomials of arbitrary degree and helper functions for crossmatching catalogs. The crossmatching uses an iterative approach in which a two-dimensional distortion model is fit at every iteration and used to continuously refine the position of extracted sources.
ExoJAX provides auto-differentiable line-by-line spectral modeling of exoplanets/brown dwarfs/M dwarfs using JAX (ascl:2111.002). In a nutshell, ExoJAX allows the user to do a HMC-NUTS fitting using the latest molecular/atomic data in ExoMol, HITRAN/HITEMP, and VALD3. The code enables a fully Bayesian inference of the high-dispersion data to fit the line-by-line spectral computation to the observed spectrum, from end-to-end (i.e. from molecular/atomic databases to real spectra), by combining it with the Hamiltonian Monte Carlo in recent probabilistic programming languages such as NumPyro.
A stand-alone spectral gridder and imager for the Green Bank Telescope, as well as functionality for any diameter telescope. Based around the cygrid package from Benjamin Winkel and Daniel Lenz
TCF calculates a periodogram designed to detect exoplanet transits after the light curve has been differenced. It is a matched filter for a periodic double-spike pattern. The difference operator that can be used independently for detrending a light curve; it is also embedded in ARIMA (autoregressive integrated moving average) Box-Jenkins modeling.
vortex performs a Helmholtz-Hodge decomposition on vector fields defined on AMR grids, decomposing a vector field in its solenoidal (divergence-less) and compressive (curl-less) parts. It works natively on vector fields defined on Adaptive Mesh Refinement (AMR) grids, so that it can perform the decomposition over large dynamical ranges; it is also applicable to particle-based simulations. As vortex is devised primarily to investigate the properties of the turbulent velocity field in the Intracluster Medium (ICM), it also includes routines for multi-scale filtering the velocity field.
simulateSearch simulates high time-resolution data in radio astronomy. The code is built around producing multiple binary data files that contain information on the radiometer noise and sources that are being simulated. These binary data files subsequently get combined and output PSRFITS
search mode files produced. The PSRFITS files can be processed using standard pulsar software packages such as PRESTO (ascl:1107.017).
MM-LSD (Multi-Mask Least-Squares Deconvolution) performs continuum normalization of 2D spectra (echelle order spectra). It also masks and partially corrects telluric lines and extracts RVs from spectra. The code requires RASSINE (ascl:2102.022) and uses spectral line data from VALD3.
PyWPF (Waterfall Principal Component Analysis Folding) finds periodicity in one-dimensional timestream data sets; it is particularly designed for very high noise situations where traditional methods may fail. Given a timestream, with each point being the arrival times of a source, the software computes the estimated period. The core function of the package requires several initial parameters to run, and using the best known period of the source (T_init) is recommended.
BANG (BAyesian decomposiotioN of Galaxies) models both the photometry and kinematics of galaxies. The underlying model is the superposition of different components with three possible combinations: 1.) Bulge + inner disc + outer disc + Halo; 2.) Bulge + disc + Halo; and 3.) inner disc + outer disc + Halo. As CPU parameter estimation can take days, running BANG on GPU is recommended.
CPNest performs Bayesian inference using the nested sampling algorithm. It is designed to be simple for the user to provide a model via a set of parameters, their bounds and a log-likelihood function. An optional log-prior function can be given for non-uniform prior distributions. The nested sampling algorithm is then used to compute the marginal likelihood or evidence. As a by-product the algorithm produces samples from the posterior probability distribution. The implementation is based on an ensemble MCMC sampler which can use multiple cores to parallelize computation.
ASTROMER is a Transformer-based model trained on millions of stars for the representation of light curves. Pretrained models can be directly used or finetuned on specific datasets. ASTROMER is useful in downstream tasks in which data are limited to train deep learning models.
HOPS (Haystack Observatory Postprocessing System) analyzes the data generated by DiFX VLBI correlators. It is written in C for Linux computers, and emphasizes quality-control aspects of data processing. It sits between the correlator and an image-processing and/or geodetic-processing package, and performs basic fringe-fitting, data editing, problem diagnosis, and correlator support functions.
ASOHF (Adaptive Spherical Overdensity Halo Finder) identifies bound dark matter structures (dark matter haloes) in the outputs of cosmological simulations, and works directly on an input particle list. The computational cost of running ASOHF in simulations with a large number of particles can be reduced by using a domain decomposition to split the simulation box into smaller boxes, or subdomains, which are then processed independently. The basic output of ASOHF is a halo catalog. The package includes a python code to build a merger tree from ASOHF outputs.
The LIghtweight Source finding Algorithms (LiSA) library finds HI sources in next generation radio surveys. LiSA can analyze input data cubes of any size with pipelines that automatically decompose data into different domains for parallel distributed analysis. For source finding, the library contains python modules for wavelet denoising of 3D spatial and spectral data, and robust automatic source finding using null-hypothesis testing. The source-finding algorithms all have options to automatically choose parameters, minimizing the need for manual fine tuning. Finally, LiSA also contains neural network architectures for classification and characterization of 3D spectral data.
Pryngles produces visualizations of the geometric configuration of a ringed exoplanet (an exoplanet with a ring or exoring for short) and calculates the light-curve signatures produced by these kind of planets. The model behind the package has been developed in an effort to predict the signatures that exorings may produce not only in the light-curve of transiting exoplanets (a problem that has been extensively studied) but also in the light of stars having non-transiting exoplanets.
CS-ROMER (Compressed Sensing ROtation MEasure Reconstruction) is a compressed sensing reconstruction framework for Faraday depth spectra. It can simulation Faraday depth sources, subtract Galactic RM, and reconstruct Faraday depth sources from linearly polarized data and Faraday depth sources using Compressed Sensing.
FHD is an open-source imaging algorithm for radio interferometers and is written in IDL. The three main use-cases for FHD are efficient image deconvolution for general radio astronomy, fast-mode Epoch of Reionization analysis, and simulation. FHD inputs beam models, calibration files, and sky model catalogs and requires input data to be in uvfits format.
ld-exosim selects the optimal (i.e. best estimator in a MSE sense) limb-darkening law for a given transiting exoplanet lightcurve and calculates the limb-darkening induced biases on various exoplanet parameters. Limb-darkening laws include linear, quadratic, logarithmic, square-root and three-parameter laws.
The Zelda command-line tool extracts correlation functions in velocity space from a galaxy catalog. Zelda is modular, extendable, and can be generalized to produce power spectra and to work in position space. Written in C, it was heavily inspired by the cosmological Boltzmann code CLASS (ascl:1106.020). Zelda is a parallel code using the OpenMP standard.
myRadex solves essentially the same problem as RADEX (ascl:1010.075), except that it takes a different approach to solve the statistical equilibrium problem. Given an initial distribution, myRadex evolves the system towards equilibrium using an ODE solver. Frequencies in the input file are used by default, and a function for calculating critical densities of all the transitions of a molecule is included.
pyICs creates initial condition (IC) files for N-body simulations of the formation of isolated galaxies. It uses the pynbody analysis package (ascl:1305.002) to create the actual IC files. pyICs generates dark matter halos (DM) in dynamical equilibrium which host a rotating gas sphere. The DM particle velocities are drawn from the equilibrium distribution function and the gas sphere has an angular momentum profile. The DM and the gas share the same 3D radial density profile. The code natively supports the αβγ-models: ρ ~ (r/a)-γ[1+(r/a)α](γ-β)/α. If γ <= 3, the profiles are smoothly truncated outside the virial radius. The radial profile can be arbitrary as long as python functions for the profile itself and its first and second derivative with radius are given.
Hyperas is a convenience wrapper around hyperopt (ascl:2205.008) for fast prototyping with keras models (ascl:1806.022). Hyperas lets you use the power of hyperopt without having to learn the syntax of it. Instead, just define your keras model as you are used to, but use a simple template notation to define hyper-parameter ranges to tune.
The Python library Hyperopt performs serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions. Three algorithms are implemented in hyperopt: Random Search, Tree of Parzen Estimators (TPE), and Adaptive TPE. Algorithms can be parallelized in two ways, using either Apache Spark or MongoDB. To use Hyperopt, the objective function to minimize and the space over which to search, and the database in which to store all the point evaluations of the search have to be described, and the search algorithm to use has to be specified.
EarthScatterLikelihood calculates event rates and likelihoods for Earth-scattering Dark Matter. It is written in Fortran with plotting routines in Python. For input, it uses results from Monte Carlo simulations generated by DaMaSCUS (ascl:1706.003). It includes routines for submitting many reconstructions in parallel on a cluster, and the properties of the detector, such as for a Germanium and a Sapphire detector, can be edited.
LATTE identifies, vets and characterizes signals in TESS lightcurves to weed out instrumental and astrophysical false positives. The program performs a fast in-depth analysis of targets that have already been identified as promising candidates by the main TESS pipelines or via alternative methods such as citizen science. The code automatically downloads the data products for any chosen TIC ID (short or long cadence TESS data) and produces a number of diagnostic plots that are compiled in a concise report.
maelstrom models binary orbits through the phase modulation technique. This set of custom PyMC3 models and solvers fit each individual datapoint in the time series by forward modeling the time delay onto the light curve. This approach fully captures variations in a light curve caused by an orbital companion.
FAlCon-DNS (Framework of time schemes for direct numerical simulation of annular convection) solves for 2-D convection in an annulus and analyzes different time integration schemes. The framework contains a suite of IMEX, IMEXRK and RK time integration schemes. The code uses a pseudospectral method for spatial discretization. The governing equations contain both numerically stiff (diffusive) and non-stiff (advective) components for time discretization. The software offers OpenMP for parallelization.
The QSOGEN collection of Python code models quasar colors, magnitudes and SEDs. It implements an empirically-motivated parametric model to efficiently account for the observed emission-line properties, host-galaxy contribution, dust reddening, hot dust emission, and IGM suppression in the rest-frame 900-30000A wavelength range for quasars with a wide range of redshift and luminosity.
The code is packaged with a set of empirically-derived emission-line templates and an empirically-derived quasar dust extinction curve which are publicly released.
am performs optical depth, radiative transfer, and refraction computations involving propagation through the terrestrial atmosphere and other media at microwave through submillimeter wavelengths. The program is used in radio astronomy, atmospheric radiometry, and radio spectrum management.
PMOIRED models astronomical spectro-interferometric data stored in the OIFITS format. Parametric modeling is used to describe the observed scene as blocks such as disks, rings and Gaussians which can be combined and their parameters linked. It includes plotting, least-square fitting and bootstrapping estimation of uncertainties. For spectroscopic instruments (such as GRAVITY), tools are provided to model spectral lines and correct spectra for telluric lines.
The “sgp4” module is a Python wrapper around the C++ version of the standard SGP4 algorithm for propagating Earth satellite positions from the element sets published by organizations like SpaceTrak and Celestrak. The code is the most recent version, including all of the corrections and bug fixes described in the paper _Revisiting Spacetrack Report #3_ (AIAA 2006-6753) by Vallado, Crawford, Hujsak, and Kelso. The test suite verifies that the Python wrapper returns exactly the coordinates specified in the C++ test cases.
SWIFTGalaxy provides a software abstraction of simulated galaxies produced by the SWIFT smoothed particle hydrodynamics code. It extends the SWIFTSimIO module and is tailored to analyses of particles belonging to individual simulated galaxies. It inherits from and extends the functionality of the SWIFTDataset. It understands the output of halo finders and therefore which particles belong to a galaxy, and its integrated properties. The particles occupy a coordinate frame that is enforced to be consistent, such that particles loaded on-the-fly will match e.g. rotations and translations of particles already in memory. Intuitive masking of particle datasets is also enabled. Finally, some utilities to make working in cylindrical and spherical coordinate systems more convenient are also provided.
MonoTools detects, vets, and models transiting exoplanets, with a specific emphasis on monotransiting planets and those with unknown periods. It includes scripts specifically for searching and assessing a lightcurve for the presence of monotransits. MonoTools can also performing a best-fit transit model, determine whether transits are linked to any detected multi-transiting planet candidate or with each other, and can fit planets in a Bayesian way to account for uncertain periods, lightcurve gaps, and stellar variability, among other things.
DarkFlux analyzes indirect-detection signatures for next-generation models of dark matter (DM) with multiple annihilation channels. Input is user-generated models with 2 → 2 tree-level dark matter annihilation to pairs of Standard Model (SM) particles. The code analyzes DM annihilation to γ rays using three modules; one computes the fractional annihilation rate, the second computes the total flux at Earth due to DM annihilation, and the third compares the total flux to observational data and computes the upper limit at 95% confidence level (CL) on the total thermally averaged DM annihilation cross section.
ProFuse produces physical models of galaxies and their components by combining the functionalities of the source extraction code PROFOUND (ascl:1804.006), the Bayesian galaxy fitting tool ProFit (ascl:1612.004), and the spectral generation package ProSpect (ascl:2002.007). ProFuse uses a self-consistent model for the star formation and metallicity history of the bulge and disk separately to generate images. The package then defines the model likelihood and optimizes the physical galaxy reconstruction using target images across a range of wavelengths.
Redshift Search Graphs provides a fast and reliable way to test redshifts found from sub-mm redshift searches. The scripts can graphically test the robustness of a spectroscopic redshift of a galaxy, test the efficiency of an instrument towards spectroscopic redshift searches, and optimize observations of tunable institutes (such as ALMA) for upcoming redshift searches.
pySIDES generates mock catalogs of galaxies in the (sub-)millimeter domain and associates spectral cubes (e.g., for intensity mapping experiments). It produces both continuum and CO, [CII], and [CI] line emissions. pySIDES is the Python version of the Simulated Infrared Dusty Extragalactic Sky (SIDES).
ADBSat computes aerodynamic coefficient databases for satellite geometries in free-molecular flow (FMF) conditions. Written in MATLAB, ADBSat imports body geometry from .stl or .obj mesh files, calculates aerodynamic force and moment coefficient for different gas-surface interaction models, and calculates solar radiation pressure force and moment coefficient. It also takes multiple surface and material characteristics into consideration. ADBSat is a panel-method tool that is able to calculate aerodynamic or solar force and moment coefficient sets for satellite geometries by applying analytical (closed-form) expressions for the interactions to discrete flat-plate mesh elements. The panel method of ADBSat assumes FMF conditions. The code analyzes basic shadowing to identify panels that are shielded from the flow by other parts of the body and will therefore not experience any surface interactions. However, this method is dependent on the refinement of the input mesh and can be sensitive to the orientation and arrangement of the mesh elements with respect to the oncoming flow direction.
GADGET-4 (GAlaxies with Dark matter and Gas intEracT) is a parallel cosmological N-body and SPH code that simulates cosmic structure formation and calculations relevant for galaxy evolution and galactic dynamics. It is massively parallel and flexible, and can be applied to a variety of different types of simulations, offering a number of sophisticated simulation algorithms. GADGET-4 supports collisionless simulations and smoothed particle hydrodynamics on massively parallel computers.
The code can be used for plain Newtonian dynamics, or for cosmological integrations in arbitrary cosmologies, both with or without periodic boundary conditions. Stretched periodic boxes, and special cases such as simulations with two periodic dimensions and one non-periodic dimension are supported as well. The modeling of hydrodynamics is optional. The code is adaptive both in space and in time, and its Lagrangian character makes it particularly suitable for simulations of cosmic structure formation. Several post-processing options such as group- and substructure finding, or power spectrum estimation are built in and can be carried out on the fly or applied to existing snapshots. Through a built-in cosmological initial conditions generator, it is also particularly easy to carry out cosmological simulations. In addition, merger trees can be determined directly by the code.
SCRIPT (Semi-numerical Code for ReIonization with PhoTon-conservation) generates the ionization field during the epoch of cosmological reionization using a photon-conserving algorithm. The code depends on density and velocity files obtained using a N-body simulation, which can be generated with a 2LPT code such as MUSIC (ascl:1311.011).
SpECTRE solves multi-scale, multi-physics problems in astrophysics and gravitational physics, such as those associated with the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. It runs at petascale and is designed for future exascale computers.
SimAb (Simulating Abundances) simulates planet formation, focusing on the atmosphere accretion of gas giant planets. The package can run the simulation in two different modes. The single simulation mode is run by specifying the initial conditions (the core mass, the initial orbital distance, the planetesimal ratio, and the dust grain fraction), and the mature planet mass and orbital distance. The multi run simulation mode requires specifying the mass and the final orbital distance of the mature planet; the simulation randomly assigns initial orbital distance, initial core mass, initial planetesimal ratio, and initial dust grain fraction. The package also provides Jupyter codes for plotting the results of the simulations.
The fragmentation and bulk composition tracking package contains two codes. The fragmentation code models fragmentation in collisions for the C version of REBOUND (ascl:1110.016). This code requires setting two global parameters. It automatically produces a collision report that details the time of every collision, the bodies involved, how the collision was resolved, and how many fragments were produced; collision outcomes are assigned a numerical value. The bulk composition tracking code tracks the composition change as a function of mass exchange for bodies with a homogenous composition. It is a post-processing code that works in conjunction with the fragmentation code, and requires the collision report generated by the fragmentation code.
MAYONNAISE (Morphological Analysis Yielding separated Objects iN Near infrAred usIng Sources Estimation), or MAYO for short, is a pipeline for exoplanet and disk high-contrast imaging from ADI datasets. The pipeline is mostly automated; the package also loads the data and injects synthetic data if needed. MAYONNAISE parameters are written in a json file called parameters_algo.json and placed in a working_directory.
RMNest directly fits the Stokes Q and U (and V) spectra of a radio signal to measure the effects of Faraday rotation (or conversion) induced by propagation through a magnetized plasma along the line of sight. The software makes use of the Bayesian Inference Library (Bilby; ascl:1901.011) as an interface to the dynesty (ascl:1809.013) nested sampling algorithm.
Radio Transient Simulations uses Monte-Carlo simulations to accurately determine transient rates in radio surveys. The user inputs either a real or simulated observational setup, and the simulations code calculates transient rate as a function of transient duration and peak flux. These simulations allow for simulating a wide variety of scenarios including observations with varying sensitivities and durations, multiple overlapping telescope pointings, and a wide variety of light curve shapes with the user having the ability to easily add more. Though the current scientific focus is on the radio regime, the simulations code can be easily adapted to other wavelength regimes.
dsigma analyzes galaxy-galaxy lensing. Written in Python, it has a broadly applicable API and is optimized for computational efficiency. While originally intended to be used with the shape catalog of the Hyper-Suprime Cam (HSC) survey, it should work for other surveys, most prominently the Dark Energy Survey (DES) and the Kilo-Degree Survey (KiDS).
TESS-Localize identifies the location on the target pixel files (TPF) where sources of variability found in the aperture originate. The user needs only to provide a list of frequencies found in the aperture that belong to the same source and the number of principal components needed to be removed from the light curve to ensure it is free of systematic trends.
Bayesian SZNet predicts spectroscopic redshift through use of a Bayesian convolutional network. It uses Monte Carlo dropout to associate predictions with predictive uncertainties, allowing the user to determine unusual or problematic spectra for visual inspection and thresholding to balance between the number of incorrect redshift predictions and coverage.
The Python module legacystamps provides easy retrieval, both standalone and scripted, of FITS and JPEG cutouts from the DESI Legacy Imaging Surveys through URLs provided by the Legacy Survey viewer.
Astroplotlib builds images with any scale, overlay contours, physical bars, and orientation arrows (N and E axes) automatically. The package contains scripts to overlay pseudo-slits and obtain statistics from apertures, estimate the background sky, and overlay the fitted isophotes and their respective contours on an image. Astroplotlib can work with the output table from the Ellipse task of IRAF and overlay fitted isophotes and their respective contours. It includes a GUI for masking areas in the images by using different polygons, and can also obtain statistical information (e.g., total flux and mean, among others) from the masked areas. There is also a GUI to overlay star catalogs on an image and an option to download them directly from the Vizier server.
Turbulence Generator generates a time sequence of random Fourier modes via an Ornstein-Uhlenbeck (OU) process, used to drive turbulence in hydrodynamical simulation codes. It can also generate single turbulent realizations. Turbulence driving based on this method is currently supported by implementations in AREPO (ascl:1909.010), FLASH (ascl:1010.082), GADGET (ascl:0003.001), PHANTOM (ascl:1709.002), PLUTO (ascl:1010.045), and Quokka (ascl:2110.009).
TAWAS solves the wave equation for torsional Alfvèn waves in a viscous plasma. The background magnetic field is axisymmetric and force-free with no azimuthal component and the plasma beta is assumed to be negligible. The solution is calculated over a uniform numerical grid with coordinates r and z for the radius and height respectively. TAWAS, written in IDL, requires no input files. The problem parameters at the top of the code can be changed as need. The 'plotting' variable determines which plots are shown by the script; the code contains several options for plotting. Outputs can be saved to a specific location by changing the variables save_dir and run_name listed just below the parameters. The code outputs include solutions for the velocity perturbation, the magnetic field perturbation and the wave energy flux.
Wigglewave uses a finite difference method to solve the linearized governing equations for a torsion Alfvèn wave propagating in a plasma with negligible plasma beta and in a force-free axisymmetric magnetic field with no azimuthal component embedded in a high density divergent tube structure. Wigglewave is fourth order in time and space using a fourth-order central difference scheme for calculating spatial derivatives and a fourth-order Runge-Kutta (RK4) scheme for updating at each timestep. The solutions calculated are the perturbations to the velocity, v and to the magnetic field, b. All variables are calculated over a uniform grid in radius r and height z.
The Bootsik software generates and visualizes potential magnetic fields. bootsik.f90 generates a potential magnetic field on a 3D mesh, staggered relative to the magnetic potential, by extrapolating the magnetic field normal to the photospheric surface. The code first calculates a magnetic potential using a modified Green’s function method and then uses a finite differencing scheme to calculate the magnetic field from the potential. The IDL script boobox.pro can then be used to visualize the magnetic field.
SimLine computes the profiles of molecular rotational transitions and atomic fine structure lines in spherically symmetric clouds with arbitrary density, temperature and velocity structure. The code is designed towards a maximum flexibility and very high accuracy based on a completely adaptive discretization of all quantities. The code can treat arbitrary species in spherically symmetric configurations with arbitrary velocity structures and optical depths between about -5 and 5000. Moreover, SimLine includes the treatment of turbulence and clumping effects in a local statistical approximation combined with a radial dependence of the correlation parameters. The code consists of two parts: the self-consistent solution of the balance equations for all level populations and energy densities at all radial points and the computation of the emergent line profiles observed from a telescope with finite beam width and arbitrary offset.
Zoobot classifies galaxy morphology with Bayesian CNN. Deep learning models were trained on volunteer classifications; these models were able to both learn from uncertain volunteer responses and predict full posteriors (rather than point estimates) for what volunteers would have said. The code reproduces and improves Galaxy Zoo DECaLS automated classifications, and can be finetuned for new tasks.
axionCAMB is a modified version of the publicly available code CAMB (ascl:1102.026). axionCAMB computes cosmological observables for comparison with data. This is normally the CMB power spectra (T,E,B,\phi in auto and cross power), but also includes the matter power spectrum.
SetCoverPy finds an (near-)optimal solution to the set cover problem (SCP) as fast as possible. It employs an iterative heuristic approximation method, combining the greedy and Lagrangian relaxation algorithms. It also includes a few useful tools for a quick chi-squared fitting given two vectors with measurement errors.
Magrathea-Pathfinder propagates photons within cosmological simulations to construct observables. This high-performance framework uses a 3D Adaptive-Mesh Refinement and is built on top of the MAGRATHEA metalibrary (ascl:2203.023).
MAGRATHEA (Multi-processor Adaptive Grid Refinement Analysis for THEoretical Astrophysics) is a foundational cosmological library and a relativistic raytracing code. Classical linear algebra libraries come with their own operations and can be difficult to leverage for new data types. Instead of providing basic types, MAGRATHEA provides tools to generate base types such as scalar quantities, points, vectors, or tensors.
vetting contains simple, stand-alone Python tools for vetting transiting signals in NASA's Kepler, K2, and TESS data. The code performs a centroid test to look for significant changes in the centroid of a star during a transit or eclipse. vetting requires an installation of Python 3.8 or higher.
MG-MAMPOSSt extends the MAMPOSSt code (ascl:2203.020), which performs Bayesian fits of models of mass and velocity anisotropy profiles to the distribution of tracers in projected phase space, to handle modified gravity models and constrain its parameters. It implements two distinct types of gravity modifications: general chameleon (including $f(\mathcal{R})$ models), and beyond Horndeski gravity (Vainshtein screening). MG-MAMPOSSt efficently explores the parameter space either by computing the likelihood over a multi-dimensional grid of points or by performing a simple Metropolis-Hastings MCMC. The code requires a Fortran90 compiler or higher and makes use of the getdist package (ascl:1910.018) to plot the marginalized distributions in the MCMC mode.
MAMPOSSt (Modeling Anisotropy and Mass Profiles of Observed Spherical Systems) is a Bayesian code to perform mass/orbit modeling of spherical systems. It determines marginal parameter distributions and parameter covariances of parametrized radial distributions of dark or total matter, as well as the mass of a possible central black hole, and the radial profiles of density and velocity anisotropy of one or several tracer components, all of which are jointly fit to the discrete data in projected phase space. It is based upon the MAMPOSSt likelihood function for the distribution of individual tracers in projected phase space (projected radius and line-of-sight velocity) and the CosmoMC Markov Chain Monte Carlo code (ascl:1106.025), run in generic mode. MAMPOSSt is not based on the 6D distribution function (which would require triple integrals), but on the assumption that the local 3D velocity distribution is an (anisotropic) Gaussian (requiring only a single integral).
agnpy focuses on the numerical computation of the photon spectra produced by leptonic radiative processes in jetted Active Galactic Nuclei (AGN). It includes classes describing the galaxy components responsible for line and thermal emission and calculates the absorption due to gamma-gamma pair production on soft (IR-UV) photon fields.
The Python package sympy2c allows creation and compilation of fast C/C++ based extension modules from symbolic representations. It can create fast code for the solution of high dimensional ODEs, or numerical evaluation of integrals where sympy fails to compute an anti-derivative. Based on the symbolic formulation of a stiff ODE, sympy2c analyzes sparsity patterns in the Jacobian matrix of the ODE, and generates loop-less fast code by unrolling loops in the internally used LU factorization algorithm and by avoiding unnecessary computations involving known zeros.
The MaNGA data analysis pipeline (MaNGA DAP) analyzes the data produced by the MaNGA data-reduction pipeline (ascl:2203.016) to produced physical properties derived from the MaNGA spectroscopy. All survey-provided properties are currently derived from the log-linear binned datacubes (i.e., the LOGCUBE files).
The MaNGA Data Reduction Pipeline (DRP) processes the raw data to produce flux calibrated, sky subtracted, coadded data cubes from each of the individual exposures for a given galaxy. The DRP consists of two primary parts: the 2d stage that produces flux calibrated fiber spectra from raw individual exposures, and the 3d stage that combines multiple flux calibrated exposures with astrometric information to produce stacked data cubes. These science-grade data cubes are then processed by the MaNGA Data Analysis Pipeline (ascl:2203.017), which measures the shape and location of various spectral features, fits stellar population models, and performs a variety of other analyses necessary to derive astrophysically meaningful quantities from the calibrated data cubes.
easyFermi provides a user-friendly graphical interface for basic to intermediate analysis of Fermi-LAT data in the framework of Fermipy (ascl:1812.006). The code can measure the gamma-ray flux and photon index, build spectral energy distributions, light curves, test statistic maps, test for extended emission, and relocalize the coordinates of gamma-ray sources. Tutorials for easyFermi are available on YouTube and GitHub.
AutoSourceID-Light (ASID-L) analyzes optical imaging data using computer vision techniques that can naturally deal with large amounts of data. The framework rapidly and reliably localizes sources in optical images.
PetroFit calculates Petrosian properties, such as radii and concentration indices; it also fits galaxy light profiles. The package, built on Photutils (ascl:1609.011), includes tools for performing accurate photometry, segmentations, Petrosian properties, and fitting.
pyobs enables remote and fully autonomous observation control of astronomical telescopes. It provides an abstraction layer over existing drivers and a means of communication between different devices (called modules in pyobs). The code can also act as a hardware driver for all the devices used at an observatory. In addition, pyobs offers non-hardware-related modules for automating focusing, acquisition, guiding, and other routine tasks.
SATCHEL (Search Algorithm for Transits in the Citizen science Hunt for Exoplanets in Lightcurves) searches for individual signals of interest in time-series data classified through crowdsourcing. The pipeline was built for the purpose of finding long-period exoplanet transit signals in Kepler photometric time-series data, but may be adapted for searches for any kind of one-dimensional signals in crowdsourced classifications.
D2O acts as a layer of abstraction between algorithm code and data-distribution logic to manage cluster-distributed multi-dimensional numerical arrays; this provides usability without losing numerical performance and scalability. D2O's global interface makes the cluster node's local data directly accessible for use in customized high-performance modules. D2O is written in Python; the code is portable and easy to use and modify. Expensive operations are carried out by dedicated external libraries like numpy and mpi4py and performance scales well when moving to an MPI cluster. In combination with NIFTy, D2O enables supercomputer based astronomical imaging via RESOLVE (ascl:1505.028) and D3PO (ascl:1504.018).
fleck simulates rotational modulation of stars due to starspots and is used to overcome the degeneracies and determine starspot coverages accurately for a sample of young stars. The code simulates starspots as circular dark regions on the surfaces of rotating stars, accounting for foreshortening towards the limb, and limb darkening. Supplied with the latitudes, longitudes, and radii of spots and the stellar inclinations from which each star is viewed, fleck takes advantage of efficient array broadcasting with numpy to return approximate light curves. For example, the code can compute rotational modulation curves sampled at ten points throughout the rotation of each star for one million stars, with two unique spots each, all viewed at unique inclinations, in about 10 seconds on a 2.5 GHz Intel Core i7 processor. This rapid computation of light curves en masse makes it possible to measure starspot distributions with techniques such as Approximate Bayesian Computation.
MIRaGe creates simulated exposures for NIRCam’s imaging and wide field slitless spectroscopy (WFSS) modes, NIRISS’s imaging, WFSS, and aperture masking interferometery (AMI) modes, and FGS’s imaging mode. It supports sidereal as well as non-sidereal tracking; for example, sources can be made to move across the field of view within an observation.
GAMERA handles spectral modeling of non-thermally emitting astrophysical sources in a simple and modular way. It allows the user to devise time-dependent models of leptonic and hadronic particle populations in a general astrophysical context (including SNRs, PWNs and AGNs) and to compute their subsequent photon emission. GAMERA can calculate the spectral evolution of a particle population in the presence of time-dependent or constant injection, energy losses and particle escape; it also calculates the radiation spectrum from a parent particle population.
starry_process implements an interpretable Gaussian process (GP) for modeling stellar light curves. The code's hyperparameters are physically interpretable, and include the radius of the spots, the mean and variance of the latitude distribution, the spot contrast, and the number of spots, among others. The rotational period of the star, the limb darkening parameters, and the inclination (or marginalize over the inclination if it is not known) can also be specified.
pygacs manipulates Gaia catalog tables hosted at ESA's Gaia Archive Core Systems (GACS). It provides python modules for the access and manipulation of tables in GACS, such as a basic query on a single table or crossmatch between two tables. It employs the TAP command line access tools described in the Help section of the GACS web pages. Both public and authenticated access have been implemented.
imexam performs simple image examination and plotting, with similar functionality to IRAF's (ascl:9911.002) imexamine. It is a lightweight library that enables users to explore data from a command line interface, through a Jupyter notebook, or through a Jupyter console. imexam can be used with multiple viewers, such as DS9 (scl:0003.002) or Ginga (ascl:1303.020), or without a viewer as a simple library to make plots and grab quick photometry information. It has been designed so that other viewers may be easily attached in the future.
NIMBLE (Non-parametrIc jeans Modeling with B-spLinEs) inferrs the cumulative mass distribution of a gravitating system from full 6D phase space coordinates of its tracers via spherical Jeans modeling. It models the Milky Way's dark matter halo using Gaia and Dark Energy Spectroscopic Instrument Milky Way Survey (DESI MWS) data. NIMBLE includes a basic inverse modeling Jeans routine that assumes perfect and complete data is available and a more complex forward modeling Jeans routine that deconvolves observational effects (uncertainties and limited survey volume) characteristic of Gaia and the DESI-MWS. It also includes tools for generating simple equilibrium model galaxies using Agama (ascl:1805.008) and imposing mock Gaia+DESI errors on 6D phase space input data.
exoVista generates a "universe" of planetary systems, creating thousands of models of quasi-self-consistent planetary systems around known nearby stars at scattered light wavelengths. It efficiently records the position, velocity, spectrum, and physical parameters of all bodies as functions of time. exoVista models can be used for simulating surveys using the direct imaging, transit, astrometric, and radial velocity techniques.
SISTER (Starshade Imaging Simulations Toolkit for Exoplanet Reconnaissance) predicts how an exoplanet system would look in an instrument that utilizes an Starshade to block the light from the host star. The tool allows for controlling a set of parameters of the whole instrument for: (1) the Starshade design, (2) the exoplanetary system, (3) the telescope and (4) the camera. SISTER includes plotting software, and can also store simulations on disk for plotting with other software.
The Roman Coronagraph Exposure Time Calculator (Roman_Coronagraph_ETC for short) is the public version of the exposure time calculator of the Coronagraph Instrument aboard the Nancy Grace Roman Space Telescope funded by NASA. The methods used to estimate the integration times are based upon peer reviewed research articles (see Bibliography) and a collection of instrumental and modeling parameters of both the Coronagraph Instrument and the Nancy Grace Roman Space Telescope. The code is written in python. Visit https://github.com/hsergi/Roman_Coronagraph_ETC for more information.
topoaccel calculates topological acceleration for several of the S^3 quotient spaces considered 'regular', in that they have a Platonic solid as one of their fundamental domain shapes, and are globally homogeneous. The topoaccel scripts can be run using the free-licensed software package Maxima (https://maxima.sourceforge.io/documentation.html).
INSANE (INflationary potential Simulator and ANalysis Engine) takes either a numeric inflationary potential or a symbolic one, calculates the background evolution and then, using the Mukhanov-Sasaki equations, calculates the primordial power spectrum it yields. The package can analyze the results to extract the spectral index n_s, the index running alpha, the running of running and possibly higher moments. The package contains two main modules: BackgroundSolver solves the background equations, and the MsSolver module solves and analyses the MS equations.
SunnyNet learns the mapping the between LTE and NLTE populations of a model atom and predicts the NLTE populations based on LTE populations for an arbitrary 3D atmosphere. To use SunnyNet, one must already have a set of LTE and NLTE populations computed in 3D, to train the network. These must come from another code, as SunnyNet is unable to solve the formal problem. Once SunnyNet is trained, one can feed it LTE populations from a different 3D atmosphere, and obtain predicted NLTE populations. The NLTE populations can then be used to synthesize any spectral line that is included in the model atom. SunnyNet's output is a file with predicted NLTE populations. SunnyNet itself does not calculate synthetic spectra, but a sample script written in the Julia language that quickly computes Hα spectra is included.
The deep learning model Starduster emulates dust radiative transfer simulations, which significantly accelerates the computation of dust attenuation and emission. Starduster contains two specific generative models, which explicitly take into account the features of the dust attenuation curves and dust emission spectra. Both generative models should be trained by a set of characteristic outputs of a radiative transfer simulation. The obtained neural networks can produce realistic galaxy spectral energy distributions that satisfy the energy balance condition of dust attenuation and emission. Applications of Starduster include SED-fitting and SED-modeling from semi-analytic models.
ASPIRED reduces 2D spectral data from raw image to wavelength and flux calibrated 1D spectrum automatically without any user input (quicklook quality), and provides a set of easily configurable routines to build pipelines for long slit spectrographs on different telescopes (science quality). It delivers near real-time data reduction, which can facilitate automated or interactive decision making, allowing "on-the-fly" modification of observing strategies and rapid triggering of other facilities.
Popsynth provides an abstract way to generate survey populations from arbitrary luminosity functions and redshift distributions. Additionally, auxiliary quantities can be sampled and stored. Populations can be saved and restored via an HDF5 files for later use, and population synthesis routines can be created via classes or structured YAML files. Users can construct their own classes for spatial, luminosity, and other distributions, all of which can be connected to arbitrarily complex selection functions.
distance-omnibus computes posterior DPDFs for catalog sources using the Bayesian application of kinematic distance likelihoods derived from a Galactic rotation curve with prior Distance Probability Density Functions (DPDFs) derived from ancillary data. The methodology and code base are generalized for use with any (sub-)millimeter survey of the Galactic plane.
contaminante helps find the contaminant transiting source in NASA's Kepler, K2 or TESS data. When hunting for transiting planets, sometimes signals come from neighboring contaminants. This package helps users identify where the transiting signal comes from in their data. The code uses pixel level modeling of the TargetPixelFile data from NASA's astrophysics missions that are processed with the Kepler pipeline. The output of contaminante is a Python dictionary containing the source location and transit depth, and a contaminant location and depth. It can also output a figure showing where the main target is centered in all available TPFs, what the phase curve looks like for the main target, where the transiting source is centered in all available TPFs, if a transiting source is located outside the main target, or the transiting source phase curve, if a transiting source is located outside the main target.
Sculptor manipulates, models and analyzes spectroscopic data; the code facilitates reproducible scientific results and easy to inspect model fits. A built-in graphical user interface around LMFIT (ascl:1606.014) offers interactive control to set up and combine multiple spectral models to fully fit the spectrum of choice. Alternatively, all core functionality can be scripted to facilitate the design of spectral fitting and analysis pipelines.
GALLUMI (GALaxy LUMInosity) is a likelihood code that extracts cosmological and astrophysical parameters from the UV galaxy luminosity function. The code is implemented in the MCMC sampler MontePython (ascl:1307.002) and can be readily run in conjunction with other likelihood codes.
Find_Orb takes a set of observations of an asteroid, comet, or natural or artificial satellite given in the MPC (Minor Planet Center) format, the ADES astrometric format, and/or the NEODyS or AstDyS formats, and finds the corresponding orbit.
SPARTAN fits the spectroscopy and photometry of distant galaxies. The code implements multiple interfaces to help in the configuration of the fitting and the inspection of the results. SPARTAN relies on pre-computed input files (such as stellar population and IGM extinction), available for download, to save time in the fitting process.
Site with collection of codes and fundamental references on mean motion resonances.
Citlalicue allows you to create synthetic stellar light curves (transits, stellar variability and white noise) and detrend light curves using Gaussian Processes (GPs). Transits are implemented using PyTransit (ascl:1505.024). Python notebooks are provided to demonstrate using Citlalicue for both functions.
PSLS simulates solar-like oscillators representative of PLATO targets. It includes planetary transits, stochastically-excited oscillations, granulation and activity background components, as well as instrumental systematic errors and random noises representative for PLATO.
fiducial_flare generates a reasonable approximation of the UV emission of M dwarf stars over a single flare or a series of them. The simulated radiation is resolved in both wavelength and time. The intent is to provide consistent input for applications requiring time-dependent stellar UV radiation fields that balances simplicity with realism, namely for simulations of exoplanet atmospheres.
Residual Feature Extraction Pipeline carries out feature extraction of residual substructure within the residual images produced by popular galaxy structural-fitting routines such as GALFIT (ascl:1104.010) and GIM2D (ascl:1004.001). It extracts faint low surface brightness features by isolating flux-wise and area-wise significant contiguous pixels regions by rigorous masking routine. The code accepts the image cubes (original image, model image, residual image) and generates several data products, such as an image with extracted features, a source extraction based segmentation map, and the background sky mask and the residual extraction mask. It uses a Monte Carlo approach-based area threshold above which the extracted features are identified. The pipeline also creates a catalog entry indicating the surface brightness and its error.
The EDI (Exoplanet Detection Identifier) Vetter Unplugged software identifies false positive transit signals using Transit Least Squares (TLS) information and has been simplified from the full EDI-Vetter algorithm (ascl:2202.009) for easy implementation with the TLS output.
EDI (Exoplanet Detection Identifier) Vetter identifies false positive transit signal in the K2 data set. It combines the functionalities of Terra (ascl:2202.008) and RoboVetter (ascl:2012.006) and is optimized to test single transiting planet signals. An easily implemented suite of vetting metrics built to run alongside TLS of EDI Vetter, EDI-Vetter Unplugged (ascl:2202.010), is also available.
TERRA (Transiting Exoearth Robust Reduction Algorithm) identifies and removes instrumental noise in Kepler photometry. This transit detection code is optimized to detect small planets around photometrically quiet stars. TERRA calculates photometry in the time domain, combs the calibrated photometry for periodic, box-shaped signals, fits promising signals, and rejects signals inconsistent with exoplanet transits.
SciCatalog handles catalogs of scientific data in a way that is easily extensible, including the ability to create nicely formatted AASTex deluxe tables for use in AAS Publishing manuscripts. It handles catalogs of values, their positive and negative uncertainties, and references for those values with methods for easily adding columns and changing values. The catalog is also backed up every time it is loaded under the assumption that it is about to be modified.
FIRE Studio is a Python interface for C libraries that project Smoothed Particle Hydrodynamic (SPH) datasets. These C libraries can, in principle, be applied to any SPH dataset; the Python interface is specialized to conveniently load and format Gadget-derivative datasets such as GIZMO (ascl:1410.003). FIRE Studio is fast, memory efficient, and parallelizable. In addition to producing "1-color" projection maps for SPH datasets, the interface can produce "2-color" maps, where the pixel saturation is set by one projected quantity and the hue is set by another, and "3-color" maps, where three quantities are projected simultaneously and remapped into an RGB colorspace. FIRE Studio can model stellar emission and dust extinction to produce mock Hubble images (by default) or to model surface brightness maps for thirteen of the most common bands (plus the bolometric luminosity). It produces publication quality static images of simulation datasets and provides interpolation scripts to create movies that smoothly evolve in time (provided multiple snapshots in time of the data exist), view the dataset from different perspectives (taking advantage of shared memory buffers to allow massive parallelization), or both.
Palettable is a library of color palettes for Python. The code is written in pure Python with no dependencies; it can be used to supply color maps for matplotlib plots, customize matplotlib plots, and to supply colors for a web application.
SUPPNet performs fully automated precise continuum normalization of merged echelle spectra and offers flexible manual fine-tuning, if necessary. The code uses a fully convolutional deep neural network (SUPP Network) trained to predict a pseudo-continuum. The post-processing step uses smoothing splines that give access to regressed knots, which are useful for optional manual corrections. The active learning technique controls possible biases that may arise from training with synthetic spectra and extends the applicability of the method to features absent in this kind of spectra.
Zwindstroom computes background quantities and scale-dependent growth factors for cosmological models with free-streaming species, such as massive neutrinos. Following the earlier REPS code (ascl:1612.022), the code uses a Newtonian fluid approximation with external neutrino sound speed to close the Boltzmann hierarchy. Zwindstroom supports multi-fluid models with distinct transfer functions and sound speeds. A flexible python interface facilitates interaction with CLASS (ascl:1106.020) through classy. There is also a Zwindstroom plugin for the cosmological initial conditions generator monofonIC (ascl:2008.024) that allows for higher-order LPT ICs for massive neutrino simulations in a single step.
NWelch uses Welch's method to estimate the power spectra, complex cross-spectrum, magnitude-squared coherence, and phase spectrum of bivariate time series with nonuniform observing cadence. For univariate time series, users can apply the Welch's power spectrum estimator or compute a nonuniform fast Fourier transform-based periodogram. Options include tapering in the time domain and computing bootstrap false alarm levels. Users may choose standard 50%-overlapping Welch's segments or apply a custom-made segmentation scheme. NWelch was designed for Doppler planet searches but may be applied to any type of time series.
CHIME/FRB instrument has recently published a catalog containing about half of thousand fast radio bursts (FRB) including their spectra and several reconstructed properties, like signal widths, amplitudes, etc. We have developed a model-independent approach for the classification of these bursts using cross-correlation and clustering algorithms applied to one-dimensional intensity profiles, i.e. to amplitudes as a function of time averaged over the frequency. This approach is implemented in frbmclust package, which is used for classification of bursts featuring different waveform morphology.
GA Galaxy fits models of interacting galaxies to synthetic data using a genetic algorithm and custom fitness function. The genetic algorithm is real-coded and uses a mixed Gaussian kernel for mutation. The fitness function incorporates 1.) a direct pixel-to-pixel comparison between the target and model images and 2.) a comparison of the degree of tidal distortion present in the target and model image such that target-model pairs which are similarly distorted will have a higher relative fitness. The genetic algorithm is written in Python 2.7 while the simulation code (SPAM: Stellar Particle Animation Module) is written in Fortran 90.
nProFit analyzes surface brightness profiles. It obtains the best-fit structural, scale, and shape parameters of star clusters in Hubble Space Telescope images of nearby galaxies. The code fits dynamical models and can derive physically-relevant parameters. Among these are central volume and luminosity densities, total masses and luminosities, central velocity dispersions, core radius, half-light radius, tidal radius, and binding energy.
disnht computes the absorption spectrum for a user-defined distribution of column densities. The input is a file including the array of column density values; a python routine is provided that can make logarithmic distribution of column density that can be used as an input. Other optional inputs are a cross-section file that includes the 2-d array [energy, cross-section]; a script is provided for computing cross sections for different abundance model for the interstellar medium (solar values). Other boolean flags can be used for input and output description, rebin, plot or save.
MAGRATHEA solves planet interiors and considers the case of fully differentiated interiors. The code integrates the hydrostatic equation in order to determine the correct planet radius given the mass in each layer. The code returns the pressure, temperature, density, phase, and radius at steps of enclosed mass. The code support four layers: core, mantle, hydrosphere, and atmosphere. Each layer has a phase diagram with equations of state chosen for each phase.
COWS (COsmic Web Skeleton) implements the cosmic filament finder COsmic Web Skeleton (COWS). Written in Python, the cosmic filament finder works on Hessian-based cosmic web identifiers (such as the V-web) and returns a catalogue of filament spines. The code identifies the medial axis, or skeleton, of cosmic web filaments and then separates this skeleton into individual filaments.
statmorph calculates non-parametric morphological diagnostics of galaxy images (e.g., Gini-M_{20} and CAS statistics), and fits 2D Sérsic profiles. Given a background-subtracted image and a corresponding segmentation map indicating the source(s) of interest, statmorph calculates the following morphological statistics for each source:
- Gini-M20 statistics;
- Concentration, Asymmetry and Smoothness (CAS) statistics;
- Multimode, Intensity and Deviation (MID) statistics;
- outer asymmetry and shape asymmetry;
- Sérsic index; and,
- several shape and size measurements associated to the above statistics, such as ellipticity, Petrosian radius, and half-light radius, among others.
AltaiPony de-trend light curves from Kepler, K2, and TESS missions, and searches them for flares. The code also injects and recovers synthetic flares to account for de-trending and noise loss in flare energy and determines energy-dependent recovery probability for every flare candidate. AltaiPony uses K2SC (ascl:1605.012), AstroPy (ascl:1304.002) and lightkurve (ascl:1812.013) in addition to other common codes, and extensive documentation and tutorials are provided for the software.
fermi-gce-flows uses a machine learning-based technique to characterize the contribution of modeled components, including unresolved point sources, to the GCE. It can perform posterior parameter estimation while accounting for pixel-to-pixel spatial correlations in the gamma-ray map. On application to Fermi data, the method generically attributes a smaller fraction of the GCE flux to unresolved point source-like emission when compared to traditional approaches.
tellrv measures absolute radial velocities for low-resolution NIR spectra. It uses telluric features to provide absolute wavelength calibration, and then cross-correlates with a standard star. Observations of a standard star are included for convenience; the code also requires both the telluric and non-telluric-corrected spectra.
dark-photons-perturbations determines constraints from Cosmic Microwave Background photons oscillating into dark photons, and from heating of the primordial plasma due to dark photon dark matter converting into low-energy photons in an inhomogeneous universe.
AllStarFit analyzes optical and infrared images and includes functions for:
- object detection and image segmentation using the ProFound package (ascl:1804.006);
- PSF determination using the ProFit package (ascl:1612.004) to fit multiple stars in the field simultaneously; and
- galaxy modelling with ProFit, using the previously determined PSF and user-specified models.
AllStarFit supports a variety of optimization methods (provided by external packages), including maximum-likelihood and Markov chain Monte Carlo (MCMC).
FitsMap visualizes astronomical image and catalog data. Implemented in Python, the software is a simple, lightweight tool, requires only a simple web server, and can scale to over gigapixel images with tens of millions of sources. Further, the web-based visualizations can be viewed performantly on mobile devices.
BLOSMapping determines the line-of-sight component of magnetic fields associated with molecular clouds. The code uses Faraday rotation measure catalogs along with an on-off approach based on relative measurements to estimate the rotation measure caused by molecular clouds. It then uses the outputs from a chemical evolution code along with extinction maps to determine the line-of-sight magnetic field strength and direction.
AstroToolBox identifies and classifies astronomical objects with a focus on low-mass stars and ultra-cool dwarfs. It can search numerous catalogs, including SIMBAD (measurements & references), AllWISE, Gaia, SDSS, among others, evaluates spectral type for main sequence stars including brown dwarfs, and provides SED fitting for ultra-cool and white dwarfs. AstroToolBox draws Gaia color-magnitude diagrams (CMD) with overplotted M0-M9 spectral types, and can draw Montreal Cooling Sequences on the white dwarf branch of the Gaia CMD. The tool can also blink images from different epochs in an image viewer, thus allowing visual identification of the motion or variability of objects. The software displays time series (static or animated) using infrared and optical images of various surveys and contains a photometric classifier. It also includes astrometric calculators and converters, an ADQL query interface (IRSA, VizieR, NOAO) and a batch spectral type lookup feature that uses a CSV file with object coordinates as input. The ToolBox also has a file browser linked to the image viewer, which makes it possible to check a large list of objects in a convenient way, and can save interesting finds in an object collection for later use.
EzTao models time series as a continuous-time autoregressive moving-average (CARMA) process. EzTao utilizes celerite (ascl:1709.008), a fast and scalable Gaussian Process Regression library, to evaluate the likelihood function. On average, EzTao is ten times faster than other tools relying on a Kalman filter for likelihood computation.
JexoSim 2.0 (JWST Exoplanet Observation Simulator) simulates exoplanet transit observations using all four instruments of the James Webb Space Telescope, and is designed for the planning and validation of science cases for JWST. The code generates synthetic spectra that capture the full impact of complex noise sources and systematic trends, allowing for assessment of both accuracy and precision in the final spectrum. JexoSim does not contain all known systematics for the various instruments, but is a good starting point to investigate the effects of systematics, and has the framework to incorporate more systematics in the future.
HoloSim-ML performs beam simulation and analysis of radio holography data from complex optical systems. The code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micron accuracy.
The Fast Template Periodogram extends the Generalised Lomb Scargle periodogram (Zechmeister and Kurster 2009) for arbitrary (periodic) signal shapes. A template is first approximated by a truncated Fourier series of length H. The Nonequispaced Fast Fourier Transform NFFT is used to efficiently compute frequency-dependent sums. Template fitting can now be done in NlogN time, improving existing algorithms by an order of magnitude for even small datasets. The FTP can be used in conjunction with gradient descent to accelerate a non-linear model fit, or be used in place of the multi-harmonic periodogram for non-sinusoidal signals with a priori known shapes.
The l1 periodogram searches for periodicities in unevenly sampled time series. It can be used similarly as a Lomb-Scargle periodogram, and retrieves a figure which has a similar aspect but has fewer peaks due to aliasing. It is primarily designed for the search of exoplanets in radial velocity data, but can be also used for other purposes. The principle of the algorithm is to search for a representation of the input signal as a sum of a small number of sinusoidal components, that is a representation which is sparse in the frequency domain. Here, "small number" means small compared to the number of observations.
wpca, written in Python, offers several implementations of Weighted Principal Component Analysis and uses an interface similar to scikit-learn's sklearn.decomposition.PCA. Implementations include a direct decomposition of a weighted covariance matrix to compute principal vectors, and then a weighted least squares optimization to compute principal components, and an iterative expectation-maximization approach to solve simultaneously for the principal vectors and principal components of weighted data. It also includes a standard non-weighted PCA implemented using the singular value decomposition, primarily to be useful for testing.
hankl implements the FFTLog algorithm in lightweight Python code. The FFTLog algorithm can be thought of as the Fast Fourier Transform (FFT) of a logarithmically spaced periodic sequence (= Hankel Transform). hankl consists of two modules, the General FFTLog module and the Cosmology one. The latter is suited for modern cosmological application and relies heavily on the former to perform the Hankel transforms. The accuracy of the method usually improves as the range of integration is enlarged; FFTlog prefers an interval that spans many orders of magnitude. Resolution is important, as low resolution introduces sharp features which in turn causes ringing.
GRIT (Gravitational Rigid-body InTegrators) simulaties the coupled dynamics of both spin and orbit of N gravitationally interacting rigid bodies. The code supports tidal forces and general relativity correction are supported, and multiple schemes with different orders of convergences and splitting strategies are available. Multiscale splittings boost the simulation speed, and force evaluations can be parallelized. In addition, each body can be set to be a rigid body or just a point mass, and the floating-point format can be customized as float, double, or long double globally.
BayesicFitting fits models to data. Data in this context means a set of (measured) points x and y. The model provides some (mathematical) relation between the x and y. Fitting adapts the model such that certain criteria are optimized. The BayesicFitting toolbox also determines whether one model fits the data better than another, making the toolbox particularly powerful. The package consists of more than 100 Python classes, of which one third are model classes. Another third are fitters in one guise or another along with additional tools, and the remaining third is used for Nested Sampling.
The O'TRAIN package identifies transients in astronomical images based on a Convolutional Neural Network (CNN). It works on images from different telescopes and, through the use of Docker, can be deployed on different operating systems. O'TRAIN uses image cutouts containing real and false transients provided by the user to train a CNN algorithm implemented with Keras. Built-in diagnostics help to characterize the accuracy of the training, and a trained model is used to classify any new cutouts.
Optab, written in Fortran90, generates ideal-gas opacity tables. It computes opacity based on user-provided chemical equilibrium abundances, and outputs mean opacities as well as monochromatic opacities, thus providing opacity tables that are consistent with one's equation of state for radiation hydrodynamics simulations. For convenience, Optab also provides interfaces for FastChem (ascl:1804.025) or TEA (ascl:1505.031) for computing chemical abundances.
deeplenstronomy simulates large datasets for applying deep learning to strong gravitational lensing. It wraps the functionalities of lenstronomy (ascl:1804.012) in a convenient yaml-style interface to generate training datasets. The code can use built-in astronomical surveys, realistic galaxy colors, real images of galaxies, and physically motivated distributions of all parameters to train the neural network to create a simulated dataset.
TESSreduce builds on lightkurve (ascl:1812.013) to reduce TESS data while preserving transient signals. It takes a TPF as input (supplied or constructed with TESScut (https://mast.stsci.edu/tesscut/). The background subtraction accounts for the smooth background and detector straps. In addition to background subtraction, TESSreduce also aligns images, performs difference imaging, detects transient events, and by using PS1 data, can calibrate TESS counts to physical flux or AB magnitudes.
The SAPHIRES (Stellar Analysis in Python for HIgh REsolution Spectroscopy) suite contains functions for analyzing high-resolution stellar spectra. Though most of its functionality is aimed at deriving radial velocities (RVs), the suite also includes capabilities to measure projected rotational velocities (vsini) and determine spectroscopic flux ratios in double-lined binary systems (SB2s). These measurements are made primarily by computing spectral-line broadening functions. More traditional techniques such as Fourier cross-correlation, and two-dimensional cross-correlation (TODCOR) are also included.
Qwind3 models radiation-driven winds originating from accretion discs. An improvement over Qwind (ascl:2112.013), it derives the wind initial conditions and has significantly improved ray-tracing to calculate the wind absorption self consistently given the extended nature of the UV emission. It also corrects the radiation flux for relativistic effects, and assesses the impact of this on the wind velocity.
Qwind simulates the launching and acceleration phase of line-driven winds in the context of AGN accretion discs. The wind is modeled as a set of streamlines originating on the surface of the AGN accretion disc, and evolved following their equation of motion, given by the balance between radiative and gravitational force.
DiracVsMajorana determines the statistical significance with which a successful electron scattering experiment could reject the Majorana hypothesis -- that dark matter (DM) particles are their own anti-particles, a so-called Majorana fermion -- using the likelihood ratio test in favor of the hypothesis of Dirac DM. The code assumes that the DM interacts with the photon via higher-order electromagnetic moments. It requires tabulated atomic response functions, which can be computed with DarkARC (ascl:2112.011), to compute ionization spectra and predictions for signal event rates.
DarkARC computes and tabulates atomic response functions for direct sub-GeV dark matter (DM) searches. The tabulation of the atomic response functions is separated into two steps: 1.) the computation and tabulation of three radial integrals, and 2.) their combination into the response function tables. The computations are performed in parallel using the multiprocessing library.
WIMpy_NREFT (also known as WIMpy) calculates Dark Matter-Nucleus scattering rates in the framework of non-relativistic effective field theory (NREFT). It currently supports operators O1 to O11, as well as millicharged and magnetic dipole Dark Matter. It can be used to generate spectra for Xenon, Argon, Carbon, Germanium, Iodine and Fluorine targets. WIMpy_NREFT also includes functionality to calculate directional recoil spectra, as well as signals from coherent neutrino-nucleus scattering (including fluxes from the Sun, atmosphere and diffuse supernovae).
The Bayesian-based Gaussian Process model AsteroGaP (Asteroid Gaussian Processes) fits sparsely-sampled asteroid light curves. By utilizing a more flexible Gaussian Process framework for modeling asteroid light curves, it is able to represent light curves in a periodic but non-sinusoidal manner.
MISTTBORN can simultaneously fit multiple types of data within an MCMC framework. It handles photometric transit/eclipse, radial velocity, Doppler tomographic, or individual line profile data, for an arbitrary number of datasets in an arbitrary number of photometric bands for an arbitrary number of planets and allows the use of Gaussian process regression to handle correlated noise in photometric or Doppler tomographic data. The code can include dilution due to a nearby unresolved star in the transit fits, and an additional line component due to another star or scattered sun/moonlight in Doppler tomographic or line profile fits. It can also be used for eclipsing binary fits, including a secondary eclipse and radial velocities for both stars. MISTTBORN produces diagnostic plots showing the data and best-fit models and the associated code MISTTBORNPLOTTER produces publication-quality plots and tables.
NeutrinoFog calculates the neutrino floor based on the derivative of a hypothetical experimental discovery limit as a function of exposure, and leads to a neutrino floor that is only influenced by the systematic uncertainties on the neutrino flux normalizations.
STDPipe is a set of Python routines for astrometry, photometry and transient detection related tasks, intended for quick and easy implementation of custom pipelines, as well as for interactive data analysis. It is implemented as a library of routines covering most common tasks and operates on standard Python objects, including NumPy arrays for images and Astropy (ascl:1304.002) tables for catalogs and object lists. The pipeline does not re-implement code already implemented in other Python packages; instead, it transparently wraps external codes, such as SExtractor (ascl:1010.064), SCAMP (ascl:1010.063), PSFEx (ascl:1301.001), HOTPANTS (ascl:1504.004), and Astrometry.Net (ascl:1208.001), that do not have their own Python interfaces. STDPipe operates on temporary files, keeping nothing after the run unless something is explicitly requested.
Interferopy analyzes datacubes from radio-to-submm observations. It provides a homogenous interface to common tasks, making it easy to go from reduced datacubes to essential measurements and publication-quality plots. Its core functionalities are widely applicable and have been successfully tested on (but are not limited to) ALMA, NOEMA, VLA and JCMT data.
Defringe corrects fringe artifacts in near-infrared astronomical images taken with old generation CCD cameras. It essentially solves a robust PCA problem, masking out astrophysical sources, and models the contaminants as a linear superposition of (unknown) modes, with (unknown) projection coefficients. The problem uses nuclear norm regularization, which acts as a convex proxy for rank minimization. The code is written in python, using cupy for GPU acceleration, but will also work on CPUs.
The Python package SCORPIO retrieves images and associated data of galaxy pairs based on their position, facilitating visual analysis and data collation of multiple archetypal systems. The code ingests information from SDSS, 2MASS and WISE surveys based on the available bands and is designed for studies of galaxy pairs as natural laboratories of multiple astrophysical phenomena for, among other things, tidal force deformation of galaxies, pressure gradient induced star formation regions, and morphological transformation.
QUESTFIT fit the Spitzer mid-infrared spectra of the QUEST (Quasar ULIRG and Evolution STudy) sample. It uses two PAH templates atop an extincted and absorbed continuum model to fit the mid-IR spectra of galaxies that are heavily-absorbed. It also fits AGN with silicate models. The current version of QUESTFIT is optimized for processing spectra from the CASSIS (Combined Atlas of Sources with Spitzer IRS Spectra) portal to produce PAH fluxes for heavily absorbed sources.
pyCELP (aka "pi-KELP") calculates Coronal Emission Line Polarization. It forward synthesizes the polarized emission of ionized atoms formed in the solar corona and calculates the atomic density matrix elements for a single ion under coronal equilibrium conditions and excited by a prescribed radiation field and thermal collisions. pyCELP solves a set of statistical equilibrium equations in the spherical statistical tensor representation for a multi-level atom for the no-coherence case. This approximation is useful in the case of forbidden line emission by visible and infrared lines, such as Fe XIII 1074.7 nm and Si X 3934 nm.
DIPol-UF provides tools for remote control and operation of DIPol-UF, an optical (BVR) imaging CCD polarimeter. The project contains libraries that handle low-level interoperation with ANDOR SDK (provided by the CCD manufacturer), communication with stepper motors (which perform plate rotations), FITS file serialization/deserialization, over-network communication between different system components (each CCD is connected to a standalone PC), as well as provide GUI (built with WPF).
An internally overhauled but fundamentally similar version of Forecaster by Jingjing Chen and David Kipping, originally presented in arXiv:1603.08614 and hosted at https://github.com/chenjj2/forecaster.
The model itself has not changed- no new data was included and the hyperparameter file was not regenerated. All functions were rewritten to take advantage of Numpy vectorization and some additional user features were added. Now able to be installed via pip.
The caustic technique is a powerful method to infer cluster mass profiles to clustrocentric distances well beyond the virial radius. It relies in the measure of the escape velocity of the sistem using only galaxy redshift information. This method was introduced by Diaferio & Geller (1997) and Diaferio (1999). This code allows the caustic mass estimation for galaxy clusters, as well as outlier identification as a side effect. However, a pre-cleaning of interlopers is recommended, using e.g., the shifting-gapper technique.
GWToolbox simulates gravitational wave observations for various detectors. The package is composed of three modules, namely the ground-based detectors (and their targets), the space-borne detectors (and their targets) and pulsar timing arrays (PTA). These three modules work independently and have different dependencies on other packages and libraries; failed dependencies met in one module will not influence the usage of another module. GWToolbox can accessed with a web interface (gw-universe.org) or as a python package (https://bitbucket.org/radboudradiolab/gwtoolbox).
pySYD detects solar-like oscillations and measures global asteroseismic parameters. The code is a python-based implementation of the IDL-based SYD pipeline by Huber et al. (2009), which was extensively used to measure asteroseismic parameters for Kepler stars, and adapts the well-tested methodology from SYD and also improves these existing analyses. It also provides additional capabilities, including an automated best-fit background model selection, parallel processing, the ability to samples for further analyses, and an accessible and command-line friendly interface. PySYD provides best-fit values and uncertainties for the granulation background, frequency of maximum power, large frequency separation, and mean oscillation amplitudes.
SteParSyn infers stellar atmospheric parameters (Teff, log g, [Fe/H], and Vbroad) of FGKM-type stars using the spectral synthesis method. The code uses the MCMC sampler emcee (ascl:1303.002) in conjunction with an spectral emulator that can interpolate spectra down to a precision < 1%. A grid of synthetic spectra that allow the user to characterize the spectra of FGKM-type stars with parameters in the range of 3500 to 7000 K in Teff, 0.0 to 5.5 dex in log g, and −2.0 to 1.0 dex in [Fe/H] is also provided.
gCMCRT globally processes 3D atmospheric data, and as a fully 3D model, it avoids the biases and assumptions present when using 1D models to process 3D structures. It is well suited to performing the post-processing of large parameter GCM model grids, and provides simple pipelines that convert the 3D GCM structures from many well used GCMs in the community to the gCMCRT format, interpolating chemical abundances (if needed) and performing the required spectra calculation. The high-resolution spectra modes of gCMCRT provide an additional highly useful capability for 3D modellers to directly compare output to high-resolution spectral data.
The data analysis UniMAP (Unicorn Multi-window Anomaly Detection Pipeline) leverages the Temporal Outlier Factor (TOF) method to find anomalies in LVC data. The pipeline requires a target detector and a start and stop GPS time describing a time interval to analyze, and has three outputs: 1.) an array of GPS times corresponding to TOF detections; 2.) a long q-transform of the entire data interval with visualizations of the TOF detections in the time series; and 3.) q-transforms of the data windows that triggered TOF detections.
Astrosat calculates which satellites can be seen by a given observer in a given field of view at a given observation time and observation duration. This includes the geometry of the satellite and observer but also estimates the expected apparent brightness of the satellite to aid astronomers in assessing the impact on their observations.
flatstar is an open-source Python tool for drawing stellar disks as numpy.ndarray objects with scientifically-rigorous limb darkening. Each pixel has an accurate fractional intensity in relation to the total stellar intensity of 1.0. It is ideal for ray-tracing simulations of stars and planetary transits. The code is fast, has the most well-known limb-darkening laws, including linear, quadratic, square-root, logarithmic, and exponential, and allows the user to implement custom limb-darkening laws. flatstar also offers supersampling for situations where both coarse arrays and precision in stellar disk intensity (i.e., no hard pixel boundaries) is desired, and upscaling to save on computation time when high-resolution intensity maps are needed, though there is some precision loss in intensities.
p-winds produces simplified, 1-D models of the upper atmosphere of a planet and performs radiative transfer to calculate observable spectral signatures. The scalable implementation of 1D models allows for atmospheric retrievals to calculate atmospheric escape rates and temperatures. In addition, the modular implementation allows for a smooth plugging-in of more complex descriptions to forward model their corresponding spectral signatures (e.g., self-consistent or 3D models).
Nii implements an automatic parallel tempering Markov chain Monte Carlo (APT-MCMC) framework for sampling multidimensional posterior distributions and provides an observation simulation platform for the differential astrometric measurement of exoplanets. Although this code specifically focuses on the orbital parameter retrieval problem of differential astrometry, Nii can be applied to other scientific problems with different posterior distributions and offers many control parameters in the APT part to facilitate the adjustment of the MCMC sampling strategy; these include the number of parallel chains, the β values of different chains, the dynamic range of the sampling step sizes, and frequency of adjusting the step sizes.
CoLoRe (Cosmological Lofty Realization) generates fast mock realizations of a given galaxy sample using a lognormal model or LPT for the matter density. Tt can simulate a variety of cosmological tracers, including photometric and spectroscopic galaxies, weak lensing, and intensity mapping. CoLoRe is a parallel C code, and its behavior is controlled primarily by the input param file.
The COCOPLOT (COlor COllapsed PLOTting) quick-look and context image code conveys spectral profile information from all of the spatial pixels in a 3D datacube as a single image using color. It can also identify and expose temporal behavior and display and highlight solar features. COCOPLOT thus aids in identifying regions of interest quickly. The software is available in Python and IDL, and can be used as a standalone package or integrated into other software.
LEGWORK (LISA Evolution and Gravitational Wave ORbit Kit) is a simple package for gravitational wave calculations. It evolves binaries and computes signal-to-noise ratios for binary systems potentially observable with LISA; it also visualizes the results. LEGWORK can also compare different detector sensitivity curves, compute the horizon distance for a collection of sources, and tracks signal-to-noise evolution over time.
prose provides pipelines for performing common tasks, such as automated calibration, reduction and photometry, and makes building custom pipelines easy. The prose framework is instrument-agnostic and makes constructing pipelines easy. It offers a wide range of implemented building blocks and also allows users to define their own.
CEvNS calculates Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) cross sections and recoil spectra. It includes (among other things) the Standard Model contribution to the CEvNS cross section, along with the contribution from Simplified Models with new vector or scalar mediators. It also covers neutrino magnetic moments and non-standard contact neutrino interactions (NSI).
The library NLopt performs nonlinear local and global optimization for functions with and without gradient information. It provides a simple, unified interface and wraps many algorithms for global and local, constrained or unconstrained, optimization, and provides interfaces for many other languages, including C++, Fortran, Python, Matlab or GNU Octave, OCaml, GNU Guile, GNU R, Lua, Rust, and Julia.
PSwarm is a global optimization solver for bound and linear constrained problems (for which the derivatives of the objective function are unavailable, inaccurate or expensive). The algorithm combines pattern search and particle swarm. Basically, it applies a directional direct search in the poll step (coordinate search in the pure simple bounds case) and particle swarm in the search step. PSwarm makes no use of derivative information of the objective function. It has been shown to be efficient and robust for smooth and nonsmooth problems, both in serial and in parallel.
JAX brings Autograd and XLA together for high-performance machine learning research. It can automatically differentiate native Python and NumPy functions. The code can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. JAX supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.
astroDDPM uses a denoising diffusion probabilistic model (DDPM) to synthesize galaxies that are qualitatively and physically indistinguishable from the real thing. The similarity of the synthesized images to real galaxies from the Photometry and Rotation curve OBservations from Extragalactic Surveys (PROBES) sample and from the Sloan Digital Sky Survey is quantified using the Fréchet Inception Distance to test for subjective and morphological similarity. The emergent physical properties (such as total magnitude, color, and half light radius) of a ground truth parent and synthesized child dataset are also compared to generate a Synthetic Galaxy Distance metric. The DDPM approach produces sharper and more realistic images than other generative methods such as Adversarial Networks (with the downside of more costly inference), and could be used to produce large samples of synthetic observations tailored to a specific imaging survey. Potential uses of the DDPM include accurate in-painting of occluded data, such as satellite trails, and domain transfer, where new input images can be processed to mimic the properties of the DDPM training set.
As a new generation of large-scale telescopes are expected to produce single data products in the range of hundreds of GBs to multiple TBs, different approaches to I/O efficient data interaction and extraction need to be investigated and made available to researchers. This will become increasingly important as the downloading and distribution of TB scale data products will become unsustainable, and researchers will have to take their processing analysis to the data. We present a methodology to extract 3 dimensional spatial-spectral data from dimensionally modelled tables in Parquet format on a Hadoop system. The data is loaded into the Parquet tables from FITS cube files using a dedicated process. We compare the performance of extracting data using the Apache Spark parallel compute framework on top of the Parquet-Hadoop ecosystem with data extraction from the original source files on a shared file system. We have found that the Spark-Parquet-Hadoop solution provides significant performance benefits, particularly in a multi user environment. We present a detailed analysis of the single and multi-user experiments conducted and also discuss the benefits and limitations of the platform used for this study.
XookSuut models circular and noncircular flows on resolved velocity maps. The code performs nonparametric fits to derive kinematic models without assuming analytical functions on the different velocity components of the models. It recovers the circular and radial motions in galaxies in dynamical equilibrium and can derive the noncircular motions induced by oval distortions, such as that produced by stellar bars. XookSuut explores the full space of parameters on a N-dimensional space to derive their mean values; this combined method efficiently recovers the constant parameters and the different kinematic components.
PT-REX (Point-to-point TRend EXtractor) performs ptp analysis on every kind of extended radio source. The code exploits a set of different fitting methods to allow study of the spatial correlation, and is structured in a series of tasks to handle the individual steps of a ptp analysis independently, from defining a grid to sample the radio emission to accurately analyzing the data using several statistical methods. A major feature of PT-REX is the use of an automatic, randomly-generated sampling routine to combine several SMptp analysis into a Monte Carlo ptp (MCptp) analysis. By repeating several cycles of SMptp analysis with randomly-generated grids, PT-REX produces a distribution of values of k that describe its parameter space, thus allowing a reliably estimate of the trend (and its uncertainties).
BCES performs robust linear regression on (X,Y) data points where both X and Y have measurement errors. The fitting method is the bivariate correlated errors and intrinsic scatter (BCES). Some of the advantages of BCES regression compared to ordinary least squares fitting are that it allows for measurement errors on both variables and permits the measurement errors for the two variables to be dependent. Further it permits the magnitudes of the measurement errors to depend on the measurements and other lines such as the bisector and the orthogonal regression can be constructed.
SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) investigates the chameleon model that arises from screening a scalar field introduced in some modified gravity models that is coupled to matter. The code provides tools to construct user defined meshes by utilizing the GMSH mesh generation software. These tools include constructing shapes whose boundaries are defined by some function or by constructing it out of basis shapes such as circles, cones and cylinders. The mesh can also be separated into subdomains, each of which having its own refinement parameters. These meshes can then be converted into a format that is compatible with the finite element software FEniCS. SELCIE uses FEniCS (ascl:2110.018) with a nonlinear solving method (Picard or Newton method) to solve the chameleon equation of motion for some parameters and density distribution. These density distributions are constructed by having the density profile of each subdomain being set by a user defined function, allowing for extremely customizable setups that are easy to implement.
FEniCS solves partial differential equations (PDEs) and enables users to quickly translate scientific models into efficient finite element code. With the high-level Python and C++ interfaces to FEniCS, it is easy to get started, but FEniCS offers also powerful capabilities for more experienced programmers. FEniCS runs on a multitude of platforms ranging from laptops to high-performance clusters, and each component of the FEniCS platform has been fundamentally designed for parallel processing. This framework allows for rapid prototyping of finite element formulations and solvers on laptops and workstations, and the same code may then be deployed on large high-performance computers.
ThERESA retrieves three-dimensional maps of exoplanets. The code constructs 2-dimensional maps for each light given light curve, places those maps vertically in an atmosphere, and runs radiative transfer to calculate emission from the planet over a latitude/longitude grid. ThERESA then integrates over the grid (combined with the visibility function) to generate light curves. These light curves are compared against the input light curves behind MCMC to explore parameter space.
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. It can represent any computable probability distribution and scales to large data sets with little overhead compared to hand-written code. The library is implemented with a small core of powerful, composable abstractions. Its high-level abstractions express generative and inference models, but also allows experts to customize inference.
Flux provides an elegant approach to machine learning. Written in Julia, it provides lightweight abstractions on top of Julia's native GPU and AD support. It has many useful tools built in, but also lets you use the full power of the Julia language where you need it. Flux has relatively few explicit APIs for features like regularization or embeddings; instead, writing down the mathematical form works and is fast. The package works well with Julia libraries from data frames and images to differential equation solvers, so building complex data processing pipelines that integrate Flux models is straightforward.
Swordfish studies the information yield of counting experiments. It implements at its core a rather general version of a Poisson point process with background uncertainties described by a Gaussian random field, and provides easy access to its information geometrical properties. Based on this information, a number of common and less common tasks can be performed. Swordfish allows quick and accurate forecasts of experimental sensitivities without time-intensive Monte Carlos, mock data generation and likelihood maximization. It can:
- calculate the expected upper limit or discovery reach of an instrument;
- derive expected confidence contours for parameter reconstruction;
- visualize confidence contours as well as the underlying information metric field;
- calculate the information flux, an effective signal-to-noise ratio that accounts for background systematics and component degeneracies; and
- calculate the Euclideanized signal which approximately maps the signal to a new vector which can be used to calculate the Euclidean distance between points.
Nauyaca infers planetary masses and orbits from mid-transit times fitting. The code requires transit ephemeris per planet and stellar mass and radius, and uses minimization routines and a Markov chain Monte Carlo method to find planet parameters that best reproduce the transit times based on numerical simulations. The code package provides customized plotting tools for analyzing the results.
GGCHEMPY is efficient for building 1-D, 2-D and 3-D simulations of physical parameters of Planck galactic cold clumps; it provides a graphical user interface and can also be invoked by a Python script. The code initializes the reaction network using input parameters, and then computes the reaction rate coefficients for all reactions. It uses the backward-differentiation formulas method to solve the ordinary differential equations for the integration. The modeled results are saved and can be directly passed to a Python dictionary for analysis and plotting.
The Julia library GRASS produces realistic stellar spectra with time-variable granulation signatures. It is based on real observations of the Sun, and does not rely on magnetohydrodynamic simulations to produce its spectra. GRASS can also compute bisectors for absorption lines or CCF profiles, and provides two methods for calculating bisectors.
BASTA determines properties of stars using a pre-computed grid of stellar models. It calculates the probability density function of a given stellar property based on a set of observational constraints defined by the user. BASTA is very versatile and has been used in a large variety of studies requiring robust determination of fundamental stellar properties.
Quokka is a two-moment radiation hydrodynamics code that uses the piecewise-parabolic method, with AMR and subcycling in time. It runs on CPUs (MPI+vectorized) or NVIDIA GPUs (MPI+CUDA) with a single-source codebase. The hydrodynamics solver is an unsplit method, using the piecewise parabolic method for reconstruction in the primitive variables, the HLLC Riemann solver for flux computations, and a method-of-lines formulation for the time integration. The order of reconstruction is reduced in zones where shocks are detected in order to suppress spurious oscillations in strong shocks. Quokka's radiation hydrodynamics formulation is based on the mixed-frame moment equations. The radiation subsystem is coupled to the hydrodynamic subsystem via operator splitting, with the hydrodynamic update computed first, followed by the radiation update, with the latter update including the source terms corresponding to the radiation four-force applied to both the radiation and hydrodynamic variables. A method-of-lines formulation is also used for the time integration, with the time integration done by the same integrator chosen for the hydrodynamic subsystem.
ParSNIP learns generative models of transient light curves from a large dataset of transient light curves. It is designed to work with light curves in sncosmo format using the lcdata package to handle large datasets. This code can be used for classification of transients, cosmological distance estimation, and identifying novel transients.
PISCOLA (Python for Intelligent Supernova-COsmology Light-curve Analysis) fits supernova light curves and corrects them in a few lines of code. It uses Gaussian Processes to estimate rest-frame light curves of transients without needing an underlying light-curve template. The user can add filters, calculates the light-curves parameters, and obtain transmission functions for the observed filters and the Bessell filters. The correction process can be applied with default settings to obtain restframe light curves and light-curve parameters. PISCOLA can plot the SN light curves, filter transmission functions, light-curves fits results, the mangling function for a given phase, and includes several utilities that can, for example, convert fluxes to magnitudes and magnitudes to fluxes, and trim leading and trailing zeros from a 1-D array or sequence.
ArtPop (Artificial Stellar Populations) synthesizes stellar populations and simulates realistic images of stellar systems. The code is modular, making it possible to use each of its functionalities independently or together. ArtPop can build stellar populations independently from generating mock images, as one might want to do when interested only in calculating integrated photometric properties of the population. The code can also generate stellar magnitudes and artificial galaxies, which can be inject into real imaging data.
TauRunner propagates ultra-high-energy neutrinos, with a focus on tau neutrinos. Although it was developed for extremely high energy (EeV+) applications, it is able to propagate neutrinos from 1 to 10^16 GeV. Oscillations are not taken into account at the lowest energies, but they become negligible above 1 TeV.
TULIPS (Tool for Understanding the Lives, Interiors, and Physics of Stars) creates diagrams of the structure and evolution of stars. It creates plots and movies based on output from the MESA stellar evolution code (ascl:1010.083). TULIPS represents stars as circles of varying size and color. The code can also visualize the size and perceived color of stars, their interior mixing and nuclear burning processes, their chemical composition, and can compare different MESA models.
PSRDADA supports the development of distributed data acquisition and analysis systems; it provides a flexible and well-managed ring buffer in shared memory with a variety of applications for piping data from device to ring buffer and from ring buffer to device. PSRDADA allows more than one data set to be queued in the ring buffer at one time, and data may be recorded in selected bursts using data validity flags. A variety of clients have been implemented that can write data to the ring buffer and read data from it. The primary write clients can be controlled via a simple, text-based socket interface, and read client software exists for writing data to an array of disks, sending data to an array of nodes, or processing the data directly from RAM. At the highest level of control and configuration, scripts launch the PSRDADA configuration across all nodes in the cluster, monitor all relevant processes, configure and control through a web-based interface, interface with observatory scheduling tools, and manage the ownership and archival of project data. It has been used in the implementation of baseband recording and processing instrumentation for radio pulsar astronomy.
Exodetbox provides mathematical methods for calculating the planet-star separation and difference in magnitude extrema as well as when planets have particular planet-star separations or differences in magnitude. The code also projects the 3D Keplerian Orbit into a reparameterized 2D ellipse in the plane of the sky. Exodetbox is implemented in the EXOSIMS modeling software (ascl:1706.010).
JWST_Simulation generates a novel geometric-focused deep field simulation of the expected JWST future deep field image. Galaxies are represented by ellipses with randomly-generated positions and orientations. Three scripts are included: a deterministic simulation, an ensemble simulation, and a more-realistic monochrome image simulation. The following initial conditions can be perturbed in these codes: H0, Ωm, ΩΛ, the dark energy equation of state parameter, the number of unseen galaxies in the Hubble Ultra Deep Field Image (HUDF), the increase in effective radius due to the JWST’s higher sensitivity, the anisotropy of dark energy, and the maximum redshift reached by the JWST. Galaxy number densities are estimated using integration over comoving volume with an integration constant calibrated with the Hubble Ultra Deep Field. A galaxy coverage percentage is calculated for each image to determine the percentage of the background occupied by galaxies.
Snowball models atmospheric loss in order to constrain an atmosphere's cumulative impact of historic X-ray and extreme ultraviolet radiation-driven mass loss. The escape model interpolates the BaSTI luminosity evolution grid to the observed mass and luminosity of the host star.
BiPoS1 (Binary Population Synthesizer) efficiently calculates binary distribution functions after the dynamical processing of a realistic population of binary stars during the first few Myr in the hosting embedded star cluster. It is particularly useful for generating a realistic birth binary population as an input for N-body simulations of globular clusters. Instead of time-consuming N-body simulations, BiPoS1 uses the stellar dynamical operator, which determines the fraction of surviving binaries depending on the binding energy of the binaries. The stellar dynamical operator depends on the initial star cluster density, as well as the time until the residual gas of the star cluster is expelled. At the time of gas expulsion, the dynamical processing of the binary population is assumed to effectively end due to the expansion of the star cluster related to that event. BiPoS1 has also a galactic-field mode, in order to synthesize the stellar population of a whole galaxy.
Healpix.jl is a Julia-only port of the C/C++/Fortran/Python HEALPix library (ascl:1107.018), which implements a hierarchical pixelization of the sphere in equal-area pixels. Much like the original library, Healpix.jl supports two enumeration schemes for the pixels (RING and NESTED) and implements an optimized computation of the generalized Fourier transform using spherical harmonics, binding libsharp2 (ascl:1402.033). In addition, Healpix.jl provides four additional features: 1.) it fully supports Windows systems, alongside the usual Linux and MAC OS X machines; 2.) it uses Julia's strong typesystem to prevent several bugs related to mismatches in map ordering (e.g., combining a RING map with a NESTED map); 3.) it uses a versatile memory layout so that map bytes can be stored in shared memory objects or on GPUs; and 4.) it implements an elegant and general way to signal missing values in maps.
OSPREI simulates the Sun-to-Earth (or satellite) behavior of CMEs. It is comprised of three separate models: ForeCAT, ANTEATR, and FIDO. ForeCAT uses the PFSS background to determine the external magnetic forces on a CME; ANTEATR takes the ForeCAT CME and propagates it to the final satellite distance, and outputs the final CME speed (both propagation and expansion), size, and shape (and their profiles with distance) as well as the arrival time and internal thermal and magnetic properties of the CME. FIDO takes the evolved CME from ANTEATR with the position and orientation from ForeCAT and passes the CME over a synthetic spacecraft. The relative location of the spacecraft within the CME determines the in situ magnetic field vector and velocity. It also calculates the Kp index from these values. OSPREI includes tools for creating figures from the results, including histograms, contour plots, and ensemble correlation plots, and new figures can be created using the results object that contains all the simulation data in an easily accessible format.
Varstar Detect uses several numerical and statistical methods to filter and interpret the data obtained from TESS. It performs an amplitude test to determine whether a star is variable and if so, provides the characteristics of each star through phenomenological analysis of the lightcurve.
Menura simulates the interaction between a fully turbulent solar wind and various bodies of the solar system using a novel two-step approach. It is an advanced numerical tool for self-consistent modeling that bridges planetary science and plasma physics. Menura is built around a hybrid Particle-In-Cell solver, treating electrons as a charge-neutralising fluid, and ions as massive particles. It solves iteratively the particles’ dynamics, gathers particle moments at the nodes of a grid, at which the magnetic field is also computed, and then solves the Maxwell equations. This solver uses the popular Current Advance Method (CAM).
BHJet models steady-state SEDs of jets launched from accreting black holes. This semi-analytical, multi-zone jet model is applicable across the entire black hole mass scale, from black hole X-ray binaries (both low and high mass) to active galactic nuclei of any class (from low-luminosity AGN to flat spectrum radio quasars). It is designed to be more comparable than other codes to GRMHD simulations and/or RMHD semi-analytical solutions.
gphist performs Bayesian inference on the cosmological expansion history using Gaussian process priors. It is written in Python and includes driver programs to run inference calculations and plot the results. The code infers the cosmological expansion history using a Gaussian process prior, reads these ouputs, and performs checks to ensure they are indeed compatible. gphist then generates a single combined output file to plot expansion history inferences.
ShapeMeasurementFisherFormalism is used to study Fisher Formalism predictions on galaxy weak lensing for LSST Dark Energy Science Collaboration. It can create predictions with user-defined parameters for one or two galaxies simulated from GalSim (ascl:1402.009).
WeakLensingDeblending provides weak lensing fast simulations and analysis for the LSST Dark Energy Science Collaboration. It is used to study the effects of overlapping sources on shear estimation, photometric redshift algorithms, and deblending algorithms. Users can run their own simulations (of LSST and other surveys) or download the galaxy catalog and simulation outputs to use with their own code.
SNEWPY uses simulated supernovae data to generate a time series of neutrino spectral fluences at Earth or the total time-integrated spectral fluence. The code can also process generated data through SNOwGLoBES (ascl:2109.019) and collate its output into the observable channels of each detector. Data from core-collapse, thermonuclear, and pair-instability supernovae simulations are included in the package.
SNOwGLoBES (SuperNova Observatories with GLoBES) computes interaction rates and distributions of observed quantities for supernova burst neutrinos in common detector materials. The code provides a very simple and fast code and data package for tests of observability of physics signatures in current and future detectors, and for evaluation of relative sensitivities of different detector configurations. The event estimates are made using available cross-sections and parameterized detector responses. Water, argon, scintillator and lead-based configurations are included. The package makes use of GLoBES (ascl:2109.018). SNOwGLoBES is not intended to replace full detector simulations; however output should be useful for many types of studies, and simulation results can be incorporated.
GLoBES simulates long baseline neutrino oscillation experiments. The package features full incorporation of correlations and degeneracies in the oscillation parameter space, advanced routines for the treatment of arbitrary systematical errors, and user-defined priors, which allowsn for the inclusion of arbitrary external physical information. Its use of AEDL, the Abstract Experiment Definition Language, provides an easy way to define experimental setups. GLoBES also provides an interface for the simulation of non-standard physics, and offers predefined setups for many experiments, including Superbeams, Beta Beams, Neutrino factories, Reactors, and various detector technologies.
HTOF parses the intermediate data from Hipparcos and Gaia and fits astrometric solutions to those data. It computes likelihoods and parameter errors in line with the catalog and can reproduce five, seven, and nine (or higher) parameter fits to their astrometry.
SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.
unpopular is an implementation of the Causal Pixel Model (CPM) de-trending method to obtain TESS Full-Frame Image (FFI) light curves. The code, written in Python, models the systematics in the light curves of individual pixels as a linear combination of light curves from many other distant pixels and removes shared flux variations. unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data.
The Hough Stream Spotter (HSS) is a stream finding code which transforms individual positions of stars to search for linear structure in discrete data sets. The code requires only the two-dimensional plane of galactic longitude and latitude as input.
WimPyDD calculates accurate predictions for the expected rates in WIMP direct–detection experiments within the framework of Galilean–invariant non–relativistic effective theory. The object–oriented customizable Python code handles different scenarios including inelastic scattering, WIMP of arbitrary spin, and a generic velocity distribution of WIMP in the Galactic halo.
STAR-MELT extracts and identifies emission lines from FITS files by matching to a compiled reference database of lines. Line profiles are fitted and quantified, allowing for calculations of physical properties across each individual observation. Temporal variations in lines can readily be displayed and quantified. STAR-MELT is also useful for different applications of spectral analysis where emission line identification is required. Standard data formats for spectra are automatically compatible, with user-defined custom formats also available. Any reference database (atomic or molecular) can also be used for line identification.
Rubble implicitly models the local evolution of dust distributions in size, mass, and surface density by solving the Smoluchowski equation (also known as the coagulation-fragmentation equation) under given disk conditions. The Python package's robustness has been validated by a suite of numerical benchmarks against known analytical and empirical results. Rubble can model prescribed physical processes such as bouncing, modulated mass transfer, regulated dust loss/supply, probabilistic collisional outcomes based on velocity distributions, and more. The package also includes a toolkit for analyzing and visualizing results produced by Rubble.
Frankenstein (frank) fits the 1D radial brightness profile of an interferometric source given a set of visibilities. It uses a Gaussian process that performs the fit in <1 minute for a typical protoplanetary disc continuum dataset. Frankenstein can perform a fit in 2 ways, by running the code directly from the terminal or using the code as a Python module.
pyFFTW is a pythonic wrapper around FFTW (ascl:1201.015), the speedy FFT library. Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft. Additionally, it supports the clongdouble dtype, which numpy.fft does not, and operating FFTW in multithreaded mode.
pyia provides tools for working with Gaia data. It accesses Gaia data columns as Quantity objects, i.e., with units (e.g., data.parallax will have units ‘milliarcsecond’) , constructs covariance matrices for Gaia data, and generates random samples from the Gaia error distribution per source. pyia can also create SkyCoord objects from Gaia data and execute simple (small) remote queries via the Gaia science archive and automatically fetch the results.
SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.
The e-MERLIN CASA Pipeline calibrates and processes data from the e-MERLIN radio interferometer. It works on top of CASA (ascl:1107.013) and can convert, concatenate, prepare, flag and calibrate raw to produce advanced calibrated products for both continuum and spectral line data. The main outputs of the data are calibration tables, calibrated data, assessment plots, preliminary images of target and calibrator sources and a summary weblog. The pipeline provides an easy, ready-to-use toolkit that delivers calibrated data in a consistent, clear, and repeatable way. A parameters file is used to control the pipeline execution, so optimization of the algorithms is straightforward and reproducible. Good quality images are usually obtained with minimum human intervention.
SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.
DviSukta calculates the Spherically Averaged Bispectrum (SABS). The code is based on an optimized direct estimation method, is written in C, and is parallelized. DviSukta starts by reading the real space gridded data and performing a 3D Fourier transform of it. Alternatively, it starts by reading the data already in Fourier space. The grid spacing, number of k1 bins, number of n bins, and number of cos(theta) bins need to be specified in the input file.
The VOLK2 (VLBI Observation for transient Localization Keen Searcher) pipeline conducts single pulse searches and localization in regular VLBI observations as well as single pulse detections from known sources in dedicated observations. In VOLKS2, the search and localization are two independent steps. The search step takes the idea of geodetic VLBI post processing, which fully utilizes the cross spectrum fringe phase information to maximize the signal power. Compared with auto spectrum based method, it is able to extract single pulses from highly RFI contaminated data. The localization uses the geodetic VLBI solving methods, which derives the single pulse location by solving a set of linear equations given the relation between the residual delay and the offset to a priori position.
alpconv calculates the alp-photon conversion by calculating the degree of irregularity of the spectrum, in contract to some other methods that fit the source's spectrum with both null and ALP models and then compare the goodness of fit between the two.
gammaALPs calculates the conversion probability between photons and axions/axion-like particles in various astrophysical magnetic fields. Though focused on environments relevant to mixing between gamma rays and ALPs, this suite, written in Python, can also be used for broader applications. The code also implements various models of astrophysical magnetic fields, which can be useful for applications beyond ALP searches.
A super lightweight interface in Python to load spectra from the Pickles 1998 (stellar) and Brown 2014 (galactic) spectral catalogues
A python package created around Eric Gendron’s code for analytically (and quickly) generating field-varying SCAO PSFs for the ELT.
A reference database for astronomical instrument and telescope characteristics for all types of visual and infrared systems. Instrument packages are used in conjunction with the ScopeSim instrument data simulator.
Templates and helper functions for creating on-sky Source description objects for the ScopeSim instrument data simulation engine.
An attempt at creating a common pythonic framework for visual and infrared telescope instrument data simulators.
SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.
iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN's ROOT team. It can be used as a general robust function minimization method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.
CMC-COSMIC models dense star clusters using Hénon's method using orbit-averaging collisional stellar dynamics. It includes all the relevant physics for modeling dense spherical star clusters, such as strong dynamical encounters, single and binary stellar evolution, central massive black holes, three-body binary formation, and relativistic dynamics, among others. CMC is parallelized using the Message Passing Interface (MPI), and is pinned to the COSMIC (ascl:2108.022) package for binary population synthesis, which itself was originally based on the version of BSE (ascl:1303.014). COSMIC is currently a submodule within CMC, ensuring that any cluster simulations or binary populations are integrated with the same physics.
COSMIC (Compact Object Synthesis and Monte Carlo Investigation Code) generates synthetic populations with an adaptive size based on how the shape of binary parameter distributions change as the number of simulated binaries increases. It implements stellar evolution using SSE (ascl:1303.015) and binary interactions using BSE (ascl:1303.014). COSMIC can also be used to simulate a single binary at a time, a list of multiple binaries, a grid of binaries, or a fixed population size as well as restart binaries at a mid point in their evolution. The code is included in CMC-COSMIC (ascl:2108.023).
ExoPlaSim extends the PlaSim (ascl:2107.019) 3D general climate model to terrestrial exoplanets. It includes the PlaSim general circulation model and modifications that allow this code to run tidally-locked planets, planets with substantially different surface pressures than Earth, planets orbiting stars with different effective temperatures, super-Earths, and more. ExoPlaSim includes the ability to compute carbon-silicate weathering, dynamic orography through the glacier module (though only accumulation and ablation/evaporation/melting are included; glacial flow and spreading are not), and storm climatology.
DBSP_DRP reduces data from the Palomar spectrograph DBSP. Built on top of PypeIt (ascl:1911.004), it automates the reduction, fluxing, telluric correction, and combining of the red and blue sides of one night's data. The pipeline also provides several GUIs for easier control of the reduction, with one for selecting which data to reduce, and verifying the correctness of FITS headers in an editable table. Another GUI manually places traces for a sort of manually "forced" spectroscopy with the -m option, and after manually placing traces, manually selects sky regions and tweaks the FWHM of the manual traces.
PIPS analyzes the lightcurves of astronomical objects whose brightness changes periodically. Originally developed to determine the periods of RR Lyrae variable stars, the code offers many features designed for variable star analysis and can obtain period values for almost any type of lightcurve with both speed and accuracy. PIPS determines periods through several different methods, analyzes the morphology of lightcurves via Fourier analysis, estimates the statistical significance of the detected signal, and determines stellar properties based on pre-existing stellar models.
Cosmic-CoNN detects cosmic rays (CR) in CCD-captured astronomical images. It offers a PyTorch deep-learning framework to train generic, robust CR detection models for ground- and space-based imaging data as well as spectroscopic observations. Cosmic-CoNN also includes a suite of tools, including console commands, a web app, and Python APIs, to make deep-learning models easily accessible.
AutoProf performs basic and advanced non-parametric galaxy image analysis. The pipeline's design allows for fast startup and easy implementation; the package offers a suite of robust default and optional tools for surface brightness profile extractions and related methods. AUTOPROF is highly extensible and can be adapted for a variety of applications, providing flexibility for exploring new ideas and supporting advanced users.
The neural network-based emulator Chemulator advances the gas temperature and chemical abundances of a single position in an astrophysical gas. It is accurate on a single timestep and stable over many iterations with decreased accuracy, though performs less well at low visual extinctions. The code is useful for applications such as large scale ISM modeling; by retraining the emulator for a given parameter space, Chemulator could also perform more specialized applications such as planetary atmosphere modeling.
ELISa models light curves of close eclipsing binaries. It models surfaces of detached, semi-detached, and over-contact binaries, generates light curves, and generates stellar spots with given longitude, latitude, radius, and temperature. It can also fit radial velocity curves and light curves via the implementation of the non-linear least squares method and also via Markov Chain Monte Carlo method.
StelNet predicts mass and age from absolute luminosity and effective temperature for stars with close to solar metallicity. It uses a Deep Neural Network trained on stellar evolutionary tracks. The underlying model makes no assumption on the evolutionary stage and includes the pre-main sequence phase. A mix of models are trained and bootstrapped to quantify the uncertainty of the model, and data is through all trained models to provide a predictive distribution from which an expectation value and uncertainty level can be estimated.
AMOEBA (Automated Molecular Excitation Bayesian line-fitting Algorithm) employs a Bayesian approach to Gaussian decomposition, resulting in an objective and statistically robust identification of individual clouds along the line-of-sight. It uses the Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler emcee (ascl:1303.002) to sample the posterior probability distribution and numerically evaluate the integrals required to compute the Bayes Factor. Amoeba takes as input a set of OH optical depth spectra and a set of expected brightness temperature spectra that are obtained by measuring the brightness temperature towards the bright background continuum source (the "on-source" observations), and in a pattern surrounding the continuum source (the "off-source" observations). Amoeba can also take as input a set of OH optical depth spectra only, and also allows input of an arbitrary number of spectra to be fit simultaneously.
The NRDD_constraints tool provides simple interpolating functions written in Python that return the most constraining limit on the dark matter-nucleon scattering cross section for a list of non-relativistic effective operators. The package contains four files: the main code, NRDD_constraints.py; a simple driver, NRDD_constraints-example.py; and two data files, NRDD_data1.npy and NRDD_data2.npy
Spectra-Without-Windows (formerly called BOSS-Without-Windows) analyzes Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data using quadratic and cubic estimators. It contains analysis codes to estimate unwindowed power spectra and unwindowed bispectra. It also supplies the raw power and bispectrum spectrum measurements of BOSS and 999 Patchy simulations, and contains a utility function to generate the background number density, n(r) from the survey mask and n(z) distribution. This code has been replaced by the newer and more powerful 3D polyspectrum code PolyBin3D (ascl:2404.006).
FIREFLY (Fitting IteRativEly For Likelihood analYsis) derives stellar population properties of stellar systems, whether observed galaxy or star cluster spectra or model spectra from simulations. The code fits combinations of single-burst stellar population models to spectroscopic data following an iterative best-fitting process controlled by the Bayesian Information Criterion without applying priors. Solutions within a statistical cut are retained with their weight, which is arbitrary. No additive or multiplicative polynomia are used to adjust the spectral shape and no regularization is imposed. This fitting freedom allows mapping of the effect of intrinsic spectral energy distribution (SED) degeneracies, such as age, metallicity, dust reddening on stellar population properties, and quantifying the effect of varying input model components on such properties.
caesar-rest is a REST-ful web service for astronomical source extraction and classification with the caesar source extractor [ascl:1807.015]. The software is developed in python and consists of containerized microservices, deployable on standalone servers or on a distributed cloud infrastructure. The core component is the REST web application, based on the Flask framework and providing APIs for managing the input data (e.g. data upload/download/removal) and source finding jobs (e.g. submit, get status, get outputs) with different job management systems (Kubernetes, Slurm, Celery). Additional services (AAI, user DB, log storage, job monitor, accounting) enable the user authentication, the storage and retrieval of user data and job information, the monitoring of submitted jobs, and the aggregation of service logs and user data/job stats.
CatBoost is a machine learning method based on gradient boosting over decision trees and can be used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. It supports both numerical and categorical features and computation on CPU and GPU, and is fast and scalable. Visualization tools are also included in CatBoost.
catwoman models asymmetric transit lightcurves. Written in Python, it calculates light curves for any radially symmetric stellar limb darkening law, and where planets are modeled as two semi-circles of different radii. Catwoman is built on the batman library (ascl:1510.002) and uses its integration algorithm.
viper (Velocity and IP EstimatoR) measures differential radial velocities from stellar spectra taken through iodine or other gas cells. It convolves the product of a stellar template and a gas cell spectrum with an instrumental profile. Via least square fitting, it optimizes the parameters of the instrumental profile, the wavelength solution, flux normalization, and the stellar Doppler shift. viper offers various functions to describe the instrumental profile such as Gaussian, super-Gaussian, skewed Gaussian or mixtures of Gaussians. The code is developed for echelle spectra; it can handle data from CES, CRIRES+, KECK, OES, TCES, and UVES, and additional instruments can easily be added. A graphical interface facilitates the work with numerous flexible options.
millennium-tap-query is a simple wrapper for the Python package requests to deal with connections to the Millennium TAP Web Client. With this tool you can perform basic or advanced queries to the Millennium Simulation database and download the data products. millennium-tap-query is similar to the TAP query tool in the German Astrophysical Virtual Observatory (GAVO) VOtables package.
WaldoInSky finds anomalous astronomical light curves and their analogs. The package contains four methods: an adaptation of the Unsupervised Random Forest for anomaly detection in light curves that operates on the light curve points and their power spectra; two manifold-learning methods (the t-SNE and UMAP) that operate on the DMDT maps (image representations of the light curves), and that can be used to find analog light curves in the low-dimensional representation; and an Isolation Forest method for evaluating approaches of light curve pre-processing, before they are passed to the anomaly detectors. WaldoInSky also contain code for random sparsification of light curves.
MAPS (Multi-frequency Angular Power Spectrum) extracts two-point statistical information from Epoch of Reionization (EoR) signals observed in three dimensions, with two directions on the sky and the wavelength (or frequency) constituting the third dimension. Rather than assume that the signal has the same statistical properties in all three directions, as the spherically averaged power spectrum (SAPS) does, MAPS does not make these assumptions, making it more natural for radio interferometric observations than SAPS.
AUM predicts galaxy abundances, their clustering, and the galaxy-galaxy lensing signal, given the halo occupation distribution of galaxies and the underlying cosmological model. In combination with the measurements of the clustering, abundance, and lensing of galaxies, these routines can be used to perform cosmological parameter inference.
This module implements an ad-hoc grism-based spectrograph optical model. It provides a flexible chromatic mapping between the input focal plane and the output detector plane, based on an effective simplified ray-tracing model of the key optical elements defining the spectrograph (collimator, prism, grating, camera), described by a restricted number of physically-motivated distortion parameters.
Generate simulated radio recombination line observations of HII regions with various internal kinematic structure. Fit single Gaussians to each pixel of the simulated observations and generate images of the fitted Gaussian center and full-width half-maximum (FWHM) linewidth.
MALU visualizes integral field spectroscopy (IFS) data such as CALIFA, MANGA, SAMI or MUSE data producing fully interactive plots. The tool is not specific to any instrument. It is available in Python and no installation is required.
The HERMES (High-Energy Radiative MESsengers) computational framework for line of sight integration creates sky maps in the HEALPix-compatibile format of various galactic radiative processes, including Faraday rotation, synchrotron and free-free radio emission, gamma-ray emission from pion-decay, bremsstrahlung and inverse-Compton. The code is written in C++ and provides numerous integrators, including dispersion measure, rotation measure, and Gamma-ray emissions from Dark Matter annihilation, among others.
Persistent_Homology_LSS analyzes halo catalogs using persistent homology to constrain cosmological parameters. It implements persistent homology on a point cloud composed of halos positions in a cubic box from N-body simulations of the universe at large scales. The output of the code are persistence diagrams and images that are used to constrain cosmological parameters from the halo catalog.
TRINITY statistically connects dark matter halos, galaxies and supermassive black holes (SMBHs) from z=0-10. Constrained by multiple galaxy (0 < z < 10) and SMBH datasets (0 < z < 6.5), the empirical model finds the posterior probability distributions of the halo-galaxy-SMBH connection and SMBH properties, all of which are allowed to evolve with redshift. TRINITY can predict many observational data, such as galaxy stellar mass functions and quasar luminosity functions, and underlying galaxy and SMBH properties, including SMBH Eddington average Eddington ratios. These predictions are made by different code files. There are basically two types of prediction codes: the first type generates observable data given input redshift or redshift invertals; the second type generates galaxy or SMBH properties as a function of host halo mass and redshift.
KeplerPORTS calculates the detection efficiency of the DR25 Kepler Pipeline. It uses a detection contour model to quantify the recoverability of transiting planet signals due to the Kepler pipeline, and accurately portrays the ability of the Kepler pipeline to generate a Threshold Crossing Event (TCE) for a given hypothetical planet.
K2mosaic stitches the postage stamp-sized pixel masks obtained by NASA's Kepler and K2 missions together into CCD-sized mosaics and movies. The command-line tool's principal use is to take a set of Target Pixel Files (TPF) and turn them into more traditional FITS image files -- one per CCD channel and per cadence. K2mosaic can also be used to create animations from these mosaics. The mosaics produced by K2mosaic also makes the analysis of certain Kepler/K2 targets, such as clusters and asteroids, easier. Moreover such mosaics are useful to reveal the context of single-star observations, e.g., they enable users to check for the presence of instrumental noise or nearby bright objects.
MCPM extracts K2 photometry in dense stellar regions; the code is a modification and extension of the K2-CPM package (ascl:2107.024), which was developed for less-crowded fields. MCPM uses the pixel response function together with accurate astrometric grids, combining signals from a few pixels, and simultaneously fits for an astrophysical model to produce extracted more precise K2 photometry.
K2-CPM captures variability while preserving transit signals in Kepler data. Working at the pixel level, the model captures very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. The target star's future and past are used and the data points are separated into training and test sets to ensure that information about any transit is perfectly isolated from the model. The method has four tuning parameters, the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, and consistently produces low-noise light curves.
cosmic_variance calculates the cosmic variance during the Epoch of Reionization (EoR) for the UV Luminosity Function (UV LF), Stellar Mass Function (SMF), and Halo Mass Function (HMF). The three functions in the package provide the output as the cosmic variance expressed in percentage. The code is written in Python, and simple examples that show how to use the functions are provided.
Kd-match matches stellar catalogs for which the transformation between the coordinate systems of the two catalogs is unknown and might include shearing. The code uses the ratio of sides as the invariant under a coordinate transformation and searches for several triangles with similar transformations by building quadrilaterals from sets of four objects in each catalog and calculating the ratio of areas of the triangles that comprise the quadrilaterals. The k-d tree accelerates this quadrilateral search dramatically and is significantly faster than the customary direct search over triangles.
The RePrimAnd library supports numerical simulations of general relativistic magnetohydrodynamics. It provides methods for recovering primitive variables such as pressure and velocity from the variables evolved in quasi-conservative formulations. Further, it provides a general framework for handling matter equations of state (EOS). Python bindings are automatically built together with the library, provided a Python3 installation containing the pybind11 package is detected. RePrimAnd also provides an (experimental) thorn that builds the library within an Einstein Toolkit (ascl:1102.014) environment using the ExternalLibraries mechanism.
Chem-I-Calc evaluates the chemical information content of resolved star spectroscopy. It takes advantage of the Fisher information matrix and the Cramér-Rao inequality to quickly calculate the Cramér-Rao lower bounds (CRLBs), which give the best theoretically achievable precision from a set of observations.
PlaSim is a climate model of intermediate complexity for Earth, Mars and other planets. It is written for a university environment, to be used to train the next GCM (general circulation model) developers, to support scientists in understanding climate processes, and to do fundamental research. In addition to an atmospheric GCM of medium complexity, PlaSim includes other compartments of the climate system such as, for example, an ocean with sea ice and a land surface with a biosphere. These other compartments are reduced to linear systems. In other words, PlaSim consists of a GCM with a linear ocean/sea-ice module formulated in terms of a mixed layer energy balance. The soil/biosphere module is introduced analoguously. Thus, working with PlaSim is like testing the performance of an atmospheric or oceanic GCM interacting with various linear processes, which parameterize the variability of the subsystems in terms of their energy (and mass) balances.
ART reconstructs log-probability distributions using Gaussian processes. It requires an existing MCMC chain or similar set of samples from a probability distribution, including the log-probabilities. Gaussian process regression is used for interpolating the log-probability for the rescontruction, allowing for easy resampling, importance sampling, marginalization, testing different samplers, investigating chain convergence, and other operations.
PyCactus contains tools for postprocessing data from numerical simulations performed with the Einstein Toolkit, based on the Cactus computational toolkit. The main package is PostCactus, which provides a high-level Python interface to the various data formats in a simulation folder. Further, the package SimRep allows the automatic creation of html reports for a simulation, and the SimVideo package allows the creation of movies visualizing simulation data.
shear-stacking calculates stacked shear profiles and tests based upon them, e.g. consistency for different slices of lensed background galaxies. The basic concept is that the lensing signal in terms of surface mass density (instead of shear) should be entirely determined by the properties of the lens sample and have no dependence on source galaxy properties.
The shapelens C++ library provides ways to load galaxies and star images from FITS files and catalogs and to analyze their morphology. The main purpose of this library is to make several weak-lensing shape estimators publicly available. All of them are based on the moments of the brightness distribution. The estimators include DEIMOS, for analytic deconvolution in moment space, DEIMOSElliptical, a practical implemention of DEIMOS with an automatically matched elliptical weight function, DEIMOSCircular, which is identical to DEIMOSElliptical but with a circular weight function, and others.
Skylens++ implements a Layer-based raytracing framework particularly well-suited for realistic simulations of weak and strong gravitational lensing. Source galaxies can be drawn from analytic models or deep space-based imaging. Lens planes can be populated with arbitrary deflectors, typically either from N-body simulations or analytic lens models. Both sources and lenses can be placed at freely configurable positions into the light cone, in effect allowing for multiple source and lens planes.
GUBAS (General Use Binary Asteroid Simulator) predicts binary asteroid system behaviors by implementing the Hou 2016 realization of the full two-body problem (F2BP). The F2BP models binary asteroid systems as two arbitrary mass distributions whose mass elements interact gravitationally and result in both gravity forces and torques. To account for these mass distributions and model the mutual gravity of the F2BP, GUBAS computes the inertia integrals of each body up to a user defined expansion order. This approach provides a recursive expression of the mutual gravity potential and represents a significant decrease in the computational burden of the F2BP when compared to other methods of representing the mutual potential.
PyROA models quasar light curves where the variability is described using a running optimal average (ROA), and parameters are sampled using Markov Chain Monte Carlo (MCMC) techniques using emcee (ascl:1303.002). Using a Bayesian approach, priors can be used on the sampled parameters. Currently it has three main uses: 1.) Determining the time delay between lightcurves at different wavelengths; 2.) Intercalibrating light curves from multiple telescopes, merging them into a single lightcurve; and 3.) Determining the time delay between images of lensed quasars, where the microlensing effects are also modeled. PyROA also includes a noise model, where there is a parameter for each light curve that adds extra variance to the flux measurments, to account for underestimated errors; this can be turned off if required. Example jupyter notebooks that demonstrate each of the three main uses of the code are provided.
AlignBandColors (ABC) aligns inter-color-band astronomical images to a 100th of a pixel accuracy using surrounding stars as guiding points. It has currently been tested with Sloan Digital Sky Survey (SDSS) Data Release 12 images, but is designed to be survey-independent. The code is part of the SpArcFiRe (ascl:2107.010) method.
SpArcFiRe takes as input an image of a galaxy in FITS, JPG, or PNG format, identifies spiral arms, and extracts structural information about the spiral arms. Pixels in each arm segment are listed, enabling image analysis on each segment. The automated method also performs a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, and location, and outputs images showing the steps SpArcFire took to detect arm segments.
The Balrog package of Python simulation code is for use with real astronomical imaging data. Objects are simulated into a survey's images and measurement software is run over the simulated objects' images. Balrog allows the user to derive the mapping between what is actually measured and the input truth. The package uses GalSim (ascl:1402.009) for all object simulations; source extraction and measurement is performed by SExtractor (ascl:1010.064). Balrog facilitates the ease of running these codes en masse over many images, automating useful GalSim and SExtractor functionality, as well as filling in many bookkeeping steps along the way.
nimbus is a hierarchical Bayesian framework to infer the intrinsic luminosity parameters of kilonovae (KNe) associated with gravitational-wave (GW) events, based purely on non-detections. This framework makes use of GW 3-D distance information and electromagnetic upper limits from a given survey for multiple events, and self-consistently accounts for finite sky-coverage and probability of astrophysical origin.
Skymapper maps astronomical survey data from the celestial sphere onto 2D using a collection of matplotlib instructions. It facilitates interactive work as well as the creation of publication-quality plots with a python-based workflow many astronomers are accustomed to. The primary motivation is a truthful representation of samples and fields from the curved sky in planar figures, which becomes relevant when sizable portions of the sky are observed.
snmachine reads in photometric supernova light curves, extracts useful features from them, and subsequently performs supervised machine learning to classify supernovae based on their light curves. This python library is also flexible enough to easily extend to general transient classification.
The C code ReionYuga generates the Epoch of Reionization (EoR) neutral Hydrogen (HI) field (successively the redshifted 21-cm signal) within a cosmological simulation box using semi-numerical techniques. The code is based on excursion set formalism and uses a three parameter model. It is designed to work with PMN-body (ascl:2107.003) and FoF-Halo-finder (ascl:2107.004).
FoF-Halo-finder identifies the location and size of collapsed objects (halos) within a cosmological simulation box. These halos are the host for the luminous objects in the Universe. Written in C, it is based on the friends-of-friends (FoF) algorithm, and is designed to work with PMN-body (ascl:2107.003).
PMN-body computes the non-linear evolution of the cosmological matter density contrast. It is based on the Particle Mesh (PM) technique. Written in C, the code is parallelized for shared-memory machines using Open Multi-Processing (OpenMP).
ROA (Running Optimal Average) describes time series data. This model uses a Gaussian window function that moves through the data giving stronger weights to points close to the center of the Gaussian. Therefore, the width of the window function, delta, controls the flexibility of the model, with a small delta providing a very flexible model. The function also calculates the effective number of parameters, as a very flexible model will correspond to large number of parameters while a rigid model (low delta) has a low effective number of parameters. Knowing the effective number of parameters can be used to optimize the window width, e.g., using the Bayesian information criterion (BIC). An error envelope, which expands appropriately where there are gaps in the data, is also calculated for the model.
light-curve implements the extraction of numerous light curve features suitable for processing alert and archival data for the current ZTF and future Vera Rubin Observatory LSST photometric surveys. These high-performance irregular time series processing tools are written in Rust and Python.
GalaXimView (for Galaxies Simulations Viewer) is a python3+matplotlib tool designed to visualise simulations which use particles, providing notably a rotatable 3D view and corresponding projections in 2D, together with a way of navigating through snapshots of a simulation keeping the same projection.
iragnsep performs IR SED fits separated into AGN and galaxy contributions, and measures host galaxy properties free of AGN contamination. The advantage of iragnsep is that, in addition to fitting observed broadband photometric fluxes, it also incorporates IR spectra in the fits which, if available, improves the robustness of the galaxy-AGN separation. For the galaxy component, iragnsep uses a library of galaxy templates. In terms of the AGN contribution, if the input dataset is a mixture of spectral and photometric data, iragnsep uses a combination of power-laws for the AGN continuum, and some broad features for the silicate emission. If instead the dataset contains photometric data alone, the AGN contribution is accounted for by using a library of AGN templates. The advanced fitting techniques used by iragnsep combined with the powerful model comparison tests allows iragnsep to provide a statistically robust interpretation of IR SEDs in terms of AGN-galaxy contributions, even when the AGN contribution is highly diluted by the host galaxy emission.
Atmos contains two atmospheric models and scripts to couple them together. One atmospheric model calculates the profiles of chemical species, including both gaseous and aerosol phases, and the second model calculates the temperature profile. Because these profiles depend on each other - kinetic reaction rates are temperature-dependent and radiative transfer is subject to radiatively active gases - atmos alternates the running of these two models until both models have solutions consistent with the other one. While either of these models can be run with time-dependence, most applications of these models are to find steady-state solutions for the atmosphere that would be stable over long (geological/astronomical) time periods, given constant inputs to the atmosphere.
ehtplot creates publication quality, elegant, and consistent plots. Written for the Event Horizon Telescope (EHT) Collaboration, it provides a set of easy-to-use plotting functions for EHT and Very-Long-Baseline Interferometry (VLBI) specific figures. This includes plotting visibility and images for both synthetic and real data, adding uv-tracks to the plots, and adding the expected event horizon size to the plots, among other functions.
PORTA solves three-dimensional non-equilibrium radiative transfer problems with massively parallel computers. The code can be used for modeling the spectral line polarization produced by the scattering of anisotropic radiation and the Hanle and Zeeman effects assuming complete frequency redistribution, either using two-level or multilevel atomic models. The numerical method of solution used to find the self-consistent values of the atomic density matrix at each point of the model’s Cartesian grid is based on Jacobi iterative scheme and on a short-characteristics formal solver of the Stokes-vector transfer equation that uses monotonic Bézier interpolation. The code can also be used to compute the linear polarization of the continuum radiation caused by Rayleigh and Thomson scattering in 3D models of stellar atmospheres, and to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems. PORTA accepts/produces HDF5 input/output and offers an advanced graphical user interface.
BiFFT uses Fourier transforms to implement the Dirac-Delta function that enforces a closed triangle of three k-vectors; this allows very fast calculations of the bispectrum. Once the C code associated with the package is compiled and the source folder directed to the location of the C code, the user can run the code using the python wrapper.The binning in each function has been tested over the course of many years and the user can use it out of the box without ever touching the underlying C code. However, the cylindrical bispectrum calculation is much more sensitive to sample variance; its default binning is quite coarse and might need adjusting (and testing) for some datasets.
CalPriorSNIa quickly computes the effective calibration prior on the absolute magnitude MB of Type Ia supernovae that corresponds to a given determination of H0.
The SNAD ZTF DR4 object viewer enables quick expert investigation of objects within the public Zwicky Transient Facility (ZTF) data releases. The viewer allows visualization of raw and folded light curves and metadata, as well as cross-match information with the General Catalog of Variable Stars, the International Variable Stars Index, the ATLAS Catalog of Variable Stars, the ZTF Catalog of Periodic Variable Stars, the Transient Name Server, the Open Astronomy Catalogs, the OGLE III Catalog of Variable Stars, the Simbad Astronomical Data Base, Gaia DR2 distances (Bailer-Jones+, 2018), and Vizier. The viewer is also available for ZTF DR2 and ZTF DR3.
ZWAD (ZTF anomaly detection pipeline) examines data and performs tailored feature extraction. The code then uses machine learning methods to searches for outliers, and identifies anomalies to be examined for validation by experts. Used with the SNAD ZTF data releases object viewer (ascl:2106.034), the infrastructure helps experts to form global views of specific scientifically interesting candidates.
DarkSirensStat statistically measures modified gravitational wave (GW) propagation and the Hubble parameter. The package implements a hierarchical Bayesian framework for constraining the Hubble parameter and modified GW propagation with dark sirens and galaxy catalogs. The package downloads the needed data; which include the GLADE galaxy catalog, O2 and O3 skymaps from the LVC official data releases, and O2 and O3 strain sensitivities. The default options are for running inference for H0 on the O3 BBH events, with flat prior between 20 and 140, mask completeness with 9 masks, interpolation between multiplicative and homogeneous completion, B-band luminosity weights, and a completeness threshold of 50%. The selection effects are computed with MC.
BiHalofit fits the matter bispectrum in the nonlinear regime calibrated by high-resolution cosmological N-body simulations of 41 cold dark matter models around the Planck 2015 best-fit parameters. The parameterization is similar to that in Halofit (ascl:1402.032). The simulation volume is sufficiently large to cover almost all measurable triangle bispectrum configurations in the universe, and the function is calibrated using one-loop perturbation theory at large scales. BiHaloFit predicts the weak-lensing bispectrum and will assist current and future weak-lensing surveys and cosmic microwave background lensing experiments.
DM_statistics calculates the free-electron power spectrum and the cosmological dispersion measure (DM) statistics (such as its mean and variance, angular power spectrum and correlation function). The default cosmological parameters are consistent with the Planck 2015 LambdaCDM model; the cosmological model can be easily changed by editing a few lines of the C code.
EMBERS provides a modular framework for radio telescopes and interferometric arrays such as the MWA, HERA, and the upcoming SKA-Low to accurately measure the all sky polarized beam responses of their antennas using weather and communication satellites. This tool enables astronomers and system engineers, all over the world, to characterize the in-situ antenna beam patterns of large arrays with ease.
FRBSTATS provides a user-friendly web interface to an open-access catalog of fast radio bursts (FRBs) published up to date, along with a highly accurate statistical overview of the observed events. The platform supports the retrieval of fundamental FRB data either directly through the FRBSTATS API, or in the form of a CSV/JSON-parsed database, while enabling the plotting of parameter distributions for a variety of visualizations. These features allow researchers to conduct more thorough population studies while narrowing down the list of astrophysical models describing the origins and emission mechanisms behind these sources. Lastly, the platform provides a visualization tool that illustrates associations between primary bursts and repeaters, complementing basic repeater information provided by the Transient Name Server.
MultiModeCode facilitates efficient Monte Carlo sampling of prior probabilities for inflationary model parameters and initial conditions and efficiently generates large sample-sets for inflation models with O(100) fields. The code numerically solves the equations of motion for the background and first-order perturbations of multi-field inflation models with canonical kinetic terms and arbitrary potentials, providing the adiabatic, isocurvature, and tensor power spectra at the end of inflation. For models with sum-separable potentials MultiModeCode also computes the slow-roll prediction via the δN formalism for easy model exploration and validation.
Katu evolves the interaction of particles (photons, protons, neutrons, leptons, pions and neutrinos) in plasma. The package comes with wrappers for emcee (ascl:1303.002) and pymultinest (ascl:1606.005) for Bayesian analysis, making the software applicable to blazars and able to extract relevant statistical information from their electromagnetic (and neutrino, if applicable) flux. The code is optimized for fast performance, and can be easily modified and extended.
ModeChord computes the primordial scalar and tensor power spectra for single field inflationary models. The code solves the inflationary mode equations numerically, avoiding the slow roll approximation. It provides an efficient and robust numerical evaluation of the inflationary perturbation spectrum, and allows the free parameters in the inflationary potential to be estimated. ModeChord also allows the estimation of reheating uncertainties once a potential has been specified.
The RedPipe collection of Python scripts performs optical photometric and spectroscopic data reduction. There are scripts on preprocessing, photometry, calibration, spectroscopy, analysis and plotting. The photometry and spectroscopy codes use pyraf (ascl:1207.011) and hence require an already existing installation of Image Reduction and Analysis Facility (IRAF, ascl:9911.002).
so_noise_models is the N(ell) noise curve projection code for the Simons Observatory. The code, written in pure Python, consists of several independent sub-modules, representing each version of the noise code. The usage of the models can vary substantially from version to version. The package also includes demo code that that demonstrates usage of the noise models, such as by producing noise curve plots, effective noise power spectra for SO LAT component-separated CMB T, E, B, and Compton-y maps, and lensing noise curves from SO LAT component-separated CMB T, E, B maps.
The 3D grid-based Monte Carlo code STaRS (Sejong Radiative Transfer through Raman and Rayleigh Scattering with atomic hydrogen) traces radiative transfer through Raman and Rayleigh scattering. This can be used to investigate line formation of Raman-scattered features in a thick neutral region illuminated by a strong far-UV emission source. Favorable conditions for Raman scattering with atomic hydrogen are easily met in symbiotic stars, young planetary nebulae, and active galactic nuclei.
aztekas solves hyperbolic partial differential equations in conservative form using High Resolution Shock-Capturing (HRSC) schemes. The code can solve the non-relativistic and relativistic hydrodynamic equations of motion (Euler equations) for a perfect fluid. The relativistic part can solve these equations on a background fixed metric, such as for Schwarzschild, Minkowski, Kerr-Schild, and others.
simple_reg_dem reconstructs differential emission measures (DEMs) in the solar corona. It overcomes issues, such as complexity, idiosyncratic output, convergence difficulty, and lack of speed, that exists in other methods. Initially written for extreme ultraviolet (EUV) data, the algorithm is notable for its simplicity, and is robust and extensible to any other wavelengths (e.g., X-rays) where the DEM treatment is valid. It is available in the SolarSoft (ascl:1208.013) package.
GLEMuR (Gpu-based Lagrangian mimEtic Magnetic Relaxation) is a finite difference Lagrangian code which uses mimetic differential operators and runs on Nvidia GPUs. Its main purpose is to study the relaxation of magnetic relaxation in environments of zero resistivity and viscosity; it preserves the magnetic flux and the topology of magnetic field lines. The use of mimetic operators for the spatial derivatives improve accuracy for high distortions of the grid, and the final state of the simulation approximates a force-free state with a significantly higher accuracy. Note, however, that GLEMuR is not a general purpose equation solver and the full magnetohydrodynamics equations are not implemented.
picca fits continua of forests, computes correlation functions (1D and 3D) and power-spectra (1D), computes covariance matrices, and fits models for the correlation functions. This set of tools is used for the analysis of the Lyman-alpha forest sample from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Dark Energy Spectroscopic Instrument (DESI).
redvsblue measures a precise redshift given a broad redshift prior. For each emission line or the full spectrum, the software runs a coarse chi2 scan as a function of redshift, using the input PCA+broadband Legendre polynomials, and finds three local minima, and does a finer chi2 scan in each minima. It then defines the global PCA redshift (ZPCA) from the best minimum of the three; ZPCA is a redshift estimator biased toward the computation of the PCA. The redshift of the line (ZLINE) is defined from the maximum of the best-fit model of the line. ZLINE is a redshift estimator un-biased toward the velocity of the line, but can be biased with respect to the cosmological redshift. The output is a FITS file, with one HDU per redshift type.
QuasarNET is a deep convolutional neural network that performs classification and redshift estimation of astrophysical spectra with human-expert accuracy. It is trained on data of low signal-to-noise and medium resolution, typical of current and future astrophysical surveys, and could be easily applied to classify spectra from current and upcoming surveys such as eBOSS, DESI and 4MOST.
The ATES hydrodynamics code computes the temperature, density, velocity and ionization fraction profiles of highly irradiated planetary atmospheres, along with the current, steady-state mass loss rate. ATES solves the one-dimensional Euler, mass and energy conservation equations in
radial coordinates through a finite-volume scheme. The hydrodynamics module is paired with a photoionization equilibrium solver that includes cooling via bremsstrahlung, recombination and collisional excitation/ionization for the case of an atmosphere of primordial composition (i.e., pure atomic hydrogen-helium), while also accounting for advection of the different ion species.
Lemon solves the radiative transfer (RT) processes that contain scattering. These processes are described by differentio-integral equations with given initial or boundary conditions; Lemon solves these differentio-integral equations, which can be converted into the second kind integral equations of Fredholm. The code then obtains the Neumman solution (a series that consists of infinite terms of multiple integrals) from the Fredholm integral equation, and uses the Monte Carlo (MC) method to evaluate these integrals. Lemon is written in Fortran; IDL programs are included for plotting the results.
The Kadath library implements spectral methods in the context of theoretical physics. It is fully parallel; a sequential version can be installed. The library is written in C++, and solves a wide variety of problems. Several coordinates systems are implemented and additional geometries can be easily encoded. Partial differential equations of various types are discretized by means of spectral methods. The resulting system is solved using a Newton-Raphson iteration, allowing KADATH to deal with strongly non-linear situations. An optimized version of Kadath is available that improves memory management (reducing the number of uses of new and delete), inlines several member functions, and provides better management of the accessors for the arrays.
StarcNet (STAR Cluster classification NETwork) classifies star clusters from galaxy images taken by the Hubble Space Telescope (HST); it uses a convolutional neural network (CNN) trained to classify five-band galaxy images into four morphological classes. Written in PyTorch, StarcNet runs using mosaics (.fits files with the galaxy photometric information) and catalogs (.tab files with object coordinates), and includes the option to also download the galaxy mosaics from a single .tar.gz file per galaxy (as from the Legacy ExtraGalactic UV Survey).
MakeCloud makes turbulent giant molecular cloud (GMC) initial conditions for GIZMO (ascl:1410.003). It generates turbulent velocity fields on the fly and stores that data in a user-specified path for efficiency. The code is flexible, allowing the user control through various parameters, including the radius of the cloud, number of gas particles, type of initial turbulent velocity (Gaussian or full), and magnetic energy as a fraction of the binding energy, among other options. With an additional file, it can also create glassy initial conditions.
The Maneage (Managing data lineage; ending pronounced like "lineage") framework produces fully reproducible computational research. It provides full control on building the necessary software environment from a low-level C compiler, the shell and LaTeX, all the way up to the high-level science software in languages such as Python without a third-party package manager. Once the software environment is built, adding analysis steps is as easy as defining "Make" rules to allow parallelized operations, and not repeating operations that do not need to be recreated. Make provides control over data provenance. A Maneage'd project also contains the narrative description of the project in LaTeX, which helps prepare the research for publication. All results from the analysis are passed into the report through LaTeX macros, allowing immediate dynamic updates to the PDF paper when any part of the analysis has changed. All information is stored in plain text and is version-controlled in Git. Maneage itself is actually a Git branch; new projects start by defining a new Git branch over it and customizing it for a new project. Through Git merging of branches, it is possible to import infrastructure updates to projects.
baofit analyzes cosmological correlation functions to estimate parameters related to baryon acoustic oscillations and redshift-space distortions. It has primarily been used to analyze Lyman-alpha forest autocorrelations and cross correlations with the quasar number density in BOSS data. Fit models are fully three-dimensional and include flexible treatments of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions.
simqso generates mock quasar spectra and photometry. Simulated quasar spectra are built from a series of components. Common quasar models are built-in, such as a broken power-law continuum model and Gaussian emission line templates; however, the code allows user-defined features to be included. Mock spectra are generated at arbitrary resolution and can be used to produce broadband photometry representative of a number of surveys.
CoMover determines the probability that two stars are co-moving and thus gravitationally bound. It uses the sky position, proper motion, parallax and optionally the heliocentric radial velocity of a host star (with their respective measurement errors), and compares it to the observables of a potential companion (with their respective measurement errors). The sky position and proper motion of the potential companion star are required, and its heliocentric radial velocity and parallax are facultative inputs to refine its co-moving probability.
If all kinematic observables of the host star are provided, a single spatial-kinematic model is built, consisting of a single 6-dimensional multivariate Gaussian in Galactic coordinates (XYZ) and space velocities (UVW). The observables of the potential companion are then compared to this model and a given field-stars model with Bayes' theorem by marginalizing over any missing kinematic observables of the companion star with analytical integral solutions. The field stars are modeled using a 10-component multivariate Gaussian, accurate for stars within a few hundred parsecs of the Sun. In the case where a heliocentric radial velocity is missing for the host star, the single host-star multivariate Gaussian model is replaced with a series of host star models and numerically marginalized over by taking the numerical sum of the host-star model probabilities.
Pyshellspec models binary systems with circumstellar matter (e.g. accretion disk, jet, shell), computes the interferometric observables |V2|, arg T3, |T3|, |dV|, and arg dV, and performs comparisons of light curves, spectro-interferometry, spectra, and SED with observations, and both global and local optimization of system parameters. The code solves the inverse problem of finding the stellar and orbital parameters of the stars and circumstellar medium. Pyshellspec is based on the long-characteristic LTE radiation transfer code Shellspec (ascl:1108.017).
Marvin searches, accesses, and visualizes data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Written in Python, it provides tools for easy efficient interaction with the MaNGA data via local files, files retrieved from the Science Archive Server, or data directly grabbed from the database. The tools come mainly in the form of convenience functions and classes for interacting with the data. Also available is a web app, Marvin-web, offers an easily accessible interface for searching the MaNGA data and visual exploration of individual MaNGA galaxies or of the entire sample, and a powerful query functionality that uses the API to query the MaNGA databases and return the search results to your python session. Marvin-API is the critical link that allows Marvin-tools and Marvin-web to interact with the databases, which enables users to harness the statistical power of the MaNGA data set.
crowdsource removes a rough sky (the median), find the brighter peaks and fits these sources, computes centroids, and then computes an improved PSF. With this model of the image, the code then iteratively subtracts it and recomputes the median to get a better sky estimate, finds fainter peaks, and calculates a better PSF. crowdsource performs at least four iterations, evaluates the results, and continues until certain thresholds are met. Once the iterative passes are complete, it makes one last pass. If no sources are detected and positions do not vary, it performs photometry for the existing list of stellar positions.
PyDoppler is a python-based wrapper for the Spruit Doppler tomography software dopmap (ascl:2106.002). PyDoppler is designed to study time-resolved spectroscopic datasets of accreting compact binaries. This code can produce a trail spectra of a dataset and create Doppler tomography maps. It is intended to be a light-weight code for single emission line datasets.
dopmap constructs Doppler maps from the orbital variation of line profiles of (mass transferring) binaries. It uses an algorithm related to Richardson-Lucy iteration and includes an IDL-based set of routines for manipulating and plotting the input and output data.
KOBE (Kepler Observes Bern Exoplanets) adds the geometrical limitations and the physical detection biases of the transit method to a given population of theoretical planets. In addition, it also adds the completeness and reliability of a transit survey.
PFITS performs data reduction of spectra, including dark removal and flat fielding; this software was a standard 1983 Reticon reduction package available at the University of Texas. It was based on the plotting program PCOSY by Gary Ferland, and in 1985 was updated by Andrew McWilliam.
Kepler's Goat Herd solves Kepler's equation using contour integration to solve the "geometric goat problem". The C++ code implements a variety of solution: 1.) Newton-Raphson: The quadratic Newton-Raphson root finder; 2.) Danby: The quartic root; 3.) Series: An elliptical series method; and 4.) Contour: A new method based on contour integration. Given an array of mean anomalies, an eccentricity and a desired precision, the code estimates the eccentric anomaly using each method. The accuracy of each approach is increased until the desired precision is reached, and timing is performed using the C++ chrono package.
The PHANGS-ALMA pipeline process data from radio interferometer observations. It uses CASA (ascl:1107.013), AstroPy (ascl:1304.002), and other affiliated packages to process data from calibrated visibilities to science-ready spectral cubes and maps. The PHANGS-ALMA pipeline offers a flexible alternative to the scriptForImaging script distributed by ALMA. The pipeline runs in two separate software environments: CASA 5.6 or 5.7 (staging, imaging and post-processing) and Python 3.6 or later (derived products) with modern versions of several packages.
RandomQuintessence integrates the Klein-Gordon and Friedmann equations for quintessence models with random initial conditions and functional forms for the potential. Quintessence models generically impose non-trivial structure on observables like the equation of state of dark energy. There are three main modules; montecarlo_nompi.py sets initial conditions, loops over a bunch of randomly-initialised models, integrates the equations, and then analyses and saves the resulting solutions for each model. Models are defined in potentials.py; each model corresponds to an object that defines the functional form of the potential, various model parameters, and functions to randomly draw those parameters. All of the equation-solving code and methods to analyze the solution are kept in solve.py under the base class DEModel(). Other files available analyze and plot the data in a variety of ways.
ClaRAN (Classifying Radio sources Automatically with Neural networks) classifies radio source morphology based upon the Faster Region-based Convolutional Neutral Network (Faster R-CNN). It is capable of associating discrete and extended components of radio sources in an automated fashion. ClaRAN demonstrates the feasibility of applying deep learning methods for cross-matching complex radio sources of multiple components with infrared maps. The promising results from ClaRAN have implications for the further development of efficient cross-wavelength source identification, matching, and morphology classifications for future radio surveys.
Pyrat Bay computes radiative-transfer spectra and fits exoplanet atmospheric properties, and is an efficient, user-friendly Python tool. The package offers transmission or emission spectra of exoplanet transit or eclipses respectively and forward-model or retrieval calculations. The radiative-transfer includes opacity sources from line-by-line molecular absorption, collision-induced absorption, Rayleigh scattering absorption, and more, including Gray aerosol opacities. Pyrat Bay's Bayesian (MCMC) posterior sampling of atmospheric parameters includes molecular abundances, temperature profile, pressure-radius, and Rayleigh and cloud properties.
CUDAHM accelerates Bayesian inference of Hierarchical Models using Markov Chain Monte Carlo by constructing a Metropolis-within-Gibbs MCMC sampler for a three-level hierarchical model, requiring the user to supply only a minimimal amount of CUDA code. CUDAHM assumes that a set of measurements are available for a sample of objects, and that these measurements are related to an unobserved set of characteristics for each object. For example, the measurements could be the spectral energy distributions of a sample of galaxies, and the unknown characteristics could be the physical quantities of the galaxies, such as mass, distance, or age. The measured spectral energy distributions depend on the unknown physical quantities, which enables one to derive their values from the measurements. The characteristics are also assumed to be independently and identically sampled from a parent population with unknown parameters (e.g., a Normal distribution with unknown mean and variance). CUDAHM enables one to simultaneously sample the values of the characteristics and the parameters of their parent population from their joint posterior probability distribution.
PyTorchDIA is a Difference Image Analysis tool. It is built around the PyTorch machine learning framework and uses automatic differentiation and (optional) GPU support to perform fast optimizations of image models. The code offers quick results and is scalable and flexible.
encore (Efficient N-point Correlator Estimation) estimates the isotropic NPCF multipoles for an arbitrary survey geometry in O(N2) time, with optional GPU support. The code features support for the isotropic 2PCF, 3PCF, 4PCF, 5PCF and 6PCF, with the option to subtract the Gaussian 4PCF contributions at the estimator level. For the 4PCF, 5PCF and 6PCF algorithms, the runtime is dominated by sorting the spherical harmonics into bins, which has complexity O(N_galaxy x N_bins3 x N_ell5) [4PCF], O(N_galaxy x N_bins4 x N_ell8) [5PCF] or O(N_galaxy x N_bins5 x N_ell11) [6PCF]. The higher-point functions are slow to compute unless N_bins and N_ell are small.
SISPO (Space Imaging Simulator for Proximity Operations) simulates trajectories, light parameters, and camera intrinsic parameters for small solar system body fly-by and terrestrial planet surface missions. The software provides realistic surface rendering and realistic dust- and gas-environment optical models for comets and active asteroids and also simulates common image aberrations such as simple geometric distortions and tangential astigmatism. SISPO uses Blender and its Cycles rendering engine, which provides physically based rendering capabilities and procedural micropolygon displacement texture generation.
orvara (Orbits from Radial Velocity, Absolute, and/or Relative Astrometry) fits orbits of bright stars and their faint companions (exoplanets, brown dwarfs, white dwarfs, and low-mass stars). It can use any combination of radial velocity, relative astrometry, and absolute astrometry data and offers a variety of plots from the orbital fit, such as the radial velocity orbit over an extended time baseline, position angle between two companions, and a density plot of the predicted position at a chosen epoch. orvara can also check convergence of fitted parameters in the HDU1 extension, save the results from the fitted and inferred parameters from the HDU1 extension, and plot the results of a three-body or multiple-body fit.
BlackBOX performs standard CCD image reduction tasks on multiple images from the BlackGEM and MeerLICHT telescopes. It uses the satdet module of ASCtools (ascl:2011.024) and Astro-SCRAPPY (ascl:1907.032). BlackBOX simultaneously uses multi-processing and multi-threading and feeds the reduced images to ZOGY (ascl:2105.010) to ultimately perform optimal image subtraction and detect transient sources.
ZOGY performs optimal image subtraction; the code is designed specifically for the MeerLICHT and BlackGEM pipelines, but should also be useful to apply to images of other telescopes. The module accepts a new and a reference FITS image, runs SExtractor (ascl:1010.064) on them, and finds their WCS solution using Astrometry.net (ascl:1208.001). ZOGY then uses PSFex (ascl:1301.001) to infer the position-dependent PSFs of the images and SWarp (ascl:1010.068) to map the reference image to the new image and performs optimal image subtraction. This produces the subtracted image, the significance image, the corrected significance image, and the PSF photometry image and associated error image. The inferred PSFs are also used to extract optimal photometry of all sources detected by SExtractor.
MeerCRAB (MeerLICHT Classification of Real and Bogus Transients using Deep Learning) filters out false detections of transients from true astrophysical sources in the transient detection pipeline of the MeerLICHT telescope. It uses a deep learning model based on Convolutional Neural Network.
MCALF (Multi-Component Atmospheric Line Fitting) accurately constrains velocity information from spectral imaging observations using machine learning techniques. It is useful for solar physicists trying to extract line-of-sight (LOS) Doppler velocity information from spectral imaging observations (Stokes I measurements) of the Sun. A toolkit is provided that can be used to define a spectral model optimized for a particular dataset. MCALF is particularly suited for extracting velocity information from spectral imaging observations where the individual spectra can contain multiple spectral components. Such multiple components are typically present when active solar phenomenon occur within an isolated region of the solar disk. Spectra within such a region will often have a large emission component superimposed on top of the underlying absorption spectral profile from the quiescent solar atmosphere.
SpheCow explores the structure and dynamics of any spherical model for galaxies and dark matter haloes. The lightweight and flexible code automatically calculates the dynamical properties, assuming an isotropic or Osipkov-Merritt anisotropic orbital structure, of any model with either an analytical density profile or an analytical surface density profile as a starting point. SpheCow contains readily usable implementations for many standard models, including the Plummer, Hernquist, NFW, Einasto, Sérsic and Nuker models. The code is easily extendable, allowing new models to be added in a straightforward way. The code is publicly available as a set of C++ routines and as a Python module.
The Sequencer reveals the main sequence in a dataset if one exists. To do so, it reorders objects within a set to produce the most elongated manifold describing their similarities which are measured in a multi-scale manner and using a collection of metrics. To be generic, it combines information from four different metrics: the Euclidean Distance, the Kullback-Leibler Divergence, the Monge-Wasserstein or Earth Mover Distance, and the Energy Distance. It considers different scales of the data by dividing each object in the input data into separate parts (chunks), and estimating pair-wise similarities between the chunks. It then aggregates the information in each of the chunks into a single estimator for each metric+scale.
COMPAS (Compact Object Mergers: Population Astrophysics & Statistics) draws properties for a binary star system from a set of initial distributions and evolves it from zero-age main sequence to the end of its life as two compact remnants. Evolution prescriptions and model parameters are easily adjustable in the software. COMPAS has been used for inference from observations of gravitational-wave mergers, Galactic neutron stars, X-ray binaries, and luminous red novae.
TesseRACt computes concentrations of simulated dark matter halos from volume information for particles generated using Voronoi tesselation. This technique is advantageous as it is non-parametric, does not assume spherical symmetry, and allows for the presence of substructure. TesseRACt accepts data in a number of formats, including Gadget-2 (ascl:0003.001), Gasoline (ascl:1710.019), and ASCII, and computes concentrations using particles volumes, traditional fitting to an NFW profile, and non-parametric techniques that assume spherical symmetry.
ATARRI is a graphical user interface for downloading TESS Full Frame Images (FFIs) and displaying properties of the lightcurves of selected objects. Preliminary analysis is performed assuming the object is an RR Lyrae variable. The raw lightcurve, a Lomb-Scargle analysis (both full and pre-whitened), and a folded lightcurve are presented to the user along with options to select the type of RR Lyrae and data quality flags for output.
PDM2 (Phase Dispersion Minimization) ddetermines periodic components of data sets with erratic time intervals, poor coverage, non-sine-wave curve shape, and/or large noise components. Essentially a least-squares fitting technique, the fit is relative to the mean curve as defined by the means of each bin; the code simultaneously obtains the best least-squares light curve and the best period. PDM2 allows an arbitrary degree of smoothing and provides improved curve fits, suppressed subharmonics, and beta function statistics.
The Black Hole Perturbation Toolkit models gravitational radiation from small mass-ratio binaries as well as from the ringdown of black holes. The former are key sources for the future space-based gravitational wave detector LISA. BHPToolkit brings together core elements of multiple scattered black hole perturbation theory codes into a Toolkit that can be used by all; different tools can be installed individually by users depending on need and interest.
Phase Dispersion Minimization (PDM) is a periodical signal detection method, and it is originally implemented by Stellingwerf with C (https://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34). With the help of Cython, Py-PDM is much faster than other Python implementations.
Posidonius is a N-body code based on the tidal model used in Mercury-T (ascl:1511.020). It uses the REBOUND (ascl:1110.016) symplectic integrator WHFast to compute the evolution of positions and velocities, which is also combined with a midpoint integrator to calculate the spin evolution in a consistent way. As Mercury-T, Posidonius takes into account tidal forces, rotational-flattening effects and general relativity corrections. It also includes different evolution models for FGKML stars and gaseous planets. The N-Body code is written in Rust; a Python package is provided to easily define simulation cases in JSON format, which is readable by the Posidonius integrator.
Lofti_gaia fits orbital parameters for one wide stellar binary relative to the other, when both objects are resolved in Gaia DR2. It takes as input only the Gaia DR2 source id of the two components, and their masses. It retrieves the relevant parameters from the Gaia archive, computes observational constraints for them, and fits orbital parameters to those measurements. It assumes the two components are bound in an elliptical orbit.
TES models the evolution of exoplanet systems. This n-body integration package comes in two parts, the C++ TES source code, and the Python-based experiment manager for running experiments and plotting the results. The experiment manager, used as the interface to TES, handles temporary data storage and allows for experiment results to be saved and then loaded later on for plotting. The experiment manager can automatically use multiple threads to run independent experiments in parallel using the mpi4py package. The experiment manager is specifically designed to enable HPC to be performed as easily as possible.
globalemu emulates the Global or sky averaged 21-cm signal and the associated neutral fraction history. The code can train a network on your own Global 21-cm signal or neutral fraction simulations using the built-in globalemu pre-processing techniques. It also features a GUI that can be invoked from the command line and used to explore how the structure of the Global 21-cm signal varies with the values of the astrophysical inputs.
linemake generates formatted and curated atomic and molecular line lists suitable for spectral synthesis work. It is lightweight and easy-to-use. The code requires that the requested beginning and ending wavelengths not bridge the divide between two files of atomic line data; in such cases, run the code twice, once on either side of the divide, to generate the desired lists.
The Skye framework develops and prototypes new EOS physics; it is not tied to a specific set of physics choices and can be extended for new effects by writing new terms in the free energy. It takes into account the effects of positrons, relativity, electron degeneracy, and non-linear mixing effects and more, and determines the point of Coulomb crystallization in a self-consistent manner. It is available in the MESA (ascl:1010.083) EOS module and as a standalone package.
SpaceHub uses unique algorithms for fast precise and accurate computations for few-body problems ranging from interacting black holes to planetary dynamics. This few-body gravity integration toolkit can treat black hole dynamics with extreme mass ratios, extreme eccentricities and very close encounters. SpaceHub offers a regularized Radau integrator with round off error control down to 64 bits floating point machine precision and can handle extremely eccentric orbits and close approaches in long-term integrations.
GAMMA models relativistic hydrodynamics and non-thermal emission on a moving mesh. It uses an arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion to avoid mesh entanglement and associated computational costs. Shock detection, particle injection and local calculation of their evolution including radiative cooling are done at runtime. The package is modular; though it was designed with GRB physics applications in mind, new solvers and geometries can be implemented easily, making GAMMA suitable for a wide range of applications.
PyBird evaluates the multipoles of the power spectrum of biased tracers in redshift space. In general, PyBird can evaluate the power spectrum of matter or biased tracers in real or redshift space. The code uses FFTLog (ascl:1512.017) to evaluate the one-loop power spectrum and the IR resummation. PyBird is designed for a fast evaluation of the power spectra, and can be easily inserted in a data analysis pipeline. It is a standalone tool whose input is the linear matter power spectrum which can be obtained from any Boltzmann code, such as CAMB (ascl:1102.026) or CLASS (ascl:1106.020). The Pybird output can be used in a likelihood code which can be part of the routine of a standard MCMC sampler. The design is modular and concise, such that parts of the code can be easily adapted to other case uses (e.g., power spectrum at two loops or bispectrum). PyBird can evaluate the power spectrum either given one set of EFT parameters, or independently of the EFT parameters. If the former option is faster, the latter is useful for subsampling or partial marginalization over the EFT parameters, or to Taylor expand around a fiducial cosmology for efficient parameter exploration.
RadioFisher is a Fisher forecasting code for cosmology with intensity maps of the redshifted 21cm emission line of neutral hydrogen. It uses CAMB (ascl:1102.026) to produce a high-resolution P(k) for the fiducial cosmology when the code is first run and caches the results, making subsequent runs faster and more efficient. It includes specifications for a large number of experiments, as well as survey parameters and the fiducial cosmological parameters, and can run a forecast for a galaxy redshift survey rather than an IM survey. RadioFisher also contains a number of options for plotting results.
cmblensplus reconstructs lensing potential, cosmic bi-refringence, and patchy reionization from cosmic microwave background anisotropies (CMB) in full and flat sky. This Fortran wrapper for Python also includes modules for delensing and bi-spectrum calculations. cmblensplus contains a module of basic routines such as analytic calculation of delensed B-mode spectrum and lensing bispectrum. Two additional main modules are for curved sky and flat sky analyses, and measure lensing, bi-refringence, patchy tau, bias-hardening, bi-spectrum, delensing and analytic reconstruction normalization. The package also contains simple Python utility and demonstration scripts. cmblensplus uses FFTW (ascl:1201.015), HEALPix (ascl:1107.018), LAPACK (ascl:2104.020), CFITSIO (ascl:1010.001), and LensPix (ascl:1102.025).
LAPACK provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision. The list of LAPACK Contributors is available online.
SpectRes efficiently resamples spectra and their associated uncertainties onto an arbitrary wavelength grid. The Python function works with any grid of wavelength values, including non-uniform sampling, and preserves the integrated flux. This may be of use for binning data to increase the signal to noise ratio, obtaining synthetic photometry, or resampling model spectra to match the sampling of observational data.
GGchem is a fast thermo-chemical equilibrium code with or without equilibrium condensation down to 100K. It can handle up to 40 elements (H, ..., Zr, and W), up to 1155 molecules, and up to 200 condensates (solids and liquids) from NIST-JANAF and SUPCRTBL. It offers a customized selection of elements, molecules, and condensates. The Fortran-90 code is very fast, and has a stable iterative solution scheme based on Newton-Raphson.
Bagpipes generates realistic model galaxy spectra and fits these to spectroscopic and photometric observations.
Skyoffset makes wide-field mosaics of FITS images. Principal features of Skyoffset are the ability to produce a mosaic with a continuous background level by solving for sky offsets that minimize the intensity differences between overlapping images, and its handling of hierarchies, making it ideal for optimizing backgrounds in large mosaics made with array cameras (such as CFHT’s MegaCam and WIRCam). Skyoffset uses MongoDB in conjunction with Mo’Astro (ascl:2104.012) to store metadata about each mosaic and SWarp (ascl:1010.068) to handle image combination and propagate uncertainty maps. Skyoffset can be integrated into Python pipelines and offers a convenient API and metadata storage in MongoDB. It was developed originally for the Andromeda Optical and Infrared Disk Survey (ANDROIDS).
dense_basis implements the Dense Basis method tailored to SED fitting, in particular, the task of recovering accurate star formation history (SFH) information from galaxy spectral energy distributions (SEDs). The code's original use-case was simultaneously fitting specific large catalogs of galaxies; it is adapted to a general purpose SED fitting code, and acts as a module to compress and decompress SFHs and other time-series.
SSSpaNG is a data-driven Gaussian Process model of the spectra of APOGEE red clump stars, whose parameters are inferred using Gibbs sampling. By pooling information between stars to infer their covariance it permits clear identification of the correlations between spectral pixels. Harnessing this correlation structure, a complete spectrum for each red clump star can be inferred, inpainting missing regions and de-noising by a factor of at least 2-3 for low-signal-to-noise stars.
pfits reads, manipulates and processes PSRFITS format search- and fold-mode pulsar astronomy data files. It summerizes the header information in a PSRFITS file, reproduces some of fv's (ascl:1205.005) functionality, and allows the user to obtain detailed information about the file. It can determine whether the data is search mode or fold mode and plot the profile, color scale image, frequency time, sum in frequency, and 4-pol data, as appropriate. pfits can also read in a search mode file, dedisperses, and frequency-sums (if requested), and offers an option to output multiple dispersed data files, among other tasks.
Mo’Astro is a MongoDB framework for observational astronomy pipelines. Mo'Astro sets up a MongoDB collection of a survey's image set, keeping FITS metadata readily available, and providing a place in the reduction pipeline to persist metadata. Mo’Astro also provides facilities for batch processing images with the Astromatic tool suite, and for hosting a local 2MASS star catalog with spatial-search built-in.
FreeTure monitors images from GigE all-sky cameras to detect and record falling stars and fireball. Originally, it was developed for the FRIPON (Fireball Recovery and InterPlanetary Observation Network) project, which sought to cover all of France with 100 fish eyes cameras, but can be used by any station that has a GigE camera.
Ulula is an ultra-lightweight 2D hydro code for teaching purposes. The code is written in pure python and is designed to be as short and easy to understand as possible, while not compromising on performance. The latter is achieved with a simple Godunov solver and by using numpy for all array operations.
Optool computes dust opacities and scattering matrices, for specific grain sizes or averaged over size distributions. It is derived from OpacityTool (ascl:2104.009) and implements the Distribution of Hollow Spheres (DHS) statistical method to approximate irregular and low porosity grains. Mie theory is available as a limiting case of DHS. It also implements the Tazaki Modified Mean Field Theory (MMF) to treat fractal and highly porous aggregates. The refractive index data for many astronomically relevant materials are compiled into the code, and external refractive index data can be used as well. A compact and intuitive command line interface makes it easy to construct complex particles on the fly. Available output formats are ASCII and FITS, including files directly readable by RADMC-3D (ascl:1202.015). A python interface to the FORTRAN program is included.
OpacityTool computes dust opacities for disc modelling; it includes a number of robust facts obtained from observations and theory and goes beyond astronomical silicates. It provides output files with κext(λ),κabs(λ),κsca(λ) as a function of wavelength λ, and the 6 scattering matrix elements for randomly oriented particles, F11(λ,θ), F12(λ,θ), F22(λ,θ), F33(λ, θ), F34(λ, θ), F44(λ, θ) as functions of wavelength and scattering angle θ.
This code is superseded by optool (ascl:2104.010).
The NASA Langley Fu-Liou radiative transfer code (also known as Ed4 LaRC Fu-Liou) computes broadband solar shortwave and thermal long wave profiles of down-welling and up-welling flux accounting for gas absorption by H2O, CO2, O3, O2, CH4, N2O and CFCs and absorption and scattering by clouds and aerosols. Longwave has options of a four-stream or 2/4 stream solver, while shortwave has options for two-stream, four-stream or Gamma weighted two-stream (GWTSA) which treats the inhomogeniety of cloud optical depth. A delta-Eddington approximation is used to treat the forward scattering peak. Water cloud properties are based on Mie calculations and ice cloud properties or the ice particle aspect ratio. Aerosol properties are given for 25 types.
EPIC5 computes positions, velocities and densities along closed orbits of interstellar matter, including frictional forces, in a galaxy with an arbitrary perturbing potential. Radial velocities are given for chosen lines of sight. These are analytic gas orbits in an arbitrary rotating galactic potential using the linear epicyclic approximation
RJObject provides a general approach to trans-dimensional Bayesian inference problems, using trans-dimensional MCMC embedded within a Nested Sampling algorithm. This allows exploration of the posterior distribution and calculattion of the marginal likelihood (summed over N) even if the problem contains a phase transition or other difficult features such as multimodality.
CTR (Coronal Temperature Reconstruction) reconstructs differential emission measures (DEMs) in the solar corona. Written in IDL, the code guarantees positivity of the recovered DEM, enforces an explicit smoothness constraint, returns a featureless (flat) solution in the absence of information, and converges quickly. The algorithm is robust and can be extended to other wavelengths where the DEM treatment is valid.
Spectractor extracts spectra from slitless spectrophotometric images and measures the atmospheric transmission on the line of sight if standard stars are targeted. It has been optimized on CTIO images but can be configured to analyze any kind of slitless data that contains the order 0 and the order 1 of a spectrum. In particular, it can be used to estimate the atmospheric transmission of the Vera Rubin Observatory site using the dedicated Auxiliary Telescope.
Hilal-Obs authenticates lunar crescent first visibility reports. The code, written in Python, uses PyEphem (ascl:1112.014) for astrometrics, and takes into account all the factors that affect lunar crescent visibility, including atmospheric extinction, observer physiology, sky and lunar brightness, contrast threshold, and the type of observation.
The HERA Librarian system keeps track of all the primary data products for the telescope at a given site. The Librarian supports large data volumes and automated data processing capabilities. A web-based application handles human user and automatic requests and interfaces with a backing database and data storage servers. The system supports the long-term data storage of all relevant telescope data, as well as staging data to individual users' directories for processing.
The hera_opm package provides a convenient and flexible framework for developing data analysis pipelines for operating on a sequence of input files. Though developed for application to the Hydrogen Epoch of Reionization Array (HERA), it is a general package that can be applied to any workflow designed to apply a series of analysis steps to any type of files. It is also portable, operating both on a diversity of computer clusters with batch submission systems and local machines.
CARTA (Cube Analysis and Rendering Tool for Astronomy) is a image visualization and analysis tool designed for the ALMA, VLA, SKA pathfinders, and the ngVLA. If offers catalog support, shared region analytics, profile smoothing, and spectral line query, and more. CARTA adopts a client-server architecture suitable for visualizing images with large file sizes (GB to TB) easily obtained from ALMA, VLA, or SKA pathfinder observations; computation and data storage are handled by remote enterprise-class servers or clusters with high performance storage, while processed products are sent to clients only for visualization with modern web features, such as GPU-accelerated rendering. This architecture also enables users to interact with the ALMA and VLA science archives by using CARTA as an interface. CARTA provides a desktop version and a server version. The former is suitable for single-user usage with a laptop, a desktop, or a remote server in the "remote" execution mode. The latter is suitable for institution-wide deployment to support multiple users with user authentication and additional server-side features.
DIAPHANE provides a common platform for application-independent radiation and neutrino transport in astrophysical simulations. The library contains radiation and neutrino transport algorithms for modeling galaxy formation, black hole formation, and planet formation, as well as supernova stellar explosions. DIAPHANE is written in C and C++, but as many hydrodynamic codes use Fortran, the library includes examples of how to interface the library from the Fortran codes SPHYNX (ascl:1709.001) and RAMSES (ascl:1011.007).
SparseBLS uses the Box-fitting Least Squares (BLS) algorithm to detect transiting exoplanets in photometric data. SparseBLS does not bin data into phase bins and does not use a phase grid. Because its detection efficiency does not depend on the transit phase, it is significantly faster than BLS for sparse data and is well-suited for large photometric surveys producing unevenly-sampled sparse light curves, such as Gaia.
astrofix is an astronomical image correction algorithm based on Gaussian Process Regression. It trains itself to apply the optimal interpolation kernel for each image, performing multiple times better than median replacement and interpolation with a fixed kernel.
Gallenspy uses the gravitational lensing effect (GLE) to reconstruct mass profiles in disc-like galaxies. The algorithm inverts the lens equation for gravitational potentials with spherical symmetry, in addition to the estimation in the position of the source, given the positions of the images produced by the lens. Gallenspy also computes critical and caustic curves and the Einstein ring.
PyPion reads in Silo (ascl:2103.025) data files from PION (ascl:2103.024) simulations and plots the data. This library works for 1D, 2D, and 3D data files and for any amount of nested-grid levels. The scripts contained in PyPion save the options entered into the command line when the python script is run, open the silo file and save all of the important header variables, open the directory in the silo (or vtk, or fits) file and save the requested variable data (eg. density, temp, etc.), and set up the plotting function and the figure.
Silo reads and writes a wide variety of scientific data to binary disk files. The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms. Consequently, Silo facilitates the development of general purpose tools for processing scientific data. One of the more popular tools that process Silo data files is the VisIt visualization tool (ascl:1103.007).
Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes, piecewise-constant (e.g., zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials. In addition, Silo supports a wide variety of other useful objects to address various scientific computing application needs. Although the Silo library is a serial library, it has features that enable it to be applied quite effectively and scalable in parallel.
PION (PhotoIonization of Nebulae) is a grid-based fluid dynamics code for hydrodynamics and magnetohydrodynamics, including a ray-tracing module for calculating the attenuation of radiation from point sources of ionizing photons. It also has a module for coupling fluid dynamics and the radiation field to microphysical processes such as heating/cooling and ionization/recombination. PION models the evolution of HII regions, photoionized bubbles that form around hot stars, and has been extended to include stellar wind sources so that both wind bubbles and photoionized bubbles can be simulated at the same time. It is versatile enough to be extended to other applications.
DRAKE (Dark matter Relic Abundance beyond Kinetic Equilibrium) predicts the dark matter relic abundance in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution.
nestle is a pure Python implementation of nested sampling algorithms for evaluating Bayesian evidence. Nested sampling integrates posterior probability in order to compare models in Bayesian statistics. It is similar to Markov Chain Monte Carlo (MCMC) in that it generates samples that can be used to estimate the posterior probability distribution. Unlike MCMC, the nature of the sampling also allows one to calculate the integral of the distribution. It is also a pretty good method for robustly finding global maxima.
Carsus manages atomic datasets. It requires Chianti (ascl:9911.004), and can read data from a variety of sources and output them to file formats readable by radiative transfer codes such as TARDIS (ascl:1402.018).
ARTIS is a 3D radiative transfer code for Type Ia supernovae using the Monte Carlo method with indivisible energy packets. It incorporates polarization and virtual packets and non-LTE physics appropriate for the nebular phase of Type Ia supernovae.
SuperNu simulates time-dependent radiation transport in local thermodynamic equilibrium with matter. It applies the methods of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for static or homologously expanding spatial grids. The radiation field affects material temperature but does not affect the motion of the fluid. SuperNu may be applied to simulate radiation transport for supernovae with ejecta velocities that are not affected by radiation momentum. The physical opacity calculation includes elements from Hydrogen up to Cobalt. SuperNu is motivated by the ongoing research into the effect of variation in the structure of progenitor star explosions on observables: the brightness and shape of light curves and the temporal evolution of the spectra. Consequently, the code may be used to post-process data from hydrodynamic simulations. SuperNu does not include any capabilities or methods that allow for non-trivial hydrodynamics.
GalacticDNSMass performs Bayesian inference on Galactic double neutron stars (DNS) to investigate their mass distribution. Each DNS is comprised of two neutron stars (NS), a recycled NS and a non-recycled (slow) NS. It compares two hypotheses: A - recycled NS and non-recycled NS follow an identical mass distribution, and B - they are drawn from two distinct populations. Within each hypothesis it also explore three possible functional models: Gaussian, two-Gaussian (mixture model), and uniform mass distributions.
CRIME (Cosmological Realizations for Intensity Mapping Experiments) generates mock realizations of intensity mapping observations of the neutral hydrogen distribution. It contains three separate tools, GetHI, ForGet, and JoinT. GetHI generates realizations of the temperature fluctuations due to the 21cm emission of neutral hydrogen. Optionally it can also generate a realization of the point-source continuum emission (for a given population) by sampling the same density distribution, though using this feature greatly affects performance. ForGet generates realizations of the different galactic and extra-galactic foregrounds relevant for intensity mapping experiments using some external datasets (e.g. the Haslam 408 MHz map) stored in the "data"folder. JoinT is provided for convenience; it joins the temperature maps generated by GetHI and ForGet and includes several instrument-dependent effects (in an overly simplistic way).
The RAiSERed (Radio AGN in Semi-analytic Environments: Redshifts) code implements the RAiSE analytic model for Fanaroff-Riley type II sources, using a Bayesian prior for their host cosmological environments, to measure the redshift of active galactic nuclei lobes based on radio-frequency observations. The Python code provides a class for the user to store measured attributes for each radio source, and to which model derived redshift probability density functions are returned. Systematic uncertainties in the analytic model can be calibrated by specifying a subset of radio sources with spectroscopic redshifts. Functions are additionally provided to plot the redshift probability density functions and assess the success of the model calibration.
LPF (Live Pulse Finder) provides real-time automated analysis of the radio image data stream at multiple frequencies. The fully automated GPU-based machine-learning backed pipeline performs source detection, association, flux measurement and physical parameter inference. At the end of the pipeline, an alert of a significant detection of a transient event can be sent out and the data saved for further investigation.
QuickCBC is a robust end-to-end low-latency Bayesian parameter estimation algorithm for binary mergers. It reads in calibrated strain data, performs robust on-source spectral estimation, executes a rapid search for compact binary coalescence (CBC) signals, uses wavelet de-noising to subtract any glitches from the search residuals, produces low-latency sky maps and initial parameter estimates, followed by full Bayesian parameter estimation.
schNell computes basic map-level noise properties for generic networks of gravitational wave interferometers, primarily the noise power spectrum "N_ell", but this lightweight python module that can also be used for, for example, antenna patterns, overlap functions, and inverse variance maps, among other tasks. The code has three main classes; detectors contain information about each individual detector of the network, such as their positions, noise properties, and orientation. NoiseCorrelations describes the noise-level correlation between pairs of detectors, and the MapCalculators class combines a list of Detectors into a network (potentially together with a NoiseCorrelation object) and computes the corresponding map-level noise properties arising from their correlations.
AstroNet-Triage contains TensorFlow models and data processing code for identifying exoplanets in astrophysical light curves; this is the triage version of two TESS neural networks. For the vetting version, see AstroNet-Vetting (ascl:2103.011). The TensorFlow code downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates new models, and generates new predictions using a trained model. Utilities that operate on light curves are provided; these reading TESS data from .h5 files, and perform phase folding, splitting, binning, and other tasks. C++ implementations of some light curve utilities are also included.
AstroNet-Vetting identifies exoplanets in astrophysical light curves. This is the vetting version of two TESS neural networks; for the triage version, see AstroNet-Triage (ascl:2103.012). The package contains TensorFlow code that downloads and pre-processes TESS data, builds different types of neural network classification models, trains and evaluates a new model, and uses a trained model to generate new predictions. It includes utilities for operating on light curves, such as for reading TESS data from .h5 files, phase folding, splitting, and binning. In addition, C++ implementations of light curve utilities are also provided.
TransitFit fits exoplanetary transit light-curves for transmission spectroscopy studies. The code uses nested sampling for efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently ("uncoupled") for each filter or combined ("coupled") using prior conditioning from the PHOENIX stellar atmosphere models. For this, TransitFit uses the Limb Darkening Toolkit (ascl:1510.003) together with filter profiles, including user-supplied filter profiles.
The cosmology code DarkEmulator calculates summary statistics of large scale structure constructed as a part of Dark Quest Project. The “dark_emulator” python package enables fast and accurate computations of halo clustering quantities. The code supports the halo mass function, halo-matter cross-correlation, and halo auto-correlation as a function of halo masses, redshift, separations and cosmological models.
The MRS (The MOS Reduction Software) suite reduces the spectra taken with the multi-object spectrograph spectra used as the focal plane instrument of RTT150 telescope in the TÜBİTAK National Observatory.
Simple program for planning and managing astronomical observations as observational diary or logs.
Pyedra performs asteroid phase curve fitting. From a simple table containing the asteroid MPC number, phase angle and reduced magnitude, Pyedra estimates the parameters of the phase function using the least squares method. The user can choose from three different models for the phase curve fit: H-G model, H-G1-G2 model and the Shevchenko model. The output in all cases is a table containing the adjusted parameters and their corresponding errors. This package allows carrying out phase function analysis for a few asteroids as well as to process large volumes of data such as those released by current large surveys.
TFF derives the Fourier decomposition of period-folded RR Lyrae light curves with gaps. The method can be used for the same purpose on any other types of variables, assuming that the the template database is changed to the proper type of variables.
Ggm contains useful utilities for Gaussian gradient filtering of astronomical FITS images. It applies the Gaussian gradient magnitude filter to an input fits image, using a particular scale, sigma, in pixels. ggm cosmetically hides point sources in fits images by filling point sources with random values from the surrounding pixel region. It also provides an interactive tool to combine FITS images filtered on different scales.
satcand applies theoretical constraints of orbital stability and tidal migration to KOI exomoon candidates. The package can evaluate the tidal migration within a Sun-Earth-Moon system, plot angular velocity over time, and calculate the migration time scale (T1) and the total migration time scale, among other things. In addition to the theoretical constraints, observational constraints can be applied.
Characterize and understandOpen Clusters(OCs) allow us to understand better properties and mechanisms about the Universe such as stellar formation and the regions where these events occur. They also provide information about stellar processes and the evolution of the galactic disk.
In this paper, we present a novel method to characterize OCs. Our method employs a model built on Artificial Neural Networks(ANNs). More specifically, we adapted a state of the art model, the Deep Embedded Clustering(DEC) model for our purpose. The developed method aims to improve classical state of the arts techniques. We improved not only in terms of computational efficiency (with lower computational requirements), but inusability (reducing the number of hyperparameters to get a good characterization of the analyzed clusters). For our experiments, we used the Gaia DR2 database as the data source, and compared our model with the clustering technique K-Means. Our method achieves good results, becoming even better (in some of the cases) than current techniques.
redshifts collects all unique spectroscopic redshifts from online databases such as VizieR and NED. It can perform a flexible search within a radius of a given set of (RA, DEC) coordinates and uses column names and descriptions (including UCD keywords) to identify columns containing spectroscopic redshifts or velocities. It weeds out photometric redshifts and duplicates and returns a unique list of best spectroscopic redshift measurements. redshifts can be used standalone from the terminal, and can take a number of optional command line arguments, or from Python.
spalipy performs detection-based astronomical image registration in Python. A source image is transformed to the pixel-coordinate system of a template image using their respective detections as tie-points by finding matching quads of detections. spalipy also includes an optional additional warping of the initial affine transformation via splines to achieve accurate registration in the case of non-homogeneous coordinate transforms. This is particularly useful in the case of optically distorted or wide field-of-view images.
hfs_fit performs parameter optimization in the analysis of emission line hyperfine structure (HFS). The code uses a simulated annealing algorithm to optimize the magnetic dipole interaction constants, electric quadrupole interaction constants, Voigt profile widths and the center of gravity wavenumber for a given emission line profile. The fit can be changed visually with sliders for parameters, which is useful when HFS constants are unknown.
21cmDeepLearning extracts the underlying matter density map from a 21 cm intensity field by making use of a convolutional neural network (CNN) with the U-Net architecture; the software is implemented in Pytorch. The astrophysical parameters of the simulations can be predicted with a secondary CNN. The simulations of matter density and 21 cm maps are performed with the code 21cmFAST (ascl:1102.023).
The synchrofit (synchrotron fitter) package implements a reduced dimensionality parameterisation of standard synchrotron spectrum models, and provides fitting routines applicable for active galactic nuclei and supernova remnants. The Python code includes the Jaffe-Parola model (JP), Kardashev-Pacholczyk model (KP), and continuous injection models (CI/KGJP) for both constant or Maxwell-Boltzmann magnetic field distributions. An adaptive maximum likelihood algorithm is invoked to fit these models to multi-frequency radio observations; the adaptive mesh is customisable for either optimal precision or computational efficiency. Functions are additionally provided to plot the fitted spectral model with its confidence interval, and to derive the spectral age of the synchrotron emitting particles.
USNO/AE98 contains ephemerides for fifteen of the largest asteroids that The Astronomical Almanac has used since its 2000 edition. These ephemerides are based on the Jet Propulsion Laboratory (JPL) planetary ephemeris DE405 and, thus, aligned to the International Celestial Reference System (ICRS). The data cover the period from 1799 November 16 (JD 2378450.5) through 2100 February 1 (JD 2488100.5). The internal uncertainty in the mean longitude at epoch, 1997 December 18, ranges from 0.05 arcseconds for 7 Iris through 0.22 arcseconds for 65 Cybele, and the uncertainty in the mean motion varies from 0.02 arcseconds per century for 4 Vesta to 0.14 arcseconds per century for 511 Davida.
The Astronomical Almanac has published ephemerides for 1 Ceres, 2 Pallas, 3 Juno, and 4 Vesta since its 1953 edition. Historically, these four asteroids have been observed more than any of the others. Ceres, Pallas, and Vesta deserve such attention because as they are the three most massive asteroids, the source of significant perturbations of the planets, the largest in linear size, and among the brightest main belt asteroids. Studying asteroids may provide clues to the origin and primordial composition of the solar system, data for modeling the chaotic dynamics of small solar system bodies, and assessments of potential collisions. Therefore, USNO/AE98 includes more than the traditional four asteroids.
The following criteria were used to select main belt asteroids for USNO/AE98:
Diameter greater than 300 km, presumably among the most massive asteroids
Excellent observing history and discovered before 1850
Largest in their taxonomic class
The massive asteroids included may be studied for their perturbing effects on the planets while those with detailed observing histories may be used to evaluate the accuracy limits of asteroid ephemerides. The fifteen asteroids that met at least one of these criteria are
1 Ceres (new mass determination)
2 Pallas (new mass determination)
3 Juno
4 Vesta (new mass determination)
6 Hebe
7 Iris
8 Flora
9 Metis
10 Hygiea
15 Eunomia
16 Psyche
52 Europa
65 Cybele
511 Davida
704 Interamnia
The refereed paper by Hilton (1999, Astron. J. 117, 1077) describes the USNO/AE98 asteroid ephemerides in detail. The associated USNO/AA Tech Note 1998-12 includes residual plots for all fifteen asteroids and a comparison between these ephemerides and those used in The Astronomical Almanac through 1999.
Software to compact, read, and interpolate the USNO/AE98 asteroid ephemerides is also available. It is written in C and designed to work with the C edition of the Naval Observatory Vector Astrometry Software (NOVAS). The programs could be used with tabular ephemerides of other asteroids as well. The associated README file provides the details of this system.
FLARE, a parallel code written in Python, generates 100,000 Fast Radio Bursts (FRB) using the Monte Carlo method. The FRB population is diverse and includes sporadic FRBs, repeaters, and periodic repeaters. However, less than 200 FRBs have been detected to date, which makes understanding the FRB population difficult. To tackle this problem, FLARE uses a Monte Carlo method to generate 100,000 realistic FRBs, which can be analyzed later on for further research. It has the capability to simulate FRB distances (based on the observed FRB distance range), energies (based on the "flaring magnetar model" of FRBs), fluences, multi-wavelength counterparts (based on x-ray to radio fluence ratio of FRB 200428), and other properties. It analyzes the resulting synthetic FRB catalog and displays the distribution of their properties. It is fast (as a result of parallel code) and requires minimal human interaction. FLARE is, therefore, able to give a broad picture of the FRB population.
GLEAM (Galaxy Line Emission and Absorption Modeling) fits Gaussian models to emission and absorption lines in large samples of 1D galaxy spectra. The code is tailored to work well without much human interaction on optical and infrared spectra in a wide range of instrument setups and signal-to-noise regimes. gleam will create a fits table with Gaussian line measurements, including central wavelength, width, height and amplitude, as well as estimates for the continuum under the line and the line flux, luminosity, equivalent width and velocity width. gleam will also, optionally, make plots of the spectrum with fitted lines overlaid.
BALRoGO (Bayesian Astrometric Likelihood Recovery of Galactic Objects) handles data from the Gaia space mission. It extracts galactic objects such as globular clusters and dwarf galaxies from data contaminated by interlopers using a combination of Bayesian and non-Bayesian approaches. It fits proper motion space, surface density, and the object center. It also provides confidence regions for the color-magnitude diagram and parallaxes.
PyAutoFit supports advanced statistical methods such as massively parallel non-linear search grid-searches, chaining together model-fits and sensitivity mapping. It is a Python-based probabilistic programming language which composes and fits models using a range of Bayesian inference libraries, such as emcee (ascl:1303.002) and dynesty (ascl:1809.013). It performs model composition and customization, outputting results, model-specific visualization and posterior analysis. Built for big-data analysis, results are output as a database which can be loaded after model-fitting is complete.
PyFstat performs F-statistic-based continuous gravitational wave (CW) searches and other CW data analysis tasks. It is built on top of the LALSuite library (ascl:2012.021), making that library's functionality more accessible through a Python interface; it also provides MCMC-based followup of promising candidates from wide-parameter-space searches.
extinction is an implementation of fast interstellar dust extinction laws in Python. It contains Cython-optimized implementations of empirical dust extinction laws found in the literature. Flux values can be reddened or dereddened using included functions, and all extinction laws accept a unit keyword to change the interpretation of the wavelength array from Angstroms to inverse microns. Part of this code originated in the specutils package (ascl:1902.012).
binaryoffset identifies the binary offset effect in images from any detector. The easiest input to work with is a dark or bias image that is spatially flat. The code can also be run on images that are not spatially flat, assuming that there is some model of the signal on the CCD that can be used to produce a residual image.
Piff models the point-spread function (PSF) across multiple detectors in the full field of view (FOV). Models can be built in chip coordinates or in sky coordinates if needed to account for the effects of astrometric distortion. The software can fit in either real or Fourier space, and can identify and excise outlier stars that are poor exemplars of the PSF according to some metric.
Multi_CLASS modifies the Boltzmann code CLASS (ascl:1106.020) to compute of the cross-tracer angular power spectra of the number count fluctuations for two different tracers of the underlying dark matter density field. In other words, it generalizes the standard nCl output option of CLASS to the case of two different tracers, for example, two different galaxy populations with their own redshift distribution, and galaxy and magnification bias parameters, among others.
Multi_CLASS also includes an implementation of the effect of primordial non-Gaussianities of the local type, parametrized by the parameter f_NL (following the large-scale structure convention), on the effective bias of the tracers. There is also the possibility of having a tilted non-Gaussian correction, parametrized by n_NG, with a pivot scale determined by k_pivot_NG. The package includes galaxy redshift distributions for forthcoming galaxy surveys, with the ease of choosing between them (or an input file) from the parameters input file (e.g., multi_explanatory.ini). In addition, Multi_CLASS includes the possibility of using resolved gravitational wave events as a tracer.
RASSINE normalizes merged 1D spectra using the concept of convex hulls. The code uses six parameters that can be fine-tuned, and provides an interactive interface, including graphical feedback, for easily choosing the parameters. RASSINE can also provide a first guess for the parameters that are derived directly from the merged 1D spectrum based on previously performed calibrations.
lensingGW simulates lensed gravitational waves in ground-based interferometers from arbitrary compact binaries and lens models. Its algorithm resolves strongly lensed images and microimages simultaneously, such as the images resulting from hundreds of microlenses embedded in galaxies and galaxy clusters. It is based on Lenstronomy (ascl:1804.012),
MOSAIC (Multipole Operators in Symbols, Automatically Improved and Condensed) automatically produces, verifies, and optimizes computer code for Fast Multipole Method (FMM) operators. It is based on a symbolic algebra library, and can produce code for any expansion order and be extended to use any basis or kernel function. The code applies algebraic modifications to reduce the number of floating-point operations and can symbolically verify correctness.
HUAYNO implements integrators derived from second order Hamiltonian splitting for N-body dynamics. This integration scheme conserves energy and momentum with little or no systematic drift. The code uses an explicit but approximate formula for the time symmetrization that is compatible with the use of individual time steps, making an iterative scheme unnecessary. HUAYNO is available as part of the AMUSE package (ascl:1107.007).
DaMaSCUS-SUN is a Monte Carlo tool simulating the process of solar reflection of dark matter (DM) particles. It provides precise estimates of the DM particle flux reflected by the Sun and passing through a direct detection experiment on Earth. One application is to compute exclusion limits for low DM masses based on nuclear and electron recoil experiments.
mirkwood uses supervised machine learning to model non-linearly mapping galaxy fluxes to their properties. Multiple models are stacked to mitigate poor performance by any individual model in a given region of the parameter space. The code accounts for uncertainties arising both from intrinsic noise in observations and from finite training data and incorrect modeling assumptions, and provides highly accurate physical properties from observations of galaxies as compared to traditional SED fitting.
OPUS (Observatoire de Paris UWS System) provides interoperable access to analysis and simulation codes on local machines or work clusters. This job control system was developed using the micro-framework bottle.py, and executes jobs asynchronously to better manage jobs with a long execution duration. The software follows the proposed IVOA Provenance Data Model to capture and expose the provenance information of jobs and results.
ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD).While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms in both speed and accuracy.
nway is a source cross-matching tool for arbitrarily many astronomical catalogs. It features Bayesian match probabilities based on astronomical sky coordinates (RA, DEC), works with arbitrarily many catalogs, and can handle varying errors. nway can also incorporate additional prior information, such as the magnitude or color distributions of the sources to match, and works accurately and fast in small areas and all-sky catalogs.
GalRotpy models the dynamical mass of disk-like galaxies and makes a parametric fit of the rotation curve by means of the composed gravitational potential of the galaxy. It can be used to check the presence of an assumed mass type component in a observed rotation curve, to determine quantitatively the main mass contribution in a galaxy by means of the mass ratios of a given set of five potentials, and to bound the contribution of each mass component given its gravitational potential parameters.
MUSE-PSFR reconstructs a PSF for the MUSE WFM-AO mode using telemetry data from SPARTA. The algorithm conducts a Fourier analysis of the laser-assisted ground layer adaptive optics (GLAO) residual phase statistics and has been test in end-to-end simulations. A sensitivity analysis was conducted to determine the required accuracy in terms of input parameters. MUSE-PSFR is capable of reconstructing the critical parameters of a PSF and can be used with MUSE 3D data by all MUSE users.
polgraw-allsky searches for almost monochromatic gravitational wave signals. This pipeline searches for continuous gravitational wave signals in time-domain data using the F-statistic on data from a network of detectors. The software generates a parameter space grid, conducts a coherent search for candidate signals in narrowband time segments, and searches for coincidences among different time segments. The pipeline also estimates the false alarm probability of coincidences and follows up on interesting outliers.
hardCORE calculates the minimum, maximum, and marginal core radius fractions (CRFmin, CRFmax, CRFmarg) for a solid exoplanet using only its mass and radius. Written in Python, the code is an efficient tool that is extremely fast to execute and perform inversions.
EqTide calculates the evolution of 2 bodies experiencing tidal evolution according to the "equilibrium tide" framework's "constant-phase-lag" and "constant-time-lag" models. The input file contains a list of options that can be set, as well as output parameters that print to a file during an integration. The example input files provide a guide for the syntax and grammar of EqTide.
CMasher provides a curated collection of scientific colormaps that are perceptually uniform sequential using the viscm package (ascl:2102.007). Most of them are color-vision deficiency friendly; they cover a wide range of different color combinations to accommodate for most applications. The package provides several alternatives to commonly used colormaps, such as chroma and rainforest for jet, sunburst for hot, neutral for binary, and fusion and redshift for coolwarm.
viscm is a Python tool for visualizing and designing colormaps using colorspacious and matplotlib.
Lightbeam simulates the 3D propagation of light through waveguides of arbitrary geometries. This code package is based off of the finite-differences beam propagation method, and employs a transverse adaptive mesh for extra computational efficiency. Also included are tools to simulate adaptive optics systems for use in conjunction with waveguides, useful in astronomical contexts for simulating coupling devices which transfer telescope light to the science instrument.
The Exoplanet Modeling and Analysis Center (EMAC) is a website which serves as a catalog, repository and integration platform for modeling and analysis resources focused on the study of exoplanet characteristics and environments. EMAC hosts user-submitted software ranging in category from planetary interior models to data visualization tools. Other features of EMAC include integrated web tools developed by the EMAC team in collaboration with the tools' original authors and video demonstrations of a growing number of hosted tools. EMAC aims to be a comprehensive repository for researchers to access a variety of exoplanet resources that can assist them in their work, and currently hosts a growing number of code bases, models, and tools. EMAC is a key project of the NASA GSFC Sellers Exoplanet Environments Collaboration (SEEC).
X-PSI simulates rotationally-modified (pulsed) surface X-ray emission from neutron stars, taking into account relativistic effects on the emitted radiation. This can then be used to perform Bayesian statistical inference on real or simulated astronomical data sets. Model parameters of interest may include neutron star mass and radius (useful to constrain the properties of ultradense nuclear matter) or the system geometry and properties of the hot emitting surface-regions. To achieve this, X-PSI couples code for likelihood functionality (simulation) with existing open-source software for posterior sampling (inference).
ThumbStack produces stacked maps and profiles, given catalogs of object positions and maps. It is designed for thermal and kinematic Sunyaev-Zel'dovich measurements. Based on Pixell (ascl:2102.003), it outputs 2D stacked maps and radial profiles for different filters (e.g., aperture photometry filters), as well as their covariances, estimated through several methods including bootstrap.
Pixell loads, manipulates, and analyzes maps stored in rectangular pixelization. It is mainly targeted for use with maps of the sky (e.g., CMB intensity and polarization maps, stacks of 21 cm intensity maps, binned galaxy positions or shear) in cylindrical projection, but its core functionality is more general. It extends numpy's ndarray to an ndmap class that associates a World Coordinate System (WCS) with a numpy array. It includes tools for Fourier transforms (through numpy or pyfft) and spherical harmonic transforms (through libsharp2 (ascl:1402.033)) of such maps and tools for visualization (through the Python Image Library).
MST (Minimum Spanning Tree) identifies velocity coherent large-scale filaments through ATLASGAL clumps. It can also isolate filaments embedded in a crowded position–position–velocity (PPV) space. One strength of this method is its repeatability compared to manual approaches.
spinOS calculates binary orbital elements. Given a set of radial velocity measurements of a spectroscopic binary and/or relative position measurement of an astrometric binary, spinOS fits an orbital model by minimizing a chi squared metric. These routines are neatly packaged in a graphical user interface, developed using tkinter, facilitating use. Minimization is achieved by default using a Levenberg-Marquardt algorithm from lmfit [ascl:1606.014]. A Markov Chain Monte Carlo option is available to sample the posterior probability distribution in order to estimate errors on the orbital elements.
Stratsi calculates stratified and vertically-shearing streaming instabilities. It solves one- and two-fluid linearized equations, and, for two-fluid models, also provides the parameters and analytic vertical structure and solves for equilibrium horizontal velocity profiles. It offers utilities and various plotting options, including plots to compare one- and two-fluid results, viscous results to inviscid results, and results from two different stokes numbers or two different metallicities. stratsi requires Dedalus (ascl:1603.015) and Eigentools (ascl:2101.017).
Eigentools is a set of tools for studying linear eigenvalue problems. The underlying eigenproblems are solved using Dedalus (ascl:1603.015), which provides a domain-specific language for partial differential equations. Eigentools extends Dedalus's EigenvalueProblem object and provides automatic rejection of unresolved eigenvalues, simple plotting of specified eigenmodes and of spectra, and computation of $\epsilon$-pseudospectra for any Differential-Algebraic Equations with user-specifiable norms. It includes tools to find critical parameters for linear stability analysis and is able to project eigenmode onto 2- or 3-D domain for visualization. It can also output projected eigenmodes as Dedalus-formatted HDF5 file to be used as initial conditions for Initial Value Problems, and provides simple plotting of drift ratios (both ordinal and nearest) to evaluate tolerance for eigenvalue rejection.
pyUPMASK is an unsupervised clustering method for stellar clusters that builds upon the original UPMASK (ascl:1504.001) package. Its general approach makes it applicable to analyses that deal with binary classes of any kind, as long as the fundamental hypotheses are met. The core of the algorithm follows the method developed in UPMASK but introducing several key enhancements that make it not only more general, they also improve its performance.
DarpanX computes reflectivity and other specular optical functions of a multilayer or single layer mirror for different energy and angles as well as to fit the XRR measurements of the mirrors. It can be used as a standalone package. It has also been implemented as a local module for XSPEC (ascl:9910.005), which is accessible through and requires PyXspec (ascl:2101.014), and can accurately fit experimentally measured X-ray reflectivity data. DarpanX is implemented as a Python 3 module and an API is provided to access the underlying algorithms.
PyXspec is an object oriented Python interface to the XSPEC (ascl:9910.005) spectral-fitting program. It provides an alternative to Tcl, the sole scripting language for standard Xspec usage. With PyXspec loaded, a user can run Xspec with Python language scripts or interactively at a Python shell prompt; everything in PyXspec is accessible by importing the package xspec into your Python script. PyXspec can be utilized in a Python script or from the command line of the plain interactive Python interpreter. PyXspec does not implement its own command handler, so it is not intended to be run as the Python equivalent of a traditional interactive XSPEC session (which is really an enhanced interactive Tcl interpreter).
Curvit produces light curves from UVIT (Ultraviolet Imaging Telescope) data. It uses the events list from the official UVIT L2 pipeline (version 6.3 onwards) as input. The makecurves function of curvit automatically detects sources from events list and creates light curves. Curvit provides source coordinates only in the instrument coordinate system. If you already have the source coordinates, the curve function of curvit can be used to create light curves. The package has several parameters that can be set by the user; some of these parameters have default values. Curvit is available on PyPI.
Octo-Tiger models mass transfer in binary systems using a Cartesian adaptive mesh refinement grid. It simulates the evolution of star systems based on a modified fast multipole method (FMM) on adaptive octrees. The code takes shock heating into account and uses the dual energy formalism with an ideal gas equation of state; it also conserves linear and angular momenta to machine precision. Octo-Tiger is implemented in C++ and is parallelized using the High Performance ParalleX (HPX) runtime system.
Nigraha identifies and evaluates planet candidates from TESS light curves. Using a combination of high signal to noise ratio (SNR) shallow transits, supervised machine learning, and detailed vetting, the neural network-based pipeline identifies planet candidates missed by prior searches. The pipeline runs in four stages. It first performs period finding using the Transit Least Squares (TLS) package and runs sector by sector to build a per-sector catalog. It then transforms the flux values in .fits lightcurve files to global/local views and write out the output in .tfRecords files, builds a model on training data, and saves a checkpoint. Finally, it loads a previously saved model to generate predictions for new sectors. Nigraha provides helper scripts to generate candidates in new sectors, thus allowing others to perform their own analyses.
The apogee package works with SDSS-III APOGEE and SDSS-IV APOGEE-2 data. It reads various data products and applies cuts, works with APOGEE bitmasks, and plots APOGEE spectra. It can generate model spectra for APOGEE spectra, and APOGEE model grids can be used to fit spectra. apogee includes some simple stacking functions and implements the effective selection function for APOGEE.
cFS is a platform and project independent reusable software framework and set of reusable applications developed by NASA Goddard Space Flight Center. There are three key aspects to the cFS architecture: a dynamic run-time environment, layered software, and a component based design, making it suitable for reuse on NASA flight projects and/or embedded software systems. This framework is used as the basis for the flight software for satellite data systems and instruments, but can also be used on other embedded systems. Modules of this package are used in NICER (Neutron star Interior Composition Explorer). The modules are available as separate downloads from SourceForge through the NASA cFS website.
EphemMatch reads in the period, epoch, positional, and other information of all the Kepler DR25 TCEs, as well as the cumulative KOI list, and lists of EBs from the Kepler Eclipsing Binary Working Group (http://keplerebs.villanova.edu) as well as several catalogs of EBs known from ground-based surveys. The code then performs matching to identify two different objects that have a statistically identical period and epoch (within some tolerance) and perform logic to identify which is the real source (the parent) and which is a false positive due to contamination from the parent (a child).
Mask galaxy is an automatic machine learning pipeline for detection, segmentation and morphological classification of galaxies. The model is based on the Mask R-CNN Deep Learning architecture. This model of instance segmentation also performs image segmentation at the pixel level, and has shown a Mean Average Precision (mAP) of 0.93 in morphological classification of spiral or elliptical galaxies.
ptemcee, pronounced "tem-cee", is fork of Daniel Foreman-Mackey's emcee (ascl:1303.002) to implement parallel tempering more robustly. As far as possible, it is designed as a drop-in replacement for emcee. It is helpful for characterizing awkward, multi-modal probability distributions.
Avocado produces classifications of arbitrary astronomical transients and variable objects. It addresses the problem of biased spectroscopic samples by generating many lightcurves from each object in the original spectroscopic sample at a variety of redshifts and with many different observing conditions. The "augmented" samples of lightcurves that are generated are much more representative of the full datasets than the original spectroscopic samples.
radiowinds calculates the radio emission produced by the winds around stars. The code calculates thermal bremsstrahlung that is emitted from the wind, which depends directly on the density and temperature of the stellar wind plasma. The program takes input data in the form of an interpolated 3d grid of points (of the stellar wind) containing position, temperature and density data. From this it calculates the thermal free-free emission expected from the wind at a range of user-defined frequencies.
whereistheplanet predicts the locations of directly imaged companions (mainly exoplanets and brown dwarfs) based on past orbital fits to the data. This tool helps coordinate follow-up observations to characterize their properties, as precise pointing of the instrument is often needed. It uses orbitize! (ascl:1910.009) as a backend. whereistheplanet is available as a Python API, a command line tool, and a web form at whereistheplanet.com.
BAYES-LOSVD performs non-parametric extraction of the Line-Of-Sight Velocity Distributions in galaxies. Written in Python, it uses Stan (ascl:1801.003) to perform all the computations and provides reliable uncertainties for all the parameters of the model chosen for the fit. The code comes with a large number of features, including read-in routines for some of the most popular IFU spectrographs and surveys, such as ATLAS3D, CALIFA, MaNGA, MUSE-WFM, SAMI, and SAURON.
In cosmological N-body simulations, higher-order Lagrangian perturbation on the initial condition affects the formation of nonlinear structure. Using this code, the initial condition generated by Zel'dovich approximation (Lagrangian linear perturbation) for Gadget-2 code to initial condition with second- or third-order Lagrangian perturbation (2LPT, 3LPT).
EinsteinPy performs General Relativity and gravitational physics tasks, including geodesics plotting for Schwarzschild, Kerr and Kerr Newman space-time models, calculation of Schwarzschild radius, and calculation of event horizon and ergosphere for Kerr space-time. It can perform symbolic manipulations of various tensors such as Metric, Riemann, Ricci and Christoffel symbols. EinsteinPy also features hypersurface embedding of Schwarzschild space-time, and includes other utilities and functions. It is a community-developed package and is written in Python.
Magritte performs 3D radiative transfer modeling; though focused on astrophysics and cosmology, the techniques can also be applied more generally. The code uses a deterministic ray-tracer with a formal solver that currently focuses on line radiative transfer. Magritte can either be used as a C++ library or as a Python package.
DRAGraces (Data Reduction and Analysis for GRACES) reduces GRACES spectra taken with the Gemini North high-resolution spectrograph. It finds GRACES frames in a given directory, determines the list of bias, flat, arc and science frames, and performs the reduction and extraction. Written in IDL, DRAGraces is straightforward and easy to use.
HCGrid maps non-uniform radio astronomy data onto a uniformly distributed grid using a convolution-based algorithm on CPU-GPU heterogeneous platforms. The package has three modules; the initialization module initializes parameters needed for the calculation process, such as setting the size of the sampling space and output resolution. The gridding module uses a parallel ordering algorithm to pre-order the sampling points based on HEALPix on the CPU platform and uses an efficient two-level lookup table to speed up the acquisition of sampling points; it then accelerates convolution by using the high parallelism of GPU and through related performance optimization strategies based on CUDA architecture to further improve the gridding performance. The third module processes the results; it visualizes the gridding and exports the final products as FITS files.
SWIGLAL, a wrapper for and component of the LALSuite (ascl:2012.021) gravitational wave detection and analysis libraries, which are primarily written in C, makes LALSuite routines directly accessible to Python and Octave scripts.
LALSuite contains numerous gravitational wave analysis libraries. Written primarily in C, the libraries include math and signal analysis packages such as for vector manipulation, FFT, statistics, time-domain filtering, and numerical and signal injection routines. The libraries also include date and time and datatype factory routines, in addition to general and support tools and a variety of Python packages. Also included are packages for gravitational waveform and noise generation, burst gravitational wave data analysis, inspiral and ringdown CBC gravitational wave data analysis, pulsar and continuous wave gravitational wave data analysis, and Bayesian inference data analysis. Various wrappers and other tools are also included.
BlackHawk calculates the Hawking evaporation spectra of any black hole distribution. Written in C, the program enables users to compute the primary and secondary spectra of stable or long-lived particles generated by Hawking radiation of the distribution of black holes, and to study their evolution in time.
PyXel models astronomical X-ray imaging data; it provides a common set of image analysis tools for astronomers working with extended X-ray sources. PyXel can model surface brightness profiles from X-ray satellites using a variety of models and statistics. PyXel can, for example, fit a broken power-law model to a surface brightness profile, and fit a constant to the sky background level in the direction of the merging galaxy cluster.
SimCADO simulates observations with any NIR/Vis imaging system. Though the package was originally designed to simulate images for the European Extremely Large Telescope (ELT) and MICADO, with the proper input, it is capable of simulating observations from many different telescope and instrument configurations.
SLIT (Sparse Lens Inversion Technique) provides a method for inversion of lensed images in the frame of strong gravitational lensing. The code requires the input image along with lens mass profile and a PSF. The user then has to chose a maximum number of iterations after which the algorithm will stop if not converged and a image size ratio to the input image to set the resolution of the reconstructed source. Results are displayed in pyplot windows.
Pomegranate builds probabilistic models in Python that is implemented in Cython for speed. The code merges the easy-to-use API of scikit-learn with the modularity of probabilistic modeling, including general mixture and hidden Markov models and Bayesian networks, to allow users to specify complicated models without the need to be concerned about implementation details. The models are built from the ground up and natively support features such as multi-threaded parallelism and out-of-core processing.
Seaborn provides a high-level interface for drawing attractive statistical graphics. Written in Python, it builds on matplotlib and integrates closely with pandas data structures. Its plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots. Its dataset-oriented, declarative API allows the user to focus on what the different elements of the plots mean, rather than on the details of how to draw them.
Dolphin uniformly models large lens samples. It is a wrapper for Lenstronomy (ascl:1804.012), and features semi-automated modeling of a large sample of quasar and galaxy-galaxy lenses. Dolphin, written in Python, provides easy portability between local and MPI environments.
sedop is a Monte-Carlo minimization code designed to optimally construct spectral energy distributions (SEDs) for sources of ultraviolet and X-ray radiation employed in numerical simulations of reionization and radiative feedback.
TRAN_K2 searches for periodic transits in the photometric time series of the Kepler K2 mission. The search is made by considering stellar variability and instrumental systematics. TRAN_K2 is written in Fortran 77 and has a single input parameter file that can be edited by the user depending on the type of run and parameter ranges to be used.
Skye detects a statistically significant excess clustering of transit times, indicating that there are likely systematics at specific times that cause many false positive detections, for the Kepler DR25 planet candidate catalog. The technique could be used for any survey looking to statistically cull false alarms.
MADLens produces non-Gaussian cosmic shear maps at arbitrary source redshifts. A MADLens simulation with only 256^3 particles produces convergence maps whose power agree with theoretical lensing power spectra up to scales of L=10000. The code is based on a highly parallelizable particle-mesh algorithm and employs a sub-evolution scheme in the lensing projection and a machine-learning inspired sharpening step to achieve these high accuracies.
HydroCode1D is a 1D finite volume code that can run any problem with 1D or 2D/3D spherical symmetry including external gravity or self-gravity. The program provides, depending on the configuration, output files that contain the midpoint position, density, velocity and pressure for each cell in the grid (in SI units). The program will by default use all available threads (as given by the environment variable OMP_NUM_THREADS). This can be overwritten by giving the desired number of threads as a command line argument to the program.
LIFELINE (LIne proFiles in massivE coLliding wInd biNariEs) simulates the X-ray lines profile in colliding wind binaries. The code is self-consistent and computes the distribution of the wind velocity, the characterization of the wind shock region, and the line profile. In addition to perform the overall computation, LIFELINE can use a pre-computed velocity distribution to compute the shock characteristics and the line profile, or use pre-computed shock characteristics and velocity distributions to compute only the line profile.
EOS is an analytical equation of state which models high pressure theory and fits well to the experimental data of ∊-Fe, SiO2, Mg2SiO4, and the Earth. The cold part of the EOS is modeled after the Varpoly EOS. The thermal part is based on a new formalism of the Gruneisen parameter, which improves behavior from earlier models and bridges the gap between elasticity and thermoelasticity. The EOS includes an expanded state model, which allows for the accurate modeling of material vapor curves.
The DR25 Kepler Robovetter is a robotic decision-making code that dispositions each Threshold Crossing Event (TCE) from the final processing (DR 25) of the Kepler data into Planet Candidates (PCs) and False Positives (FPs). The Robovetter provides four major flags to designate each FP TCE as Not Transit-Like (NTL), a Stellar Eclipse (SS), a Centroid Offset (CO), and/or an Ephemeris Match (EM). It produces a score ranging from 0.0 to 1.0 that indicates the Robovetter's disposition confidence, where 1.0 indicates strong confidence in PC, and 0.0 indicates strong confidence in FP. Finally, the Robovetter provides comments in a text string that indicate the specific tests each FP TCE fails and provides supplemental information on all TCEs as necessary.
MLC_EPGs classifies intermediate redshift (z = 0.3–0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGN), or low-ionization nuclear emission regions (LINERs). It uses four supervised machine learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multi-layer perceptron (MLP) neural network. For input features, it uses properties that can be measured from optical galaxy spectra out to z < 0.8—[O III]/Hβ, [O II]/Hβ, [O III] line width, and stellar velocity dispersion—and four colors (u−g, g−r, r−i, and i−z) corrected to z = 0.1.
Given a series of radial velocities as a function of time for a star in a binary system, BinaryStarSolver solves for various orbital parameters. Namely, it solves for eccentricity (e), argument of periastron (ω), velocity amplitude (K), long term average radial velocity (γ), and orbital period (P). If the orbital parameters of a primary star are already known, it can also find the orbital parameters of a companion star, with only a few radial velocity data points.
Sengi enables online viewing of the spectral outputs of stellar population synthesis (SPS) codes. Typical SPS codes require significant disk space or computing resources to produce spectra for simple stellar populations with arbitrary parameters, making it difficult to present their results in an interactive, web-friendly format. Sengi uses Non-negative Matrix Factorisation (NMF) and bilinear interpolation to estimate output spectra for arbitrary values of stellar age and metallicity; this reduces the disk requirements and computational expense, allowing Sengi to serve the results in a client-based Javascript application.
The NOIRLab Source Catalog Generator generates the NOIRLab Source Catalog (NSC), a catalog of all publicly available imagining data in the NOIRLab Astro Data Archive. The second data release (DR2) of the archive contains over 3.9 billion unique objects, 68 billion individual source measurements, covers 35,000 square degrees of the sky, has depths of 23rd magnitude in most broadband filters with 1-2% photometric precision, and astrometric accuracy of 7 mas. NSCG is written in Python and IDL. Three main steps generate the NSC: (1) Source Extractor (ascl:1010.064) is used to detect and measure sources in individual images; (2) astrometrics are calibrated with Gaia DR2 and photometric calibration using large public photometric catalogs such as Pan-STARRS1 and ATLAS-Refcat2; and, (3) measurements are clustered into unique objects, averaging photometric and morphological properties, and calculating proper motions and photometric variability indices.
getsf extracts sources and filaments in astronomical images by separating their structural components, and is designed to handle multi-wavelength sets of images and very complex filamentary backgrounds. The method spatially decomposes the original images and separates the structural components of sources and filaments from each other and from their backgrounds, flattening their resulting images. It spatially decomposes the flattened components, combines them over wavelengths, and detects the positions of sources and skeletons of filaments. Finally, getsf measures the detected sources and filaments and creates the output catalogs and images. This universal and fully automated method has a single user-definable free parameter, which reduces to a minimum dependence of its results on the human factor.
ExoPix is a collection of tutorials aimed at illustrating the imaging of exoplanets with the James Webb Space Telescope (JWST). ExoPix tutorials are meant to demonstrate the application of the PSF-subtraction algorithm pyKLIP (ascl:1506.001) to simulated JWST NIRCAM data. We provide simple walkthroughs of pyKLIP’s ability to reveal exoplanets, compute contrast curves, and measure exoplanet astrometry and photometry in imaged extrasolar systems.
DDCalc performs various dark matter direct detection calculations, including signal rate predictions, constraints on light DM, and likelihoods for several experiments. It offers eighteen non-relativistic effective operators to describe velocity and momentum transfer, and elastic scattering of DM particles off nucleons, and has an extended detector interface.
DarkBit computes dark matter constraints on extensions to the Standard Model of particle physics. Written in the GAMBIT (ascl:1708.030) framework, it seamlessly integrates with other tools in the statistical fitting framework; it is also available as a standalone tool. It offers a signal yield calculator for gamma-ray observations, provides likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes, and provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states.
CWITools analyzes integral field spectroscopy data from the Palomar and Keck Cosmic Web Imagers, and can be adapted for any three-dimensional integral field spectroscopy data. The package is modular, allowing users to construct data analysis pipelines to suit their own scientific needs, and includes tools for reducing data cubes, extracting a target signal, making emission maps, spectra, and other products. It also fits emission line and radial profiles and obtains final scalar quantities such as size and luminosity, among other tasks. It also contains helper functions that can, for example, obtain the wavelength axis from a 3D header, and create an auto-populated list of nebular emission lines or sky lines.
Kiauhoku interacts with, manipulates, and interpolates between stellar evolutionary tracks in a model grid. It was built for interacting with YREC models, but other stellar evolution model grids, including MIST, Dartmouth, and GARSTEC, are also available.
DeepShadows uses a convolutional neural networks (CNNs) to separate low-surface-brightness galaxies (LSBGs) from artifacts (such as Galactic cirrus and star-forming regions) in survey images. The model is trained and tested on labeled LSBGs and artifacts from the Dark Energy Survey and demonstrates that CNNs offer a promising path in the quest to study the low-surface-brightness universe.
PNICER estimates extinction for individual sources and creates extinction maps using unsupervised machine learning algorithms. Extinction towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field observations. PNICER also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps including the NICEST correction for cloud substructure.
The ACStools package contains Python tools to work with data from the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The package has several calibration utilities and a zeropoints calculator, can detect satellite trails, and offers destriping, polarization, and photometric tools.
reproject implements image reprojection (resampling) methods for astronomical images using various techniques via a uniform interface. Reprojection re-grids images from one world coordinate system to another (for example changing the pixel resolution, orientation, coordinate system). reproject works on celestial images by interpolation, as well as by finding the exact overlap between pixels on the celestial sphere. It can also reproject to/from HEALPIX projections by relying on the astropy-healpix package.
GPCAL performs instrumental polarization calibration in very long baseline interferometry (VLBI) data. It enhances the calibration accuracy by enabling users to fit the model to multiple calibrators data simultaneously and to take into account the calibrators linear polarization structures instead of using the conventional similarity assumption. GPCAL is based on AIPS (ascl:9911.003) and uses ParselTongue (ascl:1208.020) to run AIPS tasks.
HSTCosmicrays finds and characterizes cosmic rays found in dark frames (exposures taken with the shutter closed) taken with instruments on the Hubble Space Telescope (HST). Dark exposures are obtained routinely by all the Hubble Space Telescope instruments for calibration. The main processing pipeline runs locally or in the cloud on AWS utilizing the HST Public Dataset.
REBOUNDx incorporates additional physics into REBOUND (ascl:1110.016) simulations. Users can add effects from a list of pre-implemented astrophysical forces or contribute new ones. The main code is written in C, and a Python wrapper is provided for interfacing with other libraries. The REBOUNDx source code is machine independent and a binary format to save REBOUNDx configurations interfaces with the SimulationArchive class in REBOUND, making it possible to share and reproduce results bit by bit.
SCINTOOLS (SCINtillation TOOLS) simulates and analyzes pulsar scintillation data. The code can be used for processing observed dynamic spectra, computing secondary spectra and ACFs, measuring scintillation arcs, simulating dynamic spectra, and modeling pulsar transverse velocities through scintillation arcs or diffractive timescales.
Clustering is a modified version of the single-pulse sifting algorithm RRATrap (ascl:2011.017) combined with DBSCAN codes to cluster single pulse events.
RRATtrap is a single-pulse sifting algorithm to identify Rotating Radio Transients (RRATs) and transients using output from the PRESTO (ascl:1107.017) routine single_pulse_search.py. It can be integrated into pulsar survey data analysis pipelines and, in addition to finding RRATs, it can also identify Fast Radio Bursts.
GoFish exploits the known rotation of a protoplanetary disk to shift all emission to a common line center in order to stack them, increasing the signal-to-noise of the spectrum, detecting weaker lines, or super-sampling the spectrum to better resolve the line profile.
EvapMass predicts the minimum masses of planets in multi-planet systems using the photoevaporation-driven evolution model. The planetary system requires both a planet above and below the radius gap to be useful for this test. EvapMass includes an example Jupyter notebook for the Kepler-36 system. EvalMass can be used to identify TESS systems that warrant radial-velocity follow-up to further test the photoevaporation model.
SEDkit constructs and analyzes simple spectral energy distributions (SED). This collection of pure Python modules creates individual SEDs or SED catalogs from spectra and/or photometry and calculates fundamental parameters (fbol, Mbol, Lbol, Teff, mass, log(g)).
Tidally Locked Coordinates converts global climate model (GCM) output from standard/Earth-like coordinates into a tidally locked coordinate system. The transformations in Tidally Locked Coordinates are useful for plotting and analyzing GCM simulations of slowly rotating tidally locked planets such as Earth-like planets inside the habitable zone of small stars. They can be used to leverage the fact that a slowly rotating planet's climate will start to look approximately symmetric about the axis of insolation.
wobble analyzes time-series spectra. It was designed with stabilized extreme precision radial velocity (EPRV) spectrographs in mind, but is highly flexible and extensible to a variety of applications. It takes a data-driven approach to deriving radial velocities and requires no a priori knowledge of the stellar spectrum or telluric features.
frbcat queries and downloads Fast Radio Burst (FRB) data from the FRBCAT Catalogue web page, the CHIME-REPEATERS web page and the Transient Name Server (TNS). It is written in Python and can be installed using pip.
The Accelerated Reionization Era Simulations (ARES) code rapidly generates models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or global radiation background calculator.
HaloGen computes all auto and cross spectra and halo model trispectrum in simple configurations. This modular halo model code computes 3d power spectra, and the corresponding projected 2d power spectra in the Limber and flat sky approximations. The observables include matter density, galaxy lensing, CMB lensing, thermal Sunyaev-Zel'dovich, cosmic infrared background, tracers with any dn/dz, b(z) and HOD.
GOTHIC (Graph-bOosTed iterated HIll Climbing) detects whether a given image of a galaxy has characteristic features of a double nuclei galaxy (DNG). Galaxy interactions and mergers play a crucial role in the hierarchical growth of structure in the universe; galaxy mergers can lead to the formation of elliptical galaxies and larger disk galaxies, as well as drive galaxy evolution through star formation and nuclear activity. During mergers, the nuclei of the individual galaxies come closer and finally form a double nuclei galaxy. Although mergers are common, the detection of double-nuclei galaxies (DNGs) is rare and fairly serendipitous. Their properties can help us understand the formation of supermassive black hole (SMBH) binaries, dual active galactic nuclei (DAGN) and the associated feedback effects. GOTHIC provides an automatic and systematic way to survey data for the discovery of double nuclei galaxies.
DYNAMITE (DYnamics, Age and Metallicity Indicators Tracing Evolution) is a triaxial dynamical modeling code for stellar systems and is based on existing codes for Schwarzschild modeling in triaxial systems. DYNAMITE provides an easy-to-use object oriented Python wrapper that extends the scope of pre-existing triaxial Schwarzschild codes with a number of new features, including discrete kinematics, more flexible descriptions of line-of-sight velocity distributions, and modeling of stellar population information. It also offers more efficient steps through parameter space, and can use GPU acceleration.
tlpipe processes the drift scan survey data from the Tianlai experiment; the Tainlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. tlpipe performs offline data processing tasks such as radio frequency interference (RFI) flagging, array calibration, binning, and map-making, in addition to other tasks. It includes utility functions needed for the data analysis, such as data selection, transformation, visualization and others. tlpipe implements a number of new algorithms are implemented, including the eigenvector decomposition method for array calibration and the Tikhnov regularization for m-mode analysis.
DarkCapPy calculates rates associated with dark matter capture in the Earth, annihilation into light mediators, and observable decay of the light mediators near the surface of the Earth. This Python/Jupyter package can calculate the Sommerfeld enhancement at the center of the Earth and the timescale for capture-annihilation equilibrium, and can be modified for other compact astronomical objects and mediator spins.
MCMCDiagnostics contains two diagnostics, written in Julia, for Markov Chain Monte Carlo. The first is potential_scale_reduction(chains...), which estimates the potential scale reduction factor, also known as Rhat, for multiple scalar chains . The second, effective_sample_size(chain), calculates the effective sample size for scalar chains. These diagnostics are intended as building blocks for use by other libraries.
Kalkayotl obtains samples of the joint posterior distribution of cluster parameters and distances to the cluster stars from Gaia parallaxes using Bayesian inference. The code is designed to deal with the parallax spatial correlations of Gaia data, and can accommodate different values of parallax zero point and spatial correlation functions.
CAPTURE (CAsa Pipeline-cum-Toolkit for Upgraded Giant Metrewave Radio Telescope data REduction) produces continuum images from radio interferometric data. Written in Python, it uses CASA (ascl:1107.013) tasks to analyze data obtained by the GMRT. It can produce self-calibrated images in a fully automatic mode or can run in steps to allow the data to be inspected throughout processing.
AdaMet (Adaptive Metropolis) performs efficient Bayesian analysis. The user-friendly Python package is an implementation of the Adaptive Metropolis algorithm. In many real-world applications, it is more efficient and robust than emcee (ascl:1303.002), which warm-up phase scales linearly with the number of walkers. For this reason, and because of its didactic value, the AdaMet code is provided as an alternative.
relxill self-consistently connects an angle-dependent reflection model constructed with XILLVER with the relativistic blurring code RELLINE (ascl:1505.021). It calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account.
Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.
Legolas (Large Eigensystem Generator for One-dimensional pLASmas) is a finite element code for MHD spectroscopy of 1D Cartesian/cylindrical equilibria with flow that balance pressure gradients, enriched with various non-adiabatic effects. The code's capabilities range from full spectrum calculations to eigenfunctions of specific modes to full-on parametric studies of various equilibrium configurations in different geometries.
Astronomaly actively detects anomalies in astronomical data. A python back-end runs anomaly detection based on machine learning; a JavaScript front-end provides data viewing and labeling. The package works on many common astronomy data types, including one-dimensional data and images, and offering extendable techniques for preprocessing, feature extraction, and machine learning.
ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) predicts the dynamical properties of galaxies using the projected phase-space information. Written in R, it offers a choice of machine learning methods to classify the dynamical properties of galaxies. An interface for online use of the software is available at https://mdelosrios.shinyapps.io/roger_shiny/.
lenspyx creates curved-sky python lensed CMB maps simulations; the software allows those familiar with healpy (ascl:2008.022) to build very easily lensed CMB simulations. Parallelization is done with openmp. The numerical cost is approximately that of an high-res harmonic transform. lenspyx provides two methods to build a simulation; one method computes a deflected spin-0 healpix map from its alm and deflection field alm, and the other computes a deflected spin-weight Healpix map from its gradient and curl modes and deflection field alm. lenspyx can be used in conjunction with the Planck 2018 CMB lensing pipeline plancklens (ascl:2010.009) to reproduce the published map and band-powers.
plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).
The Exoplanet Detection Map Calculator (Exo-DMC) performs statistical analysis of exoplanet surveys results using Monte Carlo methods. Written in Python, it is the latest rendition of the MESS (Multi-purpose Exoplanet Simulation System, ascl:1111.009). Exo-DMC combines the information on the target stars with instrument detection limits to estimate the probability of detection of companions within a user defined range of masses and physical separations, ultimately generating detection probability maps. The software allows for a high level of flexibility in terms of possible assumptions on the synthetic planet population to be used for the determination of the detection probability.
stella creates and trains a neural network to identify stellar flares. Within stella, users can simulate flares as a training set, run a neural network, and feed in their own data to the neural network model. The software returns a probability at each data point as to whether that data point is part of a flare; the code can also characterize the flares identified.
LaSSI produces forecasts for the LSST 3x2 point functions analysis, or the LSSTxCMB S4 and LSSTxSO 6x2 point functions analyses using a Fisher matrix. It computes the auto and cross correlations of galaxy number density, galaxy shear and CMB lensing convergence. The software includes the effect of Gaussian and outlier photo-z errors, shear multiplicative bias, linear galaxy bias, and extensions to ΛCDM.
GRAPUS (GRAvitational instability PopUlation Synthesis) executes population synthesis modeling of self-gravitating disc fragmentation and tidal downsizing in protostellar discs. It reads in pre-run 1D viscous disc models of self-gravitating discs and computes where fragmentation will occur and the initial fragment mass. GRAPUS then allows these fragment embryos to evolve under various forces, including quasistatic collapse of the embryo, growth and sedimentation of the dust inside the embryo, and the formation of solid cores. The software also evolves migration due to embryo-disc interactions and tidal disruption of the embryo, and can optionally determine gravitational interactions with neighboring embryos.
TACHE (TensoriAl Classification of Hydrodynamic Elements) performs classification of the eigenvalues of either the tidal tensor or the velocity shear tensor at the point of a smoothed particle. This provides local information as to how matter is collapsing or flowing, respectively, in particular what stable manifold is being produced. The code reads in smoothed particle hydrodynamics (SPH) snapshot files in sphNG format and computes neighbor lists for SPH data and either the (symmetric) velocity shear tensor or tidal tensor and their eigenvalues/eigenvectors. It classifies fluid elements by number of "positive" eigenvalues and permits decomposition of snapshots into classified components; it also includes several Python plotting scripts.
An extension to synphot (ascl:1811.001), stsynphot implements synthetic photometry package for HST and JWST support. The software constructs spectra from various grids of model atmosphere spectra, parameterized spectrum models, and atlases of stellar spectrophotometry. It also simulates observations specific to HST and JWST, computes photometric calibration parameters for any supported instrument mode, and plots instrument-specific sensitivity curves and calibration target spectra.
GSpec analyzes the Fermi mission's Gamma-ray Burst Monitor (GBM) data via a user-interactive GUI. The software provides a seamless interface to XSPEC (ascl:9910.005). It allows users to create their own Python scripts using the included libraries, and to define additional data reduction techniques, such as background fitting/estimation and data binning, as Python-based plugins. It is part of a larger effort to produce a set of GBM data tools to allow the broader community to analyze all aspects of GBM data, including the continuous data that GBM produces. GSpec is similar to RMfit (ascl:1409.011), a GUI-based spectral analysis code that specializes in the analysis of GBM trigger data, and is intended to eventually replace that IDL package.
MOLSCAT, which supercedes MOLSCAT version 14 (ascl:1206.004), performs non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them).
The package also includes BOUND, which performs calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods, and FIELD, a development of BOUND that locates values of external fields at which a bound state exists with a specified energy. Though the three programs have different applications, they use closely related methods, share many subroutines, and are released with a single code base.
Binary-Speckle reduces Speckle or AO data from the raw data to deconvolved images (in Fourier space), to determine the parameters of a binary or triple, and to find limits for undetected companion stars.
MSL applies simulation-based inference techniques to the problem of substructure inference in galaxy-galaxy strong lenses. It leverages additional information extracted from the simulator, then trains neural networks to estimate likelihood ratios associated with population-level parameters characterizing dark matter substructure. The package including five high-level scripts which run the simulation and create samples, combing multiple simulation runs into a single file to use for training, then train the neural networks. After training, the estimated likelihood ratio is tested, and calibrated network predictions are made based on histograms of the network output.
DASTCOM5 is a portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, and the software to access it. Available data include orbital elements, orbit diagrams, physical parameters, and discovery circumstances. A JPL implementation of the software is available at http://ssd.jpl.nasa.gov/sbdb.cgi.
Harmonia combines clustering statistics decomposed in spherical and Cartesian Fourier bases for large-scale galaxy clustering likelihood analysis. Optimal weighting schemes for spherical Fourier analysis can also be readily implemented using the code.
Chrono is a physics-based modelling and simulation infrastructure implemented in C++. It can handle multibody dynamics, collision detection, and granular flows, among many other physical processes. Though the applications for which Chrono has been used most often are vehicle dynamics, robotics, and machine design, it has been used to simulate asteroid aggregation and granular systems for astrophysics research. Chrono is written in C++; a Python version, PyChrono, is also available.
cosmoFns computes distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Written in R and coded for a flat universe, it contains functions for rest-frame line and luminosities, cosmic lookback time given z and cosmological parameters, and differential comoving volume. cosmoFns also computes comoving, luminosity, and angular diameter distances and molecular mass, among other quantities.
FLEET (Finding Luminous and Exotic Extragalactic Transients) is a machine-learning pipeline that predicts the probability of a transient to be a superluminous supernova. With light curve and contextual host galaxy information, it uses a random forest algorithm to rapidly identify SLSN-I without the need for redshift information.
CRAC (Cosmology R Analysis Code) provides R functions for cosmology. Its main functions are similar to the Python library CosmoloPy (ascl:2009.017); for example, it implements functions to compute spherical geometric quantities for cosmological research.
CosmoloPy is a suite of cosmology routines built on NumPy/SciPy. Its capabilities include various cosmological densities, distance measures, and galaxy luminosity functions (Schecter functions). It also offers pre-defined sets of cosmological parameters (e.g., from WMAP), conversion in and out of the AB magnitude system, and the reionization of the IGM. Functions take cosmological parameters (which can be numpy arrays) as keywords and ignore any extra keywords, making it possible to build a dictionary of cosmological parameters and pass it to any function.
halomod calculates cosmological halo model and HOD quantities. It is built on HMF (ascl:1412.006); it retains that code's features and provides extended components for the halo model, including numerous halo bias models, including scale-dependent bias, basic concentration-mass-redshift relations, and several plug-and-play halo-exclusion models. halomod includes built-in HOD parameterizations and halo profiles, support for WDM models, and all basic quantities such as 3D correlations and power spectra, and also several derived quantities such as effective bias and satellite fraction. In addition, it offers a simple routine for populating a halo catalog with galaxies via a HOD. halomod is flexible and modular, making it easily extendable.
rcosmo provides information processing, visualization, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data stored in or converted to HEALPix coordinates. The package has more than 100 different functions, and can perform spherical geometry, manipulate CMB and other spherical data, and visualize HEALPix data. rcosmo can also perform statistical analysis of CMB and spherical data, and transforme spherical data in cartesian and geographic coordinates into HEALPix format.
pySpectrum calculates the power spectrum and bispectrum for galaxies, halos, and dark matter.
AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.
minot (Modeling of the ICM (Non-)thermal content and Observables prediction Tools) provides a self-consistent modeling framework for the thermal and non-thermal diffuse components in galaxy clusters and predictions multi-wavelength observables. The framework sets or modifies the cluster object according to set parameters and defines the physical and observational properties, which can include thermal gas and CR physics, tSZ, inverse Compton, and radio synchotron. minot then generates outputs, including model parameters, plots, and relationships between models.
PyWST performs statistical analyses of two-dimensional data with the Wavelet Scattering Transform (WST) and the Reduced Wavelet Scattering Transform (RWST). The WST/RWST provides convenient sets of coefficients for describing non-Gaussian data in a comprehensive way.
MLG simulates Gaia measurements for predicted astrometric microlensing events. It fits the motion of the lens and source simultaneously and reconstructs the 11 parameters of the lensing event. For lenses passing by multiple background sources, it also fits the motion of all background sources and the lens simultaneously. A Monte-Carlo simulation is used to determine the achievable precision of the mass determination.
MADHAT (Model-Agnostic Dark Halo Analysis Tool) analyzes gamma-ray emission from dwarf satellite galaxies and dwarf galaxy candidates due to dark matter annihilation, dark matter decay, or other nonstandard or unknown astrophysics. The tool is data-driven and model-independent, and provides statistical upper bounds on the number of observed photons in excess of the number expected using a stacked analysis of any selected set of dwarf targets. MADHAT also calculates the resulting bounds on the properties of dark matter under any assumptions the user makes regarding dark sector particle physics or astrophysics.
Paramo (PArticle and RAdiation MOnitor) numerically solves the Fokker-Planck kinetic equation, which is used to model the dynamics of a particle distribution function, using a robust implicit method, for the proper modeling of the acceleration processes, and accounts for accurate cooling coefficient (e.g., radiative cooling with Klein-Nishina corrections). The numerical solution at every time step is used to calculate radiations processes, namely synchrotron and IC, with sophisticated numerical techniques, obtaining the multi-wavelength spectral evolution of the system.
J plots classifies and quantifies a pixelated structure, based on its principal moments of inertia, thus enabling automatic detection and objective comparisons of centrally concentrated structures (cores), elongated structures (filaments) and hollow circular structures (bubbles) from the main population of slightly irregular blobs that make up most astronomical images. Examples of how to analyze 2D or 3D datasets, enabling an unbiased analysis and comparison of simulated and observed structures are provided along with the Python code.
SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.
CASI-3D identifies signatures of stellar feedback in molecular line spectra, such as 12CO and 13CO, using deep learning. The code is developed from CASI-2D (ascl:1905.023) and exploits the full 3D spectral information.
The ISPy3 suite of Python routines models and analyzes integrated-light spectra of stars and stellar populations. The actual spectral modeling and related tasks such as setting up model atmospheres is done via external codes. Currently, the Kurucz codes (ATLAS/SYNTHE) and MARCS/TurboSpectrum are supported, though implementing other similar codes should be relatively straight forward.
oxkat semi-automatically performs calibration and imaging of data from the MeerKAT radio telescope. Taking as input raw visibilities in Measurement Set format, the entire processing workflow is covered, from flagging and reference calibration, to imaging and self-calibration, and (optionally) direction-dependent calibration. The oxkat scripts use Python, and draw on numerous existing radio astronomy packages, including CASA (ascl:1107.013), WSClean (ascl:1408.023), and CubiCal (ascl:1805.031), among others, that are containerized using Singularity. Submission scripts for slurm and PBS job schedulers are automatically generated where necessary, catering for HPC facilities that are commonly used for processing MeerKAT data.
The high-contrast imager SPHERE at the Very Large Telescope combines extreme adaptive optics and coronagraphy to directly image exoplanets in the near-infrared. The vlt-sphere package enables easy reduction of the data coming from IRDIS and IFS, the two near-infrared subsystems of SPHERE. The package relies on the official ESO pipeline (ascl:1402.010), which must be installed separately.
JetSeT reproduces radiative and accelerative processes acting in relativistic jets and fits the numerical models to observed data. This C/Python framework re-bins observed data, can define data sets, and binds to astropy tables and quantities. It can use Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB when defining complex numerical radiative scenarios. JetSeT can constrain the model in the pre-fitting stage based on accurate and already published phenomenological trends starting from parameters such as spectral indices, peak fluxes and frequencies, and spectral curvatures. The package fits multiwavelength SEDs using both frequentist approach and Bayesian MCMC sampling, and also provides self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes for both first order and second order (stochastic acceleration) processes.
HorizonGRound forward models general relativistic effects from the tracer luminosity function. It also compares relativistic corrections with the local primordial non-Gaussianity signature in ultra-large-scale clustering statistics. The package includes several recipes along with the data required to run them.
TDEmass interprets Tidal Disruption Event (TDE) observations. In TDEs, a supermassive black hole at the center of a galaxy tears apart an ordinary star; the debris is placed on highly eccentric orbits and ultimately produces a very bright flare. Using this TDEmass, one can infer the mass of the black hole (mbh) and the mass of the star (mstar) involved in a TDE.
TRISTAN (TRIdimensional STANford) is a fully electromagnetic code with full relativistic particle dynamics. The code simulates large-scale space plasma phenomena such as the formation of systems of galaxies. TRISTAN particles which hit the boundaries are arrested there and redistributed more uniformly by having the boundaries slightly conducting, thus allowing electrons to recombine with ions and provides a realistic way of eliminating escaping particles from the code. Fresh particle fluxes can then be introduced independently across the boundaries. Written in 1993, this code has largely been superceded by TRISTAN-MP (ascl:1908.008).
The original MUSIC code (ascl:1311.011) was designed to provide initial conditions for zoom initial conditions and is limited for applications to large-scale cosmological simulations. MUSIC2-monofonIC generates high order LPT/PPT cosmological initial conditions for single resolution cosmological simulations, and can be used for rapid predictions of large-scale structure. MUSIC2-monofonIC offers support for up to 3rd order Lagrangian perturbation theory, PPT (Semiclassical PT for Eulerian grids) up to 2nd order, and for mixed CDM+baryon sims. It direct interfaces with CLASS and can use file input from CAMB; it offers multiple output modules for RAMSES (ascl:1011.007), Arepo (ascl:1909.010), Gadget-2/3 (ascl:0003.001), and HACC via plugins, and new modules/plugins can be easily added.
DUCC (Distinctly Useful Code Collection) provides basic programming tools for numerical computation, including Fast Fourier Transforms, Spherical Harmonic Transforms, non-equispaced Fourier transforms, as well as some concrete applications like 4pi convolution on the sphere and gridding/degridding of radio interferometry data. The code is written in C++17 and provides a simple and comprehensive Python
interface.
healpy handles pixelated data on the sphere. It is based on the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme and bundles the HEALPix (ascl:1107.018) C++ library. healpy provides utilities to convert between sky coordinates and pixel indices in HEALPix nested and ring schemes and find pixels within a disk, a polygon or a strip in the sky. It can apply coordinate transformations between Galactic, Ecliptic and Equatorial reference frames, apply custom rotations either to vectors or full maps, and read and write HEALPix maps to disk in FITS format. healpy also includes utilities to upgrade and downgrade the resolution of existing HEALPix maps and transform maps to Spherical Harmonics space and back using multi-threaded C++ routines, among other utilities.
The ramses2hsim pipeline converts a simulated galaxy in a RAMSES (ascl:1011.007) output into an 3D input data cube for HSIM (ascl:1912.006). The code incorporates gas kinematics (both bulk and turbulence), line emission and line width for Hα, and accounts for dust extinction.
Eclaire is a GPU-accelerated image-reduction pipeline; it uses CuPy, a Python package for general-purpose computing on graphics processing units (GPGPU), to perform image processing, including bias subtraction, dark subtraction, flat fielding, bad pixel masking, alignment, and co-adding. It has been used for real-time image reduction of MITSuME observational data, and can be used with data from other observatories.
iFIT determines the Sérsic law model for galaxies with imperfect Sérsic law profiles by searching for the best match between the observationally determined and theoretically expected radial variation of the mean surface brightness and light growth curve. The technique ensures quick convergence to a unique solution for both perfect and imperfect Sérsic profiles, even shallow and resolution-degraded SBPs. iFIT allows for correction of PSF convolution effects, offering the user the option of choosing between a Moffat, Gaussian, or user-supplied PSF, and is an efficient tool for the non-supervised structural characterization of large galaxy samples, such as those expected to become available with Euclid and LSST.
maxsmooth fits derivative constrained functions (DCF) such as Maximally Smooth Functions (MSFs) to data sets. MSFs are functions for which there are no zero crossings in derivatives of order m >= 2 within the domain of interest. They are designed to prevent the loss of signals when fitting out dominant smooth foregrounds or large magnitude signals that mask signals of interest. Here "smooth" means that the foregrounds follow power law structures and do not feature turning points in the band of interest. maxsmooth uses quadratic programming implemented with CVXOPT (ascl:2008.017) to fit data subject to a fixed linear constraint, Ga <= 0, where the product Ga is a matrix of derivatives. The code tests the <= 0 constraint multiplied by a positive or negative sign and can test every available sign combination but by default, it implements a sign navigating algorithm.
CVXOPT makes the development of software for convex optimization applications straightforward by building on Python’s extensive standard library and on the strengths of Python as a high-level programming language. It offers efficient Python classes for dense and sparse matrices (real and complex) with Python indexing and slicing and overloaded operations for matrix arithmetic, an interface to the fast Fourier transform routines from FFTW, and an interface to most of the double-precision real and complex BLAS. It contains routines for linear, second-order cone, and semidefinite programming problems, and for nonlinear convex optimization. CVXOPT also provides an interface to LAPACK routines for solving linear equations and least-squares problems, matrix factorizations (LU, Cholesky, LDLT and QR), symmetric eigenvalue and singular value decomposition, and Schur factorization, and a modeling tool for specifying convex piecewise-linear optimization problems.
ParaMonte contains serial and parallel Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions. It is used for posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference and unifies the automation of Monte Carlo simulations. ParaMonte is user friendly and accessible from multiple programming environments, including C, C++, Fortran, MATLAB, and Python, and offers high performance at runtime and scalability across many parallel processors.
CMEchaser looks for the occultation of background astronomical sources by CMEs to enable measurement of effects such as variations in the ionized content and the associated Faraday rotation of polarized signals along the line of sight to the background source. The code transforms a given Galactic coordinate to its concordant point in the Helioprojective, Sun-centered plane and estimates the point at which the line of sight from the source to the Earth passes through it. It then searches a user selected database to detect if any CMEs which launched before the observation date would have crossed the line of sight at the epoch of observation, and produces a number of useful plots. CMEchaser can run as a flat script orcan be installed as a package.
SuperRAENN performs photometric classification of supernovae in the following categories: Type I superluminos supernovae, Type II, Type IIn, Type Ia and Type Ib/c. Though the code is optimized for use with complete (rather than realtime) light curves from the Pan-STARRS Medium Deep Survey, the classifier can be trained on other data. SuperRAENN can be used on a dataset containing both spectroscopically labelled and unlabelled SNe; all events will be used to train the RAENN, while labelled events will be used to train the random forest.
SEDBYS (Spectral Energy Distribution Builder for Young Stars) provides command-line tools and uses existing functions from standard packages such as Astropy (ascl:1304.002) to collate archival photometric and spectroscopic data. It also builds and inspects SEDS, and automatically collates the necessary software references.
Ujti calculates geodesics, gravitational lenses and gravitational redshift in principle, for any metric. Special attention has been given to compact objects, so the current implementation considers only metrics in spherical coordinates.
Magnetizer computes time and radial dependent magnetic fields for a sample of galaxies in the output of a semi-analytic model of galaxy formation. The magnetic field is obtained by numerically solving the galactic dynamo equations throughout history of each galaxy. Stokes parameters and Faraday rotation measure can also be computed along a random line-of-sight for each galaxy.
Zeus is a pure-Python implementation of the Ensemble Slice Sampling method. Ensemble Slice Sampling improves upon Slice Sampling by bypassing some of that method's difficulties; it also exploits an ensemble of parallel walkers, thus making it immune to linear correlations. Zeus offers fast and robust Bayesian inference and efficient Markov Chain Monte Carlo without hand-tuning. The code provides excellent performance in terms of autocorrelation time and convergence rate, can scale to multiple CPUs without any extra effort, and includes convergence diagnostics.
SuperNNova performs photometric classification by leveraging recent advances in deep neural networks. It can train either a recurrent neural network or random forest to classify light-curves using only photometric information. It also allows additional information, such as host-galaxy redshift, to be incorporated to improve performance.
Barry compares different BAO models. It removes as many barriers and complications to BAO model fitting as possible and allows each component of the process to remain independent, allowing for detailed comparisons of individual parts. It contains datasets, model fitting tools, and model implementations incorporating different descriptions of non-linear physics and algorithms for isolating the BAO (Baryon Acoustic Oscillation) feature.
sslf is a simple, effective and useful spectral line finder for 1D data. It utilizes the continuous wavelet transform from SciPy, which is a productive way to find even weak spectral lines.
Umbrella detects, validates, and identifies asteroids. The core of this software suite, Umbrella2, includes algorithms and interfaces for all steps of the processing pipeline, including a novel detection algorithm for faint trails. A detection pipeline accessible as a desktop program (ViaNearby) builds on the library to provide near real-time data reduction of asteroid surveys on the Wide Field Camera of the Isaac Newton Telescope. Umbrella can read and write MPC optical reports, supports SkyBoT and VizieR querying, and can be extended by user image processing functions to take advantage of the algorithms framework as a multi-threaded CPU scheduler for easy algorithm parallelization.
PySAP (Python Sparse data Analysis Package) provides a common API for astronomical and neuroimaging datasets and access to iSAP's (ascl:1303.029) Sparse2D executables with both wrappers and bindings. It also offers a graphical user interface for exploring the provided functions and access to application specific plugins.
Spin-Orbit Tomography (SOT) is a retrieval technique of a two-dimensional map of an Exo-Earth from time-series data of integrated reflection light. The software provides code for the Bayesian version of the static SOT and dynamic mapping (time-varying mapping) with full Bayesian modeling, and tutorials for L2 and Bayesian SOT are available in jupyter notebooks.
KLLR (Kernel Localized Linear Regression) generates estimates of conditional statistics in terms of the local slope, normalization, and covariance. This method provides a more nuanced description of population statistics appropriate for very large samples with non-linear trends. The code uses a bootstrap re-sampling technique to estimate the uncertainties and also provides tools to seamlessly generate visualizations of the model parameters.
PhaseTracer maps out cosmological phases, and potential transitions between them, for Standard Model extensions with any number of scalar fields. The code traces the minima of effective potential as the temperature changes, and then calculates the critical temperatures at which the minima are degenerate. PhaseTracer can use potentials provided by other packages and can be used to analyze cosmological phase transitions which played an important role in the early evolution of the Universe.
Kinesis fits the internal kinematics of a star cluster with astrometry and (incomplete) radial velocity data of its members. In the most general model, the stars can be a mixture of background (contamination) and the cluster, for which the (3,3) velocity dispersion matrix and velocity gradient (i.e., dv_x/dx and dv_y/dx) are included. There are also simpler versions of the most general model and utilities to generate mock clusters and mock observations.
CaTffs predicts the strength of calcium triplet indices (CaT*, PaT and CaT) on the basis of empirical fitting functions and performs required interpolations between the different local functions. Together with the indices predictions, the program also computes the random errors associated to such predictions resulting from the covariance matrices of the fits (for the indices CaT* and PaT). This ensures a reliable error index estimation for any combination of input atmospheric parameters.
CosmoGRaPH explores cosmological problems in a fully general relativistic setting. Written in C++, it implements various novel methods for numerically solving the Einstein field equations, including an N-body solver, full AMR capabilities via SAMRAI, and raytracing.
SPARTA analyzes periodically-variable spectroscopic observations. Intended for common astronomical uses, SPARTA facilitates analysis of single- and double-lined binaries, high-precision radial velocity extraction, and periodicity searches in complex, high dimensional data. It includes two modules, UNICOR and USuRPER. UNICOR analyzes spectra using 1-d CCF. It includes maximum-likelihood analysis of multi-order spectra and detection of systematic shifts. USuRPER (Unit Sphere Representation PERiodogram) is a phase-distance correlation (PDC) based periodogram and is designed for very high-dimensional data such as spectra.
JB2008 (Jacchia-Bowman 2008) is an empirical thermospheric density model developed as an improved revision to the Jacchia-Bowman 2006 model, based on Jacchia’s diffusion equations. Driving solar indices are computed from on-orbit sensor data, which are used for the solar irradiances in the extreme through far ultraviolet, including x-ray and Lyman-α wavelengths. Exospheric temperature equations are developed to represent the thermospheric EUV and FUV heating. Semiannual density equations based on multiple 81-day average solar indices are used to represent the variations in the semiannual density cycle that result from EUV heating, and geomagnetic storm effects are modeled using the Dst index as the driver of global density changes.
pygwinc processes and plots noise budgets for ground-based gravitational wave detectors. Its primary feature is a collection of mostly analytic noise calculation functions for various sources of noise affecting detectors, including quantum and seismic noise, mirror coating and substrate thermal noise, suspension fiber thermal noise, and residual gas noise. It is also a generalized noise budgeting tool that allows users to create arbitrary noise budgets for any experiment, not just ground-based GW detectors, using measured or analytically calculated data.
TROVE (Theoretical ROVibrational Energies) performs variational calculations of rovibrational energies for general polyatomic molecules of arbitrary structure in isolated electronic states. The software numerically constructs the kinetic energy operator, which is represented as an expansion in terms of internal coordinates. The code is self-contained, requiring no analytical pre-derivation of the kinetic energy operator. TROVE is also general and can be used with any internal coordinates.
OSPEX (Object Spectral Executive) is an object-oriented interface for X-ray spectral analysis of solar data. The next generation of SPEX (ascl:2007.017), it reads and displays input data, selects and subtracts background, selects time intervals of interest, selects a combination of photon flux model components to describe the data, and fits those components to the spectrum in each time interval selected. During the fitting process, the response matrix is used to convert the photon model to the model counts to compare with the input count data. The resulting time-ordered fit parameters are stored and can be displayed and analyzed with OSPEX. The entire OSPEX session can be saved in the form of a script and the fit results stored in the form of a FITS file. Part of the SolarSoft (ascl:1208.013) package, OSPEX works with any type of data structured in the form of time-ordered count spectra; RHESSI, Fermi, SOXS, MESSENGER, Yohkoh, SMM, and SMART data analysis have all been implemented in OSPEX.
SPEX provides a uniform interface suitable for the X-ray spectral analysis of a number of solar (or other) instruments in the X and Gamma Ray energy ranges. Part of the SolarSoft (ascl:1208.013) library, this package is suitable for any datastream which can be placed in the form of response vs interval where the response is usually a counting rate (spectrum) and the interval is normally an accumulation over time. Together with an algorithm which can be used to relate a model input spectrum to the observed response, generally a response matrix, the dataset is amenable to analysis with this package. Currently the data from a large number of instruments, including SMM (HXRBS, GRS Gamma, GRS X1, and GRS X2), Yohkoh (HXT, HXS, GRS, and SXT,) CGRO (BATSE SPEC and BATSE LAD), WIND (TGRS), HIREX, and NEAR (PIN). SPEX's next generation software is available in OSPEX (ascl:2007.018), an object-oriented package that is also part of and dependent on SolarSoft.
ReadPDS reads in and visualizes data from the Planetary Data System in PDS4 format. Tools are available in Python as PDS4Viewer and in IDL as PDS4-IDL. These tools support PDS4 data, including images, spectra, and arrays and provide multiple views of the data, including summary, image, plot, and table views in addition to easy access to metadata such as structure labels and spectral characteristics.
MAGI (MAny-component Galaxy Initializer) generates initial conditions for numerical simulations of galaxies that resemble observed galaxies and are dynamically stable for time-scales longer than their characteristic dynamical times, taking into account galaxy bulges, discs, and haloes. MAGI adopts a distribution-function-based method and supports various kinds of density models, including custom-tabulated inputs and the presence of more than one disc, and is fast and easy to use.
PARS (Paint the Atmospheres of Rotating Stars) quickly computes magnitudes and spectra of rotating stellar models. It uses the star's mass, equatorial radius, rotational speed, luminosity, and inclination as input; the models incorporate Roche mass distribution (where all mass is at the center of the star), solid body rotation, and collinearity of effective gravity and energy flux.
wdtools characterizes the atmospheric parameters of white dwarfs using spectroscopic data. The flagship class is the generative fitting pipeline (GFP), which fits ab initio theoretical models to observed spectra in a Bayesian framework using high-speed neural networks to interpolate synthetic spectra.
Line-Stacker stacks both 3D cubes or already extracted spectra and is an extension of Stacker (ascl:1912.019). It is an ensemble of both CASA tasks and native python tasks. Line-Stacker supports image stacking and some additional tools, allowing further analysis of the stack product, are also included in the module.
FleCSPH is a multi-physics compact application that exercises FleCSI parallel data structures for tree-based particle methods. In particular, the software implements a smoothed-particle hydrodynamics (SPH) solver for the solution of Lagrangian problems in astrophysics and cosmology. FleCSPH includes support for gravitational forces using the fast multipole method (FMM). Particle affinity and gravitation is handled using the parallel implementation of the octree data structure provided by FleCSI.
DarkHistory calculates the global temperature and ionization history of the universe given an exotic source of energy injection, such as dark matter annihilation or decay. The software simultaneously solves for the evolution of the free electron fraction and gas temperature, and for the cooling of annihilation/decay products and the secondary particles produced in the process. Consequently, we can self-consistently include the effects of both astrophysical and exotic sources of heating and ionization, and automatically take into account backreaction, where modifications to the ionization/temperature history in turn modify the energy-loss processes for injected particles.
polyMV converts multipolar coefficients (alms in healpix order) into Multipole Vectors (MVs) and also Fréchet Vectors (FVs) given a specific multipole. The code uses MPSolve (ascl:2007.008) and is order of magnitudes faster than other existing public codes at high multipoles.
MPSolve (Multiprecision Polynomial SOLVEr) provides an easy-to-use universal blackbox for solving polynomials and secular equations. Its features include arbitrary precision approximation and guaranteed inclusion radii for the results. It can exploit polynomial structures, taking advantage of sparsity as well as coefficients in a particular domain (i.e., integers or rationals), and can be specialized for specific classes of polynomials.
PSRVoid performs RFI excision, flux calibration and timing of folded pulsar data. RFI excision is administered via both traditional and multi-layered deep learning neural network algorithms. The software offers full neural network control (over training set creation and manipulation and network parameters). PSRVoid also contains useful data miners for the ATNF, a multitude of plotting tools, as well as many useful pulsar processing macros such as space velocity simulators and Tempo2 (ascl:1210.015) wrappers.
PoPE (Population Profile Estimator) analyzes spatial distribution or internal spatial structure problems of samples of astronomical systems. This population-based Bayesian inference model uses the conditional statistics of spatial profile of multiple observables assuming the individual observations are measured with errors of varying magnitude. Assuming the conditional statistics of the observables can be described with a multivariate normal distribution, the model reduces to the conditional average profile and conditional covariance between all observables. The method consists of two steps: (1) reconstructing the average profile using non-parametric regression with Gaussian Processes and (2) estimating the property profiles covariance given a set of independent variable. PoPE is computationally efficient and capable of inferring average profiles of a population from noisy measurements without stacking and binning nor parameterizing the shape of the average profile.
The N-body code PETAR (ParticlE Tree & particle-particle & Algorithmic Regularization) combines the methods of Barnes-Hut tree, Hermite integrator and slow-down algorithmic regularization (SDAR). It accurately handles an arbitrary fraction of multiple systems (e.g. binaries, triples) while keeping a high performance by using the hybrid parallelization methods with MPI, OpenMP, SIMD instructions and GPU. PETAR has very good agreement with NBODY6++GPU results on the long-term evolution of the global structure, binary orbits and escapers and is significantly faster when used on a highly configured GPU desktop computer. PETAR scales well when the number of cores increase on the Cray XC50 supercomputer, allowing a solution to the ten million-body problem which covers the region of ultra compact dwarfs and nuclear star clusters.
spex_to_xspec takes the output from the collisional ionisation equilibrium model in the SPEX spectral modelling and fitting package (ascl:1308.014), and converts it into a form usable by the XSPEC spectral fitting package (ascl:9910.005). For a list of temperatures it computes the line strengths and continuum spectra using SPEX. These are collated and written into an APEC-format table model which can be loaded into Xspec. By allowing SPEX models to be loaded into XSPEC, the program allows easy comparison between the results of the SPEX and APEC codes.
SPARTA is a post-processing framework for particle-based cosmological simulations. The code is written in pure, MPI-parallelized C and is optimized for high performance. The main purpose of SPARTA is to understand the formation of structure in a dynamical sense, namely by analyzing the trajectories (or orbits) of dark matter particles around their halos. Within this framework, the user can add analysis modules that operate on individual trajectories or entire halos. The initial goal of SPARTA was to compute the splashback radius of halos, but numerous other applications have been implemented as well, including spherical overdensity calculations and tracking subhalos via their constituent particles.
hierArc hierarchically infers strong lensing mass density profiles and the cosmological parameters, in particular the Hubble constant. The software supports lenses with imaging data and kinematics, and optionally time delays. The kinematics modeling is performed in conjunction with lenstronomy (ascl:1804.012).
GProtation measures stellar rotation periods with Gaussian processes.
This code is no longer being maintained. Please consider using celerite (ascl:1709.008) or exoplanet (ascl:1910.005) instead.
SoFiAX is a web-based platform to merge and interact with the results of parallel execution of SoFiA HI source finding software [ascl:1412.001] and other steps of processing ASKAP Wallaby HI survey data.
deepSIP (deep learning of Supernova Ia Parameters) measures the phase and light-curve shape of a Type Ia Supernova (SN Ia) from an optical spectrum. The package contains a set of three trained Convolutional Neural Networks (CNNs) for the aforementioned purposes, but tools for preprocessing spectra, modifying the neural architecture, training models, and sweeping through hyperparameters are also included.
MCSED models the optical, near-infrared and infrared spectral energy distribution (SED) of galactic systems. Its modularity and options make it flexible and able to address the varying physical properties of galaxies over cosmic time and environment and adjust to changes in understanding of stellar evolution, the details of mass loss, and the products of binary evolution through substitution or addition of new datasets or algorithms. MCSED is built to fit a galaxy’s full SED, from the far-UV to the far-IR. Among other physical processes, it can model continuum emission from stars, continuum and line-emission from ionized gas, attenuation from dust, and mid- and far-IR emission from dust and polycyclic aromatic hydrocarbons (PAHs). MCSED performs its calculations by creating a complex stellar population (CSP) out of a linear combination of simple-stellar populations (SSPs) using an efficient Markov Chain Monte Carlo algorithm. It is very quick, and takes advantage of parallel processing.
The FAMED (Fast and AutoMated pEak bagging with Diamonds) pipeline is a multi-platform parallelized software that performs and automates extraction and mode identification of oscillation frequencies for solar-like pulsators. The pipeline can be applied to a large variety of stars, ranging from hot F-type main sequence, up to stars evolving along the red giant branch, settled into the core-Helium-burning main sequence, and even evolved beyond towards the early asymptotic giant branch. FAMED is based on DIAMONDS (ascl:1410.001), a Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm.
GenetIC generates initial conditions for cosmological simulations, especially for zoom simulations of galaxies. It provides support for "genetic modifications" of specific attributes of simulations to allow study of the impact of such modifications on the outcomes; the code can also produce constrained initial conditions.
TATOO (Tidal-chronology Age TOOl) estimates the age of massive close-in planetary systems, even those subject to tidal spin-up, using the systems' observed properties: the mass of the planet and the star, stellar rotational, and planetary orbital periods. It can also be used as a classical gyrochronological tool and offers first order correction of the impact of tidal interaction on gyrochronology.
The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).
AstroCatR reconstructs celestial objects' time series data for astronomical catalogs. It is a command-line program running on the Linux platform and is implemented in C and Python; AstroCatR's capabilities are based on specialized sky partitioning and MPI parallel programming. The package contains three parts: ETL (extract-transform-load) pre-processing, TS-matching calculation, and time series data retrieval. Once the user obtains the original catalogs, running ETL pre-processing generates a sky zoning file. The TS-matching module marks celestial objects, and finally, running the Query program searches celestial objects from the time series datasets which matched with the target.
SPISEA (Stellar Population Interface for Stellar Evolution and Atmospheres) generates single-age, single-metallicity populations (i.e., star clusters). The software (formerly called PyPopStar) provides control over different parameters, including cluster characteristics (age, metallicity, mass, distance); total extinction, differential extinction, and extinction law; stellar evolution and atmosphere models; stellar multiplicity and Initial Mass Function; and photometric filters. SPISEA can be used to create a cluster isochrone in many filters using different stellar models, generate a star cluster at any age with an unusual IMF and unresolved multiplicity, and make a spectrum of a star cluster in integrated light.
The CHaracterizing ExOPlanet Satellite (CHEOPS) mission pipeline provides photometry for the central star in its field; ARCHI takes in data from the CHEOPS mission pipeline, analyzes the background stars, and determines the photometry of these stars, thus creating the possibility of producing photometric time-series of several close-by targets at once, in addition to using different stars in the image to calibrate systematic errors.
CARACal (Containerized Automated Radio Astronomy Calibration, formerly MeerKATHI) reduces radio-interferometric data. Developed originally as an end-to-end continuum- and line imaging pipeline for MeerKAT, it can also be used with other radio telescopes. CARACal reduces large data sets and produces high-dynamic-range continuum images and spectroscopic data cubes. The pipeline is platform-independent and delivers imaging quality metrics to efficiently assess the data quality.
JoXSZ jointly fits the thermodynamic profiles of galaxy clusters from both SZ and X-ray data using a Markov chain Monte Carlo fitting algorithm. It is an enhanced version of preprofit (ascl:1910.002), which fits only SZ data. JoXSZ parameterizes the pressure and electron density profile of a galaxy cluster with a given center and derives the temperature profile as the ratio of these quantities through the ideal gas law. The X-ray and SZ-based temperatures can be similar or different, which allows study of the cluster elongation along line of sight, gas clumping, or calibration uncertainties.
pxf_kin_err estimates the radial velocity and velocity dispersion uncertainties based solely on the shape of a template spectrum used in the fitting procedure and signal-to-noise information. This method can be used for exposure time calculators, in the design of observational programs and estimates on expected uncertainties for spectral surveys of galaxies and star clusters, and as an accurate substitute for Monte-Carlo simulations when running them for large samples of thousands of spectra is unfeasible.
SERVAL calculates radial velocities (RVs) from stellar spectra. The code uses least-squares fitting algorithms to derive the RVs and additional spectral diagnostics. Forward modeling in pixel space is used to properly weight pixel errors, and the stellar templates are reconstructed from the observations themselves to make optimal use of the RV information inherent in the stellar spectra.
PRISim is a modular radio interferometer array simulator, including the radio sky and instrumental effects, and generates a transit dataset in HD5 format.
AxionNS computes radio light curves resulting from the resonant conversion of Axion dark matter into photons within the magnetosphere of a neutron star. Photon trajectories are traced from the observer to the magnetosphere where a root finding algorithm identifies the regions of resonant conversion. Given the modeling of the axion dark matter distribution and conversion probability, one can compute the photon flux emitted from these regions. The individual contributions from all the trajectories is then summed to obtain the radiated photon power per unit solid angle.
DeepSphere implements a generalization of Convolutional Neural Networks (CNNs) to the sphere. It models the discretized sphere as a graph of connected pixels. The resulting convolution is more efficient (especially when data doesn't span the whole sphere) and mostly equivariant to rotation (small distortions are due to the non-existence of a regular sampling of the sphere). The pooling strategy exploits a hierarchical pixelization of the sphere (HEALPix) to analyze the data at multiple scales. The graph neural network model is based on ChebNet and its TensorFlow implementation.
TATTER (Two-sAmple TesT EstimatoR) performs two-sample hypothesis test. The two-sample hypothesis test is concerned with whether distributions p(x) and q(x) are different on the basis of finite samples drawn from each of them. This ubiquitous problem appears in a legion of applications, ranging from data mining to data analysis and inference. This implementation can perform the Kolmogorov-Smirnov test (for one-dimensional data only), Kullback-Leibler divergence, and Maximum Mean Discrepancy (MMD) test. The module performs a bootstrap algorithm to estimate the null distribution and compute p-value.
CosmoLike analyzes cosmological data sets and forecasts future missions. It has been used in the analysis of the Dark Energy Survey and to optimize the Large Synoptic Survey Telescope and the Wide-Field Infrared Survey Telescope, and is useful for innovative theory projects that test new concepts and methods to enhance the constraining power of cosmological analyses.
CosmoCov computes configuration space covariances for projected galaxy 2-point statistics based on the CosmoLike (ascl:2006.006) framework. The package provides a flat sky covariance module, computed with the 2D-FFTLog (ascl:2006.004) algorithm, and a curved sky covariance module.
2D-FFTLog takes the FFTLog algorithm for 1D Hankel transforms and generalizes it for 2D Hankel transforms. The algorithm is useful for efficiently computing non-Gaussian covariance matrices of cosmological 2-point statistics in configuration space from Fourier space covariances. Fast bin-averaging method is also developed for both the logarithmic binning and general binning choices. C and Python versions of the code are available.
The KinMS (KINematic Molecular Simulation) package simulates observations of arbitrary molecular/atomic cold gas distributions from interferometers and line observations from integral field units. This modeling tool is optimized for situations where one has analytic forms for e.g. the rotation curve and/or surface brightness profiles (and may want to fit the parameters of these parametric models). It can, however, also be used as a tilted-ring modelling code. The routines are flexible and have been used in various different applications, including investigating the kinematics of molecular gas in early-type galaxies and determining supermassive black-hole masses from CO interferometric observations. They are also useful for creating mock observations from hydrodynamic simulations, and input data-cubes for further simulation in, for example, CASA's (ascl:1107.013) sim_observe tool. Interactive Data Language (IDL) and Python versions of the code are available.
PRIISM images radio interferometry data using the sparse modeling technique. In addition to generating an image, PRIISM can choose the best image from a range of processing parameters using cross validation. User can obtain statistically optimal images by providing the visibility data with some configuration parameters. The software is implemented as a Python module.
HEARSAY computes simulations of the causal contacts between emitters in the Galaxy. It implements the Stochastic Constrained Causal Contact Network (SC3Net) model and explores the parameter space of the model for the emergence of communicating nodes through Monte Carlo simulations and analyzes their causal connections. This model for the abundance and duration of civilizations is based on minimal assumptions and three free parameters, with focus on the statistical properties of empirical models instead of an interpretable model with variables to be determined by observation.
HIPSTER (HIgh-k Power Spectrum EstimatoR) computes small-scale power spectra and isotropic bispectra for cosmological simulations and galaxy surveys of arbitrary shape. The code computes the Legendre multipoles of the power spectrum, Pℓ(k), or bispectrum Bℓ(k1,k2), by computing weighted pair counts over the simulation box or survey, truncated at some maximum radius. The code can be run either in 'aperiodic' or 'periodic' mode for galaxy surveys or cosmological simulations respectively. HIPSTER also supports weighted spectra, for example when tracer particles are weighted by their mass in a multi-species simulation. Generalization to anisotropic bispectra is straightforward (and requires no additional computing time) and can be added on request.
MCRaT (Monte Carlo Radiation Transfer) analyzes the radiation signature expected from astrophysical outflows. MCRaT injects photons in a FLASH (ascl:1010.082) simulation and individually propagates and compton scatters the photons through the fluid until the end of the simulation. This process of injection and propagating occurs for a user specified number of times until there are no more photons to be injected. Users can then construct light curves and spectra with the MCRaT calculated results. The hydrodynamic simulations used with this version of MCRaT must be in 2D; however, the photon propagation and scattering is done in 3D by assuming cylindrical symmetry. Additionally, MCRaT uses the full Klein–Nishina cross section including the effects of polarization, which can be fully simulated in the code. MCRaT works with FLASH hydrodynamic simulations and PLUTO (ascl:1010.045) AMR simulations, with both 2D spherical (r, equation) and 2D cartesian ((x,y) and (r,z)).
RFCDE provides an implementation of random forests designed for conditional density estimation. It computes a kernel density estimate of y with nearest neighbor weightings defined by the location of the evaluation point x relative to the leaves in the random forest.
cdetools provides tools for evaluating conditional density estimates and has applications to photometric redshift estimation and likelihood-free cosmological inference. Available in R and Python, it provides functions for computing a so-called CDE loss function for tuning and assessing the quality of individual probability density functions (PDFs) and diagnostic functions that probe the population-level performance of the PDFs.
RAPP is a robust automated photometry pipeline for blurred images. RAPP requires that the observed images contain at least three stars and applies bias, dark, and flat field correction on blurred observational raw data; it also uses the median of adjacent pixels to eliminate outliers. It also uses star enhancement and robust image matching, extracts stars, and performs aperture photometry to extract information from blurred images.
AMPEL provides an analysis framework for high-throughput surveys and is suited for streamed data. The package combines the functionality of an alert broker with a generic framework capable of hosting user-contributed code; it encourages provenance and keeps track of the varying information states that a transient displays. The latter concept includes information gathered over time and data policies such as access or calibration levels.
FETCH (Fast Extragalactic Transient Candidate Hunter) provides real-time classification of candidates from single pulse search pipelines. The package takes in a candidate file of frequency-time and DM-time data and, for each candidate and choice of model, provides the probability that the candidate is an FRB. FETCH also provides a framework for fine-tuning the models to further improve its performance for particular backends.
qubefit fits an observed data cube to generate a model cube from a user-defined emission model. The model cube is convolved with the observed beam, after which residuals between the convolved model and the observed data cube are minimized using a Markov chain Monte Carlo approach. qubefit also determines estimates of the uncertainty for each parameter of the model.
2DBAT implements Bayesian fits of 2D tilted-ring models to derive rotation curves of galaxies. It performs 2D tilted-ring analysis based on a Bayesian Markov Chain Monte Carlo (MCMC) technique, thus quantifying the kinematic geometry of galaxy discs, and deriving high-quality rotation curves that can be used for mass modeling of baryons and dark matter halos.
gotetra uses phase-space tesselation techniques to extract information about cosmological N-body simulations. The key applications of this Go-based code are the measurement of splashback shells around halos and the generation of high resolution images of density fields. The package includes routines to generates 3D and 2D (projected) density fields from a particle snapshot generated by a cosmological N-body simulation, measure density along lines of sight from the center of halos, and compresse the position space data from cosmological N-body simulations. Included are two helper libraries with functions for calculating cosmological quantities and computing a number of useful mathematical functions.
NNKCDE is a simple and easily interpretable Conditional Density Estimation (CDE) method. It computes a kernel density estimate of y using the k nearest neighbors of the evaluation point x. The model has only two tuning parameters: the number of nearest neighbors k and the bandwidth h of the smoothing kernel in y-space. Both tuning parameters are chosen in a principled way by minimizing the CDE loss on validation data.
s3PCF computes the 3-point correlation function (3PCF) in the squeezed limit given galaxy positions and pair positions. The code is currently written specifically for the Abacus simulations, but the main functionalities can be also easily adapted for other galaxy catalogs with the appropriate properties.
HiFLEx reduces echelle data taken with a single or bifurcated fiber input. It takes a FITS image file (i.e., a CCD image) and runs data reduction steps, extracts out orders from an Echelle spectrograph (regardless of separation and curvature, as long as orders are distinguishable from one-another), applies the wavelength correction, measures the radial velocity, and performs further calibration steps.
Carpyncho browses catalogs to search for and characterize time variable data of the Vista Variables in the Via Lactea (VVV) Survey. The stacked pawprint data from the Cambridge Astronomical Science Unit's (CASU) Vista Data Flow System (VDFS) v>= 1.3 catalogs have been crossed matched with the VDFS CASU v1.3 tile catalogs into Parquet files, allowing detection and classification of periodic variables within this dataset.
FFANCY uses the Fast Folding Algorithm (FFA) on a distributed-computing framework to search for pulsars in time-domain series data. This enables the algorithm to be applied to all-sky blind pulsar surveys. The package runs an implementation of the FFA on real or simulated pulsar time series data in either SIGPROC (ascl:1107.016) or PRETSO (ascl:1107.017) format with a choice of additional algorithms to be used in the evaluation of each folded profile and outputs a periodogram along with other output threads used for testing. It also contains routines that convert the periodogram output into a list of pulsar candidates with options for candidate grouping and harmonic matching, generate simulated pulsar profiles for use in testing profile evaluation algorithms independent of the FFA, provide basic statistics for the folded profiles produced by progeny, test individual profiles using profiles produced by progeny, and other complementary functions.
RoLo (Roche Lobe) calculates the radius and potential of the Roche Lobe for any specified direction, and also gives some other commonly used quantities (such as the Lagrange points). The calculator is valid for any mass ratio q between 0.01 and 100. The coordinates are spherical-polar (R, theta, phi) centered on one star (M1), with the x-axis (theta=pi/2, phi=0) pointing towards the other star (M2). The mass ratio is defined as q=M2/M1. Distances are given in units of the binary separation, a. A circular orbit is assumed.
Time series are commonly unevenly spaced in time make it difficult to obtain an accurate estimate of their typical red-noise spectrum. REDFIT overcomes this problem by fitting a first-order autoregressive (AR1) process directly to unevenly spaced time series. Hence, interpolation in the time domain and its inevitable bias can be avoided. The program can be used to test if peaks in the spectrum of a time series are significant against the red-noise background from an AR1 process.
RM-Tools analyzes radio polarization data, specifically the use of Faraday rotation measure synthesis and Stokes QU model fitting. It contains routines for both single-pixel 1D polarized spectra as well as 3D polarization cubes. RM-Tools is intended to serve as a toolkit for studies of polarized radio sources and measurements of their Faraday rotation. RM-Tools is the core package for the pipelines used for the POlarized Sky Survey of the Universe's Magnetism (POSSUM) and the polarization component of the Very Large Array Sky Survey (VLASS). The package is maintained by the Canadian Initiative for Radio Astronomy Data Analysis (CIRADA; cirada.org).
michi2 fits combinations of arbitrary numbers of libraries/components to a given observational data. Written in C++ and Python, this chi-square fitting tool can fit a galaxy's spectral energy distribution (SED) with stellar, active galactic nuclear, dust and radio SED templates, and fit a galaxy's spectral line energy distribution (SLED) with one or more gas components using radiative transfer LVG model grid libraries.
michi2 first samples the high-dimensional parameter space (N1*N2*N3*..., where N is the number of independent templates in each library, and 1/2/3 is the ID of components) in an optimized way for a few thousand or tens of thousand times to compute the chi-square to the input observational data, then uses Python scripts to analyze the chi-square distribution and derive the best-fit, median, lower and higher 1-sigma values for each parameter in each library/component. This tool is useful for fitting larger number of templates and arbitrary combinations of libraries/components, including some constraining of one library/component onto another.
RID (Relativistic Image Doubling in water Cherenkov detectors) uses Monte Carlo simulations to find the relative fraction of charged, relativistic particles entering a HAWC-like Water Cherenkov Detector that can cause a Relativistic Image Doubling (RID) effect visible to at least one of the internal detectors. The technique is available in C++ and Fortran; RID also includes python code for the horizontal incidence of the muon inside the tank.
PRECISION reduces astronomical IR imaging data. Written with SPHERE data in mind, it provides a fast and easy reduction of bright sources suitable for science. While it may not extract the absolute maximum amount of science, the objective is to provide a means to get science-ready data with minimal computing time or human interaction.
IRDAP (IRDIS Data reduction for Accurate Polarimetry) accurately reduces SPHERE-IRDIS polarimetric data. It is a highly-automated end-to-end pipeline; its core feature is model-based correction of the instrumental polarization effects. IRDAP handles data taken both in field- and pupil-tracking mode and using the broadband filters Y, J, H and Ks. Data taken with the narrowband filters can be reduced as well, although with a somewhat worse accuracy. For pupil-tracking observations IRDAP can additionally apply angular differential imaging.
The Python wrapper PyKat extends the optical interferometer modeling software Finesse (ascl:2004.013). It provides an efficient GUI for conducting complex numerical simulations and manipulating and viewing simulation setups, and enables the use of Python's extensive scientific software ecosystem.
Finesse is a numeric simulation for laser interferometers and models parametric instabilities, easily providing the required mechanical-to-optical transfer functions in imperfect and arbitrary interferometer configurations using Hermite-Gaussian beams. The code has been used to apply limits to the number and type of higher order modes used in simulation and investigate the potential use of higher order Laguerre-Gauss modes to reduce thermal noise in future gravitational wave detector designs. The PyKat wrapper (ascl:2004.014) helps automate complex Finesse tasks.
ArviZ provides backend-agnostic tools for diagnostics and visualizations of Bayesian inference by first converting inference data into xarray objects. It includes functions for posterior analysis, model checking, comparison and diagnostics. ArviZ’s functions work with NumPy arrays, dictionaries of arrays, xarray datasets, and have built-in support for PyMC3 (ascl:1610.016), PyStan, CmdStanPy, Pyro (ascl:1507.018), NumPyro, emcee (ascl:1303.002), and TensorFlow Probability objects. A Julia wrapper is also available.
FUNDPAR determines fundamental parameters of solar-type stars, by using as input the Equivalent Widths of Fe I,II lines. The code uses solar-scaled ATLAS9 model atmospheres with NEWODF opacities, together with the 2009 version of the MOOG (ascl:1202.009) program. Parameter files control different details, such as the mixing-length parameter, the overshooting, and the damping of the lines. FUNDPAR also derives the uncertainties of the parameters.
kombine is an ensemble sampler built for efficiently exploring multimodal distributions. By using estimates of ensemble’s instantaneous distribution as a proposal, it achieves very fast burnin, followed by sampling with very short autocorrelation times.
stardate measures precise stellar ages by combining isochrone fitting with gyrochronology (rotation-based ages) to increase the precision of stellar ages on the main sequence. The best possible ages provided by stardate will be for stars with rotation periods, though ages can also be predicted for stars without rotation periods. stardate is an extension to isochrones that incorporates gyrochronology and the code reverts back to isochrones when no rotation period is provided.
PPMAP provides column density mapping with extra dimensions (temperature and dust opacity index); it generate image cubes of differential column density as a function of (x,y) sky position and temperature for diffuse dusty structures. The code incorporates parallel processing using OpenMP for some of the more CPU-intensive steps. It is currently configured for the "Raven" cluster at Cardiff University and runs in a mode in which the computations are split between 16 separate nodes, each of which uses 16 cores with OpenMP.
PyCosmo provides accurate predictions for cosmological observables including background quantities, power spectra and Limber and beyond-Limber angular power spectra. The software is designed to be interactive and user-friendly. It is available for download and is also offered on an interactive platform (PyCosmo Hub), which allows users to perform their own computations using Jupyter Notebooks without installing any software.
ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in n-body dArk mattEr simUlationS) self-consistently derives the evolution of galaxies and the reionization of the IGM based on the merger trees and density fields of a DM-only N-body simulation. It models gas accretion, star formation, SN feedback, the time and spatial evolution of the ionized regions, accounting for recombinations, HI fractions and photoionization rates within ionized regions, and radiative feedback. ASTRAEUS is for studying the galaxy-reionization interplay in the first billion years. The underlying code is written in C and is MPI-parallelized; its modular design allows new physical processes and galaxy properties to be added easily. ASTRAEUS can be run on a tree-branch-by-tree-branch basis (i.e., fully vertical) or on a redshift-by-redshift basis (i.e., fully horizontal) when evolving the galaxies by using local horizontal merger trees.
PyWD2015 provides a modern graphical user interface (GUI) for the 2015 version of the Wilson-Devinney (WD) code (ascl:2004.004). The GUI is written in Python 2.7 and uses the Qt4 interface framework. At its core, PyWD2015 generates lcin and dcin files from user inputs and sends them to WD, then reads and visualizes the output in a user-friendly way. It also includes tools that make the technical aspects of the modeling process significantly easier.
Wilson-Devinney binary star modeling code (WD) is a complete package for modeling binary stars and their eclipes and consists of two main modules. The LC module generates light and radial velocity curves, spectral line profiles, images, conjunction times, and timing residuals; the DC module handles differential corrections, performing parameter adjustment of light curves, velocity curves, and eclipse timings by the Least Squares criterion. WD handles eccentric orbits and asynchronous rotation, and can compute velocity curves (with proximity and eclipse effects). It offers options for detailed reflection and nonlinear (logarithmic law) limb darkening, adjustment of spot parameters, an optional provision for spots to drift over the surface, and can follow light curve development over large numbers of orbits. Absolute flux solution allow Direct Distance Estimation (DDE) and there are improved solutions for ellipsoidal variables and for eclipsing binaries (EBs) with very shallow eclipses. Absolute flux solutions also can estimate temperatures of both EB components under suitable circumstances.
IllinoisGRMHD is an open-source, highly-extensible rewrite of the original closed-source general relativistic (ideal) magnetohydrodynamics (GRMHD) code of the Illinois Numerical Relativity (ILNR) Group. Reducing the learning curve was the primary focus of this rewrite, with the goal of facilitating community involvement in the code's use and development, as well as reducing the human effort necessary to generate new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids while being nearly twice as fast at scales of hundreds to thousands of cores.
Tangra performs scientific grade data reduction of GPS time-tagged video observations, including reduction of stellar occultation light curves and astrometry of close flybys of Near Earth Objects. It offers Dark and Flat frame image correction, PSF and aperture photometry, multiple methods for deriving a background as well as extensibility via add-ins. Tangra is actively developed for Windows and the current version of the software supports UCAC2, UCAC3, UCAC4, NOMAD, PPMXL and Gaia DR2 star catalogues for astrometry. The software can perform motion-fitting for fast objects and derive a mini-normal astrometric positions. The supported video file formats are AVI, SER, ADV and AAV. Tangra can be also used with observations recorded as a sequence of FITS files. There are also versions for Linux and OS-X with more limited functionality.
Locus implements the Locus Algorithm, which maximizes the performance of differential photometry systems by optimizing the number and quality of reference stars in the Field of View with the target.
Torch simulates coupled gas and N-body dynamics in astrophysical systems such as newly forming star clusters. It combines the FLASH (ascl:1010.082) code for gas dynamics and the ph4 code for direct N-body evolution via the AMUSE framework.
AstroHOG compares extended spectral-line observations (PPV cubes); the histogram of oriented gradients (HOG) technique takes as input two PPV cubes and provides an estimate of their spatial correlation across velocity channels to study spatial correlation between different tracers of the ISM.
PYSOLATOR removes the orbital modulation from a binary pulsar and/or its companion. In essence, it subtracts the predicted Roemer delay for the given orbit and then resamples the time series so as to make the signal appear as if it were emitted from the barycenter of the binary system, making the search for pulses easier and faster.
HOMER (Helper Of My Eternal Retrievals) is a machine-learning-accelerated Bayesian inverse modeling code. Given some data and uncertainties, the code determines the posterior distribution of a model. HOMER uses MC3 (ascl:1610.013) for its MCMC; its forward model is a neural network surrogate model trained by MARGE (ascl:2003.010). The code produces plots of the 1D marginalized posteriors, 2D pairwise posteriors, and parameter history traces, and can also overplot the 1D and 2D posteriors for comparison with another posterior. HOMER computes the Bhattacharyya coefficient to compare the similarity of two 1D marginalized posteriors.
MARGE (Machine learning Algorithm for Radiative transfer of Generated Exoplanets) generates exoplanet spectra across a defined parameter space, processes the output, and trains, validates, and tests machine learning models as a fast approximation to radiative transfer. It uses BART (ascl:1608.004) for spectra generation and modifies BART’s Bayesian sampler (MC3, ascl:1610.013) with a random uniform sampler to propose models within a defined parameter space. More generally, MARGE provides a framework for training neural network models to approximate a forward, deterministic process.
TOASTER is a pulse times-of-arrival (TOA) tracker. It stores reduced/folded observations, meta data, templates, parfiles, TOAs, and timefiles in an organized manner using an SQL database. TOASTER also provides a full-featured python toolkit for reliably interacting with the data and database, and provides scripts that, for example, list and summarize the TOAs in the data base, and generate TOA files in multiple formats. The framework can also be used to generate TOAs from observations using flexible and reproducible plugins referred to as "manipulators".
CoastGuard reduces Effelsberg data; it is written in python and based on PSRCHIVE (ascl:1105.014). Though primarily designed for Effelsberg PSRIX data, it contains components sufficiently general for use with psrchive-compatible data files from other observing systems. In particular, the radio frequency interference (RFI) removal algorithm has been applied to data from the Parkes Telescope and has also been adopted by the LOFAR pulsar timing data reduction pipeline.
RAPID (Real-time Automated Photometric IDentification) classifies multiband photometric light curves into several different transient classes. It uses a deep recurrent neural network to produce time-varying classifications, and because it does not rely on deriving computationally expensive features from the data, it is well suited for processing alerts that wide-field surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST) will produce.
PORTAL (POlarized Radiative Transfer Adapted to Lines), a 3D polarized radiative transfer code, simulates the emergence of polarization in the emission of atomic or molecular (sub-)millimeter lines. Written in Fortran90, PORTAL can be used in standalone mode or can process the output of other 3D radiative transfer codes
The RHT (Rolling Hough Transform) measures linear intensity as a function of orientation in images. This machine vision algorithm works on any image-space (2D) data, and quantifies the presence of linear structure as a function of orientation. The RHT can be used to identify linear features in images, to quantify the orientation of structure in images, and to map image intensity from 2D x-y space to 3D x-y-orientation space. An option in the code allows the user to quantify intensity as a function of direction (modulo 2pi) rather than orientation (modulo pi). The RHT was first used to discover that filamentary structures in neutral hydrogen emission are aligned with the ambient magnetic field.
scousepy is a Python implementation of spectral line-fitting IDL code SCOUSE (ascl:1601.003). It fits a large amount of complex astronomical spectral line data in a systematic way.
acorns generates a hierarchical system of clusters within discrete data by using an n-dimensional unsupervised machine-learning algorithm that clusters spectroscopic position-position-velocity data. The algorithm is based on a technique known as hierarchical agglomerative clustering. Although acorns was designed with the analysis of discrete spectroscopic position-position-velocity (PPV) data in mind (rather than uniformly spaced data cubes), clustering can be performed in n-dimensions and the algorithm can be readily applied to other data sets in addition to PPV measurements.
MAGNETAR is a set of tools for the study of the magnetic field in simulations of MHD turbulence and polarization observations. It calculates the histogram of relative orientation between density structure in the magnetic field in data cubes from simulations of MHD turbulence and observations of polarization using the method of histogram of relative orientations (HRO).
TESS-Point converts astronomical target coordinates given in right ascension and declination to detector pixel coordinates for the MIT-led NASA Transiting Exoplanet Survey Satellite (TESS) spacecraft. The program can also provide detector pixel coordinates for a star by TESS input catalog identifier number and common astronomical name. Tess-Point outputs the observing sector number, camera number, detector number, and pixel column and row.
DISKMODs provides radial structure models of accretion disk solutions. The following models are included: Novikov-Thorne thin disk model and Sadowski polytropic slim disk model. Each model implements a common interface that gives the radial dependence of selected geometrical, physical and thermodynamic quantities of the accretion flow. The model interpolates through a set of tabulated numerical solutions. These solutions are computed for a reference mass M=10 Msun. The model can rescale the disk structure to any mass, with masses in the range of 5-20 Msun giving reasonably good results.
CR-SISTEM models lunar orbital and rotational dynamics, taking into account the effects of a liquid core. Orbits of the Moon and Earth are fully integrated, and other planets (or additional point-mass satellites) may be included in the integration. Lunar and solar tides on Earth, eccentricity and obliquity tides on the Moon, and lunar core-mantle friction are included. The integrator is one file (crsistem5.for) written in FORTRAN 90, uses seven input files (settings.in, planets.in, moons.in, tidal.in, lunar.in, precess.in and core.in), and has at least eight output files (planet101.out, moon101.out, pole.out, spin_orb.out, spin_ecl.out, cspin_ecl.out, long.out and clong.out); additional moons and planets would add more output. The input files provided with the code set up a 1 Myr simulation of a slow-spinning Moon on an orbit of 40 Earth radii, which will then dynamically relax to the lowest-energy state (in this case it is a synchronous rotation with a core spinning separately from the mantle).
ExoCAM adapts the NCAR Community Earth System Model (CESM) for planetary and exoplanetary applications. The system files, source code, initial conditions files, and namelists provided do not run standalone. ExoCAM is a patch to be used with standard distributions of CESM version 1.2.1 (http://www.cesm.ucar.edu/models/current.html), and is also intended to be run with ExoRT (ascl:2002.019), a correlated-k radiative transfer package.
ExoRT is a flexible, two-stream radiative transfer code that interfaces with CAM/CESM (http://www.cesm.ucar.edu/models/current.html) or 1D offline; it is also used with ExoCAM (ascl:2002.020). Quadrature is used for shortwave and hemispheric mean is used for longwave. The gas phase optical depths are calculate using a correlated K-distribution method, with overlapping bands treated using an amount weighted scheme. Cloud optics are treated using mie scattering for both liquid and ice clouds, and cloud overlap is treated using Monte Carlo Independent Column Approximation.
Bayesfit pulls together Tempo2 (ascl:1210.015) and MultiNest (ascl:1109.006) components to provide additional functionality such as the specification of priors; Nelder–Mead optimization of the maximum-posterior point; and the capability of computing the partially marginalized likelihood for a given subset of timing-model parameters. Bayesfit is a single python command-line application.
libstempo uses the Tempo2 library (ascl:1210.015) to load a pulsar's tim/par files, providing Python access to the TOAs, the residuals, the timing-model parameters, the fit procedure, and more.
Cobra uses single pulse time series data to search for and time pulsars, performing a fully phase coherent timing analysis. The GPU-accelerated Bayesian analysis package, written in Python, incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries. Cobra builds a model pulse train that incorporates effects such as aliasing, scattering and binary motion and a simple Gaussian profile and compares this directly to the data; the software can thus combine data over multiple frequencies, epochs, or even across telescopes.
GizmoAnalysis reads and analyzes N-body simulations run with the Gizmo code (ascl:1410.003). Written in Python, it was developed primarily to analyze FIRE simulations, though it is usable with any Gizmo snapshot files. It offers the following functionality: reads snapshot files and converts particle data to physical units; provides a flexible dictionary class to store particle data and compute derived quantities on the fly; plots images and properties of particles; and generates region files for input to MUSIC (ascl:1311.011) to generate cosmological zoom-in initial conditions. GizmoAnalysis also computes rates of supernovae and stellar winds, including their nucleosynthetic yields, as used in FIRE simulations. The software package includes a tutorial in a Jupyter notebook.
HaloAnalysis reads and analyzes halo/galaxy catalogs, generated from Rockstar (ascl:1210.008) or AHF (ascl:1102.009), and merger trees generated from Consistent Trees (ascl:1210.011). Written in Python, it offers the following functionalities: reads halo/galaxy/tree catalogs from multiple file formats; assigns baryonic particles and galaxy properties to dark-matter halos; combines and re-generates halo/galaxy/tree files in hdf5 format; analyzes properties of halos/galaxies; and selects halos to generate zoom-in initial conditions. The code includes a tutorial in the form of a Jupyter notebook.
GWecc computes the pulsar timing array (PTA) signals induced by eccentric supermassive binaries. Written in C++, it computes the plus/cross polarizations as well as Earth and pulsar terms of the PTA signal given the binary parameters and the sky locations of the binary and the pulsar. A python wrapper is included through which GWecc can be used to simulate, search for and constrain gravitational wave-emitting eccentric supermassive binaries using packages such as ENTERPRISE (ascl:1912.015) and libstempo (ascl:2002.017).
DMRadon calculates the Radon Transform for use in the analysis of Directional Dark Matter Direct Detection. The code can calculate speed distributions, velocity distribution, velocity integral (eta) and Radon Transforms or a standard Maxwell-Boltzmann distribution. DMRadon also calculates the velocity distribution averaged over different angular bins.
PyHammer performs rapid and automatic spectral classification of stars according to the Morgan-Keenan classification system; it is a Python revision of the IDL code The Hammer (ascl:1405.003) and offers additional capabilities. Working in the range of 3,650-10,200 Angstroms, the automatic spectral typing algorithm compares important spectral lines to template spectra and determines the best matching spectral type, ranging from O to L type stars. The code can also determine a star's metallicity ([Fe/H]) and radial velocity shifts. Once the automatic classification algorithm has run, PyHammer provides the user an interface for determining spectral types visually by comparing their spectra to provided templates.
Apercal is a dedicated, automated data reduction and analysis pipeline written for the Apertif (APERture Tile In Focus) upgrade to the Westerbork Synthesis Radio Telescope. This upgrade dramatically increases the field of view and survey speed of the telescope and is being used for survey observations that can produce 5 terabytes of data for each observation. Apercal uses existing and new tools and parallelization to provide the performance needed for the large volume of data produced Apertif surveys. The software is written entirely in Python and uses third–party astronomical software, such as AOFlagger (ascl:1010.017), CASA (ascl:1107.013), and Miriad (ascl:1106.007), for certain tasks. Apercal is modular, making it possible to run specific modules manually instead of the full pipeline, and information can be exchanged between modules because status parameters are written and read from a python pickled dictionary file. The pipeline can also run fully automatically.
DASH classifies the type, age, redshift and host for any supernova spectra based on the learned features, through use of a deep convolutional neural network to train a matching algorithm, of each supernova’s type and age. The Python library allows a user to classify spectra; the software is fast and can classify thousands of spectra in seconds. A graphical interface that enables a user to view and classify a spectrum is also available.
ExoSim models host star and planet transit events, simulating the temporal change in stellar flux due to the light curve. It is wavelength-dependent, using an input planet spectrum to determine the light curve depth for any given wavelength and can capture temporal effects, such as correlated noise. ExoSim's star spot simulator produces simulated observations that include spot and facula contamination. The code is flexible and can be generically applied to different instruments that simulate specific time-dependent processes.
ProSpect generates good quality SEDs that can be used to estimate the broad band photometric properties of galaxies that have known star formation and gas metallicity histories. It allows for complex star formation and metallicity histories to be specified, and can be used in a generative or fitting (Bayesian) mode. ProSpect provides a high level interface to the BC03 (low and high resolution) and EMILES libraries, as well as the Dale 2014 dust emission templates. Its source code is available for download, and it is also available as an interactive web tool.
ScamPy "paints" an observed population of cosmological objects on top of the DM-halo/subhalo hierarchy obtained from DM-only simulations. The method combines the Halo Occupation Distribution (HOD) method with sub-halo abundance matching (SHAM); the two processes together are dubbed Sub-halo clustering and abundance matching (SCAM). The procedure requires applying the two methods in sequence; by applying the HOD scheme, the host sub-haloes are selected, and the SHAM algorithm associates an observable property of choice to each sub-halo. The provided python interface allows users to load and populate DM halos and sub-halos obtained by FoF and SUBFIND algorithms applied to DM snapshots at any redshift. The software is highly-optimized and flexible.
ODUSSEAS (Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes) uses machine learning to derive the Teff and [Fe/H] of M dwarf stars by using their optical spectra obtained by different spectrographs with different resolutions. The software uses the measurement of the pseudo equivalent widths for more than 4000 stellar absorption lines and the machine learning Python package scikit-learn (https://scikit-learn.org/stable/) to predict the stellar parameters.
triceratops (Tool for Rating Interesting Candidate Exoplanets and Reliability Analysis of Transits Originating from Proximate Stars) validates planet candidates from the Transiting Exoplanet Survey Satellite (TESS). The code calculates the probabilities of a wide range of transit-producing scenarios using the primary transit of the planet candidate and preexisting knowledge of its host and nearby stars. It then uses the known properties of these stars to calculate star-specific priors for each scenario with estimates of stellar multiplicity and planet occurrence rates.
ORIGIN performs blind detection of faint emitters in MUSE datacubes. The algorithm is tuned to detect faint spatial-spectral emission signatures while allowing for a stable false detection rate over the data cube, and providing in the same time an automated and reliable estimation of the purity. ORIGIN implements a nuisance removal part based on a continuum subtraction combining a Discrete Cosine Transform and an iterative Principal Component Analysis and a detection part based on the local maxima of Generalized Likelihood Ratio test statistics obtained for a set of spatial-spectral profiles of emission line emitters. In addition, it performs a purity estimation in which the proportion of true emission lines is estimated from the data itself: the distribution of the local maxima in the noise only configuration is estimated from that of the local minima.
The massively parallel code RASCAS (RAdiative SCattering in Astrophysical Simulations) performs radiative transfer on an adaptive mesh with an octree structure using the Monte Carlo technique. The code features full MPI parallelization, domain decomposition, adaptive load-balancing, and a standard peeling algorithm to construct mock observations. The radiative transport of resonant line photons through different mixes of species (e.g. HI, SiII, MgII, FeII), including their interaction with dust, is implemented in a modular fashion to allow new transitions to be easily added to the code. RASCAS may also be used to propagate photons at any wavelength (e.g. stellar continuum or fluorescent lines), and has been designed to be easily customizable and to process simulations of arbitrarily large sizes on large supercomputers.
SDAR (Slow-Down Algorithmic Regularization) simulates the long-term evolution of few-body systems such as binaries and triples. The algorithm used provides a few orders of magnitude faster performance than the classical N-body method. The secular evolution of hierarchical systems, e.g. Kozai-Lidov oscillation, can be well reproduced. The code is written in the C++ language and can be used either as a stand-alone tool or a library to be plugged in other N-body codes. The high precision of the floating point to 62 digits is also supported.
The protocol describes the algorithm of arriving at LOD in a given past geological Epoch. First the lunar orbital radius of the given geologic epoch has to be determined. For this the velocity of recession of Moon for the accelerated phase has to be determined. The spatial integral of the reciprocal of Velocity of recession gives the the transit time of Moon from desired orbit to the present orbit.Through several iterations the transit time is made to converge on the geologic epoch. Once we determine the desired orbital radius it has to be substituted in the LOD expression to determine the LOD in the given geologic epoch.
MERA works with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations such as those produced by the hydrodynamic code RAMSES (ascl:1011.007) and is written entirely in the Julia language. The package provides essential functions for efficient and memory lightweight data loading and analysis. The core of MERA is a database framework.
The project is a simple Python client for Cosmicflows-3 Distance-Velocity Calculator at distances less than 400 Mpc (http://edd.ifa.hawaii.edu/CF3calculator/)
Compute expectation distances or velocities based on smoothed velocity field from the Wiener filter model of https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5438G/abstract.
StarburstPy is a python wrapper for Starburst99 (ascl:1104.003). The code contains methods for setting all inputs, running Starburst99, and reading output data into python dictionaries.
gnm is an implementation of the affine-invariant sampler for Markov chain Monte Carlo (MCMC) that uses the Gauss-Newton-Metropolis (GNM) Algorithm. The GNM algorithm is specialized in sampling highly non-linear posterior probability distribution functions of the form exp(-||f(x)||^2/2). The code includes dynamic hyper-parameter optimization to increase performance of the sampling; other features include the Jacobian tester and an error bars creator.
The NVIDIA GPU-based pipeline code peasoup provides a one-step pulsar search, including searching for pulsars with up to moderate accelerations, with only one command. Its features include dedispersion, dereddening in the Fourier domain, resampling, peak detection, and optional time series folding. peasoup's output is the candidate list.
RPPPS (Re-analysing Pipeline for Parkes Pulsar Survey) uses Linux shell scripts, C language, and python code and two parallel strategies to reorganize the PRESTO (ascl:1107.017) pulsar search pipeline to run multiple processes in parallel, thus accelerating the search for pulsars. Though originally designed for reprocessing PMPS data, the code has also been successfully used with FAST (Five-hundred-meter Aperture Spherical radio Telescope) drift scan data. The pipeline is only CPU-based and can be easily and quickly deployed in computing nodes for testing purposes or data processes.
MCMCI (Markov chain Monte Carlo + isochrones) characterizes a whole exoplanetary system directly by modeling the star and its planets simultaneously. The code, written in Fortran, uses light curves and basic stellar parameters with a transit analysis algorithm that interacts with stellar evolutionary models, thus using both model-dependent and empirical age indicators to characterize the system.
ExoTETHyS models exoplanetary transits, eclipsing binaries, and related phenomena. The package calculates stellar limb-darkening coefficients down to <10 parts per million (ppm) and generates an exact transit light-curve based on the entire stellar intensity profile rather than limb-darkening coefficients.
CosMOPED (Cosmological MOPED) uses the MOPED (Multiple/Massively Optimised Parameter Estimation and Data compression) compression scheme to compress the Planck power spectrum. This convenient and lightweight compressed likelihood code is implemented in Python. To compute the likelihood for the LambdaCDM model using CosMOPED, one needs only six compression vectors, one for each parameter, and six numbers from compressing the Planck data using the six compression vectors. Using these, the likelihood of a theory power spectrum given the Planck data is the product of six one-dimensional Gaussians. Extended cosmological models require computing extra compression vectors.
ORCS (Outils de Réduction de Cubes Spectraux) is an analysis engine for SITELLE spectral cubes. The software extracts integrated spectra, fits the sinc emission lines, and recalibrates data in wavelength, astrometry and flux. ORCS offers a choice between a Bayesian or a classical fitting algorithm , and also provides automatic source detection and radial velocity correction.
DebrisDiskFM provides forward modeling for circumstellar debris disks in scattered light using the MCFOST disk modeling software to generate disk model images using given input parameters and emcee (ascl:1303.002) to obtain the posterior distributions for these parameters.
Behind The Spectrum (BTS) is a fully-automated multiple-component fitter for optically-thin spectra. Written as a python module, the routine uses the first, second and third derivatives to determine thenumber of components in the spectrum. A least-squared fitting routine then determines the best fit with that number of components, checking for over-fitting and over-lapping velocity centroids.
Protostellar Evolution simulates the evolution of stellar stellar radius and luminosity from the bound core stage through to the core hydrogen ignition as a zero-age main-sequence (ZAMS) star and beyond. Written in Fortran 90, the code is implemented as a module of the FLASH astrophysical fluid dynamics code (ascl:1010.082).
The CASA (1107.013) task FAKEOBS generates model visibilities from already-existing measurement sets. This task can be used to substitute all the visibilities of the target with simulations computed from any model image. The measurement can either be with real or simulated data, the target can have been observed in mosaic mode, and there can be several sources (e.g., bandpass calibrator, flux/phase calibrator, and target).
FragMent studies fragmentation in filaments by collating a number of different techniques, including nearest neighbour separations, minimum spanning tree, two-point correlation function, and Fourier power spectrum. It also performs model selection using a frequentist and Bayesian approach to find the best descriptor of a filament's fragmentation. While the code was designed to investigate filament fragmentation, the functions are general and may be used for any set of 2D points to study more general cases of fragmentation.
sf3dmodels models star-forming regions; it brings together analytical models in order to compute their physical properties in a 3-dimensional grid. The package can couple different models in a single grid to recreate complex star forming systems such as those being revealed by current instruments. The output data can be read with LIME (ascl:1107.012) or RADMC-3D (ascl:1108.016) to carry out radiative transfer calculations of the modeled region.
TRANSPHERE is a simple dust continuum radiative transfer code for spherically symmetric circumstellar envelopes. It handles absorption and re-emission and computes the dust temperature self-consistently; it does not, however, deal with scattering. TRANSPHERE uses a variable eddington factor method for the radiative transfer. The RADMD code (ascl:1108.016) is more versatile, but for a spherically symmetric problem for which scattering is of much concern, it may be easier to use a simple code such as TRANSPHERE.
Please note that this code has not been updated since 2006.
Min-CaLM performs automated mineral compositional analysis on debris disk spectra. The user inputs the debris disk spectrum, and using Min-CaLM's built-in mineralogical library, Min-CaLM calculates the relative mineral abundances within the disk. To do this calculation, Min-CaLM converts the debris disk spectrum and the mineralogical library spectra into a system of linear equations, which it then solves using non-negative least square minimization. This code comes with a GitHub tutorial on how to use the Min-CaLM package.
amber_meta integrates a few routines to launch AMBER (ascl:2209.007) in a systematic manner. To avoid typing a string in the command line manually with all parameters required to launch AMBER, amber_meta generates the command from configuration files, and can directly launch AMBER instances.
Time-domain astronomy sandbox consists in a series of classes to simulate and process time-domain astronomy data products in Python. The code was originally developed to model Fast Radio Burst (FRB) and Radio Frequency Interference (RFI), and evaluate different RFI mitigation methods and their effect on FRB search.
Dual Active Nuclei Galaxies (DAGNs) are rare occurrences in the sky. Until now, most AGNs have been described to be found serendipitously, or by manual observation. In recent years, there has been an increasing interest in such dual AGNs and their astrophysical properties. Their study is important to the understanding of galaxy formation, star formation and these objects are the precursors to Gravitational Wave Sources.
Hence, we have devised a pipeline, that along with systematic data collection, can detect such dual AGN candidates. A novel algorithm 'Graph-Boosted Gradient Ascent' has been devised to detect whether an R-band image of a galaxy is a potential candidate for a DAGN or not. The pipeline can be cloned to a user's machine, and by joining the AstrIRG_DAGN group on SciServer, astronomers can collectively contribute to the mining of DAGNs.
Since early 2018, the Kepler/K2 project has been performing a uniform global reprocessing of data from K2 Campaigns 0 through 14. Subsequent K2 campaigns (C15-C19) are being processed using the same processing pipeline. One of the major benefits of the reprocessing effort is that, for the first time, short-cadence (1-min) light curves are produced in addition to the standard long-cadence (30-min) light curves. Users have been cautioned that the Kepler pipeline detrending module (PDC), developed for use on original Kepler data, has not been tailored for use on short-cadence K2 observations. Systematics due to events on fast timescales, such as thruster firings, are sometimes poorly corrected for many short-cadence targets. A Python data visualization and manipulation tool, called Kepler-K2 Cadence Events, has been developed that identifies and removes cadences associated with problematic thruster events, thus producing better light curves. Kepler-K2 Cadence Events can be used to visualize and manipulate light curve files and target pixel files from the Kepler, K2, and TESS missions. This software is available at the following NASA GitHub repository https://github.com/nasa/K2CE .
MRExo performs non-parametric fitting and analysis of the mass-radius (M-R) relationship for exoplanets. Written in Python, it offers tools for fitting the M-R relationship to a given data set and also includes predicting (M->R, and R->M) and plotting functions.
STACKER stacks sources in interferometric data, i.e., averaging emission from different sources. The library allows stacking to be done directly on visibility data as well as in the image domain. The code is in format of a CASA (ascl:1107.013) task and implements uv- and image-stacking algorithms; it also provides several useful tasks for stacking related data processing. It allows introduction and stacking of random sources to estimate bias and noise, and also allows removal of a model of bright sources from the data.
Tangos builds databases (along the lines of Eagle or MultiDark) for cosmological and zoom simulations. Its modular system generates and queries databases. It is designed to store and manage results from a user's own analysis code, provides web and python interfaces, and allows users to construct science-focused queries, including across entire merger trees, without requiring knowledge of SQL. Tangos manages the process of populating the database with science data, including auto-parallelizing the analysis. It can be customized to work with multiple python modules such as pynbody (ascl:1305.002) or yt (ascl:1011.022) to process raw simulation data; it defaults to using SQLite, but allows use of other databases as the underlying store through the use of SQLAlchemy.
PTMCMCSampler performs MCMC sampling using advanced techniques. The code implements a variety of proposal schemes, including adaptive Metropolis, differential evolution, and parallel tempering, which can be used together in the same run.
The Python package GWpy analyzes and characterizes gravitational wave data. It provides a user-friendly, intuitive interface to the common time-domain and frequency-domain data produced by the LIGO and Virgo observatories and their analyses. The core Python infrastructure is influenced by, and extends the functionality of, the Astropy (ascl:1304.002) package, and its methodology has been derived from, and augmented by, the LIGO Algorithm Library Suite (LALSuite), a large collection of primarily C99 routines for analysis and manipulation of data from gravitational-wave detectors. These packages use the SWIG program to produce Python wrappings for all C modules, allowing the GWpy package to leverage both the completeness, and the speed, of these libraries.
ENTERPRISE (Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE) is a pulsar-timing analysis code which performs noise analysis, gravitational-wave searches, and timing model analysis. It uses Tempo2 (ascl:1210.015) to find the maximum-likelihood fit for the timing parameters and the basis of the fit for the red noise parameters if they are significant.
HARMPI is a parallel, 3D version of HARM (ascl:1209.005), which solves hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. The code is parallelized using MPI and is fully operational in 3D. HARMPI, like HARM, is capable of using non-uniform grids and solves the relativistic magnetohydrodynamic equations of motion on a stationary black hole spacetime in Kerr-Schild coordinates to evolve an accretion disk model.
GriSPy (Grid Search in Python) uses a regular grid search algorithm for quick fixed-radius nearest-neighbor lookup. It indexes a set of k-dimensional points in a regular grid providing a fast approach for nearest neighbors queries. Optional periodic boundary conditions can be provided for each axis individually. GriSPy implements three types of queries: bubble, shell and the nth-nearest, and offers three different metrics of interest in astronomy: the Euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty. It also provides a custom distance function. GriSPy is particularly useful for large datasets where a brute-force search is not practical.
GAME infers different ISM physical properties by analyzing the emission line intensities in a galaxy spectrum. The code is trained with a large library of synthetic spectra spanning many different ISM phases, including HII (ionized) regions, PDRs, and neutral regions. GAME is based on a Supervised Machine Learning algorithm called AdaBoost with Decision Trees as base learner. Given a set of input lines in a spectrum, the code performs a training on the library and then evaluates the line intensities to give a determination of the physical properties. The errors on the input emission line intensities and the uncertainties on the physical properties determinations are also taken into account. GAME infers gas density, column density, far-ultraviolet (FUV, 6–13.6 eV) flux, ionization parameter, metallicity, escape fraction, and visual extinction. A web interface for using the code is available.
QSOSIM realistically simulates high-resolution quasar spectra using a set of basic parameters (magnitude, redshift, and spectral index). The simulated spectra include physical effects seen in the real data: the power-law quasar continuum, the narrow and broad emission lines, absorption by neutral hydrogen (HI) in the Lyman alpha forest, and heavy element transitions along the line of sight. The code uses empirical HI column density, redshift, and b-parameter distributions to simulate absorption in the Lyman alpha forest. All absorbers with column densities larger than log [N(HI)/cm2]>17 have heavy element absorption, for which the column densities are calculated using the plasma simulation code CLOUDY (ascl:9910.001) and the radiative transfer code CUBA. The code also simulates the clustering of the intergalactic medium along the line of sight, the proximity effect of the quasar, and the effect of the cosmic ultraviolet background. Each simulated spectrum is saved in a single FITS file in as a noiseless R=100000 spectrum, as well as a spectrum convolved with Sloan Digital Sky Survey resolution (R=10000) and realistic noise.
AstroAccelerate processes time-domain radio astronomy data. It offers a standalone code that can be used to process filterbank data and a library that performs GPU-accelerated single pulse processing (SPS), Fourier Domain Acceleration Searching (FDAS) and dedispersion in real-time on very large data-sets comparable to those that will be produced by next-generation radio telescopes such as the SKA. AstroAccelerate uses NVIDIAR GPUs, and is configurable, stable, and easily maintained.
FORSTAND constructs dynamical models of galaxies using the Schwarzschild orbit-superposition method; the method is available as part of the AGAMA (ascl:1805.008) framework. The models created are constrained by line-of-sight kinematic observations and are applicable to galaxies of all morphological types, including disks and triaxial rotating bars.
The heterogeneity of papers dealing with the discovery and characterization of exoplanets makes every attempt to maintain a uniform exoplanet catalog almost impossible. Four sources currently available online (NASA Exoplanet Archive, Exoplanet Orbit Database, Exoplanet Encyclopaedia, and Open Exoplanet Catalogue) are commonly used by the community, but they can hardly be compared, due to discrepancies in notations and selection criteria.
Exo-MerCat is a Python code that collects and selects the most precise measurement for all interesting planetary and orbital parameters contained in the four databases, accounting for the presence of multiple aliases for the same target. It can download information about the host star as well by the use of Virtual Observatory ConeSearch connections to the major archives such as SIMBAD and those available in VizieR. A Graphical User Interface is provided to filter data based on the user's constraints and generate automatic plots that are commonly used in the exoplanetary community.
With Exo-MerCat, we retrieved a unique catalog that merges information from the four main databases, standardizing the output and handling notation differences issues. Exo-MerCat can correct as many issues that prevent a direct correspondence between multiple items in the four databases as possible, with the available data. The catalog is available as a VO resource for everyone to use and it is periodically updated, according to the update rates of the source catalogs.
PyFOSC is a pipeline toolbox for long-slit spectroscopy data reduction written in Python. It can be used for FOSC (Faint Object Spectrograph and Camera) data from Xinglong/Lijiang 2-meter telescopes in China. This pipeline privodes a neat way for data pre-processing, including updating missing header fileds for BFOSC data, reducing fits file extension for YFOSC data, etc. And it makes the data reduction procedure efficient by using previously identified lamp spectra as re-identification references during wavelength calibration, and applying multiprocessing in some modules. PyFOSC also enables customization for any other long-slit spectroscopy data.
PopSyCLE performs compact object population synthesis while taking photometric and astrometric microlensing effects into consideration. It uses Galaxia (ascl:1101.007) to produces a synthetic survey, injects compact objects into the resulting survey, and then produces a list of microlensing events, enabling the discovery of black holes with microlensing. It can be used to examine historical microlensing events from photometric surveys to statistically constrain the abundance of black holes in our galaxy, and to forward model microlensing survey results to constrain, for example, the properties of compact objects, Galactic structure, and the initial-final mass relation.
anesthetic brings together tools for processing nested sampling chains, leveraging standard scientific python libraries. The code provides computation of Bayesian evidences, Kullback-Liebler divergences and Bayesian model dimensionalities, marginalized 1d and 2d plots, and dynamic replaying of nested sampling. anesthetic was designed primarily for use with nested sampling outputs, although it can be used for normal MCMC chains.
HSIM simulates observations with HARMONI on the Extremely Large Telescope. HSIM takes high spectral and spatial resolution input data cubes, encoding physical descriptions of astrophysical sources, and generates mock observed data cubes. The simulations incorporate detailed models of the sky, telescope, instrument, and detectors to produce realistic mock data. HSIM performs in-depth simulations for several key science cases as part of the design and development of the HARMONI integral field spectrograph, including the ELT AO performance, atmospheric effects and realistic detector statistics.
Athena++ is a complete re-write of the Athena astrophysical magnetohydrodynamics (MHD) code (ascl:1010.014) in C++. Compared to earlier versions, the Athena++ code has much more flexible coordinate and grid options and supports new physics. It also offers significantly improved performance and scalability, and improved source code clarity and modularity. Athena++ supports compressible hydrodynamics and MHD in 1D, 2D, and 3D, and special and general relativistic hydrodynamics and MHD. In addition, it supports Cartesian, cylindrical, or spherical polar coordinates; static or adaptive mesh refinement in any coordinate system; mixed parallelization with both OpenMP and MPI; and a task-based execution model for improved load balancing, scalability and modularity.
Would you like to view a random code?