[submitted]
SGRB World Model

SgrbWorldModel: Written in Fortran 90, this series of codes present an attempt at modeling the population distribution of the Short-duration class of Gamma-Ray Bursts (SGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of SGRBs is well fit by a multivariate log-normal distribution, whose differential cosmological rate of occurrence follows the Star-Formation-Rate (SFR) convolved with a log-normal binary-merger delay-time distribution. The best-fit parameters of the model are then found by maximizing the likelihood of the observed data by the BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC)Sampler that is part of the code. A model for the detection algorithm of the BATSE detectors is also provided.

[submitted]
LGRB World Model

LgrbWorldModel: Written in Fortran 90, this series of codes present an attempt at modeling the population distribution of the Long-duration class of Gamma-Ray Bursts (LGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of LGRBs is well fit by a multivariate log-normal distribution. The best-fit parameters of the distribution are then found by maximizing the likelihood of the observed data by BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC) Sampler.

[submitted]
WiseView: Visualizing Motion and Variability of Faint WISE Sources

WiseView is a browser-based tool for rendering image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline. WiseView allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest, and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has already enabled hundreds of brown dwarf candidate discoveries made by citizen scientists and professional astronomers alike.

[ascl:1712.001]
KDUtils: Kinematic Distance Utilities

The Kinematic Distance utilities (KDUtils) calculate kinematic distances and kinematic distance uncertainties. The package includes methods to calculate "traditional" kinematic distances as well as a Monte Carlo method to calculate kinematic distances and uncertainties.

[submitted]
HiGal SED Fitter

A tool for fitting modified blackbody SEDs to Herschel data, specifically targeted at Herschel Hi-Gal data.

[ascl:1711.024]
NOD3: Single dish reduction software

NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

[ascl:1711.023]
HBT+: Subhalo finder and merger tree builder

HBT+ is a hybrid subhalo finder and merger tree builder for cosmological simulations. It comes as an MPI edition that can be run on distributed clusters or shared memory machines and is MPI/OpenMP parallelized, and also as an OpenMP edition that can be run on shared memory machines and is only OpenMP parallelized. This version is more memory efficient than the MPI branch on shared memory machines, and is more suitable for analyzing zoomed-in simulations that are difficult to balance on distributed clusters. Both editions support hydro simulations with gas/stars.

[ascl:1711.022]
HBT: Hierarchical Bound-Tracing

HBT is a Hierarchical Bound-Tracing subhalo finder and merger tree builder, for numerical simulations in cosmology. It tracks haloes from birth and continues to track them after mergers, finding self-bound structures as subhaloes and recording their merger histories as merger trees.

[ascl:1711.021]
Bifrost: Stream processing framework for high-throughput applications

Bifrost is a stream processing framework that eases the development of high-throughput processing CPU/GPU pipelines. It is designed for digital signal processing (DSP) applications within radio astronomy. Bifrost uses a flexible ring buffer implementation that allows different signal processing blocks to be connected to form a pipeline. Each block may be assigned to a CPU core, and the ring buffers are used to transport data to and from blocks. Processing blocks may be run on either the CPU or GPU, and the ring buffer will take care of memory copies between the CPU and GPU spaces.

[ascl:1711.020]
MARXS: Multi-Architecture Raytrace Xray mission Simulator

MARXS (Multi-Architecture-Raytrace-Xraymission-Simulator) simulates X-ray observatories. Primarily designed to simulate X-ray instruments on astronomical X-ray satellites and sounding rocket payloads, it can also be used to ray-trace experiments in the laboratory. MARXS performs polarization Monte-Carlo ray-trace simulations from a source (astronomical or lab) through a collection of optical elements such as mirrors, baffles, and gratings to a detector.

[ascl:1711.019]
SPIDERMAN: Fast code to simulate secondary transits and phase curves

SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

[ascl:1711.018]
LExTeS: Link Extraction and Testing Suite

LExTeS (Link Extraction and Testing Suite) extracts hyperlinks from PDF documents, tests the extracted links to see which are broken, and tabulates the results. Though written to support a particular set of PDF documents, the dataset and scripts can be edited for use on other documents.

[ascl:1711.017]
FATS: Feature Analysis for Time Series

Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Zhu, Ming; Dave, Rahul; Castro, Nicolas; Pichara, Karim

FATS facilitates and standardizes feature extraction for time series data; it quickly and efficiently calculates a compilation of many existing light curve features. Users can characterize or analyze an astronomical photometric database, though this library is not necessarily restricted to the astronomical domain and can also be applied to any kind of time series data.

[ascl:1711.016]
Thindisk: Protoplanetary disk model

Thindisk computes the line emission from a geometrically thin protoplanetary disk. It creates a datacube in FITS format that can be processed with a data reduction package (such as GILDAS, ascl:1305.010) to produce synthetic images and visibilities. These synthetic data can be compared with observations to determine the properties (e.g. central mass or inclination) of an observed disk. The disk is assumed to be in Keplerian rotation at a radius lower than the centrifugal radius (which can be set to a large value, for a purely Keplerian disk), and in infall with rotation beyond the centrifugal radius.

[ascl:1711.015]
rac-2d: Thermo-chemical for modeling water vapor formation in protoplanetary disks

rec-2d models the distribution of water vapor in protoplanetary disks. Given a distribution of gas and dust, rac-2d first solves the dust temperature distribution with a Monte Carlo method and then solves the gas temperature distribution and chemical composition. Although the geometry is symmetric with respect to rotation around the central axis and reflection about the midplane, the photon propagation is done in full three dimensions. After establishing the dust temperature distribution, the disk chemistry is evolved for 1 Myr; the heating and cooling processes are coupled with chemistry, allowing the gas temperature to be evolved in tandem with chemistry based on the heating and cooling rates.

[ascl:1711.014]
Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1711.013]
HO-CHUNK: Radiation Transfer code

HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:1711.012]
megaman: Manifold Learning for Millions of Points

megaman is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. It is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.

[ascl:1711.011]
galkin: Milky Way rotation curve data handler

galkin is a compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimized to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements collected from almost four decades of literature. The user-friendly software provided selects, treats and retrieves the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.

[ascl:1711.010]
galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1711.009]
Lightning: SED Fitting Package

Lightning is a spectral energy distribution (SED) fitting procedure that quickly and reliably recovers star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. The code consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters.

[ascl:1711.008]
clustep: Initial conditions for galaxy cluster halo simulations

clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

[ascl:1711.007]
galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1711.006]
RGW: Goodman-Weare Affine-Invariant Sampling

RGW is a lightweight R-language implementation of the affine-invariant Markov Chain Monte Carlo sampling method of Goodman & Weare (2010). The implementation is based on the description of the python package emcee (ascl:1303.002).

[ascl:1711.005]
correlcalc: Two-point correlation function from redshift surveys

correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

[ascl:1711.004]
BayesVP: Full Bayesian Voigt profile fitting

BayesVP offers a Bayesian approach for modeling Voigt profiles in absorption spectroscopy. The code fits the absorption line profiles within specified wavelength ranges and generates posterior distributions for the column density, Doppler parameter, and redshifts of the corresponding absorbers. The code uses publicly available efficient parallel sampling packages to sample posterior and thus can be run on parallel platforms. BayesVP supports simultaneous fitting for multiple absorption components in high-dimensional parameter space. The package includes additional utilities such as explicit specification of priors of model parameters, continuum model, Bayesian model comparison criteria, and posterior sampling convergence check.

[ascl:1711.003]
FTbg: Background removal using Fourier Transform

FTbg performs Fourier transforms on FITS images and separates low- and high-spatial frequency components by a user-specified cut. Both components are then inverse Fourier transformed back to image domain. FTbg can remove large-scale background/foreground emission in many astrophysical applications. FTbg has been designed to identify and remove Galactic background emission in Herschel/Hi-GAL continuum images, but it is applicable to any other (e.g., Planck) images when background/foreground emission is a concern.

[ascl:1711.002]
inhomog: Biscale kinematical backreaction analytical evolution

The inhomog library provides Raychaudhuri integration of cosmological domain-wise average scale factor evolution using an analytical formula for kinematical backreaction Q_D evolution. The inhomog main program illustrates biscale examples. The library routine lib/Omega_D_precalc.c is callable by RAMSES (ascl:1011.007) using the RAMSES extension ramses-scalav.

[ascl:1711.001]
SpcAudace: Spectroscopic processing and analysis package of Audela software

SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

[ascl:1710.024]
pred_loggs: Predicting individual galaxy G/S probability distributions

Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

pred_loggs models the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies.

[ascl:1710.023]
LIMEPY: Lowered Isothermal Model Explorer in PYthon

LIMEPY solves distribution function (DF) based lowered isothermal models. It solves Poisson's equation used on input parameters and offers fast solutions for isotropic/anisotropic, single/multi-mass models, normalized DF values, density and velocity moments, projected properties, and generates discrete samples.

[ascl:1710.022]
galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations

The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.

[ascl:1710.021]
OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline

Lyke, Jim; Do, Tuan; Boehle, Anna; Campbell, Randy; Chappell, Sam; Fitzgerald, Mike; Gasawy, Tom; Iserlohe, Christof; Krabbe, Alfred; Larkin, James; Lockhard, Kelly; Lu, Jessica; Mieda, Etsuko; McElwain, Mike; Perrin, Marshall; Rudy, Alex; Sitarski, Breann; Vayner, Andrey; Walth, Greg; Weiss, Jason; Wizanski, Tommer; Wright, Shelley

OSIRIS Toolbox reduces data for the Keck OSIRIS instrument, an integral field spectrograph that works with the Keck Adaptive Optics System. It offers real-time reduction of raw frames into cubes for display and basic analysis. In this real-time mode, it takes about one minute for a preliminary data cube to appear in the “quicklook” display package. The reduction system also includes a growing set of final reduction steps including correction of telluric absorption and mosaicing of multiple cubes.

[ascl:1710.020]
PSPLINE: Princeton Spline and Hermite cubic interpolation routines

PSPLINE is a collection of Spline and Hermite interpolation tools for 1D, 2D, and 3D datasets on rectilinear grids. Spline routines give full control over boundary conditions, including periodic, 1st or 2nd derivative match, or divided difference-based boundary conditions on either end of each grid dimension. Hermite routines take the function value and derivatives at each grid point as input, giving back a representation of the function between grid points. Routines are provided for creating Hermite datasets, with appropriate boundary conditions applied. The 1D spline and Hermite routines are based on standard methods; the 2D and 3D spline or Hermite interpolation functions are constructed from 1D spline or Hermite interpolation functions in a straightforward manner. Spline and Hermite interpolation functions are often much faster to evaluate than other representations using e.g. Fourier series or otherwise involving transcendental functions.

[ascl:1710.019]
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1710.018]
FITSFH: Star Formation Histories

FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.

[ascl:1710.017]
ATLAS9: Model atmosphere program with opacity distribution functions

ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

[ascl:1710.016]
LGMCA: Local-Generalized Morphological Component Analysis

LGMCA (Local-Generalized Morphological Component Analysis) is an extension to GMCA (ascl:1710.015). Similarly to GMCA, it is a Blind Source Separation method which enforces sparsity. The novel aspect of LGMCA, however, is that the mixing matrix changes across pixels allowing LGMCA to deal with emissions sources which vary spatially. These IDL scripts compute the CMB map from WMAP and Planck data; running LGMCA on the WMAP9 temperature products requires the main script and a selection of mandatory files, algorithm parameters and map parameters.

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1710.014]
GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1710.013]
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

[ascl:1710.012]
FSFE: Fake Spectra Flux Extractor

The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

[ascl:1710.011]
mTransport: Two-point-correlation function calculator

mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

[ascl:1710.010]
PyTransport: Calculate inflationary correlation functions

PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.

[ascl:1710.009]
CppTransport: Two- and three-point function transport framework for inflationary cosmology

CppTransport solves the 2- and 3-point functions of the perturbations produced during an inflationary epoch in the very early universe. It is implemented for models with canonical kinetic terms, although the underlying method is quite general and could be scaled to handle models with a non-trivial field-space metric or an even more general non-canonical Lagrangian.

[ascl:1710.008]
Binary: Accretion disk evolution

Binary computes the evolution of an accretion disc interacting with a binary system. It has been developed and used to study the coupled evolution of supermassive BH binaries and gaseous accretion discs.

[ascl:1710.007]
FLAG: Exact Fourier-Laguerre transform on the ball

FLAG is a fast implementation of the Fourier-Laguerre Transform, a novel 3D transform exploiting an exact quadrature rule of the ball to construct an exact harmonic transform in 3D spherical coordinates. The angular part of the Fourier-Laguerre transform uses the MW sampling theorem and the exact spherical harmonic transform implemented in the SSHT code. The radial sampling scheme arises from an exact quadrature of the radial half-line using damped Laguerre polynomials. The radial transform can in fact be used to compute the spherical Bessel transform exactly, and the Fourier-Laguerre transform is thus closely related to the Fourier-Bessel transform.

[ascl:1710.006]
MOSFiT: Modular Open-Source Fitter for Transients

Guillochon, James; Nicholl, Matt; Villar, V. Ashley; Mockler, Brenna; Narayan, Gautham; Mandel, Kaisey S.; Berger, Edo; Williams, Peter K. G.

MOSFiT (Modular Open-Source Fitter for Transients) downloads transient datasets from open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-analytical light curve fits to those datasets and their associated Bayesian parameter posteriors, and optionally delivers the fitting results back to those same catalogs to make them available to the rest of the community. MOSFiT helps bridge the gap between observations and theory in time-domain astronomy; in addition to making the application of existing models and creation of new models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics, with a standard output format that includes all the setup information necessary to reproduce a given result.

[ascl:1710.005]
SkyNet: Modular nuclear reaction network library

The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

[ascl:1710.004]
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

[ascl:1710.003]
EXOFASTv2: Generalized publication-quality exoplanet modeling code

EXOFASTv2 improves upon EXOFAST (ascl:1207.001) for exoplanet modeling. It uses a differential evolution Markov Chain Monte Carlo code to fit an arbitrary number of transits (each with their own error scaling, normalization, TTV, and/or detrending parameters), an arbitrary number of RV sources (each with their own zero point and jitter), and an arbitrary number of planets, changing nothing but command line arguments and configuration files. The global model includes integrated isochrone and SED models to constrain the stellar properties and can accept priors on any fitted or derived quantities (e.g., parallax from Gaia). It is easily extensible to add additional effects or parameters.

[ascl:1710.002]
rfpipe: Radio interferometric transient search pipeline

rfpipe supports Python-based analysis of radio interferometric data (especially from the Very Large Array) and searches for fast radio transients. This extends on the rtpipe library (ascl:1706.002) with new approaches to parallelization, acceleration, and more portable data products. rfpipe can run in standalone mode or be in a cluster environment.

[ascl:1710.001]
vysmaw: Fast visibility stream muncher

The vysmaw client library facilitates the development of code for processes to tap into the fast visibility stream on the National Radio Astronomy Observatory's Very Large Array correlator back-end InfiniBand network. This uses the vys protocol to allows loose coupling to clients that need to remotely access memory over an Infiniband network.

[ascl:1709.011]
FLaapLUC: Fermi-LAT automatic aperture photometry light curve

Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.

[ascl:1709.010]
MagIC: Fluid dynamics in a spherical shell simulator

MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

[ascl:1709.009]
bmcmc: MCMC package for Bayesian data analysis

bmcmc is a general purpose Markov Chain Monte Carlo package for Bayesian data analysis. It uses an adaptive scheme for automatic tuning of proposal distributions. It can also handle Bayesian hierarchical models by making use of the Metropolis-Within-Gibbs scheme.

[ascl:1709.008]
celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia

celerite provides fast and scalable Gaussian Process (GP) Regression in one dimension and is implemented in C++, Python, and Julia. The celerite API is designed to be familiar to users of george and, like george, celerite is designed to efficiently evaluate the marginalized likelihood of a dataset under a GP model. This is then be used alongside a non-linear optimization or posterior inference library for the best results.

[ascl:1709.007]
MSSC: Multi-Source Self-Calibration

Multi-Source Self-Calibration (MSSC) provides direction-dependent calibration to standard phase referencing. The code combines multiple faint sources detected within the primary beam to derive phase corrections. Each source has its CLEAN model divided into the visibilities which results in multiple point sources that are stacked in the uv plane to increase the S/N, thus permitting self-calibration. This process applies only to wide-field VLBI data sets that detect and image multiple sources within one epoch.

[ascl:1709.006]
DCMDN: Deep Convolutional Mixture Density Network

Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

[ascl:1709.005]
DanIDL: IDL solutions for science and astronomy

DanIDL provides IDL functions and routines for many standard astronomy needs, such as searching for matching points between two coordinate lists of two-dimensional points where each list corresponds to a different coordinate space, estimating the full-width half-maximum (FWHM) and ellipticity of the PSF of an image, calculating pixel variances for a set of calibrated image data, and fitting a 3-parameter plane model to image data. The library also supplies astrometry, general image processing, and general scientific applications.

[ascl:1709.004]
DOOp: DAOSPEC Output Optimizer pipeline

Cantat-Gaudin, Tristan; Donati, Paolo; Pancino, Elena; Bragaglia, Angela; Vallenari, Antonella; Friel, Eileen D.; Sordo, Rosanna; Jacobson, Heather R.; Magrini, Laura

The DAOSPEC Output Optimizer pipeline (DOOp) runs efficient and convenient equivalent widths measurements in batches of hundreds of spectra. It uses a series of BASH scripts to work as a wrapper for the FORTRAN code DAOSPEC (ascl:1011.002) and uses IRAF (ascl:9911.002) to automatically fix some of the parameters that are usually set by hand when using DAOSPEC. This allows batch-processing of quantities of spectra that would be impossible to deal with by hand. DOOp was originally built for the large quantity of UVES and GIRAFFE spectra produced by the Gaia-ESO Survey, but just like DAOSPEC, it can be used on any high resolution and high signal-to-noise ratio spectrum binned on a linear wavelength scale.

[ascl:1709.003]
MeshLab: 3D triangular meshes processing and editing

MeshLab processes and edits 3D triangular meshes. It includes tools for editing, cleaning, healing, inspecting, rendering, texturing and converting meshes, and offers features for processing raw data produced by 3D digitization tools and devices and for preparing models for 3D printing.

[ascl:1709.002]
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

[ascl:1709.001]
SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

[ascl:1708.030]
GAMBIT: Global And Modular BSM Inference Tool

The GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1708.029]
iSEDfit: Bayesian spectral energy distribution modeling of galaxies

iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone.

After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

[ascl:1708.028]
ANA: Astrophysical Neutrino Anisotropy

ANA calculates the likelihood function for a model comprised of two components to the astrophysical neutrino flux detected by IceCube. The first component is extragalactic. Since point sources have not been found and there is increasing evidence that one source catalog cannot describe the entire data set, ANA models the extragalactic flux as isotropic. The second component is galactic. A variety of catalogs of interest are also provided. ANA takes the galactic contribution to be proportional to the matter density of the universe. The likelihood function has one free parameter fgal that is the fraction of the astrophysical flux that is galactic. ANA finds the best fit value of fgal and scans over 0

[ascl:1708.027]
empiriciSN: Supernova parameter generator

empiriciSN generates realistic supernova parameters given photometric observations of a potential host galaxy, based entirely on empirical correlations measured from supernova datasets. It is intended to be used to improve supernova simulation for DES and LSST. It is extendable such that additional datasets may be added in the future to improve the fitting algorithm or so that additional light curve parameters or supernova types may be fit.

[ascl:1708.026]
XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

[ascl:1708.025]
extinction-distances: Estimating distances to dark clouds

Extinction-distances uses the number of foreground stars and a Galactic model of the stellar distribution to estimate the distance to dark clouds. It exploits the relatively narrow range of intrinsic near-infrared colors of stars to separate foreground from background stars. An advantage of this method is that the distribution of stellar colors in the Galactic model need not be precisely correct, only the number density as a function of distance from the Sun.

[ascl:1708.024]
ComEst: Completeness Estimator

ComEst calculates the completeness of CCD images conducted in astronomical observations saved in the FITS format. It estimates the completeness of the source finder SExtractor (ascl:1010.064) on the optical and near-infrared (NIR) imaging of point sources or galaxies as a function of flux (or magnitude) directly from the image itself. It uses PyFITS (ascl:1207.009) and GalSim (ascl:1402.009) to perform the end-to-end estimation of the completeness and can also estimate the purity of the source detection.

[ascl:1708.023]
ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox

ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.

[ascl:1708.022]
Naima: Derivation of non-thermal particle distributions through MCMC spectral fitting

Naima computes non-thermal radiation from relativistic particle populations. It includes tools to perform MCMC fitting of radiative models to X-ray, GeV, and TeV spectra using emcee (ascl:1303.002), an affine-invariant ensemble sampler for Markov Chain Monte Carlo. Naima is an Astropy (ascl:1304.002) affiliated package.

[ascl:1708.020]
4DAO: DAOSPEC interface

4DAO launches DAOSPEC (ascl:1011.002) for a large sample of spectra. Written in Fortran, the software allows one to easily manage the input and output files of DAOSPEC, optimize the main DAOSPEC parameters, and mask specific spectral regions. It also provides suitable graphical tools to evaluate the quality of the solution and provides final, normalized, zero radial velocity spectra.

[ascl:1708.019]
SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

[ascl:1708.018]
CUTEX: CUrvature Thresholding EXtractor

CuTEx analyzes images in the infrared bands and extracts sources from complex backgrounds, particularly star-forming regions that offer the challenges of crowding, having a highly spatially variable background, and having no-psf profiles such as protostars in their accreting phase. The code is composed of two main algorithms, the first an algorithm for source detection, and the second for flux extraction. The code is originally written in IDL language and it was exported in the license free GDL language. CuTEx could be used in other bands or in scientific cases different from the native case.

This software is also available as an on-line tool from the Multi-Mission Interactive Archive web pages dedicated to the Herschel Observatory.

[ascl:1708.017]
LCC: Light Curves Classifier

Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio).

Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

[ascl:1708.016]
pyLCSIM: X-ray lightcurves simulator

pyLCSIM simulates X-ray lightcurves from coherent signals and power spectrum models. Coherent signals can be specified as a sum of one or more sinusoids, each with its frequency, pulsed fraction and phase shift; or as a series of harmonics of a fundamental frequency (each with its pulsed fraction and phase shift). Power spectra can be simulated from a model of the power spectrum density (PSD) using as a template one or more of the built-in library functions. The user can also define his/her custom models. Models are additive.

[ascl:1708.021]
KERTAP: Strong lensing effects of Kerr black holes

KERTAP computes the strong lensing effects of Kerr black holes, including the effects on polarization. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles.

[ascl:1708.015]
TWO-POP-PY: Two-population dust evolution model

TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

[ascl:1708.014]
PACSman: IDL Suite for Herschel/PACS spectrometer data

PACSman provides an alternative for several reduction and analysis steps performed in HIPE (ascl:1111.001) on PACS spectroscopic data; it is written in IDL. Among the operations possible with it are transient correction, line fitting, map projection, and map analysis, and unchopped scan, chop/nod, and the decommissioned wavelength switching observation modes are supported.

[ascl:1708.013]
GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:1708.012]
GANDALF: Gas AND Absorption Line Fitting

Sarzi, Marc; Falcón-Barroso, Jesús; Davies, Roger L.; Bacon, Roland; Bureau, Martin; Cappellari, Michele; de Zeeuw, P. Tim; Emsellem, Eric; Fathi, Kambiz; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1708.011]
RM-CLEAN: RM spectra cleaner

RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

[ascl:1708.010]
BAGEMASS: Bayesian age and mass estimates for transiting planet host stars

BAGEMASS calculates the posterior probability distribution for the mass and age of a star from its observed mean density and other observable quantities using a grid of stellar models that densely samples the relevant parameter space. It is written in Fortran and requires FITSIO (ascl:1010.001).

[ascl:1708.009]
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)

FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.

[ascl:1708.008]
ALCHEMIC: Advanced time-dependent chemical kinetics

ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

[ascl:1708.007]
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, *i.e.* in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

[ascl:1708.006]
DISORT: DIScrete Ordinate Radiative Transfer

DISORT (DIScrete Ordinate Radiative Transfer) solves the problem of 1D scalar radiative transfer in a single optical medium, such as a planetary atmosphere. The code correctly accounts for multiple scattering by an isotropic or plane-parallel beam source, internal Planck sources, and reflection from a lower boundary. Provided that polarization effects can be neglected, DISORT efficiently calculates accurate fluxes and intensities at any user-specified angle and location within the user-specified medium.

[ascl:1708.005]
STools: IDL Tools for Spectroscopic Analysis

STools contains a variety of simple tools for spectroscopy, such as reading an IRAF-formatted (multispec) echelle spectrum in FITS, measuring the wavelength of the center of a line, Gaussian convolution, deriving synthetic photometry from an input spectrum, and extracting and interpolating a MARCS model atmosphere (standard composition).

[ascl:1708.004]
Astroquery: Access to online data resources

Ginsburg, Adam; Parikh, Madhura; Woillez, Julien; Groener, Austen; Liedtke, Simon; Sipocz, Brigitta; Robitaille, Thomas; Deil, Christoph; Svoboda, Brian; Tollerud, Erik; Persson, Magnus Vilhelm; Séguin-Charbonneau, Loïc; Armstrong, Caden; Mirocha, Jordan; Droettboom, Michael; Allen, James; Moolekamp, Fred; Egeland, Ricky; Singer, Leo; Barbary, Kyle; Grollier, Frédéric; Shiga, David; Moritz Günther, Hans; Parejko, John; Booker, Joseph; Rol, Evert; Edward; Miller, Adam; Willett, Kyle

Astroquery allows users to access online astronomical data from a wide range of sources; it is an Astropy-affiliated package. Each web service has its own sub-package for interfacing with a particular data source.

[ascl:1708.003]
CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline

CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable

modules (DLMs).

[ascl:1708.002]
CINE: Comet INfrared Excitation

CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

[ascl:1708.001]
ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

[ascl:1707.007]
swot: Super W Of Theta

SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

[ascl:1707.006]
Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1707.005]
PyMOC: Multi-Order Coverage map module for Python

PyMOC manipulates Multi-Order Coverage (MOC) maps. It supports reading and writing the three encodings mentioned in the IVOA MOC recommendation: FITS, JSON and ASCII.

[submitted]
venice

venice is a mask utility program that reads a mask file (DS9 or fits type) and a catalogue of objects (ascii or fits type) to:

1. create a pixelized mask,

2. find objects inside/outside a mask,

3. or generate a random catalogue of objects inside/outside a mask.

The program reads the mask file and checks if a point, giving its coordinates, is inside or outside the mask, i.e. inside or outside at least one polygon of the mask.

[ascl:1707.004]
CCFpams: Atmospheric stellar parameters from cross-correlation functions

CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

[ascl:1707.003]
pyaneti: Multi-planet radial velocity and transit fitting

Pyaneti is a multi-planet radial velocity and transit fit software. The code uses Markov chain Monte Carlo (MCMC) methods with a Bayesian approach and a parallelized ensemble sampler algorithm in Fortran which makes the code fast. It creates posteriors, correlations, and ready-to-publish plots automatically, and handles circular and eccentric orbits. It is capable of multi-planet fitting and handles stellar limb darkening, systemic velocities for multiple instruments, and short and long cadence data, and offers additional capabilities.

[ascl:1707.002]
SASRST: Semi-Analytic Solutions for 1-D Radiative Shock Tubes

SASRST, a small collection of Python scripts, attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008), respectively. The included code calculates the solution for a given set of input parameters and also plots the results using Matplotlib. This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code.

[ascl:1707.001]
HRM: HII Region Models

HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

[ascl:1706.012]
KeplerSolver: Kepler equation solver

KeplerSolver solves Kepler's equation for arbitrary epoch and eccentricity, using continued fractions. It is written in C and its speed is nearly the same as the SWIFT routines, while achieving machine precision. It comes with a test program to demonstrate usage.

[ascl:1706.011]
PyPulse: PSRFITS handler

PyPulse handles PSRFITS files and performs subsequent analyses on pulse profiles.

[ascl:1706.010]
EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[submitted]
KERN

KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN to is to save time and frustration in setting up of scientific pipelines, and to assist in achieving scientific reproducibility.

[submitted]
Kliko - The Scientific Compute Container Format

We present Kliko, a Docker based container specification for running one or multiple related compute jobs. The key concepts of Kliko is the encapsulation of data processing software into a container and the formalisation of the input, output and task parameters. Formalisation is realised by bundling a container with a Kliko file, which describes the IO and task parameters. This Kliko container can then be opened and run by a Kliko runner. The Kliko runner will parse the Kliko definition and gather the values for these parameters, for example by requesting user input or pre defined values in a script. Parameters can be various primitive types, for example float, int or the path to a file. This paper will also discuss the implementation of a support library named Kliko which can be used to create Kliko containers, parse Kliko definitions, chain Kliko containers in workflows using, for example, Luigi a workflow manager. The Kliko library can be used inside the container interact with the Kliko runner. Finally this paper will discuss two reference implementations based on Kliko: RODRIGUES, a web based Kliko container schedular and output visualiser specifically for astronomical data, and VerMeerKAT, a multi container workflow data reduction pipeline which is being used as a prototype pipeline for the commisioning of the MeerKAT radio telescope.

[ascl:1706.009]
sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[ascl:1706.008]
the-wizz: Clustering redshift estimation code

the-wizz clusters redshift estimates for any photometric unknown sample in a survey. The software is composed of two main parts: a pair finder and a pdf maker. The pair finder finds spatial pairs and stores the indices of all closer pairs around target reference objects in an output HDF5 data file. Users then query this data file using the indices of their unknown sample to produce an output clustering-z.

[ascl:1706.007]
encube: Large-scale comparative visualization and analysis of sets of multidimensional data

Vohl, Dany; Barnes, David G.; Fluke, Christopher J.; Poudel, Govinda; Georgiou-Karistianis, Nellie; Hassan, Amr H.; Benovitski, Yuri; Wong, Tsz Ho; Kaluza, Owen; Nguyen, Toan D.; Bonnington, C. Paul

Encube is a qualitative, quantitative and comparative visualization and analysis framework, with application to high-resolution, immersive three-dimensional environments and desktop displays, providing a capable visual analytics experience across the display ecology. Encube includes mechanisms for the support of: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. The framework is modular, allowing additional functionalities to be included as required.

[ascl:1706.006]
GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1706.005]
LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1706.004]
Dark Sage: Semi-analytic model of galaxy evolution

DARK SAGE is a semi-analytic model of galaxy formation that focuses on detailing the structure and evolution of galaxies' discs. The code-base, written in C, is an extension of SAGE (ascl:1601.006) and maintains the modularity of SAGE. DARK SAGE runs on any N-body simulation with trees organized in a supported format and containing a minimum set of basic halo properties.

[ascl:1706.003]
DaMaSCUS: Dark Matter Simulation Code for Underground Scatterings

DaMaSCUS calculates the density and velocity distribution of dark matter (DM) at any detector of given depth and latitude to provide dark matter particle trajectories inside the Earth. Provided a strong enough DM-matter interaction, the particles scatter on terrestrial atoms and get decelerated and deflected. The resulting local modifications of the DM velocity distribution and number density can have important consequences for direct detection experiments, especially for light DM, and lead to signatures such as diurnal modulations depending on the experiment's location on Earth. The code involves both the Monte Carlo simulation of particle trajectories and generation of data as well as the data analysis consisting of non-parametric density estimation of the local velocity distribution functions and computation of direct detection event rates.

[ascl:1706.002]
rtpipe: Searching for Fast Radio Transients in Interferometric Data

rtpipe (real-time pipeline) analyzes radio interferometric data with an emphasis on searching for transient or variable astrophysical sources. The package combines single-dish concepts such as dedispersion and filters with interferometric concepts, including images and the uv-plane. In contrast to time-domain data recorded with large single-dish telescopes, visibilities from interferometers can precisely localize sources anywhere in the entire field of view. rtpipe opens interferometers to the study of fast transient sky, including sources like pulsars, stellar flares, rotating radio transients, and fast radio bursts. Key portions of the search pipeline, such as image generation and dedispersion, have been accelerated. That, in combination with its multi-threaded, multi-node design, makes rtpipe capable of searching millisecond timescale data in real time on small compute clusters.

[ascl:1706.001]
Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:1705.017]
supernovae: Photometric classification of supernovae

Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

[ascl:1705.016]
astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1705.015]
WeirdestGalaxies: Outlier Detection Algorithm on Galaxy Spectra

WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.

[ascl:1705.014]
NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1705.013]
PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1705.012]
fd3: Spectral disentangling of double-lined spectroscopic binary stars

The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

[ascl:1705.011]
FDBinary: A tool for spectral disentangling of double-lined spectroscopic binary stars

FDBinary disentangles spectra of SB2 stars. The spectral disentangling technique can be applied on a time series of observed spectra of an SB2 to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. The code is written in C and is designed as a command-line utility for a Unix-like operating system. FDBinary uses the Fourier-space approach in separation of composite spectra. This code has been replaced with the newer fd3 (ascl:1705.012).

[ascl:1705.010]
PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1705.009]
LensPop: Galaxy-galaxy strong lensing population simulation

LensPop simulates observations of the galaxy-galaxy strong lensing population in the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and Euclid surveys.

[ascl:1705.008]
MBProj2: Multi-Band x-ray surface brightness PROJector 2

MBProj2 obtains thermodynamic profiles of galaxy clusters. It forward-models cluster X-ray surface brightness profiles in multiple bands, optionally assuming hydrostatic equilibrium. The code is a set of Python classes the user can use or extend. When modelling a cluster assuming hydrostatic equilibrium, the user chooses a form for the density profile (e.g. binning or a beta model), the metallicity profile, and the dark matter profile (e.g. NFW). If hydrostatic equilibrium is not assumed, a temperature profile model is used instead of the dark matter profile. The code uses the emcee Markov Chain Monte Carlo code (ascl:1303.002) to sample the model parameters, using these to produce chains of thermodynamic profiles.

[submitted]
HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1705.007]
getimages: Background derivation and image flattening method

*getimages* performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of *getimages* that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. *getimages* also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from *getsources* (ascl:1507.014), which must be installed.

[ascl:1705.006]
f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:1705.005]
SPTCLASS: SPecTral CLASSificator code

SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.

[ascl:1705.004]
PCAT: Probabilistic Cataloger

PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model.

The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

[ascl:1705.003]
demc2: Differential evolution Markov chain Monte Carlo parameter estimator

demc2, also abbreviated as DE-MCMC, is a differential evolution Markov Chain parameter estimation library written in R for adaptive MCMC on real parameter spaces.

[ascl:1705.002]
DMATIS: Dark Matter ATtenuation Importance Sampling

DMATIS (Dark Matter ATtenuation Importance Sampling) calculates the trajectories of DM particles that propagate in the Earth's crust and the lead shield to reach the DAMIC detector using an importance sampling Monte-Carlo simulation. A detailed Monte-Carlo simulation avoids the deficiencies of the SGED/KS method that uses a mean energy loss description to calculate the lower bound on the DM-proton cross section. The code implementing the importance sampling technique makes the brute-force Monte-Carlo simulation of moderately strongly interacting DM with nucleons computationally feasible. DMATIS is written in Python 3 and MATHEMATICA.

[ascl:1705.001]
COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

[ascl:1704.014]
Multipoles: Potential gain for binary lens estimation

Multipoles, written in Python, calculates the quadrupole and hexadecapole approximations of the finite-source magnification: quadrupole (Wk,rho,Gamma) and hexadecapole (Wk,rho,Gamma). The code is efficient and faster than previously available methods, and could be generalized for use on large portions of the light curves.

[ascl:1704.013]
Difference-smoothing: Measuring time delay from light curves

The Difference-smoothing MATLAB code measures the time delay from the light curves of images of a gravitationally lendsed quasar. It uses a smoothing timescale free parameter, generates more realistic synthetic light curves to estimate the time delay uncertainty, and uses *X*^{2} plot to assess the reliability of a time delay measurement as well as to identify instances of catastrophic failure of the time delay estimator. A systematic bias in the measurement of time delays for some light curves can be eliminated by applying a correction to each measured time delay.

[ascl:1704.012]
XID+: Next generation XID development

XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.

[ascl:1704.011]
VULCAN: Chemical Kinetics For Exoplanetary Atmospheres

VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.

[ascl:1704.010]
A-Track: Detecting Moving Objects in FITS images

A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

[ascl:1704.009]
Photo-z-SQL: Photometric redshift estimation framework

Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

[ascl:1704.008]
Transit: Radiative-transfer code for planetary atmospheres

Cubillos, Patricio; Blecic, Jasmina; Harrington, Joe; Rojo, Patricio; Foster, Austin J.; Stemm, Madison; Challener,Ryan; Foster, Andrew S. D.

Transit calculates the transmission or emission spectrum of a planetary atmosphere with application to extrasolar-planet transit and eclipse observations, respectively. It computes the spectra by solving the one-dimensional line-by-line radiative-transfer equation for an atmospheric model.

[ascl:1704.007]
PySM: Python Sky Model

PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs

[ascl:1704.006]
Quickclump: Identify clumps within a 3D FITS datacube

Quickclump finds clumps in a 3D FITS datacube. It is a fast, accurate, and automated tool written in Python. Though Quickclump is primarily intended for decomposing observations of interstellar clouds into individual clumps, it can also be used for finding clumps in any 3D rectangular data.

[ascl:1704.005]
VaST: Variability Search Toolkit

VaST (Variability Search Toolkit) finds variable objects on a series of astronomical images in FITS format. The software performs object detection and aperture photometry using SExtractor (ascl:1010.064) on each image, cross-matches lists of detected stars, performs magnitude calibration with respect to the first (reference) image and constructs a lightcurve for each object. The sigma-magnitude, Stetson's L variability index, Robust Median Statistic (RoMS) and other plots may be used to visually identify variable star candidates. The two distinguishing features of VaST are its ability to perform accurate aperture photometry of images obtained with non-linear detectors and to handle complex image distortions. VaST can be used in cases of unstable PSF (e.g., bad guiding or with digitized wide-field photographic images), and has been successfully applied to images obtained with telescopes ranging from 0.08 to 2.5m in diameter equipped with a variety of detectors including CCD, CMOS, MIC and photographic plates.

[ascl:1704.004]
STATCONT: Statistical continuum level determination method for line-rich sources

STATCONT determines the continuum emission level in line-rich spectral data by inspecting the intensity distribution of a given spectrum by using different statistical approaches. The sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination; this uncertainty is used to correct the final continuum emission level. In general, STATCONT obtains accuracies of < 10 % in the continuum determination, and < 5 % in most cases. The main products of the software are the continuum emission level, together with its uncertainty, and data cubes containing only spectral line emission, i.e. continuum-subtracted data cubes. STATCONT also includes the option to estimate the spectral index or variation of the continuum emission with frequency.

[ascl:1704.003]
Shwirl: Meaningful coloring of spectral cube data with volume rendering

Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.

[ascl:1704.002]
UDAT: A multi-purpose data analysis tool

UDAT is a pattern recognition tool for mass analysis of various types of data, including image and audio. Based on its WND-CHARM (ascl:1312.002) prototype, UDAT computed a large set of numerical content descriptors from each file it analyzes, and selects the most informative features using statistical analysis. The tool can perform automatic classification of galaxy images by training with annotated galaxy images. It also has unsupervised learning capabilities, such as query-by-example of galaxies based on morphology. That is, given an input galaxy image of interest, the tool can search through a large database of images to retrieve the galaxies that are the most similar to the query image. The downside of the tool is its computational complexity, which in most cases will require a small or medium cluster.

[ascl:1704.001]
pwkit: Astronomical utilities in Python

pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

[ascl:1703.015]
Charm: Cosmic history agnostic reconstruction method

Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.

[ascl:1703.014]
MC-SPAM: Monte-Carlo Synthetic-Photometry/Atmosphere-Model

MC-SPAM (Monte-Carlo Synthetic-Photometry/Atmosphere-Model) generates limb-darkening coefficients from models that are comparable to transit photometry; it extends the original SPAM algorithm by Howarth (2011) by taking in consideration the uncertainty on the stellar and transit parameters of the system under analysis.

[ascl:1703.013]
Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer

Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

[ascl:1703.012]
ICICLE: Initial Conditions for Isolated CoLlisionless systEms

ICICLE (Initial Conditions for Isolated CoLlisionless systEms) generates stable initial conditions for isolated collisionless systems that can then be used in NBody simulations. It supports the Navarro-Frenk-White, Hernquist, King and Einasto density profiles.

[ascl:1703.011]
QtClassify: IFS data emission line candidates classifier

QtClassify is a GUI that helps classify emission lines found in integral field spectroscopic data. Input needed is a datacube as well as a catalog with emission lines and a signal-to-noise cube, such at that created by LSDCat (ascl:1612.002). The main idea is to take each detected line and guess what line it could be (and thus the redshift of the object). You would expect to see other lines that might not have been detected but are visible in the cube if you know where to look, which is why parts of the spectrum are shown where other lines are expected. In addition, monochromatic layers of the datacube are displayed, making it easy to spot additional emission lines.

[ascl:1703.010]
TransitSOM: Self-Organizing Map for Kepler and K2 transits

A self-organizing map (SOM) can be used to identify planetary candidates from Kepler and K2 datasets with accuracies near 90% in distinguishing known Kepler planets from false positives. TransitSOM classifies a Kepler or K2 lightcurve using a self-organizing map (SOM) created and pre-trained using PyMVPA (ascl:1703.009). It includes functions for users to create their own SOMs.

[ascl:1703.009]
PyMVPA: MultiVariate Pattern Analysis in Python

PyMVPA eases statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. It is designed to integrate well with related software packages, such as scikit-learn, shogun, and MDP.

[ascl:1703.008]
exorings: Exoring Transit Properties

Exorings is suitable for surveying entire catalogs of transiting planet candidates for exoring candidates, providing a subset of objects worthy of more detailed light curve analysis. Moreover, it is highly suited for uncovering evidence of a population of ringed planets by comparing the radius anomaly and PR-effects in ensemble studies.

[ascl:1703.007]
sidm-nbody: Monte Carlo N-body Simulation for Self-Interacting Dark Matter

Self-Interacting Dark Matter (SIDM) is a hypothetical model for cold dark matter in the Universe. A strong interaction between dark matter particles introduce a different physics inside dark-matter haloes, making the density profile cored, reduce the number of subhaloes, and trigger gravothermal collapse. sidm-nbody is an N-body simulation code with Direct Simulation Monte Carlo scattering for self interaction, and some codes to analyse gravothermal collapse of isolated haloes. The N-body simulation is based on GADGET 1.1.

[ascl:1703.006]
SNRPy: Supernova remnant evolution modeling

SNRPy (Super Nova Remnant Python) models supernova remnant (SNR) evolution and is useful for understanding SNR evolution and to model observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs and includes alternate evolutionary models, including evolution in a cloudy ISM, the fractional energy loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity vs. time, SNR surface brightness profile and spectrum.

[ascl:1703.005]
starsense_algorithms: Performance evaluation of various star sensors

Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

The Matlab starsense_algorithms package evaluates the performance of various star sensors through the implementation of centroiding, geometric voting and QUEST algorithms. The physical parameters of a star sensor are parametrized and by changing these parameters, performance estimators such as sky coverage, memory requirement, and timing requirements can be estimated for the selected star sensor.

[ascl:1703.004]
PHOTOMETRYPIPELINE: Automated photometry pipeline

PHOTOMETRYPIPELINE (PP) provides calibrated photometry from imaging data obtained with small to medium-sized observatories. PP uses Source Extractor (ascl:1010.064) and SCAMP (ascl:1010.063) to register the image data and perform aperture photometry. Calibration is obtained through matching of field stars with reliable photometric catalogs. PP has been specifically designed for the measurement of asteroid photometry, but can also be used to obtain photometry of fixed sources.

[ascl:1703.003]
Corrfunc: Blazing fast correlation functions on the CPU

Corrfunc is a suite of high-performance clustering routines. The code can compute a variety of spatial correlation functions on Cartesian geometry as well Landy-Szalay calculations for spatial and angular correlation functions on a spherical geometry and is useful for, for example, exploring the galaxy-halo connection. The code is written in C and can be used on the command-line, through the supplied python extensions, or the C API.

[ascl:1703.002]
COCOA: Simulating Observations of Star Cluster Simulations

COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

[ascl:1703.001]
Larch: X-ray Analysis for Synchrotron Applications using Python

Larch is an open-source library and toolkit written in Python for processing and analyzing X-ray spectroscopic data. The primary emphasis is on X-ray spectroscopic and scattering data collected at modern synchrotron sources. Larch provides a wide selection of general-purpose processing, analysis, and visualization tools for processing X-ray data; its related target application areas include X-ray absorption fine structure (XAFS), micro-X-ray fluorescence (XRF) maps, quantitative X-ray fluorescence, X-ray absorption near edge spectroscopy (XANES), and X-ray standing waves and surface scattering. Larch provides a complete set of XAFS Analysis tools and has support for visualizing and analyzing XRF maps and spectra, and additional tools for X-ray spectral analysis, data handling, and general-purpose data modeling.

[submitted]
KSTAT

KSTAT calculates the 2 and 3-point correlation functions in discreet point data. These include the two-point correlation function in 2 and 3-dimensions, the anisotripic 2PCF decomposed in either sigma-pi or Kazin's dist. mu projection.

The 3-point correlation function can also work in anisotropic coordinates (currently under development). The code is based on kd-tree structures and is parallelized using a mixture of MPI and OpenMP.

I created these codes as I have found it difficult in the past find similar ones freely available in the public domain. I hope to keep developing them, so please send me bug fixes,suggestions, comments/criticisms to csabiu@gmail.com

[ascl:1702.012]
GRIM: General Relativistic Implicit Magnetohydrodynamics

GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

[ascl:1702.011]
Chempy: A flexible chemical evolution model for abundance fitting

Chempy models Galactic chemical evolution (GCE); it is a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of 5-10 parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: e.g. the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF) and the incidence of supernova of type Ia (SN Ia). Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets, performing essentially as a chemical evolution fitting tool. Chempy can be used to confront predictions from stellar nucleosynthesis with complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

[ascl:1702.010]
streamgap-pepper: Effects of peppering streams with many small impacts

streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the streampepperdf.py galpy extension, which implements the fast calculation of the perturbed stream structure.

[ascl:1702.009]
stream-stream: Stellar and dark-matter streams interactions

Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.

[ascl:1702.008]
HOURS: Simulation and analysis software for the KM3NeT

The Hellenic Open University Reconstruction & Simulation (HOURS) software package contains a realistic simulation package of the detector response of very large (km3-scale) underwater neutrino telescopes, including an accurate description of all the relevant physical processes, the production of signal and background as well as several analysis strategies for triggering and pattern recognition, event reconstruction, tracking and energy estimation. HOURS also provides tools for simulating calibration techniques and other studies for estimating the detector sensitivity to several neutrino sources.

[ascl:1702.007]
KEPLER: General purpose 1D multizone hydrodynamics code

KEPLER is a general purpose stellar evolution/explosion code that incorporates implicit hydrodynamics and a detailed treatment of nuclear burning processes. It has been used to study the complete evolution of massive and supermassive stars, all major classes of supernovae, hydrostatic and explosive nucleosynthesis, and x- and gamma-ray bursts on neutron stars and white dwarfs.

[ascl:1702.006]
GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

[ascl:1702.005]
JetCurry: Modeling 3D geometry of AGN jets from 2D images

Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the *x* axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

[ascl:1702.004]
Validation: Codes to compare simulation data to various observations

Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

[ascl:1702.003]
juwvid: Julia code for time-frequency analysis

Juwvid performs time-frequency analysis. Written in Julia, it uses a modified version of the Wigner distribution, the pseudo Wigner distribution, and the short-time Fourier transform from MATLAB GPL programs, tftb-0.2. The modification includes the zero-padding FFT, the non-uniform FFT, the adaptive algorithm by Stankovic, Dakovic, Thayaparan 2013, the S-method, the L-Wigner distribution, and the polynomial Wigner-Ville distribution.

[ascl:1702.002]
corner: Corner plots

*corner* uses matplotlib to visualize multidimensional samples using a scatterplot matrix. In these visualizations, each one- and two-dimensional projection of the sample is plotted to reveal covariances. *corner* was originally conceived to display the results of Markov Chain Monte Carlo simulations and the defaults are chosen with this application in mind but it can be used for displaying many qualitatively different samples. An earlier version of *corner* was known as triangle.py.

[ascl:1702.001]
ORBE: Orbital integrator for educational purposes

ORBE performs numerical integration of an arbitrary planetary system composed by a central star and up to 100 planets and minor bodies. ORBE calculates the orbital evolution of a system of bodies by means of the computation of the time evolution of their orbital elements. It is easy to use and is suitable for educational use by undergraduate students in the classroom as a first approach to orbital integrators.

[ascl:1701.012]
SONG: Second Order Non-Gaussianity

SONG computes the non-linear evolution of the Universe in order to predict cosmological observables such as the bispectrum of the Cosmic Microwave Background (CMB). More precisely, it is a second-order Boltzmann code, as it solves the Einstein and Boltzmann equations up to second order in the cosmological perturbations.

[ascl:1701.011]
GWFrames: Manipulate gravitational waveforms

GWFrames eliminates all rotational behavior, thus simplifying the waveform as much as possible and allowing direct generalizations of methods for analyzing nonprecessing systems. In the process, the angular velocity of a waveform is introduced, which also has important uses, such as supplying a partial solution to an important inverse problem.

[ascl:1701.010]
kcorrect: Calculate K-corrections between observed and desired bandpasses

kcorrect fits very restricted spectral energy distribution models to galaxy photometry or spectra in the restframe UV, optical and near-infrared. The main purpose of the fits are for calculating K-corrections. The templates used for the fits may also be interpreted physically, since they are based on the Bruzual-Charlot stellar evolution synthesis codes. Thus, for each fit galaxy kcorrect can provide an estimate of the stellar mass-to-light ratio.

[ascl:1701.009]
GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

[ascl:1701.008]
GrayStar: Web-based pedagogical stellar modeling

GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.

[ascl:1701.007]
Forecaster: Mass and radii of planets predictor

Forecaster predicts the mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude in mass. It is an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. It accounts for observational errors, hyper-parameter uncertainties and the intrinsic dispersions observed in the calibration sample.

[ascl:1701.006]
MSWAVEF: Momentum-Space Wavefunctions

MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.

[ascl:1701.005]
KAULAKYS: Inelastic collisions between hydrogen atoms and Rydberg atoms

KAULAKYS calculates cross sections and rate coefficients for inelastic collisions between Rydberg atoms and hydrogen atoms according to the free electron model of Kaulakys (1986, 1991). It is written in IDL and requires the code MSWAVEF (ascl:1701.006) to calculate momentum-space wavefunctions. KAULAKYS can be easily adapted to collisions with perturbers other than hydrogen atoms by providing the appropriate scattering amplitudes.

[ascl:1701.004]
CosmoSlik: Cosmology sampler of likelihoods

CosmoSlik quickly puts together, runs, and analyzes an MCMC chain for analysis of cosmological data. It is highly modular and comes with plugins for CAMB (ascl:1102.026), CLASS (ascl:1106.020), the Planck likelihood, the South Pole Telescope likelihood, other cosmological likelihoods, emcee (ascl:1303.002), and more. It offers ease-of-use, flexibility, and modularity.

[ascl:1701.003]
Spectra: Time series power spectrum calculator

Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

[ascl:1701.002]
Vizic: Jupyter-based interactive visualization tool for astronomical catalogs

Vizic is a Python visualization library that builds the connection between images and catalogs through an interactive map of the sky region. The software visualizes catalog data over a custom background canvas using the shape, size and orientation of each object in the catalog and displays interactive and customizable objects in the map. Property values such as redshift and magnitude can be used to filter or apply colormaps, and objects can be selected for further analysis through standard Python functions from inside a Jupyter notebook.

Vizic allows custom overlays to be appended dynamically on top of the sky map; included are Voronoi, Delaunay, Minimum Spanning Tree and HEALPix layers, which are helpful for visualizing large-scale structure. Overlays can be generated, added or removed dynamically with one line of code. Catalog data is kept in a non-relational database. The Jupyter Notebook allows the user to create scripts to analyze and plot the data selected/displayed in the interactive map, making Vizic a powerful and flexible interactive analysis tool. Vizic be used for data inspection, clustering analysis, galaxy alignment studies, outlier identification or simply large-scale visualizations.

[submitted]
Lizard: an extensible Cyclomatic Complexity Analyzer

Lizard is an extensible Cyclomatic Complexity Analyzer for many imperative programming languages including C/C++.

[ascl:1701.001]
The Joker: A custom Monte Carlo sampler for binary-star and exoplanet radial velocity data

Given sparse or low-quality radial-velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and MCMC posterior sampling over the orbital parameters. The Joker is a custom-built Monte Carlo sampler that can produce a posterior sampling for orbital parameters given sparse or noisy radial-velocity measurements, even when the likelihood function is poorly behaved. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still highly informative and can be used in hierarchical (population) modeling.

[submitted]
DiskSim: Modeling Accretion Disk Dynamics with SPH

DiskSim is a source-code distribution of the SPH accretion disk modeling code described in Simpson & Wood (1998) and Wood, Thomas, & Simpson (2009). The code had been released in a Windows executable form as FITDisk (Dolence, Wood & Simpson 2005; ascl:1305.011). The code released now is the full research code in Fortran, which can be modified as needed by the user.

[ascl:1612.022]
REPS: REscaled Power Spectra for initial conditions with massive neutrinos

Zennaro, Matteo; Bel, Julien; Villaescusa-Navarro, Francisco; Carbone, Carmelita; Sefusatti, Emiliano; Guzzo, Luigi

REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshift.

[ascl:1612.021]
BaTMAn: Bayesian Technique for Multi-image Analysis

Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

[ascl:1612.020]
Grackle: Chemistry and radiative cooling library for astrophysical simulations

Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh

The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

[ascl:1612.019]
Trident: Synthetic spectrum generator

Trident creates synthetic absorption-line spectra from astrophysical hydrodynamics simulations. It uses the yt package (ascl:1011.022) to read in simulation datasets and extends it to provide realistic synthetic observations appropriate for studies of the interstellar, circumgalactic, and intergalactic media.

[ascl:1612.018]
pylightcurve: Exoplanet lightcurve model

pylightcurve is a model for light-curves of transiting planets. It uses the four coefficients law for the stellar limb darkening and returns the relative flux, *F*(*t*), as a function of the limb darkening coefficients, *a _{n}*, the

[ascl:1612.017]
GAMER: GPU-accelerated Adaptive MEsh Refinement code

GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

[ascl:1612.016]
CELib: Software library for simulations of chemical evolution

CELib (Chemical Evolution Library) simulates chemical evolution of galaxy formation under the simple stellar population (SSP) approximation and can be used by any simulation code that uses the SSP approximation, such as particle-base and mesh codes as well as semi-analytical models. Initial mass functions, stellar lifetimes, yields from type II and Ia supernovae, asymptotic giant branch stars, and neutron star mergers components are included and a variety of models are available for use. The library allows comparisons of the impact of individual models on the chemical evolution of galaxies by changing control flags and parameters of the library.

[ascl:1612.015]
Superplot: Graphical interface for plotting and analyzing data

Superplot calculates and plots statistical quantities relevant to parameter inference from a "chain" of samples drawn from a parameter space produced by codes such as MultiNest (ascl:1109.006), BAYES-X (ascl:1505.027), and PolyChord (ascl:1502.011). It offers a graphical interface for browsing a chain of many variables quickly and can produce numerous kinds of publication quality plots, including one- and two-dimensional profile likelihood, three-dimensional scatter plots, and confidence intervals and credible regions. Superplot can also save plots in PDF format, create a summary text file, and export a plot as a pickled object for importing and manipulating in a Python interpreter.

[ascl:1612.014]
AUTOSTRUCTURE: General program for calculation of atomic and ionic properties

AUTOSTRUCTURE calculates atomic and ionic energy levels, radiative rates, autoionization rates, photoionization cross sections, plane-wave Born and distorted-wave excitation cross sections in LS- and intermediate-coupling using non- or (kappa-averaged) relativistic wavefunctions. These can then be further processed to form Auger yields, fluorescence yields, partial and total dielectronic and radiative recombination cross sections and rate coefficients, photoabsorption cross sections, and monochromatic opacities, among other properties.

[ascl:1612.013]
InversionKit: Linear inversions from frequency data

InversionKit is an interactive Java program that performs rotational and structural linear inversions from frequency data.

[ascl:1612.012]
Meso-NH: Non-hydrostatic mesoscale atmospheric model

Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community jointly developed by the Laboratoire d'Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France). Meso-NH incorporates a non-hydrostatic system of equations for dealing with scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets and has a complete set of physical parameterizations for the representation of clouds and precipitation. It is coupled to the surface model SURFEX for representation of surface atmosphere interactions by considering different surface types (vegetation, city, ocean, lake) and allows a multi-scale approach through a grid-nesting technique. Meso-NH is versatile, vectorized, parallelized, and operates in 1D, 2D or 3D; it is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module, and has observation operators that compare model output directly with satellite observations, radar, lidar and GPS.

[ascl:1612.011]
QSFit: Quasar Spectral FITting

QSFit performs automatic analysis of Active Galactic Nuclei (AGN) optical spectra. It provides estimates of: AGN continuum luminosities and slopes at several restframe wavelengths; luminosities, widths and velocity offsets of 20 emission lines; luminosities of iron blended lines at optical and UV wavelengths; host galaxy luminosities. The whole fitting process is customizable for specific needs, and can be extended to analyze spectra from other data sources. The ultimate purpose of QSFit is to allow astronomers to run standardized recipes to analyze the AGN data, in a simple, replicable and shareable way.

[ascl:1612.010]
Earthshine simulator: Idealized images of the Moon

Terrestrial albedo can be determined from observations of the relative intensity of earthshine. Images of the Moon at different lunar phases can be analyzed to derive the semi-hemispheric mean albedo of the Earth, and an important tool for doing this is simulations of the appearance of the Moon for any time. This software produces idealized images of the Moon for arbitrary times. It takes into account the libration of the Moon and the distances between Sun, Moon and the Earth, as well as the relevant geometry. The images of the Moon are produced as FITS files. User input includes setting the Julian Day of the simulation. Defaults for image size and field of view are set to produce approximately 1x1 degree images with the Moon in the middle from an observatory on Earth, currently set to Mauna Loa.

[ascl:1612.009]
CRETE: Comet RadiativE Transfer and Excitation

CRETE (Comet RadiativE Transfer and Excitation) is a one-dimensional water excitation and radiation transfer code for sub-millimeter wavelengths based on the RATRAN code (ascl:0008.002). The code considers rotational transitions of water molecules given a Haser spherically symmetric distribution for the cometary coma and produces FITS image cubes that can be analyzed with tools like MIRIAD (ascl:1106.007). In addition to collisional processes to excite water molecules, the effect of infrared radiation from the Sun is approximated by effective pumping rates for the rotational levels in the ground vibrational state.

[ascl:1612.008]
PyORBIT: Exoplanet orbital parameters and stellar activity

PyORBIT handles several kinds of datasets, such as radial velocity (RV), activity indexes, and photometry, to simultaneously characterize the orbital parameters of exoplanets and the noise induced by the activity of the host star. RV computation is performed using either non-interacting Kepler orbits or n-body integration. Stellar activity can be modeled either with sinusoids at the rotational period and its harmonics or Gaussian process. In addition, the code can model offsets and systematics in measurements from several instruments. The PyORBIT code is modular; new methods for stellar activity modeling or parameter estimation can easily be incorporated into the code.

[submitted]
pygad: Analysing Gadget Simulations with Python

pygad provides a framework for dealing with Gadget snapshots. The code reads any of the many different Gadget (ascl:0003.001) formats, allows easy masking snapshots to particles of interest, decorates the data blocks with units, allows to add automatically updating derived blocks, and provides several binning and plotting routines, among other tasks, to provide convenient, intuitive handling of the Gadget data without the need to worry about technical details. pygad provides access to single stellar population (SSP) models, has an interface to Rockstar (ascl:1210.008) output files, provides its own friends-of-friends (FoF) finder, calculates spherical overdensities, and has a sub-module to generate mock absorption lines.

[ascl:1612.007]
dacapo_calibration: Photometric calibration code

dacapo_calibration implements the DaCapo algorithm used in the Planck/LFI 2015 data release for photometric calibration. The code takes as input a set of TODs and calibrates them using the CMB dipole signal. DaCapo is a variant of the well-known family of destriping algorithms for map-making.

[ascl:1612.006]
flexCE: Flexible one-zone chemical evolution code

flexCE (flexible Chemical Evolution) computes the evolution of a one-zone chemical evolution model with inflow and outflow in which gas is instantaneously and completely mixed. It can be used to demonstrate the sensitivity of chemical evolution models to parameter variations, show the effect of CCSN yields on chemical evolution models, and reproduce the 2D distribution in [O/Fe]{[Fe/H] by mixing models with a range of inflow and outflow histories. It can also post-process cosmological simulations to predict element distributions.

[ascl:1612.005]
PyProfit: Wrapper for libprofit

pyprofit is a python wrapper for libprofit (ascl:1612.003).

[ascl:1612.004]
ProFit: Bayesian galaxy fitting tool

ProFit is a Bayesian galaxy fitting tool that uses the fast C++ image generation library libprofit (ascl:1612.003) and a flexible R interface to a large number of likelihood samplers. It offers a fully featured Bayesian interface to galaxy model fitting (also called profiling), using mostly the same standard inputs as other popular codes (e.g. GALFIT ascl:1104.010), but it is also able to use complex priors and a number of likelihoods.

[ascl:1612.003]
libprofit: Image creation from luminosity profiles

libprofit is a C++ library for image creation based on different luminosity profiles. It offers fast and accurate two-dimensional integration for a useful number of profiles, including Sersic, Core-Sersic, broken-exponential, Ferrer, Moffat, empirical King, point-source and sky, with a simple mechanism for adding new profiles. libprofit provides a utility to read the model and profile parameters from the command-line and generate the corresponding image. It can output the resulting image as text values, a binary stream, or as a simple FITS file. It also provides a shared library exposing an API that can be used by any third-party application. R and Python interfaces are available: ProFit (ascl:1612.004) and PyProfit (ascl:1612.005).

[ascl:1612.002]
LSDCat: Line Source Detection and Cataloguing Tool

LSDCat is a conceptually simple but robust and efficient detection package for emission lines in wide-field integral-field spectroscopic datacubes. The detection utilizes a 3D matched-filtering approach for compact single emission line objects. Furthermore, the software measures fluxes and extents of detected lines. LSDCat is implemented in Python, with a focus on fast processing of large data-volumes.

[ascl:1612.001]
Python-CPL: Python interface for the ESO Common Pipeline Library

Python-CPL is a framework to configure and execute pipeline recipes written with the Common Pipeline Library (CPL) (ascl:1402.010) with Python2 or Python3. The input, calibration and output data can be specified as FITS files or as astropy.io.fits objects in memory. The package is used to implement the MUSE pipeline in the AstroWISE data management system.

[ascl:1611.021]
SlicerAstro: Astronomy (HI) extension for 3D Slicer

SlicerAstro extends 3D Slicer, a multi-platform package for visualization and medical image processing, to provide a 3-D interactive viewer with 3-D human-machine interaction features, based on traditional 2-D input/output hardware, and analysis capabilities.

[submitted]
Fast Template Periodogram

The Fast Template Periodogram extends the Generalised Lomb Scargle periodogram (Zechmeister and Kurster 2009) for arbitrary (periodic) signal shapes. A template is first approximated by a truncated Fourier series of length H. The Nonequispaced Fast Fourier Transform NFFT is used to efficiently compute frequency-dependent sums. Template fitting can now be done in NlogN time, improving existing algorithms by an order of magnitude for even small datasets. The FTP can be used in conjunction with gradient descent to accelerate a non-linear model fit, or be used in place of the multi-harmonic periodogram for non-sinusoidal signals with a priori known shapes.

[ascl:1611.020]
CMCIRSED: Far-infrared spectral energy distribution fitting for galaxies near and far

The Caitlin M. Casey Infra Red Spectral Energy Distribution model (CMCIRSED) provides a simple SED fitting technique suitable for a wide range of IR data, from sources which have only three IR photometric points to sources with >10 photometric points. These SED fits produce accurate estimates to a source's integrated IR luminosity, dust temperature and dust mass. CMCIRSED is based on a single dust temperature greybody fit linked to a MIR power law, fitted simultaneously to data across ∼5–2000 μm.

[ascl:1611.019]
phase_space_cosmo_fisher: Fisher matrix 2D contours

phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

[ascl:1611.018]
Icarus: Stellar binary light curve synthesis tool

Icarus is a stellar binary light curve synthesis tool that generates a star, given some basic binary parameters, by solving the gravitational potential equation, creating a discretized stellar grid, and populating the stellar grid with physical parameters, including temperature and surface gravity. Icarus also evaluates the outcoming flux from the star given an observer's point of view (*i.e.*, orbital phase and orbital orientation).

[ascl:1611.017]
SNCosmo: Python library for supernova cosmology

Barbary, Kyle; Barclay, Tom; Biswas, Rahul; Craig, Matt; Feindt, Ulrich; Friesen, Brian; Goldstein, Danny; Jha, Saurabh; Rodney, Steve; Sofiatti, Caroline; Thomas, Rollin C.; Wood-Vasey, Michael

SNCosmo synthesizes supernova spectra and photometry from SN models, and has functions for fitting and sampling SN model parameters given photometric light curve data. It offers fast implementations of several commonly used extinction laws and can be used to construct SN models that include dust. The SNCosmo library includes supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models, as well as a variety of built-in bandpasses and magnitude systems, and provides convenience functions for reading and writing peculiar data formats used in other packages. The library is extensible, allowing new models, bandpasses, and magnitude systems to be defined using an object-oriented interface.

[ascl:1611.016]
Carpet: Adaptive Mesh Refinement for the Cactus Framework

Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.

[ascl:1611.015]
Pippi: Parse and plot MCMC chains

Pippi (parse it, plot it) operates on MCMC chains and related lists of samples from a function or distribution, and can merge, parse, and plot sample ensembles ('chains') either in terms of the likelihood/fitness function directly, or as implied posterior probability densities. Pippi is compatible with ASCII text and hdf5 chains, operates out of core, and can post-process chains on the fly.

[ascl:1611.014]
AIMS: Asteroseismic Inference on a Massive Scale

AIMS (Asteroseismic Inference on a Massive Scale) estimates stellar parameters and credible intervals/error bars in a Bayesian manner from a set of seismic frequency data and so-called classic constraints. To achieve reliable parameter estimates and computational efficiency it searches through a grid of pre-computed models using an MCMC algorithm; interpolation within the grid of models is performed by first tessellating the grid using a Delaunay triangulation and then doing a linear barycentric interpolation on matching simplexes. Inputs for the modeling consists of individual frequencies from peak-bagging, which can be complemented with classic spectroscopic constraints.

[ascl:1611.013]
pyGMMis: Mixtures-of-Gaussians density estimation method

pyGMMis is a mixtures-of-Gaussians density estimation method that accounts for arbitrary incompleteness in the process that creates the samples as long as the incompleteness is known over the entire feature space and does not depend on the sample density (missing at random). pyGMMis uses the Expectation-Maximization procedure and generates its best guess of the unobserved samples on the fly. It can also incorporate an uniform "background" distribution as well as independent multivariate normal measurement errors for each of the observed samples, and then recovers an estimate of the error-free distribution from which both observed and unobserved samples are drawn. The code automatically segments the data into localized neighborhoods, and is capable of performing density estimation with millions of samples and thousands of model components on machines with sufficient memory.

[ascl:1611.012]
EarthShadow: Calculator for dark matter particle velocity distribution after Earth-scattering

EarthShadow calculates the impact of Earth-scattering on the distribution of Dark Matter (DM) particles. The code calculates the speed and velocity distributions of DM at various positions on the Earth and also helps with the calculation of the average scattering probabilities. Tabulated data for DM-nuclear scattering cross sections and various numerical results, plots and animations are also included in the code package.

[ascl:1611.011]
OXAF: Ionizing spectra of Seyfert galaxies for photoionization modeling

Thomas, Adam D.; Groves, Brent A.; Sutherland, Ralph S.; Dopita, Michael A.; Jin, Chichuan; Kewley, Lisa J.

OXAF provides a simplified model of Seyfert Active Galactic Nucleus (AGN) continuum emission designed for photoionization modeling. It removes degeneracies in the effects of AGN parameters on model spectral shapes and reproduces the diversity of spectral shapes that arise in physically-based models. OXAF accepts three parameters which directly describe the shape of the output ionizing spectrum: the energy of the peak of the accretion disk emission *E _{peak}*, the photon power-law index of the non-thermal X-ray emission Γ, and the proportion of the total flux which is emitted in the non-thermal component

[ascl:1611.010]
Kapteyn Package: Tools for developing astronomical applications

The Kapteyn Package provides tools for the development of astronomical applications with Python. It handles spatial and spectral coordinates, WCS projections and transformations between different sky systems; spectral translations (e.g., between frequencies and velocities) and mixed coordinates are also supported. Kapteyn offers versatile tools for writing small and dedicated applications for the inspection of FITS headers, the extraction and display of (FITS) data, interactive inspection of this data (color editing) and for the creation of plots with world coordinate information. It includes utilities for use with matplotlib such as obtaining coordinate information from plots, interactively modifiable colormaps and timer events (module mplutil); tools for parsing and interpreting coordinate information entered by the user (module positions); a function to search for gaussian components in a profile (module profiles); and a class for non-linear least squares fitting (module kmpfit).

[ascl:1611.009]
RHOCUBE: 3D density distributions modeling code

RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ d*z* performed through the joint density field.

[ascl:1611.008]
Transit Clairvoyance: Predicting multiple-planet systems for TESS

Transit Clairvoyance uses Artificial Neural Networks (ANNs) to predict the most likely short period transiters to have additional transiters, which may double the discovery yield of the TESS (Transiting Exoplanet Survey Satellite). Clairvoyance is a simple 2-D interpolant that takes in the number of planets in a system with period less than 13.7 days, as well as the maximum radius amongst them (in Earth radii) and orbital period of the planet with maximum radius (in Earth days) in order to predict the probability of additional transiters in this system with period greater than 13.7 days.

[ascl:1611.007]
GRASP2K: Relativistic Atomic Structure Package

GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from *jj*- to *LSJ*-coupling, and coefficients of fractional parentage have been extended to *j*=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in *LSJLSJ* intermediate coupling.

[ascl:1611.006]
GalPot: Galaxy potential code

GalPot finds the gravitational potential associated with axisymmetric density profiles. The package includes code that performs transformations between commonly used coordinate systems for both positions and velocities (the class OmniCoords), and that integrates orbits in the potentials. GalPot is a stand-alone version of Walter Dehnen's GalaxyPotential C++ code taken from the falcON code in the NEMO Stellar Dynamics Toolbox (ascl:1010.051).

[ascl:1611.005]
Exo-Transmit: Radiative transfer code for calculating exoplanet transmission spectra

Exo-Transmit calculates the transmission spectrum of an exoplanet atmosphere given specified input information about the planetary and stellar radii, the planet's surface gravity, the atmospheric temperature-pressure (T-P) profile, the location (in terms of pressure) of any cloud layers, the composition of the atmosphere, and opacity data for the atoms and molecules that make up the atmosphere. The code solves the equation of radiative transfer for absorption of starlight passing through the planet's atmosphere as it transits, accounting for the oblique path of light through the planetary atmosphere along an Earth-bound observer's line of sight. The fraction of light absorbed (or blocked) by the planet plus its atmosphere is calculated as a function of wavelength to produce the wavelength-dependent transmission spectrum. Functionality is provided to simulate the presence of atmospheric aerosols in two ways: an optically thick (gray) cloud deck can be generated at a user-specified height in the atmosphere, and the nominal Rayleigh scattering can be increased by a specified factor.

[ascl:1611.004]
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:1611.003]
MPDAF: MUSE Python Data Analysis Framework

MPDAF, the MUSE Python Data Analysis Framework, provides tools to work with MUSE-specific data (for example, raw data and pixel tables), and with more general data such as spectra, images, and data cubes. Originally written to work with MUSE data, it can also be used for other data, such as that from the Hubble Space Telescope. MPDAF also provides MUSELET, a SExtractor-based tool to detect emission lines in a data cube, and a format to gather all the information on a source in one FITS file. MPDAF was developed and is maintained by CRAL (Centre de Recherche Astrophysique de Lyon).

[ascl:1611.002]
tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

[ascl:1611.001]
UltraNest: Pythonic Nested Sampling Development Framework and UltraNest

This three-component package provides a Pythonic implementation of the Nested Sampling integration algorithm for Bayesian model comparison and parameter estimation. It offers multiple implementations for constrained drawing functions and a test suite to evaluate the correctness, accuracy and efficiency of various implementations. The three components are:

- a modular framework for nested sampling algorithms (nested_sampling) and their development;
- a test framework to evaluate the performance and accuracy of algorithms (testsuite); and
- UltraNest, a fast C implementation of a mixed RadFriends/MCMC nested sampling algorithm.

[ascl:1610.016]
PyMC3: Python probabilistic programming framework

PyMC3 performs Bayesian statistical modeling and model fitting focused on advanced Markov chain Monte Carlo and variational fitting algorithms. It offers powerful sampling algorithms, such as the No U-Turn Sampler, allowing complex models with thousands of parameters with little specialized knowledge of fitting algorithms, intuitive model specification syntax, and optimization for finding the maximum a posteriori (MAP) point. PyMC3 uses Theano to compute gradients via automatic differentiation as well as compile probabilistic programs on-the-fly to C for increased speed.

[ascl:1610.015]
NuPyCEE: NuGrid Python Chemical Evolution Environment

The NuGrid Python Chemical Evolution Environment (NuPyCEE) simulates the chemical enrichment and stellar feedback of stellar populations. It contains three modules. The Stellar Yields for Galactic Modeling Applications module (SYGMA) models the enrichment and feedback of simple stellar populations which can be included in hydrodynamic simulations and semi-analytic models of galaxies. It is the basic building block of the One-zone Model for the Evolution of GAlaxies (OMEGA) module which allows the modelling of the chemical evolution of galaxies such as the Milky Way and its dwarf satellites. The STELLAB (STELLar ABundances) module provides a library of observed stellar abundances useful for comparing predictions of SYGMA and OMEGA.

[ascl:1610.014]
Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

[ascl:1610.013]
MC^{3}: Multi-core Markov-chain Monte Carlo code

Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

MC^{3} (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC^{3} can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

[ascl:1610.012]
Fourierdimredn: Fourier dimensionality reduction model for interferometric imaging

Fourierdimredn (Fourier dimensionality reduction) implements Fourier-based dimensionality reduction of interferometric data. Written in Matlab, it derives the theoretically optimal dimensionality reduction operator from a singular value decomposition perspective of the measurement operator. Fourierdimredn ensures a fast implementation of the full measurement operator and also preserves the i.i.d. Gaussian properties of the original measurement noise.

[ascl:1610.011]
BXA: Bayesian X-ray Analysis

BXA connects the nested sampling algorithm MultiNest (ascl:1109.006) to the X-ray spectral analysis environments Xspec/Sherpa for Bayesian parameter estimation and model comparison. It provides parameter estimation in arbitrary dimensions and plotting of spectral model vs. the data for best fit, posterior samples, or each component. BXA allows for model selection; it computes the evidence for the considered model, ready for use in computing Bayes factors and is not limited to nested models. It also visualizes deviations between model and data with Quantile-Quantile (QQ) plots, which do not require binning and are more comprehensive than residuals.

[ascl:1610.010]
BurnMan: Lower mantle mineral physics toolkit

BurnMan determines seismic velocities for the lower mantle. Written in Python, BurnMan calculates the isotropic thermoelastic moduli by solving the equations-of-state for a mixture of minerals defined by the user. The user may select from a list of minerals applicable to the lower mantle included or can define one. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme and the results can be visually or quantitatively compared to observed seismic models.

[ascl:1610.009]
velbin: radial velocity corrected for binary orbital motions

Velbin convolves the radial velocity offsets due to binary orbital motions with a Gaussian to model an observed velocity distribution. This can be used to measure the mean velocity and velocity dispersion from an observed radial velocity distribution, corrected for binary orbital motions. Velbin fits single- or multi-epoch data with any arbitrary binary orbital parameter distribution (as long as it can be sampled properly), however it always assumes that the intrinsic velocity distribution (i.e. corrected for binary orbital motions) is a Gaussian. Velbin samples (and edits) a binary orbital parameter distribution, fits an observed radial velocity distribution, and creates a mock radial velocity distribution that can be used to provide the fitted radial velocities in the single_epoch or multi_epoch methods.

[ascl:1610.008]
cluster-in-a-box: Statistical model of sub-millimeter emission from embedded protostellar clusters

Cluster-in-a-box provides a statistical model of sub-millimeter emission from embedded protostellar clusters and consists of three modules grouped in two scripts. The first (cluster_distribution) generates the cluster based on the number of stars, input initial mass function, spatial distribution and age distribution. The second (cluster_emission) takes an input file of observations, determines the mass-intensity correlation and generates outflow emission for all low-mass Class 0 and I sources. The output is stored as a FITS image where the flux density is determined by the desired resolution, pixel scale and cluster distance.

[ascl:1610.007]
gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:1610.006]
C^{3}: Command-line Catalogue Crossmatch for modern astronomical surveys

The Command-line Catalogue Cross-matching (C^{3}) software efficiently performs the positional cross-match between massive catalogues from modern astronomical surveys, whose size have rapidly increased in the current data-driven science era. Based on a multi-core parallel processing paradigm, it is executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline. C^{3} provides its users with flexibility in portability, parameter configuration, catalogue formats, angular resolution, region shapes, coordinate units and cross-matching types.

[ascl:1610.005]
GSGS: In-Focus Phase Retrieval Using Non-Redundant Mask Data

GSGS does phase retrieval on images given an estimate of the pupil phase (from a non-redundant mask or other interferometric approach), the pupil geometry, and the in-focus image. The code uses a modified Gerchberg-Saxton algorithm that iterates between pupil plane and image plane to measure the pupil phase.

[ascl:1610.004]
MUSE-DRP: MUSE Data Reduction Pipeline

The MUSE pipeline turns the complex raw data of the MUSE integral field spectrograph into a ready-to-use datacube for scientific analysis.

[submitted]
centerRadon: Center Determination Code in Stellar Images

centerRadon finds the center of stars based on Radon Transform (Pueyo et al., 2015) to sub-pixel precision. For a coronagraphic image of a star, it starts from a given location, then for each sub-pixel position, it interpolates the image and sums the pixels along different angles, creating a cost function. The center of the star is expected to correspond with where the cost function maximizes. The default values are set for the STIS coronagraphic images of the Hubble Space Telescope by summing over the diagonals (i.e., 45° and 135°), but it can be generally applied to other high-contrast imaging instruments with or without Adaptive Optics systems such as HST-NICMOS, P1640, or GPI.

[ascl:1610.003]
DSDEPROJ: Direct Spectral Deprojection

Deprojection of X-ray data by methods such as PROJCT, which are model dependent, can produce large and unphysical oscillating temperature profiles. Direct Spectral Deprojection (DSDEPROJ) solves some of the issues inherent to model-dependent deprojection routines. DSDEPROJ is a model-independent approach, assuming only spherical symmetry, which subtracts projected spectra from each successive annulus to produce a set of deprojected spectra.

[ascl:1610.002]
CERES: Collection of Extraction Routines for Echelle Spectra

The Collection of Extraction Routines for Echelle Spectra (CERES) constructs automated pipelines for the reduction, extraction, and analysis of echelle spectrograph data. This modular code includes tools for handling the different steps of the processing: CCD reductions, tracing of the echelle orders, optimal and simple extraction, computation of the wave-length solution, estimation of radial velocities, and rough and fast estimation of the atmospheric parameters. The standard output of pipelines constructed with CERES is a FITS cube with the optimally extracted, wavelength calibrated and instrumental drift-corrected spectrum for each of the science images. Additionally, CERES includes routines for the computation of precise radial velocities and bisector spans via the cross-correlation method, and an automated algorithm to obtain an estimate of the atmospheric parameters of the observed star.

[ascl:1610.001]
Piccard: Pulsar timing data analysis package

Piccard is a Bayesian-inference pipeline for Pulsar Timing Array (PTA) data and interacts with Tempo2 (ascl:1210.015) through libstempo. The code is use mainly for single-pulsar analysis and gravitational-wave detection purposes of full Pulsar Timing Array datasets. Modeling of the data can include correlated signals per frequency or modeled spectrum, with uniform, dipolar, quadrupolar, or anisotropic correlations; multiple error bars and EFACs per pulsar; and white and red noise. Timing models can be numerically included, either by using the design matrix (linear timing model), or by calling libstempo for the full non-linear timing model. Many types of samplers are included. For common-mode mitigation, the signals can be reconstructed mitigating arbitrary signals simultaneously.

[ascl:1609.025]
PYESSENCE: Generalized Coupled Quintessence Linear Perturbation Python Code

PYESSENCE evolves linearly perturbed coupled quintessence models with multiple (cold dark matter) CDM fluid species and multiple DE (dark energy) scalar fields, and can be used to generate quantities such as the growth factor of large scale structure for any coupled quintessence model with an arbitrary number of fields and fluids and arbitrary couplings.

[ascl:1609.024]
AdaptiveBin: Adaptive Binning

AdaptiveBin takes one or more images and adaptively bins them. If one image is supplied, then the pixels are binned by fractional error on the intensity. If two or more images are supplied, then the pixels are fractional binned by error on the combined color.

[ascl:1609.023]
contbin: Contour binning and accumulative smoothing

Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

[ascl:1609.022]
PyPHER: Python-based PSF Homogenization kERnels

Boucaud, Alexandre; Bocchio, Marco; Abergel, Alain; Orieux, François; Dole, Hervé; Amine Hadj-Youcef, Mohamed

PyPHER (Python-based PSF Homogenization kERnels) computes an homogenization kernel between two PSFs; the code is well-suited for PSF matching applications in both an astronomical or microscopy context. It can warp (rotation + resampling) the PSF images (if necessary), filter images in Fourier space using a regularized Wiener filter, and produce a homogenization kernel. PyPHER requires the pixel scale information to be present in the FITS files, which can if necessary be added by using the provided ADDPIXSCL method.

[ascl:1609.021]
TIDEV: Tidal Evolution package

TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.

[ascl:1609.020]
Askaryan Module: Askaryan electric fields predictor

The Askaryan Module is a C++ class that predicts the electric fields that Askaryan-based detectors detect; it is computationally efficient and accurate, performing fully analytic calculations requiring no *a priori* MC analysis to compute the entire field, for any frequencies, times, or viewing angles chosen by the user.

[ascl:1609.019]
SuperBoL: Module for calculating the bolometric luminosities of supernovae

SuperBoL calculates the bolometric lightcurves of Type II supernovae using observed photometry; it includes three different methods for calculating the bolometric luminosity: quasi-bolometric, direct, and bolometric correction. SuperBoL propagates uncertainties in the input data through the calculations made by the code, allowing for error bars to be included in plots of the lightcurve.

[ascl:1609.018]
SIP: Systematics-Insensitive Periodograms

SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.

[ascl:1609.017]
spectral-cube: Read and analyze astrophysical spectral data cubes

Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

[ascl:1609.016]
PKDGRAV3: Parallel gravity code

Pkdgrav3 is an 𝒪(*N*) gravity calculation method; it uses a binary tree algorithm with fifth order fast multipole expansion of the gravitational potential, using cell-cell interactions. Periodic boundaries conditions require very little data movement and allow a high degree of parallelism; the code includes GPU acceleration for all force calculations, leading to a significant speed-up with respect to previous versions (ascl:1305.005). Pkdgrav3 also has a sophisticated time-stepping criterion based on an estimation of the local dynamical time.

[ascl:1609.015]
FIT3D: Fitting optical spectra

Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

[ascl:1609.014]
Sky3D: Time-dependent Hartree-Fock equation solver

Written in Fortran 90, Sky3D solves the static or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic boundary conditions and no further symmetry assumptions. Pairing can be included in the BCS approximation for the static case. The code can be easily modified to include additional physics or special analysis of the results and requires LAPACK and FFTW3.

[ascl:1609.013]
21cmSense: Calculating the sensitivity of 21cm experiments to the EoR power spectrum

21cmSense calculates the expected sensitivities of 21cm experiments to the Epoch of Reionization power spectrum. Written in Python, it requires NumPy, SciPy, and AIPY (ascl:1609.012).

[ascl:1609.012]
AIPY: Astronomical Interferometry in PYthon

AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

[ascl:1609.011]
Photutils: Photometry tools

Bradley, Larry; Sipocz, Brigitta; Robitaille, Thomas; Tollerud, Erik; Deil, Christoph; Vinícius, Zè; Barbary, Kyle; Günther, Hans Moritz; Bostroem, Azalee; Droettboom, Michael; Bray, Erik; Bratholm, Lars Andersen; Pickering, T. E.; Craig, Matt; Pascual, Sergio; Greco, Johnny; Donath, Axel; Kerzendorf, Wolfgang; Littlefair, Stuart; Barentsen, Geert; D'Eugenio, Francesco; Weaver, Benjamin Alan

Photutils provides tools for detecting and performing photometry of astronomical sources. It can estimate the background and background rms in astronomical images, detect sources in astronomical images, estimate morphological parameters of those sources (e.g., centroid and shape parameters), and perform aperture and PSF photometry. Written in Python, it is an affiliated package of Astropy (ascl:1304.002).

[ascl:1609.010]
CuBANz: Photometric redshift estimator

CuBAN*z* is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBAN*z* considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

[ascl:1609.009]
NSCool: Neutron star cooling code

NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

[ascl:1609.008]
GRASP: General-purpose Relativistic Atomic Structure Package

GRASP (General-purpose Relativistic Atomic Structure Package) calculates atomic structure, including energy levels, radiative rates (A-values) and lifetimes; it is a fully relativistic code based on the *jj* coupling scheme. This code has been superseded by GRASP2K (ascl:1611.007).

[ascl:1609.007]
Weighted EMPCA: Weighted Expectation Maximization Principal Component Analysis

Weighted EMPCA performs principal component analysis (PCA) on noisy datasets with missing values. Estimates of the measurement error are used to weight the input data such that the resulting eigenvectors, when compared to classic PCA, are more sensitive to the true underlying signal variations rather than being pulled by heteroskedastic measurement noise. Missing data are simply limiting cases of weight = 0. The underlying algorithm is a noise weighted expectation maximization (EM) PCA, which has additional benefits of implementation speed and flexibility for smoothing eigenvectors to reduce the noise contribution.

[ascl:1609.006]
SCIMES: Spectral Clustering for Interstellar Molecular Emission Segmentation

SCIMES identifies relevant molecular gas structures within dendrograms of emission using the spectral clustering paradigm. It is useful for decomposing objects in complex environments imaged at high resolution.

[ascl:1609.005]
FISHPACK90: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

FISHPACK90 is a modernization of the original FISHPACK (ascl:1609.004), employing Fortran90 to slightly simplify and standardize the interface to some of the routines. This collection of Fortran programs and subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates. Test programs are provided for the 19 solvers. Each serves two purposes: as a template to guide you in writing your own codes utilizing the FISHPACK90 solvers, and as a demonstration on your computer that you can correctly produce FISHPACK90 executables.

[ascl:1609.004]
FISHPACK: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

The FISHPACK collection of Fortran77 subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates.

[ascl:1609.003]
Kranc: Cactus modules from Mathematica equations

Kranc turns a tensorial description of a time dependent partial differential equation into a module for the Cactus Computational Toolkit (ascl:1102.013). This Mathematica application takes a simple continuum description of a problem and generates highly efficient and portable code, and can be used both for rapid prototyping of evolution systems and for high performance supercomputing.

[submitted]
pyLIMA: An Open Source Package for Microlensing Modeling

pyLIMA is an open source software for microlensing modeling. Based on Python, the goal is to offer to users an efficient and user friendly package to analyze their data. The code is written and tested with professional standards, such as PEP8 or unit testing.

[ascl:1609.002]
StarPy: Quenched star formation history parameters of a galaxy using MCMC

Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

StarPy derives the quenching star formation history (SFH) of a single galaxy through the Bayesian Markov Chain Monte Carlo method code *emcee* (ascl:1303.002). The sample function implements the emcee EnsembleSampler function for the galaxy colors input. Burn-in is run and calculated for the length specified before the sampler is reset and then run for the length of steps specified. StarPy provides the ability to use the look-up tables provided or creating your own.

[ascl:1609.001]
T-PHOT: PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

Merlin, E.; Fontana, A.; Ferguson, H. C.; Dunlop, J. S.; Elbaz, D.; Bourne, N.; Bruce, V. A.; Buitrago, F.; Castellano, M.; Schreiber, C.; Grazian, A.; McLure, R. J.; Okumura, K.; Shu, X.; Wang, T.; Amorín, R.; Boutsia, K.; Cappelluti, N.; Comastri, A.; Derriere, S.; Faber, S. M.; Santini, P.

T-PHOT extracts accurate photometry from low-resolution images of extragalactic fields, where the blending of sources can be a serious problem for accurate and unbiased measurement of fluxes and colors. It gathers data from a high-resolution image of a region of the sky and uses the source positions and morphologies to obtain priors for the photometric analysis of the lower resolution image of the same field. T-PHOT handles different types of datasets as input priors, including a list of objects that will be used to obtain cutouts from the real high-resolution image, a set of analytical models (as .fits stamps), and a list of unresolved, point-like sources, useful for example for far-infrared wavelength domains. T-PHOT yields accurate estimations of fluxes within the intrinsic uncertainties of the method when systematic errors are taken into account (which can be done using a flagging code given in the output), and handles multiwavelength optical to far-infrared image photometry. T-PHOT was developed as part of the ASTRODEEP project (www.astrodeep.eu).

[ascl:1608.020]
SPIDERz: SuPport vector classification for IDEntifying Redshifts

SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

[ascl:1608.019]
NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

[ascl:1608.018]
LORENE: Spectral methods differential equations solver

LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.

[ascl:1608.017]
21CMMC: Parallelized Monte Carlo Markov Chain analysis tool for the epoch of reionization (EoR)

21CMMC is an efficient Python sampler of the semi-numerical reionization simulation code 21cmFAST (ascl:1102.023). It can recover constraints on astrophysical parameters from current or future 21 cm EoR experiments, accommodating a variety of EoR models, as well as priors on individual model parameters and the reionization history. By studying the resulting impact on the EoR astrophysical constraints, 21CMMC can be used to optimize foreground cleaning algorithms; interferometer designs; observing strategies; alternate statistics characterizing the 21cm signal; and synergies with other observational programs.

[ascl:1608.016]
NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

[ascl:1608.015]
2DFFT: Measuring Galactic Spiral Arm Pitch Angle

Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from *Numerical Recipes in C* (Press et al. 1989).

[ascl:1608.014]
gevolution: General Relativity Cosmological N-body code for evolution of large scale structures

The N-body code *gevolution* complies with general relativity principles at every step; it calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation written in terms of a canonical momentum to remain valid for relativistic particles. *gevolution* can be extended to include different kinds of dark energy or modified gravity models, going beyond the usually adopted quasi-static approximation. A weak field expansion is the central element of *gevolution*; this permits the code to treat settings in which no strong gravitational fields appear, including arbitrary scenarios with relativistic sources as long as gravitational fields are not very strong. The framework is well suited for cosmology, but may also be useful for astrophysical applications with moderate gravitational fields where a Newtonian treatment is insufficient.

[ascl:1608.013]
DOLPHOT: Stellar photometry

DOLPHOT is a stellar photometry package that was adapted from HSTphot for general use. It supports two modes; the first is a generic PSF-fitting package, which uses analytic PSF models and can be used for any camera. The second mode uses ACS PSFs and calibrations, and is effectively an ACS adaptation of HSTphot. A number of utility programs are also included with the DOLPHOT distribution, including basic image reduction routines.

[submitted]
ExoPlanet

ExoPlanet provides a graphical interface for the construction, evaluation and application of a machine learning model in predictive analysis. With the back-end built using the numpy and scikit-learn libraries, ExoPlanet couples fast and well tested algorithms, a UI designed over the PyQt framework, and graphs rendered using Matplotlib. This serves to provide the user with a rich interface, rapid analytics and interactive visuals.

ExoPlanet is designed to have a minimal learning curve to allow researchers to focus more on the applicative aspect of machine learning algorithms rather than their implementation details and supports both methods of learning, providing algorithms for unsupervised and supervised training, which may be done with continuous or discrete labels. The parameters of each algorithms can be adjusted to ensure the best fit for the data. Training data is read from a CSV file, and after training is complete, ExoPlanet automates the building of the visual representations for the trained model. Once training and evaluation yield satisfactory results, the model may be used to make data based predictions on a new data set.

[ascl:1608.012]
OBERON: OBliquity and Energy balance Run on N-body systems

OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

[ascl:1608.011]
PROFFIT: Analysis of X-ray surface-brightness profiles

PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

[ascl:1608.010]
pvextractor: Position-Velocity Diagram Extractor

Given a path defined in sky coordinates and a spectral cube, pvextractor extracts a slice of the cube along that path and along the spectral axis to produce a position-velocity or position-frequency slice. The path can be defined programmatically in pixel or world coordinates, and can also be drawn interactively using a simple GUI. Pvextractor is the main function, but also includes a few utilities related to header trimming and parsing.

[ascl:1608.009]
FilFinder: Filamentary structure in molecular clouds

FilFinder extracts and analyzes filamentary structure in molecular clouds. In particular, it is capable of uniformly extracting structure over a large dynamical range in intensity. It returns the main filament properties: local amplitude and background, width, length, orientation and curvature. FilFinder offers additional tools to, for example, create a filament-only image based on the properties of the radial fits. The resulting mask and skeletons may be saved in FITS format, and property tables may be saved as a CSV, FITS or LaTeX table.

[ascl:1608.008]
Cuba: Multidimensional numerical integration library

The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

[ascl:1608.007]
BASE-9: Bayesian Analysis for Stellar Evolution with nine variables

Robinson, Elliot; von Hippel, Ted; Stein, Nathan; Stenning, David; Wagner-Kaiser, Rachel; Si, Shijing; van Dyk, David

The BASE-9 (Bayesian Analysis for Stellar Evolution with nine variables) software suite recovers star cluster and stellar parameters from photometry and is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE-9 uses a Markov chain Monte Carlo (MCMC) technique along with brute force numerical integration to estimate the posterior probability distribution for the age, metallicity, helium abundance, distance modulus, line-of-sight absorption, and parameters of the initial-final mass relation (IFMR) for a cluster, and for the primary mass, secondary mass (if a binary), and cluster probability for every potential cluster member. The MCMC technique is used for the cluster quantities (the first six items listed above) and numerical integration is used for the stellar quantities (the last three items in the above list).

[ascl:1608.006]
Gemini IRAF: Data reduction software for the Gemini telescopes

The Gemini IRAF package processes observational data obtained with the Gemini telescopes. It is an external package layered upon IRAF and supports data from numerous instruments, including FLAMINGOS-2, GMOS-N, GMOS-S, GNIRS, GSAOI, NIFS, and NIRI. The Gemini IRAF package is organized into sub-packages; it contains a generic tools package, "gemtools", along with instrument-specific packages. The raw data from the Gemini facility instruments are stored as Multi-Extension FITS (MEF) files. Therefore, all the tasks in the Gemini IRAF package, intended for processing data from the Gemini facility instruments, are capable of handling MEF files.

[ascl:1608.005]
AstroVis: Visualizing astronomical data cubes

AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

[ascl:1608.004]
BART: Bayesian Atmospheric Radiative Transfer fitting code

Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph; Rojo, Patricio; Lust, Nate; Bowman, Oliver; Stemm, Madison; Foster, Andrew; Loredo, Thomas J.; Fortney, Jonathan; Madhusudhan, Nikku

BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.

[ascl:1608.003]
appaloosa: Python-based flare finding code for Kepler light curves

The appaloosa suite automates flare-finding in every Kepler light curves. It builds quiescent light curve models that include long- and short-cadence data through iterative de-trending and includes completeness estimates via artificial flare injection and recovery tests.

[ascl:1608.002]
pyXSIM: Synthetic X-ray observations generator

pyXSIM simulates X-ray observations from astrophysical sources. X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM generates synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), to particle-based codes such as Gadget (ascl:0003.001) and AREPO, and even from datasets that have been created “by hand”, such as from NumPy arrays. pyXSIM can also manipulate the synthetic observations it produces in various ways and export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories. pyXSIM is an implementation of the PHOX (ascl:1112.004) algorithm and was initially the photon_simulator analysis module in yt (ascl:1011.022); it is dependent on yt.

[ascl:1608.001]
Stingray: Spectral-timing software

Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.

[ascl:1607.020]
SEEK: Signal Extraction and Emission Kartographer

Akeret, Joel; Seehars, Sebastian; Chang, Chihway; Monstein, Christian; Amara, Adam; Refregier, Alexandre

SEEK (Signal Extraction and Emission Kartographer) processes time-ordered-data from single dish radio telescopes or from the simulation pipline HIDE (ascl:1607.019), removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and recovers the astronomical radio signal. With its companion code HIDE (ascl:1607.019), it provides end-to-end simulation and processing of radio survey data.

[ascl:1607.019]
HIDE: HI Data Emulator

Akeret, Joel; Seehars, Sebastian; Chang, Chihway; Monstein, Christian; Amara, Adam; Refregier, Alexandre

HIDE (HI Data Emulator) forward-models the process of collecting astronomical radio signals in a single dish radio telescope instrument and outputs pixel-level time-ordered-data. Written in Python, HIDE models the noise and RFI modeling of the data and with its companion code SEEK (ascl:1607.020) provides end-to-end simulation and processing of radio survey data.

[ascl:1607.018]
LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

[ascl:1607.017]
BoxRemap: Volume and local structure preserving mapping of periodic boxes

BoxRemap remaps the cubical domain of a cosmological simulation into simple non-cubical shapes. It can be used for on-the-fly remappings of the simulation geometry and is volume-preserving; remapped geometry has the same volume V = L3 as the original simulation box. The remappings are structure-preserving (local neighboring structures are mapped to neighboring places) and one-to-one, with every particle/halo/galaxy/etc. appearing once and only once in the remapped volume.

[ascl:1607.016]
astLib: Tools for research astronomers

astLib is a set of Python modules for performing astronomical plots, some statistics, common calculations, coordinate conversions, and manipulating FITS images with World Coordinate System (WCS) information through PyWCSTools, a simple wrapping of WCSTools (ascl:1109.015).

[ascl:1607.015]
RT1D: 1D code for Rayleigh-Taylor instability

The parallel one-dimensional moving-mesh hydrodynamics code RT1D reproduces the multidimensional dynamics from Rayleigh-Taylor instability in supernova remnants.

[ascl:1607.014]
SOPIE: Sequential Off-Pulse Interval Estimation

SOPIE (Sequential Off-Pulse Interval Estimation) provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.

[ascl:1607.013]
Kālī: Time series data modeler

The fully parallelized and vectorized software package Kālī models time series data using various stochastic processes such as continuous-time ARMA (C-ARMA) processes and uses Bayesian Markov Chain Monte-Carlo (MCMC) for inferencing a stochastic light curve. Kālī is written in c++ with Python language bindings for ease of use. Kālī is named jointly after the Hindu goddess of time, change, and power and also as an acronym for KArma LIbrary.

[ascl:1607.012]
ZASPE: Zonal Atmospheric Stellar Parameters Estimator

ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

[ascl:1607.011]
HfS: Hyperfine Structure fitting tool

HfS fits the hyperfine structure of spectral lines, with multiple velocity components. The HfS_nh3 procedures included in HfS fit simultaneously the hyperfine structure of the NH_{3} (J,K)= (1,1) and (2,2) inversion transitions, and perform a standard analysis to derive the NH_{3} column density, rotational temperature T_{rot}, and kinetic temperature Tk. HfS uses a Monte Carlo approach for fitting the line parameters, with special attention to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

[ascl:1607.009]
PICsar: Particle in cell pulsar magnetosphere simulator

PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.

[ascl:1607.010]
K2PS: K2 Planet search

K2PS is an Oxford K2 planet search pipeline. Written in Python, it searches for transit-like signals from the k2sc-detrended light curves.

[ascl:1607.008]
BLS: Box-fitting Least Squares

BLS (Box-fitting Least Squares) is a box-fitting algorithm that analyzes stellar photometric time series to search for periodic transits of extrasolar planets. It searches for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level.

[ascl:1607.007]
JUDE: An Utraviolet Imaging Telescope pipeline

JUDE (Jayant's UVIT Data Explorer) converts the Level 1 data (FITS binary table) from the Ultraviolet Imaging Telescope (UVIT) on ASTROSAT into three output files: a photon event list as a function of frame number (FITS binary table); a FITS image file with two extensions; and a PNG file created from the FITS image file with an automated scaling.

[ascl:1607.006]
Cholla: 3D GPU-based hydrodynamics code for astrophysical simulation

Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.

[ascl:1607.005]
Planetary3br: Three massive body resonance calculator

Given two planets P1 and P2 with arbitrary orbits, planetary3br calculates all possible semimajor axes that a third planet P0 can have in order for the system to be in a three body resonance; these are identified by the combination k0*P0 + k1*P1 + k2*P2. P1 and P2 are assumed to be not in an exact two-body resonance. The program also calculates three "strengths" of the resonance, one for each planet, which are only indicators of the dynamical relevance of the resonance on each planet. Sample input data are available along with the Fortran77 source code.

[ascl:1607.004]
Atlas3bgeneral: Three-body resonance calculator

For a massless test particle and given a planetary system, atlas3bgeneral calculates all three body resonances in a given range of semimajor axes with all the planets taken by pairs. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the three-body resonances is available for use with the Fortran77 source code.

[ascl:1607.003]
Atlas2bgeneral: Two-body resonance calculator

For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.

[ascl:1607.002]
DICE: Disk Initial Conditions Environment

DICE models initial conditions of idealized galaxies to study their secular evolution or their more complex interactions such as mergers or compact groups using N-Body/hydro codes. The code can set up a large number of components modeling distinct parts of the galaxy, and creates 3D distributions of particles using a N-try MCMC algorithm which does not require a prior knowledge of the distribution function. The gravitational potential is then computed on a multi-level Cartesian mesh by solving the Poisson equation in the Fourier space. Finally, the dynamical equilibrium of each component is computed by integrating the Jeans equations for each particles. Several galaxies can be generated in a row and be placed on Keplerian orbits to model interactions. DICE writes the initial conditions in the Gadget1 or Gadget2 (ascl:0003.001) format and is fully compatible with Ramses (ascl:1011.007).

[ascl:1607.001]
AGNfitter: SED-fitting code for AGN and galaxies from a MCMC approach

AGNfitter is a fully Bayesian MCMC method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) and galaxies from the sub-mm to the UV; it enables robust disentanglement of the physical processes responsible for the emission of sources. Written in Python, AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGN with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star formation rates.

[ascl:1606.015]
FLASK: Full-sky Lognormal Astro-fields Simulation Kit

FLASK (Full-sky Lognormal Astro-fields Simulation Kit) makes tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields; it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges. It is C++ code parallelized with OpenMP; FLASK generates fast full-sky simulations of cosmological large-scale structure observables such as multiple matter density tracers (galaxies, quasars, dark matter haloes), CMB temperature anisotropies and weak lensing convergence and shear fields. The mutiple fields can be generated tomographically in an arbitrary number of redshift slices and all their statistical properties (including cross-correlations) are determined by the angular power spectra supplied as input and the multivariate lognormal (or Gaussian) distribution assumed for the fields. Effects like redshift space distortions, doppler distortions, magnification biases, evolution and intrinsic aligments can be introduced in the simulations via the input power spectra which must be supplied by the user.

[ascl:1606.014]
Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python

Newville, Matthew; Stensitzki, Till; Allen, Daniel B; Rawlik, Michal; Ingargiola, Antonino; Nelson, Andrew

Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.

[ascl:1606.013]
Pulse Portraiture: Pulsar timing

Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

[ascl:1606.012]
KMDWARFPARAM: Parameters estimator for K and M dwarf stars

KMDWARFPARAM estimates the physical parameters of a star with mass M < 0.8 M_sun given one or more observational constraints. The code runs a Markov-Chain Monte Carlo procedure to estimate the parameter values and their uncertainties.

[ascl:1606.011]
FDIPS: Finite Difference Iterative Potential-field Solver

FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

[ascl:1606.010]
SimpLens: Interactive gravitational lensing simulator

SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

[ascl:1606.009]
Companion-Finder: Planets and binary companions in time series spectra

Companion-Finder looks for planets and binary companions in time series spectra by searching for the spectral lines of stellar companions to other stars observed with high-precision radial-velocity surveys.

[ascl:1606.008]
s2: Object oriented wrapper for functions on the sphere

The s2 package can represent any arbitrary function defined on the sphere. Both real space map and harmonic space spherical harmonic representations are supported. Basic sky representations have been extended to simulate full sky noise distributions and Gaussian cosmic microwave background realisations. Support for the representation and convolution of beams is also provided. The code requires HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001).

[ascl:1606.007]
COMB: Compact embedded object simulations

COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

[ascl:1606.006]
uvmcmcfit: Parametric models to interferometric data fitter

Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

[ascl:1606.005]
PyMultiNest: Python interface for MultiNest

PyMultiNest provides programmatic access to MultiNest (ascl:1109.006) and PyCuba, integration existing Python code (numpy, scipy), and enables writing Prior & LogLikelihood functions in Python. PyMultiNest can plot and visualize MultiNest's progress and allows easy plotting, visualization and summarization of MultiNest results. The plotting can be run on existing MultiNest output, and when not using PyMultiNest for running MultiNest.

[ascl:1606.004]
HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

[ascl:1606.003]
Cygrid: Cython-powered convolution-based gridding module for Python

The Python module Cygrid grids (resamples) data to any collection of spherical target coordinates, although its typical application involves FITS maps or data cubes. The module supports the FITS world coordinate system (WCS) standard; its underlying algorithm is based on the convolution of the original samples with a 2D Gaussian kernel. A lookup table scheme allows parallelization of the code and is combined with the HEALPix tessellation of the sphere for fast neighbor searches. Cygrid's runtime scales between O(n) and O(nlog n), with n being the number of input samples.

[ascl:1606.002]
PAL: Positional Astronomy Library

The PAL library is a partial re-implementation of Pat Wallace's popular SLALIB library written in C using a Gnu GPL license and layered on top of the IAU's SOFA library (or the BSD-licensed ERFA) where appropriate. PAL attempts to stick to the SLA C API where possible.

[ascl:1606.001]
SWOC: Spectral Wavelength Optimization Code

SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.

[ascl:1605.017]
Surprise Calculator: Estimating relative entropy and Surprise between samples

The Surprise is a measure for consistency between posterior distributions and operates in parameter space. It can be used to analyze either the compatibility of separately analyzed posteriors from two datasets, or the posteriors from a Bayesian update. The Surprise Calculator estimates relative entropy and Surprise between two samples, assuming they are Gaussian. The software requires the R package CompQuadForm to estimate the significance of the Surprise, and rpy2 to interface R with Python.

[ascl:1605.016]
zeldovich-PLT: Zel'dovich approximation initial conditions generator

zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.

[ascl:1605.015]
SAND: Automated VLBI imaging and analyzing pipeline

The Search And Non-Destroy (SAND) is a VLBI data reduction pipeline composed of a set of Python programs based on the AIPS interface provided by ObitTalk. It is designed for the massive data reduction of multi-epoch VLBI monitoring research. It can automatically investigate calibrated visibility data, search all the radio emissions above a given noise floor and do the model fitting either on the CLEANed image or directly on the uv data. It then digests the model-fitting results, intelligently identifies the multi-epoch jet component correspondence, and recognizes the linear or non-linear proper motion patterns. The outputs including CLEANed image catalogue with polarization maps, animation cube, proper motion fitting and core light curves. For uncalibrated data, a user can easily add inline modules to do the calibration and self-calibration in a batch for a specific array.

[ascl:1605.014]
DUO: Spectra of diatomic molecules

Duo computes rotational, rovibrational and rovibronic spectra of diatomic molecules. The software, written in Fortran 2003, solves the Schrödinger equation for the motion of the nuclei for the simple case of uncoupled, isolated electronic states and also for the general case of an arbitrary number and type of couplings between electronic states. Possible couplings include spin–orbit, angular momenta, spin-rotational and spin–spin. Introducing the relevant couplings using so-called Born–Oppenheimer breakdown curves can correct non-adiabatic effects.

[ascl:1605.013]
grtrans: Polarized general relativistic radiative transfer via ray tracing

grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).

[ascl:1605.012]
K2SC: K2 Systematics Correction

K2SC (K2 Systematics Correction) models instrumental systematics and astrophysical variability in light curves from the K2 mission. It enables the user to remove both position-dependent systematics and time-dependent variability (e.g., for transit searches) or to remove systematics while preserving variability (for variability studies). K2SC automatically computes estimates of the period, amplitude and evolution timescale of the variability for periodic variables and can be run on ASCII and FITS light curve files. Written in Python, this pipeline requires NumPy, SciPy, MPI4Py, Astropy (ascl:1304.002), and George (ascl:1511.015).

[ascl:1605.011]
DISCO: 3-D moving-mesh magnetohydrodynamics package

DISCO evolves orbital fluid motion in two and three dimensions, especially at high Mach number, for studying astrophysical disks. The software uses a moving-mesh approach with a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas, thus removing diffusive advection errors and permitting longer timesteps than a static grid. DISCO uses an HLLD Riemann solver and a constrained transport scheme compatible with the mesh motion to implement magnetohydrodynamics.

[ascl:1605.010]
TRIPPy: Python-based Trailed Source Photometry

Fraser, Wesley C.; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michael E.; Pike, Rosemary E.; Kavelaars, JJ; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey

TRIPPy (TRailed Image Photometry in Python) uses a pill-shaped aperture, a rectangle described by three parameters (trail length, angle, and radius) to improve photometry of moving sources over that done with circular apertures. It can generate accurate model and trailed point-spread functions from stationary background sources in sidereally tracked images. Appropriate aperture correction provides accurate, unbiased flux measurement. TRIPPy requires numpy, scipy, matplotlib, Astropy (ascl:1304.002), and stsci.numdisplay; emcee (ascl:1303.002) and SExtractor (ascl:1010.064) are optional.

[ascl:1605.009]
ASTRiDE: Automated Streak Detection for Astronomical Images

ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

[ascl:1605.008]
PDT: Photometric DeTrending Algorithm Using Machine Learning

PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.

[ascl:1605.007]
MUSCLE: MUltiscale Spherical-ColLapse Evolution

MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

[ascl:1605.006]
CAMELOT: Cloud Archive for MEtadata, Library and Online Toolkit

Ginsburg, Adam; Kruijssen, J. M. Diederik; Longmore, Steven N.; Koch, Eric; Glover, Simon C. O.; Dale, James E.; Commerçon, Benoît; Giannetti, Andrea; McLeod, Anna F.; Testi, Leonardo; Zahorecz, Sarolta; Rathborne, Jill M.; Zhang, Qizhou; Fontani, Francesco; Beltrán, Maite T.; Rivilla, Victor M.

CAMELOT facilitates the comparison of observational data and simulations of molecular clouds and/or star-forming regions. The central component of CAMELOT is a database summarizing the properties of observational data and simulations in the literature through pertinent metadata. The core functionality allows users to upload metadata, search and visualize the contents of the database to find and match observations/simulations over any range of parameter space.

To bridge the fundamental disconnect between inherently 2D observational data and 3D simulations, the code uses key physical properties that, in principle, are straightforward for both observers and simulators to measure — the surface density (Sigma), velocity dispersion (sigma) and radius (R). By determining these in a self-consistent way for all entries in the database, it should be possible to make robust comparisons.

[ascl:1605.005]
TMBIDL: Single dish radio astronomy data reduction package

The IDL package reduces and analyzes radio astronomy data. It translates SDFITS files into TMBIDL format, and can average and display spectra, remove baselines, and fit Gaussian models.

[ascl:1605.004]
BACCHUS: Brussels Automatic Code for Characterizing High accUracy Spectra

BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) derives stellar parameters (T_{eff}, log *g*, metallicity, microturbulence velocity and rotational velocity), equivalent widths, and abundances. The code includes on the fly spectrum synthesis, local continuum normalization, estimation of local S/N, automatic line masking, four methods for abundance determinations, and a flagging system aiding line selection. BACCHUS relies on the grid of MARCS model atmospheres, Masseron's model atmosphere thermodynamic structure interpolator, and the radiative transfer code Turbospectrum (ascl:1205.004).

[ascl:1605.003]
Shadowfax: Moving mesh hydrodynamical integration code

Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

[ascl:1605.002]
cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters

The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.

[ascl:1605.001]
MARZ: Redshifting Program

MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

[ascl:1604.012]
TTVFaster: First order eccentricity transit timing variations (TTVs)

TTVFaster implements analytic formulae for transit time variations (TTVs) that are accurate to first order in the planet–star mass ratios and in the orbital eccentricities; the implementations are available in several languages, including IDL, Julia, Python and C. These formulae compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems.

[ascl:1604.011]
FDPS: Framework for Developing Particle Simulators

Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

FDPS provides the necessary functions for efficient parallel execution of particle-based simulations as templates independent of the data structure of particles and the functional form of the interaction. It is used to develop particle-based simulation programs for large-scale distributed-memory parallel supercomputers. FDPS includes templates for domain decomposition, redistribution of particles, and gathering of particle information for interaction calculation. It uses algorithms such as Barnes-Hut tree method for long-range interactions; methods to limit the calculation to neighbor particles are used for short-range interactions. FDPS reduces the time and effort necessary to write a simple, sequential and unoptimized program of O(N^2) calculation cost, and produces compiled programs that will run efficiently on large-scale parallel supercomputers.

[ascl:1604.009]
CCSNMultivar: Core-Collapse Supernova Gravitational Waves

CCSNMultivar aids the analysis of core-collapse supernova gravitational waves. It includes multivariate regression of Fourier transformed or time domain waveforms, hypothesis testing for measuring the influence of physical parameters, and the Abdikamalov et. al. catalog for example use. CCSNMultivar can optionally incorporate additional uncertainty due to detector noise and approximate waveforms from anywhere within the parameter space.

[ascl:1604.008]
The Tractor: Probabilistic astronomical source detection and measurement

The Tractor optimizes or samples from models of astronomical objects. The approach is generative: given astronomical sources and a description of the image properties, the code produces pixel-space estimates or predictions of what will be observed in the images. This estimate can be used to produce a likelihood for the observed data given the model: assuming the model space actually includes the truth (it doesn’t, in detail), then if we had the optimal model parameters, the predicted image would differ from the actually observed image only by noise. Given a noise model of the instrument and assuming pixelwise independent noise, the log-likelihood is the negative chi-squared difference: (image - model) / noise.

[ascl:1604.007]
DNest3: Diffusive Nested Sampling

DNest3 is a C++ implementation of Diffusive Nested Sampling (ascl:1010.029), a Markov Chain Monte Carlo (MCMC) algorithm for Bayesian Inference and Statistical Mechanics. Relative to older DNest versions, DNest3 has improved performance (in terms of the sampling overhead, likelihood evaluations still dominate in general) and is cleaner code: implementing new models should be easier than it was before. In addition, DNest3 is multi-threaded, so one can run multiple MCMC walkers at the same time, and the results will be combined together.

[ascl:1604.006]
2-DUST: Dust radiative transfer code

2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.

[ascl:1604.005]
Halotools: Galaxy-Halo connection models

Hearin, Andrew; Tollerud, Erik; Robitaille,Thomas; Droettboom, Michael; Zentner, Andrew; Bray, Erik; Craig, Matt; Bradley, Larry; Barbary, Kyle; Deil, Christoph; Tan, Kevin; Becker, Matthew R.; More, Surhud; Günther, Hans Moritz; Sipocz, Brigitta

Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

[ascl:1604.004]
magicaxis: Pretty scientific plotting with minor-tick and log minor-tick support

The R suite magicaxis makes useful and pretty plots for scientific plotting and includes functions for base plotting, with particular emphasis on pretty axis labelling in a number of circumstances that are often used in scientific plotting. It also includes functions for generating images and contours that reflect the 2D quantile levels of the data designed particularly for output of MCMC posteriors where visualizing the location of the 68% and 95% 2D quantiles for covariant parameters is a necessary part of the post MCMC analysis, can generate low and high error bars, and allows clipping of values, rejection of bad values, and log stretching.

[ascl:1604.003]
LAMBDAR: Lambda Adaptive Multi-Band Deblending Algorithm in R

LAMBDAR measures galaxy fluxes from an arbitrary FITS image, covering an arbitrary photometric wave-band, when provided all parameters needed to construct galactic apertures at the required locations for multi-band matched aperture galactic photometry. Through sophisticated matched aperture photometry, the package develops robust Spectral Energy Distributions (SEDs) and accurately establishes the physical properties of galactic objects. LAMBDAR was based on a package detailed in Bourne et al. (2012) that determined galactic fluxes in low resolution Herschel images.

[ascl:1604.002]
libpolycomp: Compression/decompression library

Libpolycomp compresses and decompresses one-dimensional streams of numbers by means of several algorithms. It is well-suited for time-ordered data acquired by astronomical instruments or simulations. One of the algorithms, called "polynomial compression", combines two widely-used ideas (namely, polynomial approximation and filtering of Fourier series) to achieve substantial compression ratios for datasets characterized by smoothness and lack of noise. Notable examples are the ephemerides of astronomical objects and the pointing information of astronomical telescopes. Other algorithms implemented in this C library are well known and already widely used, e.g., RLE, quantization, deflate (via libz) and Burrows-Wheeler transform (via libbzip2). Libpolycomp can compress the timelines acquired by the Planck/LFI instrument with an overall compression ratio of ~9, while other widely known programs (gzip, bzip2) reach compression ratios less than 1.5.

[ascl:1604.001]
OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)

OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.

[ascl:1603.018]
PolRadTran: Polarized Radiative Transfer Model Distribution

PolRadTran is a plane-parallel polarized radiative transfer model. It is used to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly-oriented particles. Both solar and thermal sources of radiation are considered. A direct method of incorporating the polarized scattering information is combined with the doubling and adding method to produce a relatively simple formulation.

[ascl:1603.017]
HIIexplorer: Detect and extract integrated spectra of HII regions

HIIexplorer detects and extracts the integrated spectra of HII regions from IFS datacubes. The procedure assumes H ii regions are peaky/isolated structures with a strong ionized gas emission, clearly above the continuum emission and the average ionized gas emission across the galaxy and that H ii regions have a typical physical size of about a hundred or a few hundreds of parsecs, which corresponds to a typical projected size at the distance of the galaxies of a few arcsec for galaxies at z~0.016. All input parameters can be derived from either a visual inspection and/or a statistical analysis of the Hα emission line map. The algorithm produces a segmentation FITS file describing the pixels associated to each H ii region.

[ascl:1603.016]
ellc: Light curve model for eclipsing binary stars and transiting exoplanets

ellc analyzes the light curves of detached eclipsing binary stars and transiting exoplanet systems. The model represents stars as triaxial ellipsoids, and the apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The code can also calculate the fluxweighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). ellc can model a wide range of eclipsing binary stars and extrasolar planetary systems, and can enable the use of modern Monte Carlo methods for data analysis and model testing.

[ascl:1603.015]
Dedalus: Flexible framework for spectrally solving differential equations

Dedalus solves differential equations using spectral methods. It implements flexible algorithms to solve initial-value, boundary-value, and eigenvalue problems with broad ranges of custom equations and spectral domains. Its primary features include symbolic equation entry, multidimensional parallelization, implicit-explicit timestepping, and flexible analysis with HDF5. The code is written primarily in Python and features an easy-to-use interface. The numerical algorithm produces highly sparse systems for many equations which are efficiently solved using compiled libraries and MPI.

[ascl:1603.014]
fibmeasure: Python/Cython module to find the center of back-illuminated optical fibers in metrology images

fibmeasure finds the precise locations of the centers of back-illuminated optical fibers in images. It was developed for astronomical fiber positioning feedback via machine vision cameras and is optimized for high-magnification images where fibers appear as resolvable circles. It was originally written during the design of the WEAVE pick-and-place fiber positioner for the William Herschel Telescope.

[ascl:1603.013]
PyGSM: Python interface to the Global Sky Model

PyGSM is a Python interface for the Global Sky Model (GSM, ascl:1011.010). The GSM is a model of diffuse galactic radio emission, constructed from a variety of all-sky surveys spanning the radio band (e.g. Haslam and WMAP). PyGSM uses the GSM to generate all-sky maps in Healpix format of diffuse Galactic radio emission from 10 MHz to 94 GHz. The PyGSM module provides visualization utilities, file output in FITS format, and the ability to generate observed skies for a given location and date. PyGSM requires Healpy, PyEphem (ascl:1112.014), and AstroPy (ascl:1304.002).

[ascl:1603.012]
tpipe: Searching radio interferometry data for fast, dispersed transients

Visibilities from radio interferometers have not traditionally been used to study the fast transient sky. Millisecond transients (e.g., fast radio bursts) and periodic sources (e.g., pulsars) have been studied with single-dish radio telescopes and a software stack developed over the past few decades. tpipe is an initial attempt to develop the fast transient algorithms for visibility data. Functions exist for analysis of visibilties, such as reading data, flagging data, applying interferometric gain calibration, and imaging. These functions are given equal footing as time-domain techniques like filters and dedispersion.

[ascl:1603.011]
DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

[ascl:1603.010]
ExoPriors: Accounting for observational bias of transiting exoplanets

ExoPriors calculates a log-likelihood penalty for an input set of transit parameters to account for observational bias (geometric and signal-to-noise ratio detection bias) of transiting exoplanets. Written in Python, the code calculates this log-likelihood penalty in one of seven user-specified cases specified with Boolean input parameters for geometric and/or SNR bias, grazing or non-grazing events, and occultation events.

[ascl:1603.009]
Asfgrid: Asteroseismic parameters for a star

asfgrid computes asteroseismic parameters for a star with given stellar parameters and vice versa. Written in Python, it determines delta_nu, nu_max or masses via interpolation over a grid.

[ascl:1603.008]
ROBAST: ROOT-based ray-tracing library for cosmic-ray telescopes

ROBAST (ROOT-based simulator for ray tracing) is a non-sequential ray-tracing simulation library developed for wide use in optical simulations of gamma-ray and cosmic-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework, and can build the complex optics geometries typically used in cosmic ray experiments and ground-based gamma-ray telescopes.

[ascl:1603.007]
SMARTIES: Spheroids Modelled Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering

SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.

[ascl:1603.006]
FAST-PT: Convolution integrals in cosmological perturbation theory calculator

FAST-PT calculates 1-loop corrections to the matter power spectrum in cosmology. The code utilizes Fourier methods combined with analytic expressions to reduce the computation time down to scale as N log N, where N is the number of grid point in the input linear power spectrum. FAST-PT is extremely fast, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation.

[ascl:1603.005]
EQUIB: Atomic level populations and line emissivities calculator

Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

[ascl:1603.004]
gPhoton: Time-tagged GALEX photon events analysis tools

Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

[ascl:1603.003]
VIP: Vortex Image Processing pipeline for high-contrast direct imaging of exoplanets

Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Christiaens, Valentin; Absil, Olivier; Mawet, Dimitri

VIP (Vortex Image Processing pipeline) provides pre- and post-processing algorithms for high-contrast direct imaging of exoplanets. Written in Python, VIP provides a very flexible framework for data exploration and image processing and supports high-contrast imaging observational techniques, including angular, reference-star and multi-spectral differential imaging. Several post-processing algorithms for PSF subtraction based on principal component analysis are available as well as the LLSG (Local Low-rank plus Sparse plus Gaussian-noise decomposition) algorithm for angular differential imaging. VIP also implements the negative fake companion technique coupled with MCMC sampling for rigorous estimation of the flux and position of potential companions.

[submitted]
millennium-tap-query: A Python Tool to Query the Millennium Simulation UWS/TAP client

millennium-tap-query is a simple wrapper for the Python package requests to deal with connections to the Millennium TAP Web Client. With this tool you can perform basic or advanced queries to the Millennium Simulation database and download the data products. millennium-tap-query is similar to the TAP query tool in the German Astrophysical Virtual Observatory (GAVO) VOtables package.

[ascl:1603.002]
CORBITS: Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems

CORBITS (Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems) computes the probability that any particular group of exoplanets can be observed to transit from a collection of conjectured exoplanets orbiting a star. The efficient, semi-analytical code computes the areas bounded by circular curves on the surface of a sphere by applying elementary differential geometry. CORBITS is faster than previous algorithms, based on comparisons with Monte Carlo simulations, and tests show that it is extremely accurate even for highly eccentric planets.

[ascl:1603.001]
SILSS: SPHERE/IRDIS Long-Slit Spectroscopy pipeline

The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.

[ascl:1602.021]
COLAcode: COmoving Lagrangian Acceleration code

COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

[ascl:1602.020]
mbb_emcee: Modified Blackbody MCMC

Mbb_emcee fits modified blackbodies to photometry data using an affine invariant MCMC. It has large number of options which, for example, allow computation of the IR luminosity or dustmass as part of the fit. Carrying out a fit produces a HDF5 output file containing the results, which can either be read directly, or read back into a mbb_results object for analysis. Upper and lower limits can be imposed as well as Gaussian priors on the model parameters. These additions are useful for analyzing poorly constrained data. In addition to standard Python packages scipy, numpy, and cython, mbb_emcee requires emcee (ascl:1303.002), Astropy (ascl:1304.002), h5py, and for unit tests, nose.

[ascl:1602.019]
CLOC: Cluster Luminosity Order-Statistic Code

CLOC computes cluster order statistics, *i.e.* the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.

[ascl:1602.018]
POPPY: Physical Optics Propagation in PYthon

Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine; and others

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[ascl:1602.017]
CHIP: Caltech High-res IRS Pipeline

CHIP (Caltech High-res IRS Pipeline) reduces high signal-to-noise short-high and long-high Spitzer-IRS spectra, especially that taken with dedicated background exposures. Written in IDL, it is independent of other Spitzer reduction tools except IRSFRINGE (ascl:1602.016).

[ascl:1602.016]
IRSFRINGE: Interactive tool for fringe removal from Spitzer IRS spectra

IRSFRINGE is an IDL-based GUI package that allows observers to interactively remove fringes from IRS spectra. Fringes that originate from the detector subtrates are observed in the IRS Short-High (SH) and Long-High (LH) modules. In the Long-Low (LL) module, another fringe component is seen as a result of the pre-launch change in one of the LL filters. The fringes in the Short-Low (SL) module are not spectrally resolved. the fringes are already largely removed in the pipeline processing when the flat field is applied. However, this correction is not perfect and remaining fringes can be removed with IRSFRINGE from data in each module. IRSFRINGE is available as a stand-alone package and is also part of the Spectroscopic Modeling, Analysis and Reduction Tool (SMART, ascl:1210.021).

[ascl:1602.015]
GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.

[ascl:1602.014]
k2photometry: Read, reduce and detrend K2 photometry

Van Eylen, Vincent; Nowak, Grzegorz; Albrecht, Simon; Palle, Enric; Ribas, Ignasi; Bruntt, Hans; Perger, Manuel; Gandolfi, Davide; Hirano, Teriyuki; Sanchis-Ojeda, Roberto; Kiilerich, Amanda; Arranz, Jorge P.; Badenas, Mariona; Dai, Fei; Deeg, Hans J.; Guenther, Eike W.; Montanes-Rodriguez, Pilar; Narita, Norio; Rogers, Leslie A.; Bejar, Victor J. S.; Shrotriya, Tushar S.; Winn, Joshua N.; Sebastian, Daniel

k2photometry reads, reduces and detrends K2 photometry and searches for transiting planets. MAST database pixel files are used as input; the output includes raw lightcurves, detrended lightcurves and a transit search can be performed as well. Stellar variability is not typically well-preserved but parameters can be tweaked to change that. The BLS algorithm used to detect periodic events is a Python implementation by Ruth Angus and Dan Foreman-Mackey (https://github.com/dfm/python-bls).

[ascl:1602.013]
TailZ: Redshift distributions estimator of photometric samples of galaxies

TailZ estimates redshift distributions of photometric samples of galaxies selected photometrically given a subsample with measured spectroscopic redshifts. The approach uses a non-parametric Voronoi tessellation density estimator to interpolate the galaxy distribution in the redshift and photometric color space. The Voronoi tessellation estimator performs well at reconstructing the tails of the redshift distribution of individual galaxies and gives unbiased estimates of the first and second moments.

[ascl:1602.012]
DELightcurveSimulation: Light curve simulation code

DELightcurveSimulation simulates light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos *et al.* (2013). The simulated products have exactly the same variability and statistical properties as the observed light curves. The code is a Python implementation of the Mathematica code provided by Emmanoulopoulos *et al.*

[ascl:1602.011]
Celestial: Common astronomical conversion routines and functions

The R package Celestial contains common astronomy conversion routines, particularly the HMS and degrees schemes, and a large range of functions for calculating properties of different cosmologies (as used by the cosmocalc website). This includes distances, ages, growth rate/factor and densities (e.g., Omega evolution and critical energy density). It also includes functions for calculating thermal properties of the CMB and Planck's equations and virial properties of halos in different cosmologies, and standard NFW and weak-lensing formulas and low level orbital routines for calculating Roche properties, Vis-Viva and free-fall times.

[ascl:1602.010]
The Cannon: Data-driven method for determining stellar parameters and abundances from stellar spectra

The Cannon is a data-driven method for determining stellar labels (physical parameters and chemical abundances) from stellar spectra in the context of vast spectroscopic surveys. It fits for the spectral model given training spectra and labels, with the polynomial order for the spectral model decided by the user, infers labels for the test spectra, and provides diagnostic output for monitoring and evaluating the process. It offers SNR-independent continuum normalization, performs well at lower signal-to-noise, and is very accurate.

[ascl:1602.009]
LensTools: Weak Lensing computing tools

LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.

[ascl:1602.008]
NuCraft: Oscillation probabilities for atmospheric neutrinos calculator

NuCraft calculates oscillation probabilities for atmospheric neutrinos, taking into account matter effects and the Earth's atmosphere, and supports an arbitrary number of sterile neutrino flavors with easily configurable continuous Earth models. Continuous modeling of the Earth instead of the often-used approximation of four layers with constant density and consideration of the smearing of baseline lengths due to the variable neutrino production heights in Earth's atmosphere each lead to deviations of 10% or more for conventional neutrinos between 1 and 10 GeV.

[ascl:1602.007]
FilTER: Filament Trait-Evaluated Reconstruction

FilTER (Filament Trait-Evaluated Reconstruction) post-processes output from DisPerSE (ascl:1302.015

[ascl:1602.006]
LIRA: LInear Regression in Astronomy

LIRA (LInear Regression in Astronomy) performs Bayesian linear regression that accounts for heteroscedastic errors in both the independent and the dependent variables, intrinsic scatters (in both variables), time evolution of slopes, normalization and scatters, Malmquist and Eddington bias, and break of linearity. The posterior distribution of the regression parameters is sampled with a Gibbs method exploiting the JAGS (ascl:1209.002) library.

[ascl:1602.005]
LRGS: Linear Regression by Gibbs Sampling

LRGS (Linear Regression by Gibbs Sampling) implements a Gibbs sampler to solve the problem of multivariate linear regression with uncertainties in all measured quantities and intrinsic scatter. LRGS extends an algorithm by Kelly (2007) that used Gibbs sampling for performing linear regression in fairly general cases in two ways: generalizing the procedure for multiple response variables, and modeling the prior distribution of covariates using a Dirichlet process.

[ascl:1602.004]
DUSTYWAVE: Linear waves in gas and dust

Written in Fortran, DUSTYWAVE computes the exact solution for linear waves in a two-fluid mixture of gas and dust. The solutions are general with respect to both the dust-to-gas ratio and the amplitude of the drag coefficient.

[ascl:1602.003]
ZAP: Zurich Atmosphere Purge

ZAP (Zurich Atmosphere Purge) provides sky subtraction for integral field spectroscopy; its approach is based on principal component analysis (PCA) developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources; this method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation.

[ascl:1602.002]
pyraf-dbsp: Reduction pipeline for the Palomar Double Beam Spectrograph

pyraf-dbsp is a PyRAF-based (ascl:1207.011) reduction pipeline for optical spectra taken with the Palomar 200-inch Double Beam Spectrograph. The pipeline provides a simplified interface for basic reduction of single-object spectra with minimal overhead. It is suitable for quicklook classification of transients as well as moderate-precision (few km/s) radial velocity work.

[ascl:1602.001]
Automark: Automatic marking of marked Poisson process in astronomical high-dimensional datasets

Automark models photon counts collected form observation of variable-intensity astronomical sources. It aims to mark the abrupt changes in the corresponding wavelength distribution of the emission automatically. In the underlying methodology, change points are embedded into a marked Poisson process, where photon wavelengths are regarded as marks and both the Poisson intensity parameter and the distribution of the marks are allowed to change.

[ascl:1601.021]
ISO: Isochrone construction

ISO transforms MESA history files into a uniform basis for interpolation and then constructs new stellar evolution tracks and isochrones from that basis. It is written in Fortran and requires MESA (ascl:1010.083), primarily for interpolation. Though designed to ingest MESA star history files, tracks from other stellar evolution codes can be incorporated by loading the tracks into the data structures used in the codes.

[ascl:1601.020]
ProC: Process Coordinator

Hovest, Wolfgang; Knoche, Jörg; Hell, Reinhard; Doerl, Uwe; Riller, Thomas; Matthai, Frank; Ensslin, Torsten; Rachen, Jörg; Robbers, Georg; Adorf, Hans-Martin; Reinecke, Martin; Bartelmann, Matthias

ProC (short for Process Coordinator) is a versatile workflow engine that allows the user to build, run and manage workflows with just a few clicks. It automatically documents every processing step, making every modification to data reproducible. ProC provides a graphical user interface for constructing complex data processing workflows out of a given set of computer programs. The user can, for example, specify that only data products which are affected by a change in the input data are updated selectively, avoiding unnecessary computations. The ProC suite is flexible and satisfies basic needs of data processing centers that have to be able to restructure their data processing along with the development of a project.

[ascl:1601.019]
WzBinned: Binned and uncorrelated estimates of dark energy EOS extractor

WzBinned extracts binned and uncorrelated estimates of dark energy equation of state w(z) using Type Ia supernovae Hubble diagram and other cosmological probes and priors. It can handle an arbitrary number of input distance modulus data (entered as an input file SNdata.dat) and various existing cosmological information.

[ascl:1601.018]
MATPHOT: Stellar photometry and astrometry with discrete point spread functions

A discrete Point Spread Function (PSF) is a sampled version of a continuous two-dimensional PSF. The shape information about the photon scattering pattern of a discrete PSF is typically encoded using a numerical table (matrix) or a FITS image file. MATPHOT shifts discrete PSFs within an observational model using a 21-pixel- wide damped sinc function and position partial derivatives are computed using a five-point numerical differentiation formula. MATPHOT achieves accurate and precise stellar photometry and astrometry of undersampled CCD observations by using supersampled discrete PSFs that are sampled two, three, or more times more finely than the observational data.

[ascl:1601.017]
BASCS: Bayesian Separation of Close Sources

BASCS models spatial and spectral information from overlapping sources and the background, and jointly estimates all individual source parameters. The use of spectral information improves the detection of both faint and closely overlapping sources and increases the accuracy with which source parameters are inferred.

[ascl:1601.016]
Fit Kinematic PA: Fit the global kinematic position-angle of galaxies

Fit kinematic PA measures the global kinematic position-angle (PA) from integral field observations of a galaxy stellar or gas kinematics; the code is available in IDL and Python.

[ascl:1601.015]
QDPHOT: Quick & Dirty PHOTometry

QDPHOT is a fast CCD stellar photometry task which quickly produces CCD stellar photometry from two CCD images of a star field. It was designed to be a data mining tool for finding high-quality stellar observations in the data archives of the National Virtual Observatory. QDPHOT typically takes just a few seconds to analyze two Hubble Space Telescope WFPC2 observations of Local Group star clusters. It is also suitable for real-time data-quality analysis of CCD observations; on-the-fly instrumental color-magnitude diagrams can be produced at the telescope console during the few seconds between CCD readouts.

[ascl:1601.014]
Nulike: Neutrino telescope likelihood tools

Nulike is software for including full event-level information in likelihood calculations for neutrino telescope searches for dark matter annihilation. It includes both angular and spectral information about neutrino events as well as their total number, and can be used for single models without reference to the rest of a parameter space.

[ascl:1601.013]
ImpactModel: Black Hole Accretion Disk Impact Model

ImpactModel, written in Cython, computes the accretion disc impact spectrum at given frequencies and can compute other model quantities as a function of time.

[ascl:1601.012]
SavGolFilterCov: Savitzky Golay filter for data with error covariance

A Savitzky–Golay filter is often applied to data to smooth the data without greatly distorting the signal; however, almost all data inherently comes with noise, and the noise properties can differ from point to point. This python script improves upon the traditional Savitzky-Golay filter by accounting for error covariance in the data. The inputs and arguments are modeled after scipy.signal.savgol_filter.

[ascl:1601.011]
LACEwING: LocAting Constituent mEmbers In Nearby Groups

LACEwING (LocAting Constituent mEmbers In Nearby Groups) uses the kinematics (positions and motions) of stars to determine if they are members of one of 10 nearby young moving groups or 4 nearby open clusters within 100 parsecs. It is written for Python 2.7 and depends upon Numpy, Scipy, and Astropy (ascl:1304.002) modules. LACEwING can be used as a stand-alone code or as a module in other code. Additional python programs are present in the repository for the purpose of recalibrating the code and producing other analyses, including a traceback analysis.

[ascl:1601.010]
PARAVT: Parallel Voronoi Tessellation code

We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition take into account consistent boundary computation between tasks, and support periodic conditions. In addition, the code compute neighbors lists, Voronoi density and Voronoi cell volumes for each particle, and can compute density on a regular grid.

[ascl:1601.009]
K2fov: Field of view software for NASA's K2 mission

K2fov allows users to transform celestial coordinates into K2's pixel coordinate system for the purpose of preparing target proposals and field of view visualizations. In particular, the package, written in Python, adds the "K2onSilicon" and "K2findCampaigns" tools to the command line, allowing the visibility of targets to be checked in a user-friendly way.

[ascl:1601.008]
CosmicPy: Interactive cosmology computations

CosmicPy performs simple and interactive cosmology computations for forecasting cosmological parameters constraints; it computes tomographic and 3D Spherical Fourier-Bessel power spectra as well as Fisher matrices for galaxy clustering. Written in Python, it relies on a fast C++ implementation of Fourier-Bessel related computations, and requires NumPy, SciPy, and Matplotlib.

[ascl:1601.007]
LIRA: Low-counts Image Reconstruction and Analysis

LIRA (Low-counts Image Reconstruction and Analysis) deconvolves any unknown sky components, provides a fully Poisson 'goodness-of-fit' for any best-fit model, and quantifies uncertainties on the existence and shape of unknown sky. It does this without resorting to χ2 or rebinning, which can lose high-resolution information. It is written in R and requires the FITSio package.

[ascl:1601.006]
SAGE: Semi-Analytic Galaxy Evolution

Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M.

SAGE (Semi-Analytic Galaxy Evolution) models galaxy formation in a cosmological context. SAGE has been rebuilt to be modular and customizable. The model runs on any dark matter cosmological N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties.

[ascl:1601.005]
ctools: Cherenkov Telescope Science Analysis Software

Knödlseder, Jürgen; Mayer, Michael; Deil, Christoph; Buehler, Rolf; Bregeon, Johan; Martin, Pierrick

ctools provides tools for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided that the data and response functions are available in the format defined for CTA. ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-wise data analysis. A Python module allows control of all executables, and the creation of shell or Python scripts and pipelines is supported. ctools provides cscripts, which are Python scripts complementing the binary executables. Extensions of the ctools package by user defined binary executables or Python scripts is supported. ctools are based on GammaLib (ascl:1110.007).

[ascl:1601.004]
Odyssey: Ray tracing and radiative transfer in Kerr spacetime

Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

[ascl:1601.003]
SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

[ascl:1601.002]
Hyper-Fit: Fitting routines for multidimensional data with multivariate Gaussian uncertainties

The R package Hyper-Fit fits hyperplanes (hyper.fit) and creates 2D/3D visualizations (hyper.plot2d / hyper.plot3d) to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimensional dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane. A web interface for online fitting is also available at http://hyperfit.icrar.org.

[ascl:1601.001]
TRADES: TRAnsits and Dynamics of Exoplanetary Systems

TRADES (TRAnsits and Dynamics of Exoplanetary Systems) simultaneously fits observed radial velocities and transit times data to determine the orbital parameters of exoplanetary systems from observational data. It uses a dynamical simulator for N-body systems that also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis.

[ascl:1512.020]
TACT: The Action Computation Tool

The Action Computation Tool (TACT) tests methods for estimating actions, angles and frequencies of orbits in both axisymmetric and triaxial potentials, including general spherical potentials, analytic potentials (Isochrone and Harmonic oscillator), axisymmetric Stackel fudge, average generating function from orbit (AvGF), and others. It is written in C++; code is provided to compile the routines into a Python library. TM (ascl:1512.014) and LAPACK are required to access some features.

[ascl:1512.019]
UPSILoN: AUtomated Classification of Periodic Variable Stars using MachIne LearNing

UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing) classifies periodic variable stars such as Delta Scuti stars, RR Lyraes, Cepheids, Type II Cepheids, eclipsing binaries, and long-period variables (i.e. superclasses), and their subclasses (e.g. RR Lyrae ab, c, d, and e types) using well-sampled light curves from any astronomical time-series surveys in optical bands regardless of their survey-specific characteristics such as color, magnitude, and sampling rate. UPSILoN consists of two parts, one which extracts variability features from a light curve, and another which classifies a light curve, and returns extracted features, a predicted class, and a class probability. In principle, UPSILoN can classify any light curves having arbitrary number of data points, but using light curves with more than ~80 data points provides the best classification quality.

[ascl:1512.018]
growl: Growth factor and growth rate of expanding universes

Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

[ascl:1512.017]
FFTLog: Fast Fourier or Hankel transform

FFTLog is a set of Fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFTLog can be regarded as a natural analogue to the standard Fast Fourier Transform (FFT), in the sense that, just as the normal FFT gives the exact (to machine precision) Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m, of a logarithmically spaced periodic sequence.

[ascl:1512.016]
ZeldovichRecon: Halo correlation function using the Zeldovich approximation

ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants:

- zelrecon.cpp, which computes the various contributions to the correlation function;

- zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and

- a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.

[ascl:1512.015]
Spirality: Spiral arm pitch angle measurement

Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

[ascl:1512.014]
TM: Torus Mapper

TM (Torus Mapper) produces models for orbits in action-angle coordinates in axisymmetric potentials using torus mapping, a non-perturbative technique for creating orbital tori for specified values of the action integrals. It can compute a star's position at any time given an orbital torus and a star’s position at a reference time, and also provides a way to choose initial conditions for N-body simulations of realistic disc

galaxies that start in perfect equilibrium. TM provides some advantages over use of a standard time-stepper to

create orbits.

[ascl:1512.013]
CounterPoint: Zeeman-split absorption lines

CounterPoint works in concert with MoogStokes (ascl:1308.018). It applies the Zeeman effect to the atomic lines in the region of study, splitting them into the correct number of Zeeman components and adjusting their relative intensities according to the predictions of Quantum Mechanics, and finally creates a Moog-readable line list for use with MoogStokes. CounterPoint has the ability to use VALD and HITRAN line databases for both atomic and molecular lines.

[ascl:1512.012]
DiffuseModel: Modeling the diffuse ultraviolet background

DiffuseModel calculates the scattered radiation from dust scattering in the Milky Way based

on stars from the Hipparcos catalog. It uses Monte Carlo to implement multiple scattering and assumes a user-supplied grid for the dust distribution. The output is a FITS file with the diffuse light over the Galaxy. It is intended for use in the UV (900 - 3000 A) but may be modified for use in other wavelengths and galaxies.

[ascl:1512.011]
ExoData: Open Exoplanet Catalogue exploration and analysis tool

ExoData is a python interface for accessing and exploring the Open Exoplanet Catalogue. It allows searching of planets (including alternate names) and easy navigation of hierarchy, parses spectral types and fills in missing parameters based on programmable specifications, and provides easy reference of planet parameters such as GJ1214b.ra, GJ1214b.T, and GJ1214b.R. It calculates values such as transit duration, can easily rescale units, and can be used as an input catalog for large scale simulation and analysis of planets.

[ascl:1512.010]
CubeIndexer: Indexer for regions of interest in data cubes

Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio

CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.

[ascl:1512.009]
DRACULA: Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy

Aguena, Michel; Busti, Vinicius C.; Camacho, Hugo; Sasdelli, Michele; Ishida, Emille E. O.; Vilalta, Ricardo; Trindade, Arlindo M. M.; Gieseke, Fabien; de Souza, Rafael S.; Fantaye, Yabebal T.; Mazzali, Paolo A.

DRACULA classifies objects using dimensionality reduction and clustering. The code has an easy interface and can be applied to separate several types of objects. It is based on tools developed in scikit-learn, with some usage requiring also the H2O package.

[ascl:1512.008]
Bisous model: Detecting filamentary pattern in point processes

The Bisous model is a marked point process that models multi-dimensional patterns. The Bisous filament finder works directly with galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field; these two fields are used to extract filament spines from the data.

[ascl:1512.007]
AstroBlend: Visualization package for use with Blender

AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

[ascl:1512.006]
GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

[ascl:1512.005]
ALFA: Automated Line Fitting Algorithm

ALFA fits emission line spectra of arbitrary wavelength coverage and resolution, fully automatically. It uses a catalog of lines which may be present to construct synthetic spectra, the parameters of which are then optimized by means of a genetic algorithm. Uncertainties are estimated using the noise structure of the residuals. An emission line spectrum containing several hundred lines can be fitted in a few seconds using a single processor of a typical contemporary desktop or laptop PC. Data cubes in FITS format can be analysed using multiple processors, and an analysis of tens of thousands of deep spectra obtained with instruments such as MUSE will take a few hours.

[ascl:1512.004]
EDRSX: Extensions to the EDRS package

EDRSX extends the Electronography Data Reduction System (EDRS, ascl:1512.0030). It makes more versatile analysis of IRAS images than was otherwise available possible. EDRSX provides facilities for converting images into and out of EDRS format, accesses RA and DEC information stored with IRAS images, and performs several standard image processing operations such as displaying image histograms and statistics, and Fourier transforms. This enables such operations to be performed as estimation and subtraction of non-linear backgrounds, de-striping of IRAS images, modelling of image features, and easy aligning of separate images, among others.

[ascl:1512.003]
EDRS: Electronography Data Reduction System

The Electronography Data Reduction System (EDRS) reduces and analyzes large format astronomical images and was written to be used from within ASPIC (ascl:1510.006). In its original form it specialized in the reduction of electronographic data but was built around a set of utility programs which were widely applicable to astronomical images from other sources. The programs align and calibrate images, handle lists of (X,Y) positions, apply linear geometrical transformations and do some stellar photometry. This package is now obsolete.

[ascl:1512.002]
GetData: A filesystem-based, column-oriented database format for time-ordered binary data

The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

[ascl:1512.001]
IRACpm: Distortion correction for IRAC astrometric data

The IRACpm R package applies a 7-8 order distortion correction to IRAC astrometric data from the Spitzer Space Telescope and includes a function for measuring apparent proper motions between different Epochs. These corrections are applicable only to positions measured by APEX; cryogenic images benefit from a correction for varying intra-pixel sensitivity prior to the application of the distortion.

[ascl:1511.023]
PromptNuFlux: Prompt atmospheric neutrino flux calculator

PromptNuFlux computes the prompt atmospheric neutrino flux E3Φ(GeV2/(cm2ssr)), including the total associated theory uncertainty, for a range of energies between E=103 GeV and E=107.5 GeV. Results are available for five different parametrizations of the input cosmic ray flux: BPL, H3P, H3A, H14a, H14b.

[ascl:1511.022]
ZInCo: Zoomed Initial Conditions

ZInCo manipulates existing initial conditions (ICs) compatible with GADGET-2/3 (ascl:0003.001) ICs, allowing different flavors of zoom-in simulations rather then producing new ICs from scratch. The code can manipulate initial conditions with multiple types of particles, unlike the vast majority of zoom-in ICs codes available, preserving their properties and random field. This allows ZInCo to take advantage of other codes that produce ICs featuring a broad range of different cosmologies; it can be used also on existing ICs even in the unlikely case nothing is known about their properties. The code is written in C++ and parallelized using MPI.

[ascl:1511.021]
EPIC: E-field Parallel Imaging Correlator

E-field Parallel Imaging Correlator (EPIC), a highly parallelized Object Oriented Python package, implements the Modular Optimal Frequency Fourier (MOFF) imaging technique. It also includes visibility-based imaging using the software holography technique and a simulator for generating electric fields from a sky model. EPIC can accept dual-polarization inputs and produce images of all four instrumental cross-polarizations.

[ascl:1511.020]
Mercury-T: Tidally evolving multi-planet systems code

Mercury-T calculates the evolution of semi-major axis, eccentricity, inclination, rotation period and obliquity of the planets as well as the rotation period evolution of the host body; it is based on the N-body code Mercury (Chambers 1999, ascl:1201.008). It is flexible, allowing computation of the tidal evolution of systems orbiting any non-evolving object (if its mass, radius, dissipation factor and rotation period are known), but also evolving brown dwarfs (BDs) of mass between 0.01 and 0.08 M⊙, an evolving M-dwarf of 0.1 M⊙, an evolving Sun-like star, and an evolving Jupiter.

[ascl:1511.019]
CosmoBolognaLib: Open source C++ libraries for cosmological calculations

CosmoBolognaLib contains numerical libraries for cosmological calculations; written in C++, it is intended to define a common numerical environment for cosmological investigations of the large-scale structure of the Universe. The software aids in handling real and simulated astronomical catalogs by measuring one-point, two-point and three-point statistics in configuration space and performing cosmological analyses. These open source libraries can be included in either C++ or Python codes.

[ascl:1511.018]
LDC3: Three-parameter limb darkening coefficient sampling

LDC3 samples physically permissible limb darkening coefficients for the Sing et al. (2009) three-parameter law. It defines the physically permissible intensity profile as being everywhere-positive, monotonically decreasing from center to limb and having a curl at the limb. The approximate sampling method is analytic and thus very fast, reproducing physically permissible samples in 97.3% of random draws (high validity) and encompassing 94.4% of the physically permissible parameter volume (high completeness).

[ascl:1511.017]
DES exposure checker: Dark Energy Survey image quality control crowdsourcer

DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

[ascl:1511.016]
JKTLD: Limb darkening coefficients

JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.

[ascl:1511.015]
George: Gaussian Process regression

George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

[ascl:1511.014]
HumVI: Human Viewable Image creation

HumVI creates a composite color image from sets of input FITS files, following the Lupton et al (2004, ascl:1511.013) composition algorithm. Written in Python, it takes three FITS files as input and returns a color composite, color-saturated png image with an arcsinh stretch. HumVI reads the zero points out of the FITS headers and uses them to put all the images on the same flux scale; photometrically calibrated images produce the best results.

[ascl:1511.013]
CCDtoRGB: RGB image production from three-band atronomical images

Lupton, Robert; Blanton, Michael R.; Fekete, George; Hogg, David W.; O'Mullane, Wil; Szalay, Alex; Wherry, Nicholas

CCDtoRGB produces red‐green‐blue (RGB) composites from three‐band astronomical images, ensuring an object with a specified astronomical color has a unique color in the RGB image rather than burnt‐out white stars. Use of an arcsinh stretch shows faint objects while simultaneously preserving the structure of brighter objects in the field, such as the spiral arms of large galaxies.

[ascl:1511.012]
milkywayproject_triggering: Correlation functions for two catalog datasets

This triggering code calculates the correlation function between two astrophysical data catalogs using the Landy-Szalay approximator generalized for heterogeneous datasets (Landy & Szalay, 1993; Bradshaw et al, 2011) or the auto-correlation function of one dataset. It assumes that one catalog has positional information as well as an object size (effective radius), and the other only positional information.

[ascl:1511.011]
SparsePZ: Sparse Representation of Photometric Redshift PDFs

SparsePZ uses sparse basis representation to fully represent individual photometric redshift probability density functions (PDFs). This approach requires approximately half the parameters for the same multi-Gaussian fitting accuracy, and has the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function. Only 10-20 points per galaxy are needed to reconstruct both the individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9 per cent when compared to the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage of 200 original values by a factor of 10-20. This basis representation can be directly extended to a cosmological analysis, thereby increasing computational performance without losing resolution or accuracy.

[ascl:1511.010]
Galileon-Solver: N-body code

Galileon-Solver adds an extra force to PMCode (ascl:9909.001) using a modified Poisson equation to provide a non-linearly transformed density field, with the operations all performed in real space. The code's implicit spherical top-hat assumption only works over fairly long distance averaging scales, where the coarse-grained picture it relies on is a good approximation of reality; it uses discrete Fourier transforms and cyclic reduction in the usual way.

[ascl:1511.009]
Pangloss: Reconstructing lensing mass

Pangloss reconstructs all the mass within a light cone through the Universe. Understanding complex mass distributions like this is important for accurate time delay lens cosmography, and also for accurate lens magnification estimation. It aspires to use all available data in an attempt to make the best of all mass maps.

[ascl:1511.008]
MCAL: M dwarf metallicity and temperature calculator

MCAL calculates high precision metallicities and effective temperatures for M dwarfs; the method behaves properly down to R = 40 000 and S/N = 25, and results were validated against a sample of stars in common with SOPHIE high resolution spectra.

[ascl:1511.007]
MHF: MLAPM Halo Finder

MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.

[ascl:1511.006]
T-Matrix: Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles

The T-Matrix package includes codes to compute electromagnetic scattering by homogeneous, rotationally symmetric nonspherical particles in fixed and random orientations, randomly oriented two-sphere clusters with touching or separated components, and multi-sphere clusters in fixed and random orientations. All codes are written in Fortran-77. LAPACK-based, extended-precision, Gauss-elimination- and NAG-based, and superposition codes are available, as are double-precision superposition, parallelized double-precision, double-precision Lorenz-Mie codes, and codes for the computation of the coefficients for the generalized Chebyshev shape.

[ascl:1511.005]
pyhrs: Spectroscopic data reduction package for SALT

The pyhrs package reduces data from the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT). HRS is a dual-beam, fiber fed echelle spectrectrograph with four modes of operation: low (R~16000), medium (R~34000), high (R~65000), and high stability (R~65000). pyhrs, written in Python, includes all of the steps necessary to reduce HRS low, medium, and high resolution data; this includes basic CCD reductions, order identification, wavelength calibration, and extraction of the spectra.

[ascl:1511.004]
Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis

Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.

[ascl:1511.003]
SkyView Virtual Telescope

The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well.

SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

[ascl:1511.002]
JSPAM: Interacting galaxies modeller

JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

[ascl:1511.001]
SuperFreq: Numerical determination of fundamental frequencies of an orbit

SuperFreq numerically estimates the fundamental frequencies and orbital actions of pre-computed orbital time series. It is an implementation of a version of the Numerical Analysis of Fundamental Frequencies close to that by Monica Valluri, which itself is an implementation of an algorithm first used by Jacques Laskar.

[ascl:1510.007]
ccdproc: CCD data reduction software

Craig, M. W.; Crawford, S. M.; Deil, Christoph; Gomez, Carlos; Günther, Hans Moritz; Heidt, Nathan; Horton, Anthony; Karr, Jennifer; Nelson, Stefan; Ninan, Joe Phillip; Pattnaik, Punyaslok; Rol, Evert; Schoenell, William; Seifert, Michael; Singh, Sourav; Sipocz, Brigitta; Stotts, Connor; Streicher, Ole; Tollerud, Erik; Walker, Nathan; ccdproc contributors

Ccdproc is an affiliated package for the AstroPy package for basic data reductions of CCD images. The ccdproc package provides many of the necessary tools for processing of ccd images built on a framework to provide error propagation and bad pixel tracking throughout the reduction process.

[submitted]
Xsmurf - Measuring multifractal properties with the continuous wavelet transform modulus maxima (WTMM) method

Xsmurf is a software package written in C/Tcl/Tk that implements the continuous wavelet transform modulus maxima method, an image processing tool for measuring fractal and multifractal properties in experimental and simulation data.

Multifractal analysis is described in the following page: http://www.scholarpedia.org/article/Wavelet-based_multifractal_analysis

Xsmurf has been used in multiple applications in astrophysics, e.g. :

- analysis of solar magnetograms for characterizing complexity of evolving regions

- fractal/multifractal nature and anisotropic structure of Galactic atomic hydrogen (H I)

- analysis of simulation data (velocity field, ...) of turbulent flow

[ascl:1510.006]
ASPIC: STARLINK image processing package

Davenhall, A. C.; Hartley, Ken F.; Penny, Alan J.; Kelly, B. D.; King, Dave J.; Lupton, W. F.; Tudhope, D.; Pike, C. D.; Cooke, J. A.; Pence, W. D.; Wallace, Patrick T.; Brownrigg, D. R. K.; Baines, Dave W. T.; Warren-Smith, Rodney F.; McNally, B. V.; Bell, L. L.; Jones, T. A.; Terrett, Dave L.; Pearce, D. J.; Carey, J. V.; Currie, Malcolm J.; Benn, Chris; Beard, S. M.; Giddings, Jack R.; Balona, Luis A.; Harrison, B.; Wood, Roger; Sparkes, Bill; Allan, Peter M.; Berry, David S.; Shirt, J. V.

ASPIC handled basic astronomical image processing. Early releases concentrated on image arithmetic, standard filters, expansion/contraction/selection/combination of images, and displaying and manipulating images on the ARGS and other devices. Later releases added new astronomy-specific applications to this sound framework. The ASPIC collection of about 400 image-processing programs was written using the Starlink "interim" environment in the 1980; the software is now obsolete.

[submitted]
allantools: Allan deviation calculation

allantools calculates Allan deviation and related time & frequency statistics. The library is written in Python and has a GPL v3+ license. It takes input data that is either evenly spaced observations of either fractional frequency, or phase in seconds. Deviations are calculated for given tau values in seconds. Several noise generators for creating synthetic datasets are also included.

[ascl:1510.005]
GALFORM: Galactic modeling

GALFORM is a semi-analytic model for calculating the formation and evolution of galaxies in hierarchical clustering cosmologies. Using a Monte Carlo algorithm to follow the merging evolution of dark matter haloes with arbitrary mass resolution, it incorporates realistic descriptions of the density profiles of dark matter haloes and the gas they contain. It follows the chemical evolution of gas and stars, and the associated production of dust and includes a detailed calculation of the sizes of discs and spheroids.

[ascl:1510.004]
DEBiL: Detached Eclipsing Binary Light curve fitter

DEBiL rapidly fits a large number of light curves to a simple model. It is the central component of a pipeline for systematically identifying and analyzing eclipsing binaries within a large dataset of light curves; the results of DEBiL can be used to flag light curves of interest for follow-up analysis.

[ascl:1510.003]
PyLDTk: Python toolkit for calculating stellar limb darkening profiles and model-specific coefficients for arbitrary filters

PyLDTk automates the calculation of custom stellar limb darkening (LD) profiles and model-specific limb darkening coefficients (LDC) using the library of PHOENIX-generated specific intensity spectra by Husser et al. (2013). It facilitates exoplanet transit light curve modeling, especially transmission spectroscopy where the modeling is carried out for custom narrow passbands. PyLDTk construct model-specific priors on the limb darkening coefficients prior to the transit light curve modeling. It can also be directly integrated into the log posterior computation of any pre-existing transit modeling code with minimal modifications to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the whole parameter space that can explain the profile without the need to approximate this constraint by a prior distribution. This is useful when using a high-order limb darkening model where the coefficients are often correlated, and the priors estimated from the tabulated values usually fail to include these correlations.

[ascl:1510.002]
batman: BAsic Transit Model cAlculatioN in Python

batman provides fast calculation of exoplanet transit light curves and supports calculation of light curves for any radially symmetric stellar limb darkening law. It uses an integration algorithm for models that cannot be quickly calculated analytically, and in typical use, the batman Python package can calculate a million model light curves in well under ten minutes for any limb darkening profile.

[ascl:1510.001]
GGADT: Generalized Geometry Anomalous Diffraction Theory

GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

[ascl:1509.010]
PyCS : Python Curve Shifting

PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.

[ascl:1509.009]
OPERA: Objective Prism Enhanced Reduction Algorithms

OPERA (Objective Prism Enhanced Reduction Algorithms) automatically analyzes astronomical images using the objective-prism (OP) technique to register thousands of low resolution spectra in large areas. It detects objects in an image, extracts one-dimensional spectra, and identifies the emission line feature. The main advantages of this method are: 1) to avoid subjectivity inherent to visual inspection used in past studies; and 2) the ability to obtain physical parameters without follow-up spectroscopy.

[ascl:1509.008]
GFARGO: FARGO for GPU

GFARGO is a GPU version of FARGO. It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionnalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

[ascl:1509.007]
pycola: N-body COLA method code

pycola is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains, which trades accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing. The COLA method achieves its speed by calculating the large-scale dynamics exactly using LPT while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos.

[ascl:1509.006]
FARGO3D: Hydrodynamics/magnetohydrodynamics code

A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.

[ascl:1509.005]
TRUVOT: True Background Technique for the Swift UVOT Grisms

TRUVOT decontaminates Swift UVOT grism spectra for transient objects. The technique makes use of template images in a process similar to image subtraction.

[ascl:1509.004]
FalconIC: Initial conditions generator for cosmological N-body simulations in Newtonian, Relativistic and Modified theories

FalconIC generates discrete particle positions, velocities, masses and pressures based on linear Boltzmann solutions that are computed by libraries such as CLASS and CAMB. FalconIC generates these initial conditions for any species included in the selection, including Baryons, Cold Dark Matter and Dark Energy fluids. Any species can be set in Eulerian (on a fixed grid) or Lagrangian (particle motion) representation, depending on the gauge and reality chosen. That is, for relativistic initial conditions in the synchronous comoving gauge, Dark Matter can only be described in an Eulerian representation. For all other choices (Relativistic in Longitudinal gauge, Newtonian with relativistic expansion rates, Newtonian without any notion of radiation), all species can be treated in all representations. The code also computes spectra. FalconIC is useful for comparative studies on initial conditions.

[ascl:1509.003]
AFR (ASPFitsReader): A pulsar FITS file reader and analysis package

AFR, or ASPFitsReader, reduces, processes, and manipulates pulsar data, including calibration, template profile creation, and interactive excision of radio frequency interference from pulsar profile data. It also creates times-of-arrival compatible with Tempo (ascl:1509.002) and Tempo2 (ascl:1210.015) timing software.

[ascl:1509.002]
Tempo: Pulsar timing data analysis

Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.

Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.

[ascl:1509.001]
XSHPipelineManager: Wrapper for the VLT/X-shooter Data Reduction Pipeline

XSHPipelineManager provides a framework for reducing spectroscopic observations taken by the X-shooter spectrograph at the Very Large Telescope. This Python code wraps recipes developed by the European Southern Observatory and runs the full X-shooter data reduction pipeline. The code offers full flexibility in terms of what data reduction recipes to include and which calibration files to use. During the data reduction chain restart-files are saved, making it possible to restart at any step in the chain.

[ascl:1508.010]
SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer

The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.

[ascl:1508.009]
Trilogy: FITS image conversion software

Trilogy automatically scales and combines FITS images to produce color or grayscale images using Python scripts. The user assigns images to each color channel (RGB) or a single image to grayscale luminosity. Trilogy determines the intensity scaling automatically and independently in each channel to display faint features without saturating bright features. Each channel's scaling is determined based on a sample of the image (or summed images) and two input parameters. One parameter sets the output luminosity of "the noise," currently determined as 1-sigma above the sigma-clipped mean. The other parameter sets what fraction of the data (if any) in the sample region should be allowed to saturate. Default values for these parameters (0.15% and 0.001%, respectively) work well, but the user is able to adjust them. The scaling is accomplished using the logarithmic function y = a log(kx + 1) clipped between 0 and 1, where a and k are constants determined based on the data and desired scaling parameters as described above.

[ascl:1508.008]
NGMIX: Gaussian mixture models for 2D images

NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

[ascl:1508.007]
TreeCorr: Two-point correlation functions

TreeCorr efficiently computes two-point correlation functions. It can compute correlations of regular number counts, weak lensing shears, or scalar quantities such as convergence or CMB temperature fluctuations. Two-point correlations may be auto-correlations or cross-correlations, including any combination of shear, kappa, and counts. Two-point functions can be done with correct curved-sky calculation using RA, Dec coordinates, on a Euclidean tangent plane, or in 3D using RA, Dec and a distance. The front end is written in Python, which can be used as a Python module or as a standalone executable using configuration files; the actual computation of the correlation functions is done in C++ using ball trees (similar to kd trees), making the calculation extremely efficient, and when available, OpenMP is used to run in parallel on multi-core machines.

[ascl:1508.006]
SExSeg: SExtractor segmentation

SExSeg forces SExtractor (ascl:1010.064) to run using a pre-defined segmentation map (the definition of objects and their borders). The defined segments double as isophotal apertures. SExSeg alters the detection image based on a pre-defined segmenation map while preparing your "analysis image" by subtracting the background in a separate SExtractor run (using parameters you specify). SExtractor is then run in "double-image" mode with the altered detection image and background-subtracted analysis image.

[ascl:1508.005]
ColorPro: PSF-corrected aperture-matched photometry

ColorPro automatically obtains robust colors across images of varied PSF. To correct for the flux lost in images with poorer PSF, the "detection image" is blurred to match the PSF of these other images, allowing observation of how much flux is lost. All photometry is performed in the highest resolution frame (images being aligned given WCS information in the FITS headers), and identical apertures are used in every image. Usually isophotal apertures are used, as determined by SExtractor (ascl:1010.064). Using SExSeg (ascl:1508.006), object aperture definitions can be pre-defined and object detections from different image filters can be combined automatically into a single comprehensive "segmentation map." After producing the final photometric catalog, ColorPro can automatically run BPZ (ascl:1108.011) to obtain Bayesian Photometric Redshifts.

[ascl:1508.004]
FRELLED: FITS Realtime Explorer of Low Latency in Every Dimension

FRELLED (FITS Realtime Explorer of Low Latency in Every Dimension) creates 3D images in real time from 3D FITS files and is written in Python for the 3D graphics suite Blender. Users can interactively generate masks around regions of arbitrary geometry and use them to catalog sources, hide regions, and perform basic analysis (*e.g.*, image statistics within the selected region, generate contour plots, query NED and the SDSS). World coordinates are supported and multi-volume rendering is possible. FRELLED is designed for viewing HI data cubes and provides a number of tasks to commonly-used MIRIAD (ascl:1106.007) tasks (e.g. mbspect); however, many of its features are suitable for any type of data set. It also includes an n-body particle viewer with the ability to display 3D vector information as well as the ability to render time series movies of multiple FITS files and setup simple turntable rotation movies for single files.

[ascl:1508.003]
REDUCEME: Long-slit spectroscopic data reduction and analysis

Cardiel, N; Gorgas, J.; Pedraz, S.; Cenarro, J.; Alonso, O; Gil de Paz, A.; García-Dabó, E.; Sánchez-Blázquez, P.; Mármol-Queraltó, E.; Toloba, E.

The astronomical data reduction package REDUCEME reduces and analyzes long-slit spectroscopic data. The package uses the unformatted FORTRAN raw data format, so requires FITS files be transformed to REDUCEME format; the reverse operation (from REDUCEME to FITS format) is also available. The package is a set of programs written in FORTRAN 77 and includes shell scripts (using the C shell syntax) to perform routine tasks; it can be extended by the inclusion of external programs. REDUCEME uses PGPLOT (ascl:1103.002) for line plots and images, and a subset of subroutines, called BUTTON, enables the user to communicate interactively with the image display employing graphic buttons. One advantage of using REDUCEME is that for each image an associated error image can also be processed throughout the reduction process, allowing for a careful control of the error propagation.

[ascl:1508.002]
NICOLE: NLTE Stokes Synthesis/Inversion Code

NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.

[ascl:1508.001]
HMcode: Halo-model matter power spectrum computation

HMcode computes the halo-model matter power spectrum. It is written in Fortran90 and has been designed to quickly (~0.5s for 200 k-values across 16 redshifts on a single core) produce matter spectra for a wide range of cosmological models. In testing it was shown to match spectra produced by the 'Coyote Emulator' to an accuracy of 5 per cent for k less than 10h Mpc^-1. However, it can also produce spectra well outside of the parameter space of the emulator.

[ascl:1507.020]
IEHI: Ionization Equilibrium for Heavy Ions

IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

[ascl:1507.019]
AstroStat: Statistical analysis tool

AstroStat performs statistical analysis on data and is compatible with Virtual Observatory (VO) standards. It accepts data in a variety of formats and performs various statistical tests using a menu driven interface. Analyses, performed in R, include exploratory tests, visualizations, distribution fitting, correlation and causation, hypothesis testing, multivariate analysis and clustering. AstroStat is available in two versions with an identical interface and features: as a web service that can be run using any standard browser and as an offline application.

[ascl:1507.018]
pyro: Python-based tutorial for computational methods for hydrodynamics

pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.

[ascl:1507.017]
REDSPEC: NIRSPEC data reduction

REDSPEC is an IDL based reduction package designed with NIRSPEC in mind though can be used to reduce data from other spectrographs as well. REDSPEC accomplishes spatial rectification by summing an *A+B* pair of a calibration star to produce an image with two spectra; the image is remapped on the basis of polynomial fits to the spectral traces and calculation of gaussian centroids to define their separation, producing straight spectral traces with respect to the detector rows. The raw images are remapped onto a coordinate system with uniform intervals in spatial extent along the slit and in wavelength along the dispersion axis.

[ascl:1507.016]
Least Asymmetry: Centering Method

Lust, Nate B.; Britt, Daniel; Harrington, Joseph; Nymeyer, Sarah; Stevenson, Kevin B.; Ross, Emily L.; Bowman, William; Fraine, Jonathan

Least Asymmetry finds the center of a distribution of light in an image using the least asymmetry method; the code also contains center of light and fitting a Gaussian routines. All functions in Least Asymmetry are designed to take optional weights.

[ascl:1507.015]
DALI: Derivative Approximation for LIkelihoods

DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.

[ascl:1507.014]
getsources: Multi-scale, multi-wavelength source extraction

*getsources* is a powerful multi-scale, multi-wavelength source extraction algorithm. It analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands, cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. *getsources* offers several advantages over other existing methods of source extraction, including the filtering out of irrelevant spatial scales to improve detectability, especially in the crowded regions and for extended sources, the ability to combine data over all wavebands, and the full automation of the extraction process.

[ascl:1507.013]
K-Inpainting: Inpainting for Kepler

Inpainting is a technique for dealing with gaps in time series data, as frequently occurs in asteroseismology data, that may generate spurious peaks in the power spectrum, thus limiting the analysis of the data. The inpainting method, based on a sparsity prior, judiciously fills in gaps in the data, preserving the asteroseismic signal as far as possible. This method can be applied both on ground and space-based data. The inpainting technique improves the oscillation modes detection and estimation, the impact of the observational window function is reduced, and the interpretation of the power spectrum is simplified. K-Inpainting can be used to study very long time series of many stars because its computation is very fast.

[ascl:1507.012]
DRAMA: Instrumentation software environment

DRAMA is a fast, distributed environment for writing instrumentation control systems. It allows low level instrumentation software to be controlled from user interfaces running on UNIX, MS Windows or VMS machines in a consistent manner. Such instrumentation tasks can run either on these machines or on real time systems such as VxWorks. DRAMA uses techniques developed by the AAO while using the Starlink-ADAM environment, but is optimized for the requirements of instrumentation control, portability, embedded systems and speed. A special program is provided which allows seamless communication between ADAM and DRAMA tasks.

[ascl:1507.011]
FAT: Fully Automated TiRiFiC

Kamphuis, P.; Józsa, G. I. G.; Oh, S-. H.; Spekkens, K.; Urbancic, N.; Serra, P.; Koribalski, B. S.; Dettmar, R.-J.

FAT (Fully Automated TiRiFiC) is an automated procedure that fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC, ascl:1208.008). FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20°-90° without the need for priors such as disc inclination. FAT's performance allows us to model the gas kinematics of many thousands of well-resolved galaxies, which is essential for future HI surveys, with the Square Kilometre Array and its pathfinders.

[ascl:1507.010]
Astrochem: Abundances of chemical species in the interstellar medium

Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

[ascl:1507.009]
PPInteractions: Secondary particle spectra from proton-proton interactions

PPInteractions generates the secondary particle energy spectra produced in proton-proton interactions over the entire chosen energy range for any value of the primary proton spectral index by adjusting the low energy part of the spectra (below 0.1TeV) to the high energy end of the spectra (above 0.1TeV). This code is based on the parametrization of Kelner et al (2006), in which the normalization of the low energy part of the spectra is given only for 3 values of the primary proton spectral indices (2, 2.5, 3).

[ascl:1507.008]
HLINOP: Hydrogen LINe OPacity in stellar atmospheres

HLINOP is a collection of codes for computing hydrogen line profiles and opacities in the conditions typical of stellar atmospheres. It includes HLINOP for approximate quick calculation of any line of neutral hydrogen (suitable for model atmosphere calculations), based on the Fortran code of Kurucz and Peterson found in ATLAS9. It also includes HLINPROF, for detailed, accurate calculation of lower Balmer line profiles (suitable for detailed analysis of Balmer lines) and HBOP, to implement the occupation probability formalism of Daeppen, Anderson and Milhalas (1987) and thus account for the merging of bound-bound and bound-free opacity (used often as a wrapper to HLINOP for model atmosphere calculations).

[ascl:1507.007]
abo-cross: Hydrogen broadening cross-section calculator

Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O’Mara (1995), Barklem & O’Mara (1997) and Barklem, O’Mara & Ross (1998) for s–p, p–s, p–d, d–p, d–f and f–d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

[ascl:1507.006]
Toyz: Large datasets and astronomical images analysis framework

Toyz is a python web framework that allows scientists to interact with large images and data sets stored on a remote server. A web application is run on the server containing the data and clients are run from web browsers on the user's computer. Toyz displays large FITS images also also renders any image format supported by Pillow (a fork of the Python Imaging Library), contains a GUI to interact with linked plots, and offers a customizable framework that allows students and researchers to create their own work spaces inside a Toyz environment. Astro-Toyz extends the features of the Toyz image viewer, allowing users to view world coordinates and align images based on their WCS.

[ascl:1507.005]
slimplectic: Discrete non-conservative numerical integrator

slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.

[ascl:1507.004]
L-PICOLA: Fast dark matter simulation code

L-PICOLA generates and evolves a set of initial conditions into a dark matter field and can include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. It is a fast, distributed-memory, planar-parallel code. L-PICOLA is extremely useful for both current and next generation large-scale structure surveys.

[ascl:1507.003]
Pelican: Pipeline for Extensible, Lightweight Imaging and CAlibratioN

Pelican is an efficient, lightweight C++ library for quasi-real time data processing. The library provides a framework to separate the acquisition and processing of data, allowing the scalability and flexibility to fit a number of scenarios. Though its origin was in radio astronomy, processing data as it arrives from a telescope, the framework is sufficiently generic to be useful to any application that requires the efficient processing of incoming data streams.

[ascl:1507.002]
SUPERBOX: Particle-multi-mesh code to simulate galaxies

SUPERBOX is a particle-mesh code that uses moving sub-grids to track and resolve high-density peaks in the particle distribution and a nearest grid point force-calculation scheme based on the second derivatives of the potential. The code implements a fast low-storage FFT-algorithm and allows a highly resolved treatment of interactions in clusters of galaxies, such as high-velocity encounters between elliptical galaxies and the tidal disruption of dwarf galaxies, as sub-grids follow the trajectories of individual galaxies. SUPERBOX is efficient in that the computational overhead is kept as slim as possible and is also memory efficient since it uses only one set of grids to treat galaxies in succession.

[ascl:1507.001]
3D-Barolo: 3D fitting tool for the kinematics of galaxies

3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and estimates the intrinsic velocity dispersion even in barely resolved galaxies (about 2 resolution elements) if the signal to noise of the data is larger than 2-3. It has source-detection and first-estimate modules, making it suitable for analyzing large 3D datasets automatically, and is a useful tool for deriving reliable kinematics for both local and high-redshift galaxies.

[ascl:1506.010]
VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

[ascl:1506.009]
HEATCVB: Coronal heating rate approximations

HEATCVB is a stand-alone Fortran 77 subroutine that estimates the local volumetric coronal heating rate with four required inputs: the radial distance r, the wind speed u, the mass density ρ, and the magnetic field strength |B0|. The primary output is the heating rate Qturb at the location defined by the input parameters. HEATCVB also computes the local turbulent dissipation rate of the waves, γ = Qturb/(2UA).

[ascl:1506.008]
SPRITE: Sparsity-based super-resolution algorithm

SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.

[ascl:1506.007]
REALMAF: Magnetic power spectra from Faraday rotation maps

REALMAF is a maximum-a-posteriori code to measure magnetic power spectra from Faraday rotation data. It uses a sophisticated model for the magnetic autocorrelation in real space, thus alleviating the need for simplifying assumptions in the processing. REALMAF treats the divergence relation of the magnetic field with a multiplicative factor in Fourier space, which allows modeling the magnetic autocorrelation as a spherically symmetric function.

[ascl:1506.006]
fsclean: Faraday Synthesis CLEAN imager

Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

[ascl:1506.005]
PyMC: Bayesian Stochastic Modelling in Python

PyMC is a python module that implements Bayesian statistical models and fitting algorithms, including Markov chain Monte Carlo. Its flexibility and extensibility make it applicable to a large suite of problems. Along with core sampling functionality, PyMC includes methods for summarizing output, plotting, goodness-of-fit and convergence diagnostics.

[ascl:1506.004]
multiband_LS: Multiband Lomb-Scargle Periodograms

The multiband periodogram is a general extension of the well-known Lomb-Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb-Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands.

[ascl:1506.003]
PLATO Simulator: Realistic simulations of expected observations

Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

PLATO Simulator is an end-to-end simulation software tool designed for the performance of realistic simulations of the expected observations of the PLATO mission but easily adaptable to similar types of missions. It models and simulates photometric time-series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources.

[ascl:1506.002]
dmdd: Dark matter direct detection

The dmdd package enables simple simulation and Bayesian posterior analysis of recoil-event data from dark-matter direct-detection experiments under a wide variety of scattering theories. It enables calculation of the nuclear-recoil rates for a wide range of non-relativistic and relativistic scattering operators, including non-standard momentum-, velocity-, and spin-dependent rates. It also accounts for the correct nuclear response functions for each scattering operator and takes into account the natural abundances of isotopes for a variety of experimental target elements.

[ascl:1506.001]
pyKLIP: PSF Subtraction for Exoplanets and Disks

Wang, Jason J.; Ruffio, Jean-Baptise; De Rosa, Robert J.; Aguilar, Jonathan; Wolff, Schuyler G.; Pueyo, Laurent

pyKLIP subtracts out the stellar PSF to search for directly-imaged exoplanets and disks using a Python implementation of the Karhunen-Loève Image Projection (KLIP) algorithm. pyKLIP supports ADI, SDI, and ADI+SDI to model the stellar PSF and offers a large array of PSF subtraction parameters to optimize the reduction. pyKLIP relies on a minimal amount of dependencies (numpy, scipy, and astropy) and parallelizes the KLIP algorithm to speed up the reduction. pyKLIP supports GPI and P1640 data and can interface with other data sources with the addition of new modules. It also can inject simulated planets and disks as well as automatically search for point sources in PSF-subtracted data.

[ascl:1505.034]
dStar: Neutron star thermal evolution code

dStar is a collection of modules for computing neutron star structure and evolution, and uses the numerical, utility, and equation of state libraries of MESA (ascl:1010.083).

[ascl:1505.033]
SNEC: SuperNova Explosion Code

SNEC (SuperNova Explosion Code) is a spherically-symmetric Lagrangian radiation-hydrodynamics code that follows supernova explosions through the envelope of their progenitor star, produces bolometric (and approximate multi-color) light curve predictions, and provides input to spectral synthesis codes for spectral modeling. SNEC's features include 1D (spherical) Lagrangian Newtonian hydrodynamics with artificial viscosity, stellar equation of state with a Saha solver ionization/recombination, equilibrium flux-limited photon diffusion with OPAL opacities and low-temperature opacities, and prediction of bolometric light curves and multi-color lightcurves (in the blackbody approximation).

[ascl:1505.032]
Planck Level-S: Planck Simulation Package

The Planck simulation package takes a cosmological model specified by the user and calculates a potential CMB sky consistent with this model, including astrophysical foregrounds, and then performs a simulated observation of this sky. This Simulation embraces many instrumental effects such as beam convolution and noise. Alternatively, the package can simulate the observation of a provided sky model, generated by another program such as the Planck Sky Model software. The Planck simulation package does not only provide Planck-like data, it can also be easily adopted to mimic the properties of other existing and upcoming CMB experiments.

[ascl:1505.031]
TEA: Thermal Equilibrium Abundances

TEA (Thermal Equilibrium Abundances) calculates gaseous molecular abundances under thermochemical equilibrium conditions. Given a single T,P point or a list of T,P pairs (the thermal profile of an atmosphere) and elemental abundances, TEA calculates mole fractions of the desired molecular species. TEA uses 84 elemental species and thermodynamical data for more then 600 gaseous molecular species, and can adopt any initial elemental abundances.

[ascl:1505.030]
CANDID: Companion Analysis and Non-Detection in Interferometric Data

Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzynski, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

CANDID finds faint companion around star in interferometric data in the OIFITS format. It allows systematically searching for faint companions in OIFITS data, and if not found, estimates the detection limit. The tool is based on model fitting and Chi2 minimization, with a grid for the starting points of the companion position. It ensures all positions are explored by estimating a-posteriori if the grid is dense enough, and provides an estimate of the optimum grid density.

[ascl:1505.029]
fits2hdf: FITS to HDFITS conversion

fits2hdf ports FITS files to Hierarchical Data Format (HDF5) files in the HDFITS format. HDFITS allows faster reading of data, higher compression ratios, and higher throughput. HDFITS formatted data can be presented transparently as an in-memory FITS equivalent by changing the import lines in Python-based FITS utilities. fits2hdf includes a utility to port MeasurementSets (MS) to HDF5 files.

[ascl:1505.028]
RESOLVE: Bayesian algorithm for aperture synthesis imaging in radio astronomy

RESOLVE is a Bayesian inference algorithm for image reconstruction in radio interferometry. It is optimized for extended and diffuse sources. Features include parameter-free Bayesian reconstruction of radio continuum data with a focus on extended and weak diffuse sources, reconstruction with uncertainty propagation dependent on measurement noise, and estimation of the spatial correlation structure of the radio astronomical source. RESOLVE provides full support for measurement sets and includes a simulation tool (if uv-coverage is provided).

[ascl:1505.027]
BAYES-X: Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

The great majority of X-ray measurements of cluster masses in the literature assume parametrized functional forms for the radial distribution of two independent cluster thermodynamic properties, such as electron density and temperature, to model the X-ray surface brightness. These radial profiles (e.g. β-model) have an amplitude normalization parameter and two or more shape parameters. BAYES-X uses a cluster model to parametrize the radial X-ray surface brightness profile and explore the constraints on both model parameters and physical parameters. Bayes-X is programmed in Fortran and uses MultiNest (ascl:1109.006) as the Bayesian inference engine.

[ascl:1505.026]
Lensed: Forward parametric modelling of strong lenses

Lensed performs forward parametric modelling of strong lenses. Using a provided model, Lensed renders the expected image of the lensing event for a large number of parameter settings, thereby exploring the space of possible realizations of the observation. It compares the expectation to the observed image by calculating the likelihood that the observation was indeed produced by the assumed model, thus reconstructing the probability distribution over the parameter space of the model. Written in C, the code uses a massively parallel ray-tracing kernel to perform the necessary calculations on a graphics processing unit (GPU), making the precise rendering of the background lensed sources fast and allowing the simultaneous optimization of tens of parameters for the selected model.

[ascl:1505.025]
pyMCZ: Oxygen abundances calculations and uncertainties from strong-line flux measurements

Bianco, Federica B.; Modjaz, Maryam; Oh, Seung Man; Fierroz, David; Liu, Yuqian; Kewley, Lisa; Graur, Or

pyMCZ calculates metallicity according to a number of strong line metallicity diagnostics from spectroscopy line measurements and obtain uncertainties from the line flux errors in a Monte Carlo framework. Given line flux measurements and their uncertainties, pyMCZ produces synthetic distributions for the oxygen abundance in up to 13 metallicity scales simultaneously, as well as for E(B-V), and estimates their median values and their 68% confidence regions. The code can output the full MC distributions and their kernel density estimates.

[ascl:1505.024]
PyTransit: Transit light curve modeling

PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

[ascl:1505.023]
SNooPy: TypeIa supernovae analysis tools

Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

The SNooPy package (also known as SNpy), written in Python, contains tools for the analysis of TypeIa supernovae. It offers interactive plotting of light-curve data and models (and spectra), computation of reddening laws and K-corrections, LM non-linear least-squares fitting of light-curve data, and various types of spline fitting, including Diercx and tension. The package also includes a SNIa lightcurve template generator in the CSP passbands, estimates of Milky-Way Extinction, and a module for dealing with filters and spectra.

[ascl:1505.022]
Snoopy: General purpose spectral solver

Snoopy is a spectral 3D code that solves the MHD and Boussinesq equations, such as compressibility, particles, and Braginskii viscosity, and several other physical effects. It's useful for turbulence study involving shear and rotation. Snoopy requires the FFTW library (ascl:1201.015), and can run on parallel machine using MPI OpenMP or both at the same time.

[ascl:1505.021]
relline: Relativistic line profiles calculation

relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

[ascl:1505.020]
rvfit: Radial velocity curves fitting for binary stars or exoplanets

rvfit, developed in IDL 7.0, fits non-precessing keplerian radial velocity (RV) curves for double-line and single-line binary stars or exoplanets. It fits a simple keplerian model to the observed RV and computes the seven parameters (six for a single-line system) from the model. Some parameters can be fixed beforehand if they are known, for instance, if photometric observations are available. The fit is done using an Adaptive Simulated Annealing algorithm optimized for this specific task. Simulated Annealing methods are powerful heuristic algorithms to minimize functions in multiparametric spaces.

[ascl:1505.019]
TFIT: Mixed-resolution data set photometry package

Laidler, Victoria G.; Papovich, Casey; Grogin, Norman A.; Idzi, Rafal; Dickinson, Mark; Ferguson, Henry C.; Hilbert, Bryan; Clubb, Kelsey; Ravindranath, Swara

TFIT measures galaxy photometry using prior knowledge of sources in a deep, high‐resolution image (HRI) to improve photometric measurements of objects in a corresponding low‐resolution image (LRI) of the same field, usually at a different wavelength. For background‐limited data, this technique produces optimally weighted photometry that maximizes signal‐to‐noise ratio (S/N). For objects not significantly detected in the low‐resolution image, it provides useful and quantitative information for setting upper limits.

This code is no longer updated and has been superseded by T-PHOT (ascl:1609.001).

[ascl:1505.018]
POKER: P Of K EstimatoR

POKER (P Of K EstimatoR) estimates the angular power spectrum of a 2D map or the cross-power spectrum of two 2D maps in the flat sky limit approximation in a realistic data context: steep power spectrum, non periodic boundary conditions, arbitrary pixel resolution, non trivial masks and observation patch geometry.

[ascl:1505.017]
HALOGEN: Approximate synthetic halo catalog generator

HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

[ascl:1505.016]
CUTE: Correlation Utilities and Two-point Estimation

CUTE (Correlation Utilities and Two-point Estimation) extracts any two-point statistic from enormous datasets with hundreds of millions of objects, such as large galaxy surveys. The computational time grows with the square of the number of objects to be correlated; technology provides multiple means to massively parallelize this problem and CUTE is specifically designed for these kind of calculations. Two implementations are provided: one for execution on shared-memory machines using OpenMP and one that runs on graphical processing units (GPUs) using CUDA.

[ascl:1505.015]
2dfdr: Data reduction software

2dfdr is an automatic data reduction pipeline dedicated to reducing multi-fibre spectroscopy data, with current implementations for AAOmega (fed by the 2dF, KOALA-IFU, SAMI Multi-IFU or older SPIRAL front-ends), HERMES, 2dF (spectrograph), 6dF, and FMOS. A graphical user interface is provided to control data reduction and allow inspection of the reduced spectra.

[ascl:1505.014]
FCLC: Featureless Classification of Light Curves

FCLC (Featureless Classification of Light Curves) software describes the static behavior of a light curve in a probabilistic way. Individual data points are converted to densities and consequently probability density are compared instead of features. This gives rise to an independent classification which can corroborate the usefulness of the selected features.

[ascl:1505.013]
cosmoabc: Likelihood-free inference for cosmology

Ishida, Emille E. O.; Vitenti, Sandro D. P.; Penna-Lima, Mariana; Trindade, Arlindo M.; Cisewski, Jessi; M.; de Souza, Rafael; Cameron, Ewan; Busti, Vinicius C.

Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.

[ascl:1505.012]
LSSGALPY: Visualization of the large-scale environment around galaxies on the 3D space

LSSGALPY provides visualization tools to compare the 3D positions of a sample (or samples) of isolated systems with respect to the locations of the large-scale structures galaxies in their local and/or large scale environments. The interactive tools use different projections in the 3D space (right ascension, declination, and redshift) to study the relation of the galaxies with the LSS. The tools permit visualization of the locations of the galaxies for different values of redshifts and redshift ranges; the relationship of isolated galaxies, isolated pairs, and isolated triplets to the galaxies in the LSS can be visualized for different values of the declinations and declination ranges.

[ascl:1505.011]
missForest: Nonparametric missing value imputation using random forest

missForest imputes missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation and can be run in parallel to save computation time. missForest has been used to, among other things, impute variable star colors in an All-Sky Automated Survey (ASAS) dataset of variable stars with no NOMAD match.

[ascl:1505.010]
COBS: COnstrained B-Splines

COBS (COnstrained B-Splines), written in R, creates constrained regression smoothing splines via linear programming and sparse matrices. The method has two important features: the number and location of knots for the spline fit are established using the likelihood-based Akaike Information Criterion (rather than a heuristic procedure); and fits can be made for quantiles (e.g. 25% and 75% as well as the usual 50%) in the response variable, which is valuable when the scatter is asymmetrical or non-Gaussian. This code is useful for, for example, estimating cluster ages when there is a wide spread in stellar ages at a chosen absorption, as a standard regression line does not give an effective measure of this relationship.

[ascl:1505.009]
StellaR: Stellar evolution tracks and isochrones tools

stellaR accesses and manipulates publicly available stellar evolutionary tracks and isochrones from the Pisa low-mass database. It retrieves and plots the required calculations from CDS, constructs by interpolation tracks or isochrones of compositions different to the ones available in the database, constructs isochrones for age not included in the database, and extracts relevant evolutionary points from tracks or isochrones.

[ascl:1505.008]
SCEPtER: Stellar CharactEristics Pisa Estimation gRid

SCEPtER (Stellar CharactEristics Pisa Estimation gRid) estimates the stellar mass and radius given a set of observable quantities; the results are obtained by adopting a maximum likelihood technique over a grid of pre-computed stellar models. The code is quite flexible since different observables can be used, depending on their availability, as well as different grids of models.

[ascl:1505.007]
Starfish: Robust spectroscopic inference tools

Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

[ascl:1505.006]
Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics

Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.

[ascl:1505.005]
ARoME: Analytical Rossiter-McLaughlin Effects

The ARoMe (Analytical Rossiter-McLaughlin Effects) library generates analytical Rossiter-McLaughlin (RM) effects. It models the Doppler-shift of a star during a transit measured by the fit of a cross-correlation function by a Gaussian function, fit of an observed spectrum by a modeled one, and the weighted mean.

[ascl:1505.004]
KS Integration: Kelvin-Stokes integration

KS Intergration solves for mutual photometric effects produced by planets and spots allowing for analysis of planetary occultations of spots and spots regions. It proceeds by identifying integrable and non integrable arcs on the objects profiles and analytically calculates the solution exploiting the power of Kelvin-Stokes theorem. It provides the solution up to the second degree of the limb darkening law.

[ascl:1505.003]
caret: Classification and Regression Training

caret (Classification And REgression Training) provides functions for training and plotting classification and regression models. It contains tools for data splitting, pre-processing, feature selection, model tuning using resampling, and variable importance estimation, as well as other functionality.

[ascl:1505.002]
ASteCA: Automated Stellar Cluster Analysis

ASteCA (Automated Stellar Cluster Analysis), written in Python, fully automates standard tests applied on star clusters in order to determine their characteristics, including center, radius, and stars' membership probabilities. It also determines associated intrinsic/extrinsic parameters, including metallicity, age, reddening, distance, total mass, and binarity fraction, among others.

[ascl:1505.001]
CALCEPH: Planetary ephemeris files access code

CALCEPH accesses binary planetary ephemeris files, including INPOPxx, JPL DExxx ,and SPICE ephemeris files. It provides a C Application Programming Interface (API) and, optionally, a Fortran 77 or 2003 interface to be called by the application. Two groups of functions enable the access to the ephemeris files, single file access functions, provided to make transition easier from the JPL functions, such as PLEPH, to this library, and many ephemeris file at the same time. Although computers have different endianess (order in which integers are stored as bytes in computer memory), CALCEPH can handles the binary ephemeris files with any endianess by automatically swaps the bytes when it performs read operations on the ephemeris file.

[ascl:1504.021]
SOAP 2.0: Spot Oscillation And Planet 2.0

SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.

[ascl:1504.020]
BGLS: A Bayesian formalism for the generalised Lomb-Scargle periodogram

BGLS calculates the Bayesian Generalized Lomb-Scargle periodogram. It takes as input arrays with a time series, a dataset and errors on those data, and returns arrays with sampled periods and the periodogram values at those periods.

[ascl:1504.019]
LineProf: Line Profile Indicators

LineProf implements a series of line-profile analysis indicators and evaluates its correlation with RV data. It receives as input a list of Cross-Correlation Functions and an optional list of associated RV. It evaluates the line-profile according to the indicators and compares it with the computed RV if no associated RV is provided, or with the provided RV otherwise.

[ascl:1504.018]
D3PO: Denoising, Deconvolving, and Decomposing Photon Observations

D3PO (Denoising, Deconvolving, and Decomposing Photon Observations) addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. A hierarchical Bayesian parameter model is used to discriminate between morphologically different signal components, yielding a diffuse and a point-like signal estimate for the photon flux components.

[ascl:1504.017]
JWFront: Wavefronts and Light Cones for Kerr Spacetimes

JWFront visualizes wavefronts and light cones in general relativity. The interactive front-end allows users to enter the initial position values and choose the values for mass and angular momentum per unit mass. The wavefront animations are available in 2D and 3D; the light cones are visualized using the coordinate systems *(t, x, y)* or *(t, z, x)*. JWFront can be easily modified to simulate wavefronts and light cones for other spacetime by providing the Christoffel symbols in the program.

[ascl:1504.016]
MRrelation: Posterior predictive mass distribution

MRrelation calculates the posterior predictive mass distribution for an individual planet. The probabilistic mass-radius relationship (M-R relation) is evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters.

[ascl:1504.015]
IGMtransmission: Transmission curve computation

IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

[ascl:1504.014]
abcpmc: Approximate Bayesian Computation for Population Monte-Carlo code

abcpmc is a Python Approximate Bayesian Computing (ABC) Population Monte Carlo (PMC) implementation based on Sequential Monte Carlo (SMC) with Particle Filtering techniques. It is extendable with k-nearest neighbour (KNN) or optimal local covariance matrix (OLCM) pertubation kernels and has built-in support for massively parallelized sampling on a cluster using MPI.

[ascl:1504.013]
kozai: Hierarchical triple systems evolution

The kozai Python package evolves hierarchical triple systems in the secular approximation. As its name implies, the kozai package is useful for studying Kozai-Lidov oscillations. The kozai package can represent and evolve hierarchical triples using either the Delaunay orbital elements or the angular momentum and eccentricity vectors. kozai contains functions to calculate the period of Kozai-Lidov oscillations and the maximum eccentricity reached; it also contains a module to study octupole order effects by averaging over individual Kozai-Lidov oscillations.

[ascl:1504.012]
DPI: Symplectic mapping for binary star systems for the Mercury software package

DPI is a FORTRAN77 library that supplies the symplectic mapping method for binary star systems for the Mercury N-Body software package (ascl:1201.008). The binary symplectic mapping is implemented as a hybrid symplectic method that allows close encounters and collisions between massive bodies and is therefore suitable for planetary accretion simulations.

[ascl:1504.011]
samiDB: A Prototype Data Archive for Big Science Exploration

samiDB is an archive, database, and query engine to serve the spectra, spectral hypercubes, and high-level science products that make up the SAMI Galaxy Survey. Based on the versatile Hierarchical Data Format (HDF5), samiDB does not depend on relational database structures and hence lightens the setup and maintenance load imposed on science teams by metadata tables. The code, written in Python, covers the ingestion, querying, and exporting of data as well as the automatic setup of an HTML schema browser. samiDB serves as a maintenance-light data archive for Big Science and can be adopted and adapted by science teams that lack the means to hire professional archivists to set up the data back end for their projects.

[ascl:1504.010]
CosmoTransitions: Cosmological Phase Transitions

CosmoTransitions analyzes early-Universe finite-temperature phase transitions with multiple scalar fields. The code enables analysis of the phase structure of an input theory, determines the amount of supercooling at each phase transition, and finds the bubble-wall profiles of the nucleated bubbles that drive the transitions.

[ascl:1504.009]
Self-lensing binary code with Markov chain

The self-lensing binary code with Markov chain code was used to analyze the self-lensing binary system KOI-3278. It includes the MCMC modeling and the key figures.

[ascl:1504.008]
MCSpearman: Monte Carlo error analyses of Spearman's rank test

Spearman’s rank correlation test is commonly used in astronomy to discern whether a set of two variables are correlated or not. Unlike most other quantities quoted in astronomical literature, the Spearman’s rank correlation coefficient is generally quoted with no attempt to estimate the errors on its value. This code implements a number of Monte Carlo based methods to estimate the uncertainty on the Spearman’s rank correlation coefficient.

[ascl:1504.007]
WebbPSF: James Webb Space Telescope PSF Simulation Tool

Perrin, Marshall D.; Long, Joseph; Sivaramakrishnan, Anand; Lajoie, Charles-Phillipe; Elliot, Erin; Pueyo, Laurent; Albert, Loic

WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.

[ascl:1504.006]
drive-casa: Python interface for CASA scripting

drive-casa provides a Python interface for scripting of CASA (ascl.net/1107.013) subroutines from a separate Python process, allowing for utilization alongside other Python packages which may not easily be installed into the CASA environment. This is particularly useful for embedding use of CASA subroutines within a larger pipeline. drive-casa runs plain-text casapy scripts directly; alternatively, the package includes a set of convenience routines which try to adhere to a consistent style and make it easy to chain together successive CASA reduction commands to generate a command-script programmatically.

[ascl:1504.005]
chimenea: Multi-epoch radio-synthesis data imaging

Chimenea implements an heuristic algorithm for automated imaging of multi-epoch radio-synthesis data. It generates a deep image via an iterative Clean subroutine performed on the concatenated visibility set and locates steady sources in the field of view. The code then uses this information to apply constrained and then unconstrained (*i.e.*, masked/open-box) Cleans to the single-epoch observations. This obtains better results than if the single-epoch data had been processed independently without prior knowledge of the sky-model. The chimenea pipeline is built upon CASA (ascl:1107.013) subroutines, interacting with the CASA environment via the drive-casa (ascl:1504.006) interface layer.

[ascl:1504.004]
HOTPANTS: High Order Transform of PSF ANd Template Subtraction

HOTPANTS (High Order Transform of PSF ANd Template Subtraction) implements the Alard 1999 algorithm for image subtraction. It photometrically aligns one input image with another after they have been astrometrically aligned.

[ascl:1504.003]
EsoRex: ESO Recipe Execution Tool

EsoRex (ESO Recipe Execution Tool) lists, configures, and executes Common Pipeline Library (CPL) (ascl:1402.010) recipes from the command line. Its features include automatically generating configuration files, recursive recipe-path searching, command line and configuration file parameters, and recipe product naming control, among many others.

[ascl:1504.002]
SPA: Solar Position Algorithm

The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at http://www.nrel.gov/midc/solpos/spa.html.

[ascl:1504.001]
UPMASK: Unsupervised Photometric Membership Assignment in Stellar Clusters

UPMASK, written in R, performs membership assignment in stellar clusters. It uses photometry and spatial positions, but can take into account other types of data. UPMASK takes into account arbitrary error models; the code is unsupervised, data-driven, physical-model-free and relies on as few assumptions as possible. The approach followed for membership assessment is based on an iterative process, principal component analysis, a clustering algorithm and a kernel density estimation.

[ascl:1503.011]
VESPA: False positive probabilities calculator

Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA) calculates false positive probabilities and statistically validates transiting exoplanets. Written in Python, it uses isochrones [ascl:1503.010] and the package simpledist.

[ascl:1503.010]
isochrones: Stellar model grid package

Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

[ascl:1503.009]
GSD: Global Section Datafile access library

Tilanus, Remo; Meyerdierks, Horst; Jenness, Tim; Fairclough, Jon; Padman, Rachael; Redman, Russell; Cockayne, Steve

The GSD library reads data written in the James Clerk Maxwell Telescope GSD format. This format uses the General Single-Dish Data model and was used at the JCMT until 2005. The library provides an API to open GSD files and read their contents. The content of the data files is self-describing and the library can return the type and name of any component. The library is used by SPECX (ascl:1310.008), JCMTDR (ascl:1406.019) and COADD (ascl:1411.020). The SMURF (ascl:1310.007) package can convert GSD heterodyne data files to ACSIS format using this library.

[ascl:1503.008]
pYSOVAR: Lightcurves analysis

The pYSOVAR code calculates properties for a stack of lightcurves, including simple descriptive statistics (mean, max, min, ...), timing (e.g. Lomb-Scargle periodograms), variability indixes (e.g. Stetson), and color properties (e.g. slope in the color-magnitude diagram). The code is written in python and is closely integrated with astropy tables. Initially, pYSOVAR was written specifically for the analysis of two clusters in the YSOVAR project, using the (not publicly released) YSOVAR database as an input. Additional functionality has been added and the code has become more general; it is now useful for other clusters in the YSOVAR dataset or for other projects that have similar data (lightcurves in one or more bands with a few hundred points for a few thousand objects), though may not work out-of-the-box for different datasets.

[ascl:1503.007]
UniPOPS: Unified data reduction suite

Maddalena, Ronald J.; Garwood, Robert W.; Salter, Christopher J.; Stobie, Elizabeth B; Cram, Thomas R.; Morgan, Lorrie; Vance, Bob; Hudson, Jerome

UniPOPS, a suite of programs and utilities developed at the National Radio Astronomy Observatory (NRAO), reduced data from the observatory's single-dish telescopes: the Tucson 12-m, the Green Bank 140-ft, and archived data from the Green Bank 300-ft. The primary reduction programs, 'line' (for spectral-line reduction) and 'condar' (for continuum reduction), used the People-Oriented Parsing Service (POPS) as the command line interpreter. UniPOPS unified previous analysis packages and provided new capabilities; development of UniPOPS continued within the NRAO until 2004 when the 12-m was turned over to the Arizona Radio Observatory (ARO). The submitted code is version 3.5 from 2004, the last supported by the NRAO.

[ascl:1503.006]
AMADA: Analysis of Multidimensional Astronomical DAtasets

AMADA allows an iterative exploration and information retrieval of high-dimensional data sets. This is done by performing a hierarchical clustering analysis for different choices of correlation matrices and by doing a principal components analysis in the original data. Additionally, AMADA provides a set of modern visualization data-mining diagnostics. The user can switch between them using the different tabs.

[ascl:1503.005]
dust: Dust scattering and extinction in the X-ray

Written in Python, dust calculates X-ray dust scattering and extinction in the intergalactic and local interstellar media.

[ascl:1503.004]
HELIOS-K: Opacity Calculator for Radiative Transfer

HELIOS-K is an opacity calculator for exoplanetary atmospheres. It takes a line list as an input and computes the line shapes of an arbitrary number of spectral lines (~millions to billions). HELIOS-K is capable of computing 100,000 spectral lines in 1 second; it is written in CUDA and is optimized for graphics processing units (GPUs).

[ascl:1503.003]
TAME: Tool for Automatic Measurement of Equivalent-width

TAME measures the equivalent width (EWs) in high-resolution spectra. Written by IDL, TAME provides the EWs of spectral lines by profile fitting in an automatic or interactive mode and is reliable for measuring EWs in a spectrum with a spectral resolution of R ≳ 20000. It offers an interactive mode for more flexible measurement of the EW and a fully automatic mode that can simultaneously measure the EWs for a large set of lines.

[ascl:1503.002]
Galax2d: 2D isothermal Euler equations solver

Galax2d computes the 2D stationary solution of the isothermal Euler equations of gas dynamics in a rotating galaxy with a weak bar. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretization of the equations for a steady-state solution, using a consistent linearization and a direct solver. The code can be applied as a tool for generating flow models if used on not too fine meshes, up to 256 by 256 cells for half a disk in polar coordinates.

[ascl:1503.001]
K2flix: Kepler pixel data visualizer

K2flix makes it easy to inspect the CCD pixel data obtained by NASA's Kepler space telescope. The two-wheeled extended Kepler mission, K2, is affected by new sources of systematics, including pointing jitter and foreground asteroids, that are easier to spot by eye than by algorithm. The code takes Kepler's Target Pixel Files (TPF) as input and turns them into contrast-stretched animated gifs or MPEG-4 movies. K2flix can be used both as a command-line tool or using its Python API.

[ascl:1502.023]
ROBOSPECT: Width fitting program

ROBOSPECT, written in C, automatically measures and deblends line equivalent widths for absorption and emission spectra. ROBOSPECT should not be used for stars with spectra in which there is no discernible continuum over large wavelength regions, nor for the most carbon-enhanced stars for which spectral synthesis would be favored. Although ROBOSPECT was designed for metal-poor stars, it is capable of fitting absorption and emission features in a variety of astronomical sources.

[ascl:1502.022]
AstroLines: Astrophysical line list generator in the H-band

AstroLines adjusts spectral line parameters (gf and damping constant) starting from an initial line list. Written in IDL and tailored to the APO Galactic Evolution Experiment (APOGEE), it runs a slightly modified version of MOOG (ascl:1202.009) to compare synthetic spectra with FTS spectra of the Sun and Arcturus.

[ascl:1502.021]
MaLTPyNT: Quick look timing analysis for NuSTAR data

MaLTPyNT (Matteo's Libraries and Tools in Python for NuSTAR Timing) provides a quick-look timing analysis of NuSTAR data, properly treating orbital gaps and exploiting the presence of two independent detectors by using the cospectrum as a proxy for the power density spectrum. The output of the analysis is a cospectrum, or a power density spectrum, that can be fitted with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002). The software also calculates time lags. Though written for NuSTAR data, MaLTPyNT can also perform standard spectral analysis on X-ray data from other satellite such as XMM-Newton and RXTE.

[ascl:1502.020]
ketu: Exoplanet candidate search code

ketu, written in Python, searches K2 light curves for evidence of exoplanets; the code simultaneously fits for systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues and the transit signals of interest. Though more computationally expensive than standard search algorithms, it can be efficiently implemented and used to discover transit signals.

[ascl:1502.019]
XPCell: Convective plasma cells simulator

XPCell simulates convective plasma cells. The program is implemented in two versions, one using GNUPLOT and the second OpenGL. XPCell offers a GUI to introduce the parameter required by the program.

[ascl:1502.018]
XFGLENSES: Gravitational lens visualizer

XFGL visualizes gravitational lenses. It has an XFORM GUI and is completely interactive with the mouse. It uses OpenGL for the simulations.

[ascl:1502.017]
AMIsurvey: Calibration and imaging pipeline for radio data

AMIsurvey is a fully automated calibration and imaging pipeline for data from the AMI-LA radio observatory; it has two key dependencies. The first is drive-ami, included in this entry. Drive-ami is a Python interface to the specialized AMI-REDUCE calibration pipeline, which applies path delay corrections, automatic flags for interference, pointing errors, shadowing and hardware faults, applies phase and amplitude calibrations, Fourier transforms the data into the frequency domain, and writes out the resulting data in uvFITS format. The second is chimenea, which implements an automated imaging algorithm to convert the calibrated uvFITS into science-ready image maps. AMIsurvey links the calibration and imaging stages implemented within these packages together, configures the chimenea algorithm with parameters appropriate to data from AMI-LA, and provides a command-line interface.

[ascl:1502.016]
libnova: Celestial mechanics, astrometry and astrodynamics library

libnova is a general purpose, double precision, celestial mechanics, astrometry and astrodynamics library. Among many other calculations, it can calculate aberration, apparent position, proper motion, planetary positions, orbit velocities and lengths, angular separation of bodies, and hyperbolic motion of bodies.

[ascl:1502.015]
Camelus: Counts of Amplified Mass Elevations from Lensing with Ultrafast Simulations

Camelus provides a prediction on weak lensing peak counts from input cosmological parameters. Written in C, it samples halos from a mass function and assigns a profile, carries out ray-tracing simulations, and then counts peaks from ray-tracing maps. The creation of the ray-tracing simulations requires less computing time than N-body runs and the results is in good agreement with full N-body simulations.

[ascl:1502.014]
Magnetron: Fitting bursts from magnetars

Magnetron, written in Python, decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. Markov Chain Monte Carlo (MCMC) sampling and reversible jumps between models with different numbers of parameters are used to characterize the posterior distributions of the model parameters and the number of components per burst.

[ascl:1502.013]
Rabacus: Analytic Cosmological Radiative Transfer Calculations

Rabacus performs analytic radiative transfer calculations in simple geometries relevant to cosmology and astrophysics; it also contains tools to calculate cosmological quantities such as the power spectrum and mass function. With core routines written in Fortran 90 and then wrapped in Python, the execution speed is thousands of times faster than equivalent routines written in pure Python.

[ascl:1502.012]
SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access.

SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

[ascl:1502.011]
PolyChord: Nested sampling for cosmology

PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.

[ascl:1502.010]
nbody6tt: Tidal tensors in N-body simulations

nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.

[ascl:1502.009]
HDS: Hierarchical Data System

Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).

HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

[ascl:1502.008]
KAPPA: Optically thin spectra synthesis for non-Maxwellian kappa-distributions

Based on the freely available CHIANTI (ascl:9911.004) database and software, KAPPA synthesizes line and continuum spectra from the optically thin spectra that arise from collisionally dominated astrophysical plasmas that are the result of non-Maxwellian κ-distributions detected in the solar transition region and flares. Ionization and recombination rates together with the ionization equilibria are provided for a range of κ values. Distribution-averaged collision strengths for excitation are obtained by an approximate method for all transitions in all ions available within CHIANTI; KAPPA also offers tools for calculating synthetic line and continuum intensities.

[ascl:1502.007]
PyBDSF: Python Blob Detection and Source Finder

PyBDSF (Python Blob Detector and Source Finder, formerly PyBDSM) decomposes radio interferometry images into sources and makes their properties available for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA (ascl:1107.013); PyBDSF may also be used in Python scripts.

[ascl:1502.006]
Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single *X ^{2}* value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

[ascl:1502.005]
PARSEC: PARametrized Simulation Engine for Cosmic rays

PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

[ascl:1502.004]
ADAM: All-Data Asteroid Modeling

ADAM (All-Data Asteroid Modeling) models asteroid shape reconstruction from observations. Developed in MATLAB with core routines in C, its features include general nonconvex and non-starlike parametric 3D shape supports and reconstruction of asteroid shape from any combination of lightcurves, adaptive optics images, HST/FGS data, disk-resolved thermal images, interferometry, and range-Doppler radar images. ADAM does not require boundary contour extraction for reconstruction and can be run in parallel.

[ascl:1502.003]
NGenIC: Cosmological structure initial conditions

NGenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET or AREPO.

[ascl:1502.002]
OpenOrb: Open-source asteroid orbit computation software

OpenOrb (OOrb) contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. It uses the least-squares method and also contains both Monte-Carlo (MC) and Markov-Chain MC versions of the statistical ranging method. Ranging obtains sampled, non-Gaussian orbital-element probability-density functions and is optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval.

[ascl:1502.001]
RH 1.5D: Polarized multi-level radiative transfer with partial frequency distribution

RH 1.5D performs Zeeman multi-level non-local thermodynamical equilibrium calculations with partial frequency redistribution for an arbitrary amount of chemical species. Derived from the RH code and written in C, it calculates spectra from 3D, 2D or 1D atmospheric models on a column-by-column basis (or 1.5D). It includes optimization features to speed up or improve convergence, which are particularly useful in dynamic models of chromospheres. While one should be aware of its limitations, the calculation of spectra using the 1.5D or column-by-column is a good approximation in many cases, and generally allows for faster convergence and more flexible methods of improving convergence. RH 1.5D scales well to at least tens of thousands of CPU cores.

[ascl:1501.016]
Colossus: COsmology, haLO, and large-Scale StrUcture toolS

Colossus is a collection of Python modules for cosmology and dark matter halos calculations. It performs cosmological calculations with an emphasis on structure formation applications, implements general and specific density profiles, and provides a large range of models for the concentration-mass relation, including a conversion to arbitrary mass definitions.

[ascl:1501.015]
Exoplanet: Trans-dimensional MCMC method for exoplanet discovery

Exoplanet determines the posterior distribution of exoplanets by use of a trans-dimensional Markov Chain Monte Carlo method within Nested Sampling. This method finds the posterior distribution in a single run rather than requiring multiple runs with trial values.

[ascl:1501.014]
GalPaK 3D: Galaxy parameters and kinematics extraction from 3D data

GalPaK 3D extracts the intrinsic (i.e. deconvolved) galaxy parameters and kinematics from any 3-dimensional data. The algorithm uses a disk parametric model with 10 free parameters (which can also be fixed independently) and a MCMC approach with non-traditional sampling laws in order to efficiently probe the parameter space. More importantly, it uses the knowledge of the 3-dimensional spread-function to return the intrinsic galaxy properties and the intrinsic data-cube. The 3D spread-function class is flexible enough to handle any instrument.

GalPaK 3D can simultaneously constrain the kinematics and morphological parameters of (non-merging, i.e. regular) galaxies observed in non-optimal seeing conditions and can also be used on AO data or on high-quality, high-SNR data to look for non-axisymmetric structures in the residuals.

[ascl:1501.013]
Molecfit: Telluric absorption correction tool

Smette, A.; Kausch, W; Sana, H; Noll, S.; Horst, H.; Kimeswenger, S.; Barden, M; Szyszka, C.; Jones, A. M.; Gallene, A.; Vinther, J.; Ballester, P.; Kerber, F.

Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.

[ascl:1501.012]
Exorings: Exoring modelling software

Exorings, written in Python, contains tools for displaying and fitting giant extrasolar planet ring systems; it uses FITS formatted data for input.

[ascl:1501.011]
transfer: The Sloan Digital Sky Survey Data Transfer Infrastructure

The Sloan Digital Sky Survey (SDSS) produces large amounts of data daily. transfer, written in Python, provides the effective automation needed for daily data transfer operations and management and operates essentially free of human intervention. This package has been tested and used successfully for several years.

[ascl:1501.010]
PythonPhot: Simple DAOPHOT-type photometry in Python

PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.

[ascl:1501.009]
BIANCHI: Bianchi VIIh Simulations

BIANCHI provides functionality to support the simulation of Bianchi Type VIIh induced temperature fluctuations in CMB maps of a universe with shear and rotation. The implementation is based on the solutions to the Bianchi models derived by Barrow et al. (1985), which do not incorporate any dark energy component. Functionality is provided to compute the induced fluctuations on the sphere directly in either real or harmonic space.

[ascl:1501.008]
Enrico: Python package to simplify Fermi-LAT analysis

Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.

[ascl:1501.007]
LP-VIcode: La Plata Variational Indicators Code

LP-VIcode computes variational chaos indicators (CIs) quickly and easily. The following CIs are included:

- Lyapunov Indicators, also known as Lyapunov Characteristic Exponents, Lyapunov Characteristic Numbers or Finite Time Lyapunov Characteristic Numbers (LIs)

- Mean Exponential Growth factor of Nearby Orbits (MEGNO)

- Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE)

- Smaller ALignment Index (SALI)

- Generalized ALignment Index (GALI)

- Fast Lyapunov Indicator (FLI)

- Orthogonal Fast Lyapunov Indicator (OFLI)

- Spectral Distance (SD)

- dynamical Spectra of Stretching Numbers (SSNs)

- Relative Lyapunov Indicator (RLI)

[ascl:1501.006]
PsrPopPy: Pulsar Population Modelling Programs in Python

PsrPopPy is a Python implementation of the Galactic population and evolution of radio pulsars modelling code PSRPOP.

[ascl:1501.005]
DECA: Decomposition of images of galaxies

DECA performs photometric analysis of images of disk and elliptical galaxies having a regular structure. It is written in Python and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention.

[ascl:1501.004]
dst: Polarimeter data destriper

Dst is a fully parallel Python destriping code for polarimeter data; destriping is a well-established technique for removing low-frequency correlated noise from Cosmic Microwave Background (CMB) survey data. The software destripes correctly formatted HDF5 datasets and outputs hitmaps, binned maps, destriped maps and baseline arrays.

[ascl:1501.003]
python-qucs: Python package for automating QUCS simulations

Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Python-qucs automates the process of preparing input data, running simulations and exporting results of QUCS (Quasi Universal Circuit Simulator) simulations.

[ascl:1501.002]
NIGO: Numerical Integrator of Galactic Orbits

NIGO (Numerical Integrator of Galactic Orbits) predicts the orbital evolution of test particles moving within a fully-analytical gravitational potential generated by a multi-component galaxy. The code can simulate the orbits of stars in elliptical and disc galaxies, including non-axisymmetric components represented by a spiral pattern and/or rotating bar(s).

[ascl:1501.001]
PynPoint: Exoplanet image data analysis

PynPoint uses principal component analysis to detect and estimate the flux of exoplanets in two-dimensional imaging data. It processes many, typically several thousands, of frames to remove the light from the star so as to reveal the companion planet.

[ascl:1412.014]
SOPHIA: Simulations Of Photo Hadronic Interactions in Astrophysics

SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.

[ascl:1412.013]
CRPropa: Numerical tool for the propagation of UHE cosmic rays, gamma-rays and neutrinos

CRPropa computes the observable properties of UHECRs and their secondaries in a variety of models for the sources and propagation of these particles. CRPropa takes into account interactions and deflections of primary UHECRs as well as propagation of secondary electromagnetic cascades and neutrinos. CRPropa makes use of the public code SOPHIA (ascl:1412.014), and the TinyXML, CFITSIO (ascl:1010.001), and CLHEP libraries. A major advantage of CRPropa is its modularity, which allows users to implement their own modules adapted to specific UHECR propagation models.

[ascl:1412.012]
GeoTOA: Geocentric TOA tools

GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, FSSC Science Tools, and Tempo2 (ascl:1210.015).

[ascl:1412.011]
TraP: Transients discovery pipeline for image-plane surveys

The TraP is a pipeline for detecting and responding to transient and variable sources in a stream of astronomical images. Images are initially processed using a pure-Python source-extraction package, PySE, which is bundled with the TraP. Source positions and fluxes are then loaded into a SQL database for association and variability detection. The database structure allows for estimation of past upper limits on newly detected sources, and for forced fitting of previously detected sources which have since dropped below the blind-extraction threshold. Developed with LOFAR data in mind, the TraP has been used with data from other radio observatories.

[ascl:1412.010]
MMAS: Make Me A Star

Make Me A Star (MMAS) quickly generates stellar collision remnants and can be used in combination with realistic dynamical simulations of star clusters that include stellar collisions. The code approximates the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These simple models agree very well with those from SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of these models also matches closely that of the more accurate hydrodynamic models.

[ascl:1412.009]
URCHIN: Reverse ray tracer

URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.

[ascl:1412.008]
Hrothgar: MCMC model fitting toolkit

Hrothgar is a parallel minimizer and Markov Chain Monte Carlo generator. It has been used to solve optimization problems in astrophysics (galaxy cluster mass profiles) as well as in experimental particle physics (hadronic tau decays).

[ascl:1412.007]
PIAO: Python spherIcAl Overdensity code

PIAO is an efficient memory-controlled Python code that uses the standard spherical overdensity (SO) algorithm to identify halos. PIAO employs two additional parameters besides the overdensity Δc. The first is the mesh-box size, which splits the whole simulation box into smaller ones then analyzes them one-by-one, thereby overcoming a possible memory limitation problem that can occur when dealing with high-resolution, large-volume simulations. The second is the smoothed particle hydrodynamics (SPH) neighbors number, which is used for the SPH density calculation.

[ascl:1412.006]
HMF: Halo Mass Function calculator

HMF calculates the Halo Mass Function (HMF) given any set of cosmological parameters and fitting function and serves as the backend for the web application HMFcalc. Written in Python, it allows for dynamic accurate calculation of the transfer function with CAMB (ascl:1102.026) and efficient and self-consistent parameter updates. HMF offers exploration of the effects of cosmological parameters, redshift and fitting function on the predicted HMF.

[ascl:1412.005]
BRUCE/KYLIE: Pulsating star spectra synthesizer

BRUCE and KYLIE, written in Fortran 77, synthesize the spectra of pulsating stars. BRUCE constructs a point-sampled model for the surface of a rotating, gravity-darkened star, and then subjects this model to perturbations arising from one or more non-radial pulsation modes. Departures from adiabaticity can be taken into account, as can the Coriolis force through adoption of the so-called traditional approximation. BRUCE writes out a time-sequence of perturbed surface models. This sequence is read in by KYLIE, which synthesizes disk-integrated spectra for the models by co-adding the specific intensity emanating from each visible point toward the observer. The specific intensity is calculated by interpolation in a large temperature-gravity-wavelength-angle grid of pre-calculated intensity spectra.

[ascl:1412.004]
DAMIT: Database of Asteroid Models from Inversion Techniques

DAMIT (Database of Asteroid Models from Inversion Techniques) is a database of three-dimensional models of asteroids computed using inversion techniques; it provides access to reliable and up-to-date physical models of asteroids, *i.e.*, their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects as well as for statistical studies of the whole set. The source codes for lightcurve inversion routines together with brief manuals, sample lightcurves, and the code for the direct problem are available for download.

[ascl:1412.003]
UTM: Universal Transit Modeller

The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

[ascl:1412.002]
Cheetah: Starspot modeling code

Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

[ascl:1412.001]
SoFiA: Source Finding Application

Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel; Staveley-Smith, Lister; Courtois, Hélène

SoFiA is a flexible source finding pipeline designed to detect and parameterise sources in 3D spectral-line data cubes. SoFiA combines several powerful source finding and parameterisation algorithms, including wavelet denoising, spatial and spectral smoothing, source mask optimisation, spectral profile fitting, and calculation of the reliability of detections. In addition to source catalogues in different formats, SoFiA can also generate a range of output data cubes and images, including source masks, moment maps, sub-cubes, position-velocity diagrams, and integrated spectra. The pipeline is controlled by simple parameter files and can either be invoked on the command line or interactively through a modern graphical user interface.

[ascl:1411.027]
BKGE: Fermi-LAT Background Estimator

The Fermi-LAT Background Estimator (BKGE) is a publicly available open-source tool that can estimate the expected background of the Fermi-LAT for any observational conguration and duration. It produces results in the form of text files, ROOT files, gtlike source-model files (for LAT maximum likelihood analyses), and PHA I/II FITS files (for RMFit/XSpec spectral fitting analyses). Its core is written in C++ and its user interface in Python.

[ascl:1411.026]
sic: Sparse Inpainting Code

Feeney, Stephen M.; Marinucci, Domenico; McEwen, Jason D.; Peiris, Hiranya V.; Wandelt, Benjamin D.; Cammarota, Valentina

sic (Sparse Inpainting Code) generates Gaussian, isotropic CMB realizations, masks them, and recovers the large-scale masked data using sparse inpainting; it is written in Fortran90.

[ascl:1411.025]
SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.

[ascl:1411.024]
CGS3DR: UKIRT CGS3 data reduction software

CGS3DR is data reduction software for the UKIRT CGS3 mid-infrared grating spectrometer instrument. It includes a command-line interface and a GUI. The software, originally on VMS, was ported to Unix. It uses Starlink (ascl:1110.012) infrastructure libraries.

[ascl:1411.023]
NDF: Extensible N-dimensional Data Format Library

The Extensible N-Dimensional Data Format (NDF) stores bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. The NDF library is used to read and write files in the NDF format. It is distributed with the Starlink software (ascl:1110.012).

[ascl:1411.022]
Starlink Figaro: Starlink version of the Figaro data reduction software package

Shortridge, Keith; Meyerdierks, Horst; Currie, Malcolm J.; Davenhall, Clive; Jenness, Tim; Clayton, Martin

Starlink Figaro is an independently-maintained fork of Figaro (ascl:1203.013) that runs in the Starlink software environment (ascl:1110.012). It is a general-purpose data reduction package targeted mainly at optical/IR spectroscopy. It uses the NDF data format and the ADAM libraries for parameters and messaging.

[ascl:1411.021]
POSTMORTEM: Visibility data reduction and map making package

POSTMORTEM is the visibility data reduction and map making package from MRAO (Mullard Radio Astronomy Observatory) and is used with the Ryle and CLFST telescopes at Cambridge. It contains sub-systems for nonitoring telescope performance, displaying and editing the visibility data, performing calibrations, removing flux from interfering bright sources, and map-making. It requires PGPLOT (ascl:1103.002), SLALIB (ascl:1403.025), and NAG numerical routines, all of which are distributed with the STARLINK software collection (ascl:1110.012) or available separately.

[ascl:1411.020]
JCMT COADD: UKT14 continuum and photometry data reduction

COADD was used to reduce photometry and continuum data from the UKT14 instrument on the James Clerk Maxwell Telescope in the 1990s. The software can co-add multiple observations and perform sigma clipping and Kolmogorov-Smirnov statistical analysis. Additional information on the software is available in the JCMT Spring 1993 newsletter (large PDF).

[ascl:1411.019]
Anmap: Image and data analysis

Anmap analyses and processes images and spectral data. Originally written for use in radio astronomy, much of its functionality is applicable to other disciplines; additional algorithms and analysis procedures allow direct use in, for example, NMR imaging and spectroscopy. Anmap emphasizes the analysis of data to extract quantitative results for comparison with theoretical models and/or other experimental data. To achieve this, Anmap provides a wide range of tools for analysis, fitting and modelling (including standard image and data processing algorithms). It also provides a powerful environment for users to develop their own analysis/processing tools either by combining existing algorithms and facilities with the very powerful command (scripting) language or by writing new routines in FORTRAN that integrate seamlessly with the rest of Anmap.

[ascl:1411.018]
GPI Pipeline: Gemini Planet Imager Data Pipeline

The GPI data pipeline allows users to reduce and calibrate raw GPI data into spectral and polarimetric datacubes, and to apply various PSF subtraction methods to those data. Written in IDL and available in a compiled version, the software includes an integrated calibration database to manage reference files and an interactive data viewer customized for high contrast imaging that allows exploration and manipulation of data.

[ascl:1411.017]
ECCSAMPLES: Bayesian Priors for Orbital Eccentricity

ECCSAMPLES solves the inverse cumulative density function (CDF) of a Beta distribution, sometimes called the IDF or inverse transform sampling. This allows one to sample from the relevant priors directly. ECCSAMPLES actually provides joint samples for both the eccentricity and the argument of periastron, since for transiting systems they display non-zero covariance.

[ascl:1411.016]
Flicker: Mean stellar densities from flicker

Flicker calculates the mean stellar density of a star by inputting the flicker observed in a photometric time series. Written in Fortran90, its output may be used as an informative prior on stellar density when fitting transit light curves.

[ascl:1411.015]
SPOTROD: Semi-analytic model for transits of spotted stars

SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.

[ascl:1411.014]
NAFE: Noise Adaptive Fuzzy Equalization

NAFE (Noise Adaptive Fuzzy Equalization) is an image processing method allowing for visualization of fine structures in SDO AIA high dynamic range images. It produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform.

[ascl:1411.013]
NEAT: Nebular Empirical Analysis Tool

NEAT is a fully automated code which carries out a complete analysis of lists of emission lines to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEAT uses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances.

[ascl:1411.012]
util_2comp: Planck-based two-component dust model utilities

The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

[ascl:1411.011]
PyMGC3: Finding stellar streams in the Galactic Halo using a family of Great Circle Cell counts methods

PyMGC3 is a Python toolkit to apply the Modified Great Circle Cell Counts (mGC3) method to search for tidal streams in the Galactic Halo. The code computes pole count maps using the full mGC3/nGC3/GC3 family of methods. The original GC3 method (Johnston *et al.*, 1996) uses positional information to search for 'great-circle-cell structures'; mGC3 makes use of full 6D data and nGC3 uses positional and proper motion data.

[ascl:1411.010]
Raga: Monte Carlo simulations of gravitational dynamics of non-spherical stellar systems

Raga (Relaxation in Any Geometry) is a Monte Carlo simulation method for gravitational dynamics of non-spherical stellar systems. It is based on the SMILE software (ascl:1308.001) for orbit analysis. It can simulate stellar systems with a much smaller number of particles N than the number of stars in the actual system, represent an arbitrary non-spherical potential with a basis-set or spline spherical-harmonic expansion with the coefficients of expansion computed from particle trajectories, and compute particle trajectories independently and in parallel using a high-accuracy adaptive-timestep integrator. Raga can also model two-body relaxation by local (position-dependent) velocity diffusion coefficients (as in Spitzer's Monte Carlo formulation) and adjust the magnitude of relaxation to the actual number of stars in the target system, and model the effect of a central massive black hole.

[ascl:1411.009]
iDealCam: Interactive Data Reduction and Analysis for CanariCam

iDealCam is an IDL GUI toolkit for processing multi-extension FITS file produced by CanariCam, the facility mid-IR instrument of Gran Telescopio CANARIAS (GTC). iDealCam is optimized for CanariCam data, but is also compatible with data generated by other instruments using similar detectors and data format (e.g., Michelle and T-ReCS at Gemini). iDealCam provides essential capabilities to examine, reduce, and analyze data obtained in the standard imaging or polarimetric imaging mode of CanariCam.

[ascl:1411.008]
galpy: Galactic dynamics package

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

[ascl:1411.007]
segueSelect: SDSS/SEGUE selection function modelling

The Python package segueSelect automatically models the SDSS/SEGUE selection fraction -- the fraction of stars with good spectra -- as a continuous function of apparent magnitude for each plate. The selection function can be determined for any desired sample cuts in signal-to-noise ratio, u-g, r-i, and E(B-V). The package requires Pyfits (ascl:1207.009) and, for coordinate transformations, galpy (ascl:1411.008). It can calculate the KS probability that the spectropscopic sample was drawn from the underlying photometric sample with the model selection function, plot the cumulative distribution function in r-band apparent magnitude of the spectroscopic sample (red) and the photometric sample+selection-function-model for this plate, and, if galpy is installed, can transform velocities into the Galactic coordinate frame. The code can also determine the selection function for SEGUE K stars.

[ascl:1411.006]
RC3 mosaicking pipeline: Creating mosaics for the RC3 Catalogue

The RC3 mosaicking pipeline creates color composite images and scientifically-calibrated FITS mosaics in all SDSS imaging bands for all the RC3 galaxies that lie within the survey’s footprint and on photographic plates taken by the Digitized Palomar Observatory Sky Survey (DPOSS) for the B, R, IR bands. The pipeline uses SExtractor (ascl:1010.064) for extraction and STIFF (ascl:1110.006) to generating color images. The mosaicking program uses a recursive algorithm for positional update first to correct the positional inaccuracy inherent in the RC3 catalog, then conducts the mosaicking procedure using the Astropy (ascl:1304.002) wrapper to IPAC's Montage (ascl:1010.036) software. The program is generalized into a pipeline that can be easily extended to future survey data or other source catalogs; an online interface is available at

http://lcdm.astro.illinois.edu/data/rc3/search.html.

[ascl:1411.005]
HOPE: Just-in-time Python compiler for astrophysical computations

HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

[ascl:1411.004]
OPERA: Open-source Pipeline for Espadons Reduction and Analysis

OPERA (Open-source Pipeline for Espadons Reduction and Analysis) is an open-source collaborative software reduction pipeline for ESPaDOnS data. ESPaDOnS is a bench-mounted high-resolution echelle spectrograph and spectro-polarimeter designed to obtain a complete optical spectrum (from 370 to 1,050 nm) in a single exposure with a mode-dependent resolving power between 68,000 and 81,000. OPERA is fully automated, calibrates on two-dimensional images and reduces data to produce one-dimensional intensity and polarimetric spectra. Spectra are extracted using an optimal extraction algorithm. Though designed for CFHT ESPaDOnS data, the pipeline is extensible to other echelle spectrographs.

[ascl:1411.003]
voevent-parse: Parse, manipulate, and generate VOEvent XML packets

voevent-parse, written in Python, parses, manipulates, and generates VOEvent XML packets; it is built atop lxml.objectify. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. However, working with XML and adhering to the sometimes lengthy VOEvent schema can be a tricky process. voevent-parse provides convenience routines for common tasks, while allowing the user to utilise the full power of the lxml library when required. An earlier version of voevent-parse was part of the pysovo (ascl:1411.002) library.

[ascl:1411.002]
pysovo: A library for implementing alerts triggered by VOEvents

pysovo contains basic tools to work with VOEvents. Though written for specific needs, others interested in VOEvents may find it useful to examine.

[ascl:1411.001]
pyGadgetReader: GADGET snapshot reader for python

pyGadgetReader is a universal GADGET snapshot reader for python that supports type-1, type-2, HDF5, and TIPSY (ascl:1111.015) binary formats. It additionally supports reading binary outputs from FoF_Special, P-StarGroupFinder, Rockstar (ascl:1210.008), and Rockstar-Galaxies.

[ascl:1410.005]
RICH: Numerical simulation of compressible hydrodynamics on a moving Voronoi mesh

RICH (Racah Institute Computational Hydrodynamics) is a 2D hydrodynamic code based on Godunov's method. The code, largely based on AREPO, acts on an unstructured moving mesh. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Though not universally true, in many cases a moving mesh gives better results than a static mesh: where matter moves one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving), a static mesh gives better results than a moving mesh. RICH is designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes.

[ascl:1410.004]
UVOTPY: Swift UVOT grism data reduction

The two Swift UVOT grisms provide uv (170.0-500.0 nm) and visible (285.0-660.0 nm) spectra with a resolution of R~100 and 75. To reduce the grism data, UVOTPY extracts a spectrum given source sky position, and outputs a flux calibrated spectrum. UVOTPY is a replacement for the UVOTIMGRISM FTOOL (ascl:9912.002) in the HEADAS Swift package. Its extraction uses a curved aperture for the uv spectra, accounts the coincidence losses in the detector, provides more accurate anchor positions for the wavelength scale, and is valid for the whole detector.

[ascl:1410.003]
GIZMO: Multi-method magneto-hydrodynamics+gravity code

GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

[ascl:1410.002]
MEPSA: Multiple Excess Peak Search Algorithm

MEPSA (Multiple Excess Peak Search Algorithm) identifies peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. MEPSA scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena whose activity is recorded through different surveys. MEPSA's high flexibility permits the mask of excess patterns it uses to be tailored and optimized without modifying the code.

[ascl:1410.001]
DIAMONDS: high-DImensional And multi-MOdal NesteD Sampling

DIAMONDS (high-DImensional And multi-MOdal NesteD Sampling) provides Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional and multi-modal problems; it can be used for any application involving Bayesian parameter estimation and/or model selection in general. Developed in C++11, DIAMONDS is structured in classes for flexibility and configurability. Any new model, likelihood and prior PDFs can be defined and implemented upon a basic template.

[ascl:1409.013]
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Im3shape forward-fits a galaxy model to each data image it is supplied with and reports the parameters of the best fitting model, including the ellipticity components. It uses the Discrete Fourier Transform (DFT) to render images of convolved galaxy profiles, calculates the maximum likelihood parameter values, and corrects for noise bias. IM3SHAPE is a modular C code with a significant amount of Python glue code to enable setting up new models and their options automatically.

[ascl:1409.012]
CosmoSIS: Cosmological parameter estimation

Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

CosmoSIS is a cosmological parameter estimation code. It structures cosmological parameter estimation to ease re-usability, debugging, verifiability, and code sharing in the form of calculation modules. Witten in python, CosmoSIS consolidates and connects existing code for predicting cosmic observables and maps out experimental likelihoods with a range of different techniques.

[ascl:1409.011]
rmfit: Forward-folding spectral analysis software

Rmfit uses a forward-folding technique to obtain the best-fit parameters for a chosen model given user-selected source and background time intervals from data files containing observed count rates and a corresponding detector response matrix. rmfit displays lightcurves and spectra using a graphical interface that enables user-defined integrated or time-resolved spectral fits and binning in either time or energy. Originally developed for the analysis of BATSE Gamma-Ray Burst (GRB) spectroscopy, rmfit is a tool for the spectroscopy of transient sources; it accommodates the Fermi GBM and LAT data and Swift BAT.

[ascl:1409.010]
Slim: Numerical data compression for scientific data sets

Slim performs lossless compression on binary data files. Written in C++, it operates very rapidly and achieves better compression on noisy physics data than general-purpose tools designed primarily for text.

[ascl:1409.009]
Nahoon: Time-dependent gas-phase chemical model

Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.

[ascl:1409.008]
CHLOE: A tool for automatic detection of peculiar galaxies

CHLOE is an image analysis unsupervised learning algorithm that detects peculiar galaxies in datasets of galaxy images. The algorithm first computes a large set of numerical descriptors reflecting different aspects of the visual content, and then weighs them based on the standard deviation of the values computed from the galaxy images. The weighted Euclidean distance of each galaxy image from the median is measured, and the peculiarity of each galaxy is determined based on that distance.

[ascl:1409.007]
ORBS: A reduction software for SITELLE and SpiOMM data

ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

[ascl:1409.006]
iSpec: Stellar atmospheric parameters and chemical abundances

iSpec is an integrated software framework written in Python for the treatment and analysis of stellar spectra and abundances. Spectra treatment functions include cosmic rays removal, continuum normalization, resolution degradation, and telluric lines identification. It can also perform radial velocity determination and correction and resampling. iSpec can also determine atmospheric parameters (i.e effective temperature, surface gravity, metallicity, micro/macroturbulence, rotation) and individual chemical abundances by using either the synthetic spectra fitting technique or equivalent widths method. The synthesis is performed with SPECTRUM (ascl:9910.002).

[ascl:1409.005]
IFSFIT: Spectral Fitting for Integral Field Spectrographs

IFSFIT is a general-purpose IDL library for fitting the continuum, emission lines, and absorption lines in integral field spectra. It uses PPXF (ascl:1210.002) to find the best fit stellar continuum (using a user-defined library of stellar templates and including additive polynomials), or optionally a user-defined method to find the best fit continuum. It uses MPFIT (ascl:1208.019) to simultaneously fit Gaussians to any number of emission lines and emission line velocity components. It will also fit the NaI D feature using analytic absorption and/or emission-line profiles.

[ascl:1409.004]
IFSRED: Data Reduction for Integral Field Spectrographs

IFSRED is a general-purpose library for reducing data from integral field spectrographs (IFSs). For a general IFS data cube, it contains IDL routines to: (1) find and apply a zero-point shift in a wavelength solution on a spaxel-by-spaxel basis, using sky lines; (2) find the spatial coordinates of a flux peak; (3) empirically correct for differential atmospheric refraction; (4) mosaic dithered exposures; (5) (integer) rebin; and (6) apply a telluric correction. A sky-subtraction routine for data from the Gemini Multi-Object Spectrograph and Imager (GMOS) that can be easily modified for any instrument is also included. IFSRED also contains additional software specific to reducing data from GMOS and the Gemini Near-Infrared Integral Field Spectrograph (NIFS).

[ascl:1409.003]
LANL*: Radiation belt drift shell modeling

LANL* calculates the magnetic drift invariant L*, used for modeling radiation belt dynamics and other space weather applications, six orders of magnitude (~ one million times) faster than convectional approaches that require global numerical field lines tracing and integration. It is based on a modern machine learning technique (feed-forward artificial neural network) by supervising a large data pool obtained from the IRBEM library, which is the traditional source for numerically calculating the L* values. The pool consists of about 100,000 samples randomly distributed within the magnetosphere (r: [1.03, 11.5] Re) and within a whole solar cycle from 1/1/1994 to 1/1/2005. There are seven LANL* models, each corresponding to its underlying magnetic field configuration that is used to create the data sample pool. This model has applications to real-time radiation belt forecasting, analysis of data sets involving tens of satellite-years of observations, and other problems in space weather.

[ascl:1409.002]
Tsyganenko Geomagnetic Field Models

The Tsyganenko models are semi-empirical best-fit representations for the magnetic field, based on a large number of satellite observations (IMP, HEOS, ISEE, POLAR, Geotail, GOES, etc). The models include the contributions from major external magnetospheric sources: ring current, magnetotail current system, magnetopause currents, and large-scale system of field-aligned currents.

[ascl:1409.001]
mixT: single-temperature fit for a multi-component thermal plasma

mixT accurately predicts T derived from a single-temperature fit for a multi-component thermal plasma. It can be applied in the deprojection analysis of objects with the temperature and metallicity gradients, for correction of the PSF effects, for consistent comparison of numerical simulations of galaxy clusters and groups with the X-ray observations, and for estimating how emission from undetected components can bias the global X-ray spectral analysis.

[ascl:1408.023]
WSClean: Widefield interferometric imager

Offringa, A. R.; McKinley, B.; Hurley-Walker, N.; Briggs, F. H.; Wayth, R. B.; Kaplan, D. L.; Bell, M. E.; Feng, L.; Neben, A. R.; Hughes, J. D.; Rhee, J.; Murphy, T.; Bhat, N. D. R.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Jacobs, D. C.; Kasper, J. C.; Kratzenberg, E.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Kudryavtseva, N.; Oberoi, D.; Ord, S. M.; Pindor, B.; Procopio, P.; Prabu, T.; Riding, J.; Roshi, D. A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

WSClean (w-stacking clean) is a fast generic widefield imager. It uses the w-stacking algorithm and can make use of the w-snapshot algorithm. It supports full-sky imaging and proper beam correction for homogeneous dipole arrays such as the MWA. WSClean allows Hogbom and Cotton-Schwab cleaning, and can clean polarizations joinedly. All operations are performed on the CPU; it is not specialized for GPUs.

[ascl:1408.022]
PhotoRApToR: PHOTOmetric Research APplication TO Redshifts

PhotoRApToR (PHOTOmetric Research APplication TO Redshifts) solves regression and classification problems and is specialized for photo-z estimation. PhotoRApToR offers data table manipulation capabilities and 2D and 3D graphics tools for data visualization; it also provides a statistical report for both classification and regression experiments. The code is written in Java; the machine learning model is in C++ to increase the core execution speed.

[ascl:1408.021]
APS: Active Parameter Searching

APS finds Frequentist confidence limits on high-dimensional parameter spaces by using Gaussian Process interpolation to identify regions of parameter space for which chisquared is less than or equal to some specified limit. The code is written in C++, is robust against multi-modal chisquared functions and converges comparably fast to Monte Carlo methods. Code is also provided to draw Bayesian credible limits using the outputs of APS, though this code does not converge as well. APS requires the linear algebra libraries LAPACK, BLAS, and ARPACK (ascl:1311.010) to run.

[ascl:1408.020]
bamr: Bayesian analysis of mass and radius observations

bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O_{2}scl (ascl:1408.019) be installed before compilation.

[ascl:1408.019]
O_{2}scl: Object-oriented scientific computing library

O_{2}scl is an object-oriented library for scientific computing in C++ useful for solving, minimizing, differentiating, integrating, interpolating, optimizing, approximating, analyzing, fitting, and more. Many classes operate on generic function and vector types; it includes classes based on GSL and CERNLIB. O_{2}scl also contains code for computing the basic thermodynamic integrals for fermions and bosons, for generating almost all of the most common equations of state of nuclear and neutron star matter, and for solving the TOV equations. O_{2}scl can be used on Linux, Mac and Windows (Cygwin) platforms and has extensive documentation.

[ascl:1408.018]
CosmoPhotoz: Photometric redshift estimation using generalized linear models

de Souza, Rafael S.; Elliott, Jonathan; Krone-Martins, Alberto; Ishida, Emille E. O.; Hilbe, Joseph; Cameron, Ewan

CosmoPhotoz determines photometric redshifts from galaxies utilizing their magnitudes. The method uses generalized linear models which reproduce the physical aspects of the output distribution. The code can adopt gamma or inverse gaussian families, either from a frequentist or a Bayesian perspective. A set of publicly available libraries and a web application are available. This software allows users to apply a set of GLMs to their own photometric catalogs and generates publication quality plots with no involvement from the user. The code additionally provides a Shiny application providing a simple user interface.

[ascl:1408.017]
RDGEN: Routines for data handling, display, and adjusting

RDGEN is a collection of routines for data handling, display, and adjusting, with a facility which helps to set up files for using with VPFIT (ascl:1408.015); it is included in the VPFIT distribution file. It is useful for setting region boundaries and initial guesses for VPFIT, for displaying the accumulated results, for examining by eye particular redshift systems and fits to them, testing that the error array is a true reflection of the rms scatter in the data, comparing spectra and generally examining and even modifying the data.

[ascl:1408.016]
vpguess: Fitting multiple Voigt profiles to spectroscopic data

vpguess facilitates the fitting of multiple Voigt profiles to spectroscopic data. It is a graphical interface to VPFIT (ascl:1408.015). Originally meant to simplify the process of setting up first guesses for a subsequent fit with VPFIT, it has developed into a full interface to VPFIT. It may also be used independently of VPFIT for displaying data, playing around with data and models, "chi-by-eye" fits, displaying the result of a proper fit, pretty plots, etc. vpguess is written in C, and the graphics are based on PGPLOT (ascl:1103.002).

[ascl:1408.015]
VPFIT: Voigt profile fitting program

The VPFIT program fits multiple Voigt profiles (convolved with the instrument profiles) to spectroscopic data that is in FITS or an ASCII file. It requires CFITSIO (ascl:1010.001) and PGPLOT (ascl:1103.002); the tarball includes RDGEN (ascl:1408.017), which can be used with VPFIT to set up the fits, fit the profiles, and examine the result in interactive mode for setting up initial guesses; vpguess (ascl:1408.016) can also be used to set up an initial file.

[ascl:1408.014]
pieflag: CASA task to efficiently flag bad data

pieflag compares bandpass-calibrated data to a clean reference channel and identifies and flags essentially all bad data. pieflag compares visibility amplitudes in each frequency channel to a 'reference' channel that is rfi-free (or manually ensured to be rfi-free). pieflag performs this comparison independently for each correlation on each baseline, but will flag all correlations if threshold conditions are met. To operate effectively, pieflag must be supplied with bandpass-calibrated data. pieflag has two core modes of operation (static and dynamic flagging) with an additional extend mode; the type of data largely determines which mode to choose. Instructions for pre-processing data and selecting the mode of operation are provided in the help file. Once pre-processing and selecting the mode of operation are done, pieflag should work well 'out of the box' with its default parameters.

[ascl:1408.013]
NumCosmo: Numerical Cosmology

NumCosmo is a free software C library whose main purposes are to test cosmological models using observational data and to provide a set of tools to perform cosmological calculations. The software implements three different probes: cosmic microwave background (CMB), supernovae type Ia (SNeIa) and large scale structure (LSS) information, such as baryonic acoustic oscillations (BAO) and galaxy cluster abundance. The code supports a joint analysis of these data and the parameter space can include cosmological and phenomenological parameters. NumCosmo matter power spectrum and CMB codes were written independent of other implementations such as CMBFAST (ascl:9909.004), CAMB (ascl:1102.026), etc.

The library structure simplifies the inclusion of non-standard cosmological models. Besides the functions related to cosmological quantities, this library also implements mathematical and statistical tools. The former were developed to enable the inclusion of other probes and/or theoretical models and to optimize the codes. The statistical framework comprises algorithms which define likelihood functions, minimization, Monte Carlo, Fisher Matrix and profile likelihood methods.

[ascl:1408.012]
LightcurveMC: An extensible lightcurve simulation program

LightcurveMC is a versatile and easily extended simulation suite for testing the performance of time series analysis tools under controlled conditions. It is designed to be highly modular, allowing new lightcurve types or new analysis tools to be introduced without excessive development overhead. The statistical tools are completely agnostic to how the lightcurve data is generated, and the lightcurve generators are completely agnostic to how the data will be analyzed. The use of fixed random seeds throughout guarantees that the program generates consistent results from run to run.

LightcurveMC can generate periodic light curves having a variety of shapes and stochastic light curves having a variety of correlation properties. It features two error models (Gaussian measurement and signal injection using a randomized sample of base light curves), testing of C1 shape statistic, periodograms, ΔmΔt plots, autocorrelation function plots, peak-finding plots, and Gaussian process regression. The code is written in C++ and R.

[ascl:1408.011]
GALAPAGOS-C: Galaxy Analysis over Large Areas

GALAPAGOS-C is a C implementation of the IDL code GALAPAGOS (ascl:1203.002). It processes a complete set of survey images through automation of source detection via SExtractor (ascl:1010.064), postage stamp cutting, object mask preparation, sky background estimation and complex two-dimensional light profile Sérsic modelling via GALFIT (ascl:1104.010). GALAPAGOS-C uses MPI-parallelization, thus allowing quick processing of large data sets. The code can fit multiple Sérsic profiles to each galaxy, each representing distinct galaxy components (e.g. bulge, disc, bar), and optionally can fit asymmetric Fourier mode distortions.

[ascl:1408.010]
VisiOmatic: Celestial image viewer

VisiOmatic is a web client for IIPImage (ascl:1408.009) and is used to visualize and navigate through large science images from remote locations. It requires STIFF (ascl:1110.006), is based on the Leaflet Javascript library, and works on both touch-based and mouse-based devices.

[ascl:1408.009]
IIPImage: Large-image visualization

IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.

[ascl:1408.008]
GALIC: Galaxy initial conditions construction

GalIC (GALaxy Initial Conditions) is an implementation of an iterative method to construct steady state composite halo-disk-bulge galaxy models with prescribed density distribution and velocity anisotropy that can be used as initial conditions for N-body simulations. The code is parallelized for distributed memory based on MPI. While running, GalIC produces "snapshot files" that can be used as initial conditions files. GalIC supports the three file formats ('type1' format, the slightly improved 'type2' format, and an HDF5 format) of the GADGET (ascl:0003.001) code for its output snapshot files.

[ascl:1408.007]
Skycorr: Sky emission subtraction for observations without plain sky information

Noll, S.; Kausch, W.; Kimeswenger, S.; Barden, M.; Jones, A. M.; Modigliani, A.; Szyszka, C.; Taylor, J.

Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.

[ascl:1408.006]
SPAM: Source Peeling and Atmospheric Modeling

SPAM is a extension to AIPS for reducing high-resolution, low-frequency radio interferometric observations. Direction-dependent ionospheric calibration and image-plane ripple suppression are among the features that help to make high-quality sub-GHz images. Data reductions are captured in well-tested Python scripts that execute AIPS tasks directly (mostly during initial data reduction steps), call high-level functions that make multiple AIPS or ParselTongue calls, and require few manual operations.

[ascl:1408.005]
POET: Planetary Orbital Evolution due to Tides

POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

[ascl:1408.004]
HEAsoft: Unified Release of FTOOLS and XANADU

HEASOFT combines XANADU, high-level, multi-mission software for X-ray astronomical spectral, timing, and imaging data analysis tasks, and FTOOLS (ascl:9912.002), general and mission-specific software to manipulate FITS files, into one package. It also contains contains the NuSTAR subpackage of tasks, NuSTAR Data Analysis Software (NuSTARDAS). The source code for the software can be downloaded; precompiled executables for the most widely used computer platforms are also available for download. As an additional service, HEAsoft tasks can be directly from a web browser via WebHera.

[ascl:1408.003]
PIA: ISOPHOT Interactive Analysis

Gabriel, Carlos; Acosta, Jose; Heinrichsen, Ingolf; Skaley, Detlef; Tai, Wai Ming; Morris, Huw; Merluzzi, Paola

ISOPHOT is one of the instruments on board the Infrared Space Observatory (ISO). ISOPHOT Interactive Analysis (PIA) is a scientific and calibration interactive data analysis tool for ISOPHOT data reduction. Written in IDL under Xwindows, PIA offers a full context sensitive graphical interface for retrieving, accessing and analyzing ISOPHOT data. It is available in two nearly identical versions; a general observers version omits the calibration sequences.

[ascl:1408.002]
LIA: LWS Interactive Analysis

The Long Wavelength Spectrometer (LWS) was one of two complementary spectrometers on the Infrared Space Observatory (ISO). LIA (LWS Interactive Analysis) is used for processing data from the LWS. It provides access to the different processing steps, including visualization of intermediate products and interactive manipulation of the data at each stage.

[ascl:1408.001]
Imfit: A Fast, Flexible Program for Astronomical Image Fitting

Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations.

Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime.

The C++ source code for Imfit is available under the GNU Public License.

[ascl:1407.020]
Halogen: Multimass spherical structure models for N-body simulations

Halogen, written in C, generates multimass spherically symmetric initial conditions for N-body simulations. A large family of radial density profiles is supported. The initial conditions are sampled from the full distribution function.

[ascl:1407.019]
EZ_Ages: Stellar population age calculator

EZ_Ages is an IDL code package that computes the mean, light-weighted stellar population age, [Fe/H], and abundance enhancements [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for unresolved stellar populations. This is accomplished by comparing Lick index line strengths between the data and the stellar population models of Schiavon (2007), using a method described in Graves & Schiavon (2008). The algorithm uses the inversion of index-index model grids to determine ages and abundances, and exploits the sensitivities of the various Lick indices to measure Mg, C, N, and Ca enhancements over their solar abundances with respect to Fe.

[ascl:1407.018]
AstroML: Machine learning and data mining in astronomy

Written in Python, AstroML is a library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. An optional companion library, astroML_addons, is available; it requires a C compiler and contains faster and more efficient implementations of certain algorithms in compiled code.

[ascl:1407.017]
e-MERLIN data reduction pipeline

Written in Python and utilizing ParselTongue (ascl:1208.020) to interface with AIPS (ascl:9911.003), the e-MERLIN data reduction pipeline processes, calibrates and images data from the UK's radio interferometric array (Multi-Element Remote-Linked Interferometer Network). Driven by a plain text input file, the pipeline is modular and can be run in stages. The software includes options to load raw data, average in time and/or frequency, flag known sources of interference, flag more comprehensively with SERPent (ascl:1312.001), carry out some or all of the calibration procedures (including self-calibration), and image in either normal or wide-field mode. It also optionally produces a number of useful diagnostic plots at various stages so data quality can be assessed.

[ascl:1407.016]
Brut: Automatic bubble classifier

Brut, written in Python, identifies bubbles in infrared images of the Galactic midplane; it uses a database of known bubbles from the Milky Way Project and Spitzer images to build an automatic bubble classifier. The classifier is based on the Random Forest algorithm, and uses the WiseRF implementation of this algorithm.

[ascl:1407.015]
BayesFlare: Bayesian method for detecting stellar flares

BayesFlare identifies flaring events in light curves released by the Kepler mission; it identifies even weak events by making use of the flare signal shape. The package contains functions to perform Bayesian hypothesis testing comparing the probability of light curves containing flares to that of them containing noise (or non-flare-like) artifacts. BayesFlare includes functions in its amplitude-marginalizer suite to account for underlying sinusoidal variations in light curve data; it includes such variations in the signal model, and then analytically marginalizes over them.

[ascl:1407.014]
VIDE: The Void IDentification and Examination toolkit

Sutter, P. M.; Lavaux, Guilhem; Hamaus, Nico; Pisani, Alice; Wandelt, Benjamin D.; Warren, Michael S.; Villaescusa-Navarro, Francisco; Zivick, Paul; Mao, Qingqing; Thompson, Benjamin B.

The Void IDentification and Examination toolkit (VIDE) identifies voids using a modified version of the parameter-free void finder ZOBOV (ascl:1304.005); a Voronoi tessellation of the tracer particles is used to estimate the density field followed by a watershed algorithm to group Voronoi cells into zones and subsequently voids. Output is a summary of void properties in plain ASCII; a Python API is provided for analysis tasks, including loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles.

[ascl:1407.013]
VStar: Variable star data visualization and analysis tool

VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.

[ascl:1407.012]
PINGSoft2: Integral Field Spectroscopy Software

PINGSoft2 visualizes, manipulates and analyzes integral field spectroscopy (IFS) data based on either 3D cubes or Raw Stacked Spectra (RSS) format. Any IFS data can be adapted to work with PINGSoft2, regardless of the original data format and the size/shape of the spaxel. Written in IDL, PINGSoft2 is optimized for fast visualization rendering; it also includes various routines useful for generic astronomy and spectroscopy tasks.

[ascl:1407.011]
kungifu: Calibration and reduction of fiber-fed IFU astronomical spectroscopy

kungifu is a set of IDL software routines designed for the calibration and reduction of fiber-fed integral-field unit (IFU) astronomical spectroscopy. These routines can perform optimal extraction of IFU data and allow relative and absolute wavelength calibration to within a few hundredths of a pixel (for unbinned data) across 1200-2000 fibers. kungifu does nearly Poisson-limited sky subtraction, even in the I band, and can rebin in wavelength. The Princeton IDLUTILS and IDLSPEC2D packages must be installed for kungifu to run.

[ascl:1407.010]
CLE: Coronal line synthesis

CLE, written in Fortran 77, synthesizes Stokes profiles of forbidden lines such as Fe XIII 1074.7nm, formed in magnetic dipole transitions under coronal conditions. The lines are assumed to be optically thin, excited by (anisotropic) photospheric radiation and thermal particle collisions.

[ascl:1407.009]
Period04: Statistical analysis of large astronomical time series

Period04 statistically analyzes large astronomical time series containing gaps. It calculates formal uncertainties, can extract the individual frequencies from the multiperiodic content of time series, and provides a flexible interface to perform multiple-frequency fits with a combination of least-squares fitting and the discrete Fourier transform algorithm. Period04, written in Java/C++, supports the SAMP communication protocol to provide interoperability with other applications of the Virtual Observatory. It is a reworked and extended version of Period98 (Sperl 1998) and PERIOD/PERDET (Breger 1990).

[ascl:1407.008]
Exopop: Exoplanet population inference

Exopop is a general hierarchical probabilistic framework for making justified inferences about the population of exoplanets. Written in python, it requires that the occurrence rate density be a smooth function of period and radius (employing a Gaussian process) and takes survey completeness and observational uncertainties into account. Exopop produces more accurate estimates of the whole population than standard procedures based on weighting by inverse detection efficiency.

[ascl:1407.007]
ASTRORAY: General relativistic polarized radiative transfer code

ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

[ascl:1407.006]
SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

[ascl:1407.005]
MATLAB package for astronomy and astrophysics

The MATLAB package for astronomy and astrophysics is a collection of software tools and modular functions for astronomy and astrophysics, written in the MATLAB environment. It includes over 700 MATLAB functions and a few tens of data files and astronomical catalogs. The scripts cover a wide range of subjects including: astronomical image processing, ds9 control, astronomical spectra, optics and diffraction phenomena, catalog retrieval and searches, celestial maps and projections, Solar System ephemerides, planar and spherical geometry, time and coordinates conversion and manipulation, cosmology, gravitational lensing, function fitting, general utilities, plotting utilities, statistics, and time series analysis.

[ascl:1407.004]
MCMAC: Monte Carlo Merger Analysis Code

Monte Carlo Merger Analysis Code (MCMAC) aids in the study of merging clusters. It takes observed priors on each subcluster's mass, radial velocity, and projected separation, draws randomly from those priors, and uses them in a analytic model to get posterior PDF's for merger dynamic properties of interest (e.g. collision velocity, time since collision).

[ascl:1407.003]
SPECDRE: Spectroscopy Data Reduction

Specdre performs spectroscopy data reduction and analysis. General features of the package include data cube manipulation, arc line calibration, resampling and spectral fitting. Particular care is taken with error propagation, including tracking covariance. SPECDRE is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1407.002]
TWODSPEC: Long-slit and optical fiber array spectra extensions for FIGARO

TWODSPEC offers programs for the reduction and analysis of long-slit and optical fiber array spectra, implemented as extensions to the FIGARO package (ascl:1203.013). The software are currently distributed as part of the Starlink software collection (ascl:1110.012). These programs are designed to do as much as possible for the user, to assist quick reduction and analysis of data; for example, LONGSLIT can fit multiple Gaussians to line profiles in batch and decides how many components to fit.

[ascl:1407.001]
The Starfish Diagram: Statistical visualization tool

The Starfish Diagram is a statistical visualization tool that simultaneously displays the properties of an individual and its parent sample through a series of histograms. The code is useful for large datasets for which one needs to understand the standing or significance of a single entry.

[ascl:1406.020]
STARMAN: Stellar photometry and image/table handling

STARMAN is a stellar photometry package designed for the reduction of data from imaging systems. Its main components are crowded-field photometry programs, aperture photometry programs, a star finding program, and a CCD reduction program.

Image and table handling are served by a large number of programs which have a general use in photometry and other types of work. The package is a coherent whole, for use in the entire process of stellar photometry from raw images to the final standard-system magnitudes and their plotting as color-magnitude and color-color diagrams. It was distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.019]
JCMTDR: Applications for reducing JCMT continuum data in GSD format

JCMTDR reduces continuum on-the-fly mapping data obtained with UKT14 or the heterodyne instruments using the IFD on the James Clerk Maxwell Telescope. This program reduces archive data and heterodyne beam maps and was distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.018]
GAUSSCLUMPS: Gaussian-shaped clumping from a spectral map

GAUSSCLUMPS decomposes a spectral map into Gaussian-shape clumps. The clump-finding algorithm decomposes a spectral data cube by iteratively removing 3-D Gaussians as representative clumps. GAUSSCLUMPS was originally a separate code distribution but is now a contributed package in GILDAS (ascl:1305.010). A reimplementation can also be found in CUPID (ascl:1311.007).

[ascl:1406.017]
COCO: Conversion of Celestial Coordinates

The COCO program converts star coordinates from one system to another. Both the improved IAU system, post-1976, and the old pre-1976 system are supported. COCO can perform accurate transformations between multiple coordinate systems. COCO’s user-interface is spartan but efficient and the program offers control over report resolution. All input is free-format, and defaults are provided where this is meaningful. COCO uses SLALIB (ascl:1403.025) and is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.016]
IUEDR: IUE Data Reduction package

IUEDR reduces IUE data. It addresses the problem of working from the IUE Guest Observer tape or disk file through to a calibrated spectrum that can be used in scientific analysis and is a complete system for IUE data reduction. IUEDR was distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.015]
IRCAMDR: IRCAM3 Data Reduction Software

Aspin, Colin; McCaughrean, Mark; Bridger, Alan B.; Baines, Dave; Beard, Steven; Chan, S.; Giddings, Jack; Hartley, K. F.; Horsfield, A.P.; Kelly, B. D.; Emerson, J. P.; Currie, Malcolm J.; Economou, Frossie

The UKIRT IRCAM3 data reduction and analysis software package, IRCAMDR (formerly ircam_clred) analyzes and displays any 2D data image stored in the standard Starlink (ascl:1110.012) NDF data format. It reduces and analyzes IRCAM1/2 data images of 62x58 pixels and IRCAM3 images of 256x256 size. Most of the applications will work on NDF images of any physical (pixel) dimensions, for example, 1024x1024 CCD images can be processed.

[ascl:1406.014]
IRAS90: IRAS Data Processing

Berry, David S.; Parsons, Diana C.; Gong, Wei; Currie, Malcolm J.; Warren-Smith, Rodney F.; Morris, Huw

IRAS90 is a suite of programs for processing IRAS data. It takes advantage of Starlink's (ascl:1110.012) ADAM environment, which provides multi-platform availability of both data and the programs to process it, and the user friendly interface of the parameter entry system. The suite can determine positions in astrometric coordinates, draw grids, and offers other functions for standard astronomical measurement and standard projections.

[ascl:1406.013]
CGS4DR: Automated reduction of data from CGS4

CGS4DR is data reduction software for the CGS4 instrument at UKIRT. The software can be used offline to reprocess CGS4 data. CGS4DR allows a wide variety of data reduction configurations, and can interlace oversampled data frames; reduce known bias, dark, flat, arc, object and sky frames; remove the sky, residual sky OH-lines (λ < 2.3 μm) and thermal emission (λ ≥ 2.3 μm) from data; and add data into groups for improved signal-to-noise. It can also extract and de-ripple a spectrum and offers a variety of ways to plot data, in addition to other useful features. CGS4DR is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.012]
POLMAP: Interactive data analysis package for linear spectropolarimetry

POLMAP provides routines for displaying and analyzing spectropolarimetry data that are not available in the complementary TSP package. Commands are provided to read and write TSP (ascl:1406.011) polarization spectrum format files from within POLMAP. This code is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.011]
TSP: Time-Series/Polarimetry Package

TSP is an astronomical data reduction package that handles time series data and polarimetric data from a variety of different instruments, and is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.010]
MATCH: A program for matching star lists

MATCH matches up items in two different lists, which can have two different systems of coordinates. The program allows the two sets of coordinates to be related by a linear, quadratic, or cubic transformation. MATCH was designed and written to work on lists of stars and other astronomical objects but can be applied to other types of data. In order to match two lists of N points, the main algorithm calls for O(N^6) operations; though not the most efficient choice, it does allow for arbitrary translation, rotation, and scaling.

[ascl:1406.009]
VADER: Viscous Accretion Disk Evolution Resource

VADER is a flexible, general code that simulates the time evolution of thin axisymmetric accretion disks in time-steady potentials. VADER handles arbitrary viscosities, equations of state, boundary conditions, and source and sink terms for both mass and energy.

[ascl:1406.008]
ASTROM: Basic astrometry program

ASTROM performs "plate reductions" by taking user-provided star positions and the (x,y) coordinates of the corresponding star images and establishes the relationship between (x,y) and (ra,dec), thus enabling the coordinates of unknown stars to be determined. ASTROM is distributed with the Starlink software (ascl:1110.012) and uses SLALIB (ascl:1403.025).

[ascl:1406.007]
RV: Radial Components of Observer's Velocity

The RV program produces a report listing the components, in a given direction, of the observer's velocity on a given date. This allows an observed radial velocity to be referred to an appropriate standard of rest -- typically either the Sun or an LSR.

As a secondary function, RV computes light time components to the Sun, thus allowing the times of phenomena observed from a terrestrial observatory to be referred to a heliocentric frame of reference. n.b. It will of course, in addition, be necessary to express the observations in the appropriate timescale as well as applying light time corrections. In particular, it is likely that an observed UTC will need to be converted to TDB as well as being corrected to the Sun.)

RV is distributed with the Starlink software collection (ascl:1110.012) and uses SLALIB (ascl:1403.025).

[ascl:1406.006]
FROG: Time-series analysis

FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

[ascl:1406.005]
PERIOD: Time-series analysis package

PERIOD searches for periodicities in data. It is distributed within the Starlink software collection (ascl:1110.012).

[ascl:1406.004]
Autoastrom: Autoastrometry for Mosaics

Autoastrom performs automated astrometric corrections on an astronomical image by automatically detecting objects in the frame, retrieving a reference catalogue, cross correlating the catalog with CCDPACK (ascl:1403.021) or MATCH, and using the ASTROM (ascl:1406.008) application to calculate a correction. It is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.003]
CoREAS: CORSIKA-based Radio Emission from Air Showers simulator

CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA (ascl:1202.006). As such, it is parameter-free, makes no assumptions on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA.

[ascl:1406.002]
PAMELA: Optimal extraction code for long-slit CCD spectroscopy

PAMELA is an implementation of the optimal extraction algorithm for long-slit CCD spectroscopy and is well suited for time-series spectroscopy. It properly implements the optimal extraction algorithm for curved spectra, including on-the-fly cosmic ray rejection as well as proper calculation and propagation of the errors. The software is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1406.001]
ASURV: Astronomical SURVival Statistics

ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

[ascl:1405.018]
ECHOMOP: Echelle data reduction package

ECHOMOP extracts spectra from 2-D data frames. These data can be single-order spectra or multi-order echelle spectra. A substantial degree of automation is provided, particularly in the traditionally manual functions for cosmic-ray detection and wavelength calibration; manual overrides are available. Features include robust and flexible order tracing, optimal extraction, support for variance arrays, and 2-D distortion fitting and extraction. ECHOMOP is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.017]
ESP: Extended Surface Photometry

ESP (Extended Surface Photometry) determines the photometric properties of galaxies and other extended objects. It has applications that detect flatfielding faults, remove cosmic rays, median filter images, determine image statistics and local background values, perform galaxy profiling, fit 2-D Gaussian profiles to galaxies, generate pie slice cross-sections of galaxies, and display profiling results. It is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.016]
DIPSO: Spectrum analysis code

DIPSO plots spectroscopic data rapidly and combines analysis and high-quality graphical output in a simple command-line driven interactive environment. It can be used, for example, to fit emission lines, measure equivalent widths and fluxes, do Fourier analysis, and fit models to spectra. A macro facility allows convenient execution of regularly used sequences of commands, and a simple Fortran interface permits "personal" software to be integrated with the program. DIPSO is part of the Starlink software collection (ascl:1110.012).

[ascl:1405.015]
CURSA: Catalog and Table Manipulation Applications

The CURSA package manipulates astronomical catalogs and similar tabular datasets. It provides facilities for browsing or examining catalogs; selecting subsets from a catalog; sorting and copying catalogs; pairing two catalogs; converting catalog coordinates between some celestial coordinate systems; and plotting finding charts and photometric calibration. It can also extract subsets from a catalog in a format suitable for plotting using other Starlink packages such as PONGO. CURSA can access catalogs held in the popular FITS table format, the Tab-Separated Table (TST) format or the Small Text List (STL) format. Catalogs in the STL and TST formats are simple ASCII text files. CURSA also includes some facilities for accessing remote on-line catalogs via the Internet. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1405.014]
POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1405.013]
PHOTOM: Photometry of digitized images

Eaton, Nicholas; Draper, Peter W.; Allan, Alasdair; Naylor, Tim; Mukai, Koji; Currie, Malcolm J.; McCaughrean, Mark

PHOTOM performs photometry of digitized images. It has two basic modes of operation: using an interactive display to specify the positions for the measurements, or obtaining those positions from a file. In both modes of operation PHOTOM performs photometry using either the traditional aperture method or via optimal extraction. When using the traditional aperture extraction method the target aperture can be circular or elliptical and its size and shape can be varied interactively on the display, or by entering values from the keyboard. Both methods allow the background sky level to be either sampled interactively by the manual positioning of an aperture, or automatically from an annulus surrounding the target object. PHOTOM is the photometry backend for the GAIA tool (ascl:1403.024) and is part of the Starlink software collection (ascl:1110.012).

[ascl:1405.012]
PISA: Position Intensity and Shape Analysis

PISA (Position, Intensity and Shape Analysis) routines deal with the location and parameterization of objects on an image frame. The core of this package is the routine PISAFIND which performs image analysis on a 2-dimensional data frame. The program searches the data array for objects that have a minimum number of connected pixels above a given threshold and extracts the image parameters (position, intensity, shape) for each object. The image parameters can be determined using thresholding techniques or an analytical stellar profile can be used to fit the objects. In crowded regions deblending of overlapping sources can be performed. PISA is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1405.011]
DATACUBE: A datacube manipulation package

DATACUBE is a command-line package for manipulating and visualizing data cubes. It was designed for integral field spectroscopy but has been extended to be a generic data cube tool, used in particular for sub-millimeter data cubes from the James Clerk Maxwell Telescope. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1405.010]
FLUXES: Position and flux density of planets

Jenness, Tim; Privett, Grant; Matthews, Henry; Hohenkerk, Catherine; Barnard, Vicki; Tilanus, Remo; Watt, Graeme; Emerson, Jim

FLUXES calculates approximate topocentric positions of the planets and also integrated flux densities of five of them at several wavelengths. These provide calibration information at the effective frequencies and beam-sizes employed by the UKT14, SCUBA and SCUBA-2 receivers on the JCMT telescope based on Mauna Kea, Hawaii. FLUXES is part of the bundle that comprises the Starlink multi-purpose astronomy software package (ascl:1110.012).

[ascl:1405.009]
ATV: Image display tool

Barth, Aaron J.; Schlegel, David; Finkbeiner, Doug; Colley, Wesley; Liu, Mike; Brauher, Jim; Cunningham, Nathaniel; Perrin, Marshall; Roe, Henry; Weaver, Hal

ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.

[ascl:1405.008]
TRIPP: Time Resolved Imaging Photometry Package

Geckeler, Ralf D.; Schuh, Sonja; Dreizler, Stefan; Deetjen, Jochen; Gleissner, Thomas; Risse, Patrick; Rauch, Thomas; Göhler, Eckart; Hügelmeyer, Simon; Husser, Tim-Oliver; Israel, Holger; Benlloch-Garcia, Sara; Pottschmidt, Katja; Wilms, Jörn

Written in IDL, TRIPP performs CCD time series reduction and analysis. It provides an on-line check of the incoming frames, performs relative aperture photometry and provides a set of time series tools, such as calculation of periodograms including false alarm probability determination, epoc folding, sinus fitting, and light curve simulations.

[ascl:1405.007]
FORWARD: Forward modeling of coronal observables

Gibson, Sarah E.; Kucera, Therese A.; Casini, Roberto; Dove, James; Forland, Blake; Judge, Philip; Rachmeler, Laurel

FORWARD forward models various coronal observables and can access and compare existing data. Given a coronal model, it can produce many different synthetic observables (including Stokes polarimetry), as well as plots of model plasma properties (density, magnetic field, etc.). It uses the CHIANTI database (ascl:9911.004) and CLE polarimetry synthesis code, works with numerical model datacubes, interfaces with the PFSS module of SolarSoft (ascl:1208.013), includes several analytic models, and connects to the Virtual Solar Observatory for downloading data in a format directly comparable to model predictions.

[ascl:1405.006]
PROPER: Optical propagation routines

PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Distributed as IDL source code, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).

[ascl:1405.005]
HIIPHOT: Automated Photometry of H II Regions

HIIPHOT enables accurate photometric characterization of H II regions while permitting genuine adaptivity to irregular source morphology. It makes a first guess at the shapes of all sources through object recognition techniques; it then allows for departure from such idealized "seeds" through an iterative growing procedure and derives photometric corrections for spatially coincident diffuse emission from a low-order surface fit to the background after exclusion of all detected sources.

[ascl:1405.004]
Defringeflat: Fringe pattern removal

The IDL package Defringeflat identifies and removes fringe patterns from images such as spectrograph flat fields. It uses a wavelet transform to calculate the frequency spectrum in a region around each point of a one-dimensional array. The wavelet transform amplitude is reconstructed from (smoothed) parameters obtaining the fringe's wavelet transform, after which an inverse wavelet transform is performed to obtain the computed fringe pattern which is then removed from the flat.

[ascl:1405.003]
The Hammer: An IDL Spectral Typing Suite

The Hammer can classify spectra in a variety of formats with targets spanning the MK spectral sequence. It processes a list of input spectra by automatically estimating each object's spectral type and measuring activity and metallicity tracers in late type stars. Once automatic processing is complete, an interactive interface allows the user to manually tweak the final assigned spectral type through visual comparison with a set of templates.

[ascl:1405.002]
TelFit: Fitting the telluric absorption spectrum

TelFit calculates the best-fit telluric absorption spectrum in high-resolution optical and near-IR spectra. The best-fit model can then be divided out to remove the telluric contamination. Written in Python, TelFit is essentially a wrapper to LBLRTM, the Line-By-Line Radiative Transfer Model, and simplifies the process of generating a telluric model.

[ascl:1405.001]
LBLRTM: Line-By-Line Radiative Transfer Model

LBLRTM (Line-By-Line Radiative Transfer Model) is an accurate line-by-line model that is efficient and highly flexible. LBLRTM attributes provide spectral radiance calculations with accuracies consistent with the measurements against which they are validated and with computational times that greatly facilitate the application of the line-by-line approach to current radiative transfer applications. LBLRTM has been extensively validated against atmospheric radiance spectra from the ultra-violet to the sub-millimeter.

LBLRTM's heritage is in FASCODE [Clough et al., 1981, 1992].

[ascl:1404.017]
Spextool: Spectral EXtraction tool

Spextool (Spectral EXtraction tool) is an IDL-based data reduction package for SpeX, a medium resolution near-infrared spectrograph on the NASA IRTF. It performs all of the steps necessary to produce spectra ready for analysis and publication including non-linearity corrections, flat fielding, wavelength calibration, telluric correction, flux calibration, and order merging.

[ascl:1404.016]
AST: World Coordinate Systems in Astronomy

The AST library provides a comprehensive range of facilities for attaching world coordinate systems to astronomical data, for retrieving and interpreting that information in a variety of formats, including FITS-WCS, and for generating graphical output based on it. Core projection algorithms are provided by WCSLIB (ascl:1108.003) and astrometry is provided by the PAL (ascl:1606.002) and SOFA (ascl:1403.026) libraries. AST bindings are available in Python (pyast), Java (JNIAST) and Perl (Starlink::AST). AST is used as the plotting and astrometry library in DS9 and GAIA, and is distributed separately and as part of the Starlink software collection.

[ascl:1404.015]
TTVFast: Transit timing inversion

TTVFast efficiently calculates transit times for n-planet systems and the corresponding radial velocities. The code uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times (Nesvorny et al. 2013); it is available in both C and Fortran.

[ascl:1404.014]
SpecPro: Astronomical spectra viewer and analyzer

SpecPro is an interactive program for viewing and analyzing spectra, particularly in the context of modern imaging surveys. In addition to displaying the 1D and 2D spectrum, SpecPro can simultaneously display available stamp images as well as the spectral energy distribution of a source. This extra information can help significantly in assessing a spectrum.

[ascl:1404.013]
WFC3UV_GC: WFC3 UVIS geometric-distortion correction

WFC3UV_GC is an improved geometric-distortion solution for the Hubble Space Telescope UVIS channel of Wide Field Camera 3 for ten broad-band filters. The solution is made up of three parts:

- a 3rd-order polynomial to deal with the general optical distortion
- a table of residuals that accounts for both chip-related anomalies and fine-structure introduced by the filter
- a linear transformation to put the two chips into a convenient master frame

[ascl:1404.012]
RegPT: Regularized cosmological power spectrum

RegPT computes the power spectrum in flat wCDM class models based on the RegPT treatment when provided with either of transfer function or matter power spectrum. It then gives the multiple-redshift outputs for power spectrum, and optionally provides correlation function data. The Fortran code has two major options for power spectrum calculations; -fast, which quickly computes the power spectrum at two-loop level (typically a few seconds) using the pre-computed data set of PT kernels for fiducial cosmological models, and -direct, in which the code first applies the fast method, and then follows the regularized expression for power spectrum to directly evaluate the multi-dimensional integrals. The output results are the power spectrum of direct calculation and difference of the results between fast and direct method. The code also gives the data set of PT diagrams necessary for power spectrum calculations from which the power spectrum can be constructed.

[ascl:1404.011]
CAP_LOESS_1D & CAP_LOESS_2D: Recover mean trends from noisy data

The IDL programs CAP_LOESS_1D and CAP_LOESS_2D provide improved implementations of the one-dimensional (Clevelend 1979) and two-dimensional (Cleveland & Devlin 1988) Locally Weighted Regression (LOESS) methods to recover the mean trends of the population from noisy data in one or two dimensions. They include a robust approach to deal with outliers (bad data).

[ascl:1404.010]
VictoriaReginaModels: Stellar evolutionary tracks

The Victoria–Regina stellar models are comprised of seventy-two grids of stellar evolutionary tracks accompanied by complementary zero-age horizontal branches and are presented in “equivalent evolutionary phase” (.eep) files. This Fortran 77 software interpolates isochrones, isochrone population functions, luminosity functions, and color functions of stellar evolutionary tracks.

[ascl:1404.009]
carma_pack: MCMC sampler for Bayesian inference

carma_pack is an MCMC sampler for performing Bayesian inference on continuous time autoregressive moving average models. These models may be used to model time series with irregular sampling. The MCMC sampler utilizes an adaptive Metropolis algorithm combined with parallel tempering.

[ascl:1404.008]
Comet: Multifunction VOEvent broker

Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

[ascl:1404.007]
AMBIG: Automated Ambiguity-Resolution Code

AMBIG is a fast, automated algorithm for resolving the 180° ambiguity in vector magnetic field data, including those data from Hinode/Spectropolarimeter. The Fortran-based code is loosely based on the Minimum Energy Algorithm, and is distributed to provide ambiguity-resolved data for the general user community.

[ascl:1404.006]
TORUS: Radiation transport and hydrodynamics code

TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

[ascl:1404.005]
SER: Subpixel Event Repositioning Algorithms

Subpixel Event Repositioning (SER) techniques significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. Unlike ACIS SER models that are restricted to corner split (3- and 4-pixel) events and assume that such events take place at the split pixel corners, this IDL code uses two-pixel splits as well, and incorporates more realistic estimates of photon impact positions.

[ascl:1404.004]
SAS: Science Analysis System for XMM-Newton observatory

The Science Analysis System (SAS) is an extensive suite of software tasks developed to process the data collected by the XMM-Newton Observatory. The SAS extracts standard (spectra, light curves) and/or customized science products, and allows reproductions of the reduction pipelines run to get the PPS products from the ODFs files. SAS includes a powerful and extensive suite of FITS file manipulation packages based on the Data Access Layer library.

[ascl:1404.002]
ZDCF: Z-Transformed Discrete Correlation Function

The cross-correlation function (CCF) is commonly employed in the study of AGN, where it is used to probe the structure of the broad line region by line reverberation, to study the continuum emission mechanism by correlating multi-waveband light curves and to seek correlations between the variability and other AGN properties. The z -transformed discrete correlation function (ZDCF) is a method for estimating the CCF of sparse, unevenly sampled light curves. Unlike the commonly used interpolation method, it does not assume that the light curves are smooth and it does provide errors on its estimates.

[ascl:1404.001]
LTS_LINEFIT & LTS_PLANEFIT: LTS fit of lines or planes

LTS_LINEFIT and LTS_PLANEFIT are IDL programs to robustly fit lines and planes to data with intrinsic scatter. The code combines the Least Trimmed Squares (LTS) robust technique, proposed by Rousseeuw (1984) and optimized in Rousseeuw & Driessen (2006), into a least-squares fitting algorithm which allows for intrinsic scatter. This method makes the fit converge to the correct solution even in the presence of a large number of catastrophic outliers, where the much simpler σ-clipping approach can converge to the wrong solution.

[ascl:1403.026]
SOFA: Standards of Fundamental Astronomy

SOFA (Standards Of Fundamental Astronomy) is a collection of subprograms, in source-code form, that implement official IAU algorithms for fundamental astronomy computations. SOFA offers more than 160 routines for fundamental astronomy, including time scales (including dealing with leap seconds), Earth rotation, sidereal time, precession, nutation, polar motion, astrometry and transforms between various reference systems (e.g. BCRS, ICRS, GCRS, CIRS, TIRS, ITRS). The subprograms are supported by 55 vector/matrix routines, and are available in both Fortran77 and C implementations.

[ascl:1403.025]
SLALIB: A Positional Astronomy Library

SLALIB is a library of routines that make accurate and reliable positional-astronomy applications easier to write. Most SLALIB routines are concerned with astronomical position and time, but a number have wider trigonometrical, numerical or general applications. A Fortran implementation of SLALIB under GPL licensing is available as part of Starlink (ascl:1110.012).

[ascl:1403.024]
GAIA: Graphical Astronomy and Image Analysis Tool

GAIA is an image and data-cube display and analysis tool for astronomy. It provides the usual facilities of image display tools, plus more astronomically useful ones such as aperture and optimal photometry, contouring, source detection, surface photometry, arbitrary region analysis, celestial coordinate readout, calibration and modification, grid overlays, blink comparison, defect patching and the ability to query on-line catalogues and image servers. It can also display slices from data-cubes, extract and visualize spectra as well as perform full 3D rendering. GAIA uses the Starlink software environment (ascl:1110.012) and is derived from the ESO SkyCat tool (ascl:1109.019).

[ascl:1403.023]
ASTERIX: X-ray Data Processing System

Peden, Jim; Allan, David J.; Ponman, Trevor; Saxton, Richard; Andrews, Phillip; Beard, Richard; Vallance, Bob

ASTERIX is a general purpose X-ray data reduction package optimized for ROSAT data reduction. ASTERIX uses the Starlink software environment (ascl:1110.012).

[ascl:1403.022]
KAPPA: Kernel Applications Package

KAPPA comprising about 180 general-purpose commands for image processing, data visualization, and manipulation of the standard Starlink data format--the NDF. It works with Starlink's various specialized packages; in addition to the NDF, KAPPA can also process data in other formats by using the "on-the-fly" conversion scheme. Many commands can process data arrays of arbitrary dimension, and others work on both spectra and images. KAPPA operates from both the UNIX C-shell and the ICL command language. KAPPA uses the Starlink environment (ascl:1110.012).

[ascl:1403.021]
CCDPACK: CCD Data Reduction Package

CCDPACK contains programs to debias, remove dark current, flatfield, register, resample and normalize data from single- or multiple-CCD instruments. The basic reduction stages can be set up using an X based GUI that controls an automated reduction system so one can to start working without any detailed knowledge of the package (or indeed of CCD reduction). Registration is performed using graphical, script based or automated techniques that keep the amount of work to a minimum. CCDPACK uses the Starlink environment (ascl:1110.012).

[ascl:1403.020]
disc2vel: Tangential and radial velocity components derivation

Disc2vel derives tangential and radial velocity components in the equatorial plane of a barred stellar disc from the observed line-of-sight velocity, assuming geometry of a thin disc. The code is written in IDL, and the method assumes that the bar is close to steady state (i.e. does not evolve fast) and that both morphology and kinematics are symmetrical with respect to the major axis of the bar.

[ascl:1403.019]
KINEMETRY: Analysis of 2D maps of kinematic moments of LOSVD

KINEMETRY, written in IDL, analyzes 2D maps of the moments of the line-of-sight velocity distribution (LOSVD). It generalizes the surface photometry to all moments of the LOSVD. It performs harmonic expansion of 2D maps of observed moments (surface brightness, velocity, velocity dispersion, h3, h4, etc.) along the best fitting ellipses (either fixed or free to change along the radii) to robustly quantify maps of the LOSVD moments, describe trends in structures, and detect morphological and kinematic sub-components.

[ascl:1403.018]
JAM: Jeans Anisotropic MGE modeling method

The Jeans Anisotropic MGE (JAM) modeling method uses the Multi-Gaussian Expansion parameterization for the galaxy surface brightness. The code allows for orbital anisotropy (three-integrals distribution function) and also provides the full second moment tensor, including proper motions and radial velocities.

[ascl:1403.017]
MGE_FIT_SECTORS: Multi-Gaussian Expansion fits to galaxy images

MGE_FIT_SECTORS performs Multi-Gaussian Expansion (MGE) fits to galaxy images. The MGE parameterizations are useful in the construction of realistic dynamical models of galaxies, PSF deconvolution of images, the correction and estimation of dust absorption effects, and galaxy photometry. The algorithm is well suited for use with multiple-resolution images (e.g. Hubble Space Telescope (HST) and ground-based images).

[ascl:1403.016]
Viewpoints: Fast interactive linked plotting of large multivariate data sets

Viewpoints is an interactive tool for exploratory visual analysis of large high-dimensional (multivariate) data. It uses linked scatterplots to find relations in a few seconds that can take much longer with other plotting tools. Its features include linked scatter plots with brushing, dynamic histograms, normalization, and outlier detection/removal.

[ascl:1403.015]
computePk: Power spectrum computation

ComputePk computes the power spectrum in cosmological simulations. It is MPI parallel and has been tested up to a 4096^3 mesh. It uses the FFTW library. It can read Gadget-3 and GOTPM outputs, and computes the dark matter component. The user may choose between NGP, CIC, and TSC for the mass assignment scheme.

[ascl:1403.014]
T(dust) as a function of sSFR

This IDL code returns the dust temperature of a galaxy from its redshift, SFR and stellar mass; it can also predict the observed monochromatic fluxes of the galaxy. These monochromatic fluxes correspond to those of a DH SED template with the appropriate dust temperature and the appropriate normalization. Dust temperatures and fluxes predictions are only valid and provided in the redshift, stellar mass, SSFR and wavelength ranges 0 < z < 2.5, Mstar> 10^10 Msun, 10^-11 < SSFR[yr-1]< 10^-7 and 30um < lambda_rest < 2mm.

[ascl:1403.013]
BAOlab: Image processing program

BAOlab is an image processing package written in C that should run on nearly any UNIX system with just the standard C libraries. It reads and writes images in standard FITS format; 16- and 32-bit integer as well as 32-bit floating-point formats are supported. Multi-extension FITS files are currently not supported. Among its tools are ishape for size measurements of compact sources, mksynth for generating synthetic images consisting of a background signal including Poisson noise and a number of pointlike sources, imconvol for convolving two images (a “source” and a “kernel”) with each other using fast fourier transforms (FFTs) and storing the output as a new image, and kfit2d for fitting a two-dimensional King model to an image.

[ascl:1403.012]
YNOGKM: Time-like geodesics in the Kerr-Newmann Spacetime calculations

YNOGKM (Yun-Nan observatories geodesic in a Kerr-Newman spacetime for massive particles) performs fast calculation of time-like geodesics in the Kerr-Newman (K-N) spacetime; it is a direct extension of YNOGK (Yun-Nan observatories geodesic Kerr) calculating null geodesics in a Kerr spacetime. The four Boyer-Lindquis coordinates and proper time are expressed as functions of a parameter p semi-analytically by using the Weierstrass' and Jacobi's elliptic functions and integrals. The elliptic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code. The source Fortran file ynogkm.f90 contains three modules: constants, rootfind, ellfunction, and blcoordinates.

[ascl:1403.011]
RMHB: Hierarchical Reverberation Mapping

RMHB is a hierarchical Bayesian code for reverberation mapping (RM) that combines results of a sparsely sampled broad line region (BLR) light curve and a large sample of active galactic nuclei (AGN) to infer properties of the sample of the AGN. The key idea of RM is to measure the time lag τ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of τ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass MBH. A major difficulty with RM campaigns is the large amount of data needed to measure τ. RMHB allows a clear interpretation of a posterior distribution for hyperparameters describing the sample of AGN.

[ascl:1403.010]
Inverse Beta: Inverse cumulative density function (CDF) of a Beta distribution

The Beta Inverse code solves the inverse cumulative density function (CDF) of a Beta distribution, allowing one to sample from the Beta prior directly. The Beta distribution is well suited as a prior for the distribution of the orbital eccentricities of extrasolar planets; imposing a Beta prior on orbital eccentricity is valuable for any type of observation of an exoplanet where eccentricity can affect the model parameters (e.g. transits, radial velocities, microlensing, direct imaging). The Beta prior is an excellent description of the current, empirically determined distribution of orbital eccentricities and thus employing it naturally incorporates an observer’s prior experience of what types of orbits are probable or improbable. The default parameters in the code are currently set to the Beta distribution which best describes the entire population of exoplanets with well-constrained orbits.

[ascl:1403.009]
ISAP: ISO Spectral Analysis Package

Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki

ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.

[ascl:1403.008]
SURF: Submm User Reduction Facility

SURF reduces data from the SCUBA instrument from the James Clerk Maxwell Telescope. Facilities are provided for reducing all the SCUBA observing modes including jiggle, scan and photometry modes. SURF uses the Starlink environment (ascl:1110.012).

[ascl:1403.007]
Unified EOS for neutron stars

The equation of state (EOS) of dense matter is a crucial input for the neutron-star structure calculations. This Fortran code can obtain a "unified EOS" in the many-body calculations based on a single effective nuclear Hamiltonian, and is valid in all regions of the neutron star interior. For unified EOSs, the transitions between the outer crust and the inner crust and between the inner crust and the core are obtained as a result of many-body calculations.

[ascl:1403.006]
CHIMERA: Core-collapse supernovae simulation code

Mezzacappa, Anthony; Hix, Raph; Messor, Bronson; Lentz, Eric; Chertkow, Merek Austin; Parete-Koon, Suzanne; Lingerfelt, Eric

CHIMERA simulates core collapse supernovas; it is three-dimensional and accounts for the differing energies of neutrinos. This massively parallel multiphysics code conserves total energy (gravitational, internal, kinetic, and neutrino) to within 0.5 B, given a conservative gravitational potential. CHIMERA has three main components: a hydro component, a neutrino transport component, and a nuclear reaction network component. It also includes a Poisson solver for the gravitational potential and a sophisticated equation of state.

[ascl:1403.005]
GRay: Massive parallel ODE integrator

GRay is a massive parallel ordinary differential equation integrator that employs the "stream processing paradigm." It is designed to efficiently integrate billions of photons in curved spacetime according to Einstein's general theory of relativity. The code is implemented in CUDA C/C++.

[ascl:1403.004]
Lightcone: Light-cone generating script

Lightcone works with simulated galaxy data stored in a relational database to rearrange the data in a shape of a light-cone; simulated galaxy data is expected to be in a box volume. The light-cone constructing script works with output from the SAGE semi-analytic model (ascl:1601.006), but will work with any other model that has galaxy positions (and other properties) saved per snapshots of the simulation volume distributed in time. The database configuration file is set up for PostgreSQL RDBMS, but can be modified for use with any other SQL database.

[ascl:1403.003]
MLZ: Machine Learning for photo-Z

The parallel Python framework MLZ (Machine Learning and photo-Z) computes fast and robust photometric redshift PDFs using Machine Learning algorithms. It uses a supervised technique with prediction trees and random forest through TPZ that can be used for a regression or a classification problem, or a unsupervised methods with self organizing maps and random atlas called SOMz. These machine learning implementations can be efficiently combined into a more powerful one resulting in robust and accurate probability distributions for photometric redshifts.

[ascl:1403.002]
pyExtinction: Atmospheric extinction

The Python script/package pyExtinction computes and plots total atmospheric extinction from decomposition into physical components (Rayleigh attenuation, ozone absorption, aerosol extinction). Its default extinction parameters are adapted to mean Mauna Kea summit conditions.

[ascl:1403.001]
GPU-D: Generating cosmological microlensing magnification maps

GPU-D is a GPU-accelerated implementation of the inverse ray-shooting technique used to generate cosmological microlensing magnification maps. These maps approximate the source plane magnification patterns created by an ensemble of stellar-mass compact objects within a foreground macrolens galaxy. Unlike other implementations, GPU-D solves the gravitational lens equation without any approximation. Due to the high computational intensity and high degree of parallelization inherent in the algorithm, it is ideal for brute-force implementation on GPUs. GPU-D uses CUDA for GPU acceleration and require NVIDIA devices to run.

[ascl:1402.035]
MGHalofit: Modified Gravity extension of Halofit

MGHalofit is a modified gravity extension of the fitting formula for the matter power spectrum of HALOFIT and its improvement by Takahashi et al. MGHalofit is implemented in MGCAMB, which is based on CAMB. MGHalofit calculates the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. Comparing MGHalofit predictions at various redshifts (z<=1) to the f(R) simulations, the accuracy on P(k) is 6% at k<1 h/Mpc and 12% at 1<k<10 h/Mpc respectively.

[ascl:1402.034]
PyWiFeS: Wide Field Spectrograph data reduction pipeline

PyWiFeS is a Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). Its core data processing routines are built on standard scientific Python packages commonly used in astronomical applications. It includes an implementation of a global optical model of the spectrograph which provides wavelengths solutions accurate to ˜0.05 Å (RMS) across the entire detector. Through scripting, PyWiFeS can enable batch processing of large quantities of data.

[ascl:1402.033]
libsharp: Library for spherical harmonic transforms

Libsharp is a collection of algorithms for efficient conversion between maps on the sphere and their spherical harmonic coefficients. It supports a wide range of pixelisations (including HEALPix, GLESP, and ECP). This library is a successor of libpsht; it adds MPI support for distributed memory systems and SHTs of fields with arbitrary spin, and also supports new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. libsharp is written in portable C99; it provides an interface accessible to other programming languages such as C++, Fortran, and Python.

[ascl:1402.032]
HALOFIT: Nonlinear distribution of cosmological mass and galaxies

HALOFIT provides an explanatory framework for galaxy bias and clustering and has been incorporated into CMB packages such as CMBFAST (ascl:9909.004) and CAMB (ascl:1102.026). It attains a reasonable level of precision, though the halo model does not match N-body data perfectly. The code is written in Fortran 77. HALOFIT tends to underpredict the power on the smallest scales in standard LCDM universes (although HALOFIT was designed to work for a much wider range of power spectra); its accuracy can be improved by using a supplied correction.

[ascl:1402.031]
gyrfalcON: N-body code

gyrfalcON (GalaxY simulatoR using falcON) is a full-fledged N-body code using Dehnen’s force algorithm of complexity O(N) (falcON); this algorithm is approximately 10 times faster than an optimally coded tree code. The code features individual adaptive time steps and individual (but fixed) softening lengths. gyrfalcON is included in and requires NEMO to run.

[ascl:1402.030]
P2SAD: Particle Phase Space Average Density

P2SAD computes the Particle Phase Space Average Density (P2SAD) in galactic haloes. The model for the calculation is based on the stable clustering hypothesis in phase space, the spherical collapse model, and tidal disruption of substructures. The multiscale prediction for P2SAD computed by this IDL code can be used to estimate signals sensitive to the small scale structure of dark matter distributions (e.g. dark matter annihilation). The code computes P2SAD averaged over the whole virialized region of a Milky-Way-size halo at redshift zero.

[ascl:1402.029]
wssa_utils: WSSA 12 micron dust map utilities

wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.

[ascl:1402.028]
Commander 2: Bayesian CMB component separation and analysis

Bull, Phil; Eriksen, Hans Kristian; Gjerløw, Eirik; Gorski, Krzysztof; Jewell, Jeff; Seljebotn, Dag Sverre; Wehus, Ingunn

Commander 2 is a Gibbs sampling code for joint CMB estimation and component separation. The Commander framework uses a parametrized physical model of the sky to perform statistically-rigorous analyses of multi-frequency, multi-resolution CMB data on the full and partial (flat) sky, as well as cross-correlation analyses with large-scale structure datasets.

[ascl:1402.027]
Darth Fader: Galaxy catalog cleaning method for redshift estimation

Darth Fader is a wavelet-based method for extracting spectral features from very noisy spectra. Spectra for which a reliable redshift cannot be measured are identified and removed from the input data set automatically, resulting in a clean catalogue that gives an extremely low rate of catastrophic failures even when the spectra have a very low S/N. This technique may offer a significant boost in the number of faint galaxies with accurately determined redshifts.

[ascl:1402.026]
athena: Tree code for second-order correlation functions

athena is a 2d-tree code that estimates second-order correlation functions from input galaxy catalogues. These include shear-shear correlations (cosmic shear), position-shear (galaxy-galaxy lensing) and position-position (spatial angular correlation). Written in C, it includes a power-spectrum estimator implemented in Python; this script also calculates the aperture-mass dispersion. A test data set is available.

[ascl:1402.025]
BAOlab: Baryon Acoustic Oscillations software

Using the 2-point correlation function, BAOlab aids the study of Baryon Acoustic Oscillations (BAO). The code generates a model-dependent covariance matrix which can change the results both for BAO detection and for parameter constraints.

[ascl:1402.024]
QuickReduce: Data reduction pipeline for the WIYN One Degree Imager

QuickReduce quickly reduces data for ODI and is optimized for a first data inspection during acquisition at the the telescope. When installed on the ODI observer's interface, QuickReduce, coded in Python, performs all basic reduction steps as well as more advanced corrections for pupil-ghost removal, fringe correction and masking of persistent pixels and is capable enough for science-quality data reductions. It can also add an accurate astrometric WCS solution based on the 2MASS reference system as well as photometric zeropoint calibration for frames covered by the SDSS foot-print. The pipeline makes use of multiple CPU-cores wherever possible, resulting in an execution time of only a few seconds per frame, thus offering the ODI observer a convenient way to closely monitor data quality.

[ascl:1402.023]
HydraLens: Gravitational lens model generator

HydraLens generates gravitational lens model files for Lenstool, PixeLens, glafic and Lensmodel and can also translate lens model files among these four lens model codes. Through a GUI, the user enters a new model by specifying the type of model and is then led through screens to collect the data. Written in MS Visual Basic, the code can also translate an existing model from any of the four supported codes to any of the other three.

[ascl:1402.001]
Vissage: ALMA VO Desktop Viewer

Vissage (VISualisation Software for Astronomical Gigantic data cubEs) is a FITS browser primarily targeting FITS data cubes obtained from ALMA. Vissage offers basic functionality for viewing three-dimensional data cubes, integrated intensity map, flipbook, channel map, and P-V diagram. It has several color sets and color scales available, offers panning and zooming, and can connect with the ALMA WebQL system and the JVO Subaru Image Cutout Service.

[ascl:1402.002]
Glue: Linked data visualizations across multiple files

Glue, written in Python, links visualizations of scientific datasets across many files, allowing for interactive, linked statistical graphics of multiple files. It supports many file formats including common image formats (jpg, tiff, png), ASCII tables, astronomical image and table formats (FITS, VOT, IPAC), and HDF5. Custom data loaders can also be easily added. Glue is highly scriptable and extendable.

[ascl:1402.003]
astroplotlib: Astronomical library of plots

Ubeda, Leonardo; Davis, Matt; Diaz, Rosa; Hammer, Derek; Philippe-Lajoie, Charles; Le Blanc, Tommy; Lim, Pey-Lian; Viana, Alex

Astropoltlib is a multi-language astronomical library of plots, a collection of templates useful for creating paper-quality figures. Most of the codes for producing the plots are written in IDL and/or Python; a very few are written in Mathematica. Any plot can be downloaded and customized to one's own needs.

[ascl:1402.004]
PyVO: Python access to the Virtual Observatory

PyVO provides access to remote data and services of the Virtual observatory (VO) using Python. It allows archive searches for data of a particular type or related to a particular topic and query submissions to obtain data to a particular archive to download selected data products. PyVO supports querying the VAO registry; simple data access services (DAL) to access images (SIA), source catalog records (Cone Search), spectra (SSA), and spectral line emission/absorption data (SLAP); and object name resolution (for converting names of objects in the sky into positions). PyVO requires both AstroPy and NumPy.

[ascl:1402.005]
Aladin Lite: Lightweight sky atlas for browsers

Aladin Lite is a lightweight version of the Aladin tool, running in the browser and geared towards simple visualization of a sky region. It allows visualization of image surveys (JPEG multi-resolution HEALPix all-sky surveys) and permits superimposing tabular (VOTable) and footprints (STC-S) data. Aladin Lite is powered by HTML5 canvas technology and is easily embeddable on any web page and can also be controlled through a Javacript API.

[ascl:1402.006]
Munipack: General astronomical image processing software

Munipack provides easy-to-use tools for all astronomical astrometry and photometry, access to Virtual Observatory as well as FITS files operations and a simple user interface along with a powerful processing engine. Its many features include a FITS images viewer that allows for basic (astronomical) operations with frames, advanced image processor supporting an infinite dynamic range and advanced color management, and astrometric calibration of images. The astrometry module uses robust statistical estimators and algorithms. The photometry module provides the classical method detection of stars and implements the aperture photometry, calibrated on the basis of photon statistics, and allows for the automatic detection and aperture photometry of stars; calibration on absolute fluxes is possible. The software also provides a standard way to correct for all the bias, dark and flat-field frames, and many other features.

[ascl:1402.007]
SPLAT: Spectral Analysis Tool

SPLAT is a graphical tool for displaying, comparing, modifying and analyzing astronomical spectra stored in NDF, FITS and TEXT files as well as in NDX format. It can read in many spectra at the same time and then display these as line plots. Display windows can show one or several spectra at the same time and can be interactively zoomed and scrolled, centered on specific wavelengths, provide continuous coordinate readout, produce printable hardcopy and be configured in many ways. Analysis facilities include the fitting of a polynomial to selected parts of a spectrum, the fitting of Gaussian, Lorentzian and Voigt profiles to emission and absorption lines and the filtering of spectra using average, median and line-shape window functions as well as wavelet denoising. SPLAT also supports a full range of coordinate systems for spectra, which allows coordinates to be displayed and aligned in many different coordinate systems (wavelength, frequency, energy, velocity) and transformed between these and different standards of rest (topocentric, heliocentric, dynamic and kinematic local standards of rest, etc). SPLAT is distributed as part of the Starlink (ascl:1110.012) software collection.

[ascl:1402.008]
SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

[ascl:1402.009]
GalSim: Modular galaxy image simulation toolkit

GalSim is a fast, modular software package for simulation of astronomical images. Though its primary purpose is for tests of weak lensing analysis methods, it can be used for other purposes. GalSim allows galaxies and PSFs to be represented in a variety of ways, and can apply shear, magnification, dilation, or rotation to a galaxy profile including lensing-based models from a power spectrum or NFW halo profile. It can write images in regular FITS files, FITS data cubes, or multi-extension FITS files. It can also compress the output files using various compressions including gzip, bzip2, and rice. The user interface is in python or via configuration scripts, and the computations are done in C++ for speed.

[ascl:1402.010]
CPL: Common Pipeline Library

The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

[ascl:1402.011]
KROME: Chemistry package for astrophysical simulations

Grassi, Tommaso; Bovino, Stefano; Prieto, Joaquín; Seifried, Daniel; Simoncini, Eugenio; Gianturco, Francesco; Schleicher, Dominik

KROME, given a chemical network (in CSV format), automatically generates all the routines needed to solve the kinetics of the system modeled as a system of coupled Ordinary Differential Equations. It provides a large set of physical processes connected to chemistry, including photochemistry, cooling, heating, dust treatment, and reverse kinetics. KROME is flexible and can be used for a wide range of astrophysical simulations. The package contains a network for primordial chemistry, a small metal network appropriate for the modeling of low metallicities environments, a detailed network for the modeling of molecular clouds, and a network for planetary atmospheres as well as a framework for the modelling of the dust grain population.

[ascl:1402.012]
QUICKCV: Cosmic variance calculator

QUICKCV is an IDL sample variance/cosmic variance calculator for some geometry.

[ascl:1402.013]
CASSIS: Interactive spectrum analysis

CASSIS (Centre d'Analyse Scientifique de Spectres Infrarouges et Submillimetriques), written in Java, is suited for broad-band spectral surveys to speed up the scientific analysis of high spectral resolution observations. It uses a local spectroscopic database made of the two molecular spectroscopic databases JPL and CDMS, as well as the atomic spectroscopic database NIST. Its tools include a LTE model and the RADEX model connected to the LAMDA molecular collisional database. CASSIS can build a line list fitting the various transitions of a given species and to directly produce rotational diagrams from these lists. CASSIS is fully integrated into HIPE, the Herschel Interactive Processing Environment, as a plug-in.

[ascl:1402.014]
ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter

ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

[ascl:1402.015]
BF_dist: Busy Function fitting

Westmeier, Tobias; Jurek, Russell; Obreschkow, Danail; Koribalski, Bärbel S.; Staveley-Smith, Lister

The "busy function" accurately describes the characteristic double-horn HI profile of many galaxies. Implemented in a C/C++ library and Python module called BF_dist, it is a continuous, differentiable function that consists of only two basic functions, the error function, erf(x), and a polynomial, |x|^n, of degree n >= 2. BF_dist offers great flexibility in fitting a wide range of HI profiles from the Gaussian profiles of dwarf galaxies to the broad, asymmetric double-horn profiles of spiral galaxies, and can be used to parametrize observed HI spectra of galaxies and the construction of spectral templates for simulations and matched filtering algorithms accurately and efficiently.

[ascl:1402.016]
FAMA: Fast Automatic MOOG Analysis

Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella

FAMA (Fast Automatic MOOG Analysis), written in Perl, computes the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) automatically and independently of any subjective approach. Based on the widely-used MOOG code, it simultaneously searches for three equilibria, excitation equilibrium, ionization balance, and the relationship between logn(FeI) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. Convergence criteria are not fixed "a priori" but instead are based on the quality of the spectra.

[ascl:1402.017]
UVMULTIFIT: Fitting astronomical radio interferometric data

UVMULTIFIT, written in Python, is a versatile library for fitting models directly to visibility data. These models can depend on frequency and fitting parameters in an arbitrary algebraic way. The results from the fit to the visibilities of sources with sizes smaller than the diffraction limit of the interferometer are superior to the output obtained from a mere analysis of the deconvolved images. Though UVMULTIFIT is based on the CASA package, it can be easily adapted to other analysis packages that have a Python API.

[ascl:1402.018]
TARDIS: Temperature And Radiative Diffusion In Supernovae

TARDIS creates synthetic spectra for supernova ejecta and is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. TARDIS uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It is written in Python with a modular design that facilitates the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency; this allows users to choose a level of sophistication appropriate for their application.

[ascl:1402.019]
ANAigm: Analytic model for attenuation by the intergalactic medium

ANAigm offers an updated version of the Madau model for the attenuation by the intergalactic neutral hydrogen against the radiation from distant objects. This new model is written in Fortran90 and predicts, for some redshifts, more than 0.5--1 mag different attenuation magnitudes through usual broad-band filters relative to the original Madau model.

[ascl:1402.020]
XNS: Axisymmetric equilibrium configuration of neutron stars

XNS solves for the axisymmetric equilibrium configuration of neutron stars in general relativity. It can model differentially rotating and magnetic fields that are either purely toroidal, purely poloidal or in the mixed twisted torus configuration. Einsten's equations are solved using the XCFC approximation for the metric in spherical coordinates.

[ascl:1402.021]
PyGFit: Python Galaxy Fitter

PyGFit measures PSF-matched photometry from images with disparate pixel scales and PSF sizes; its primary purpose is to extract robust spectral energy distributions (SEDs) from crowded images. It fits blended sources in crowded, low resolution images with models generated from a higher resolution image, thus minimizing the impact of crowding and also yielding consistently measured fluxes in different filters which minimizes systematic uncertainty in the final SEDs.

[ascl:1402.022]
DexM: Semi-numerical simulations for very large scales

DexM (Deus ex Machina) efficiently generates density, halo, and ionization fields on very large scales and with a large dynamic range through seminumeric simulation. These properties are essential for reionization studies, especially those involving rare, massive QSOs, since one must be able to statistically capture the ionization field. DexM can also generate ionization fields directly from the evolved density field to account for the ionizing contribution of small halos. Semi-numerical simulations use more approximate physics than numerical simulations, but independently generate 3D cosmological realizations. DexM is portable and fast, and allows for explorations of wide swaths of astrophysical parameter space and an unprecedented dynamic range.

[ascl:1401.001]
Kirin: N-body simulation library for GPUs

The use of graphics processing units offers an attractive alternative to specialized hardware, like GRAPE. The Kirin library mimics the behavior of the GRAPE hardware and uses the GPU to execute the force calculations. It is compatible with the GRAPE6 library; existing code that uses the GRAPE6 library can be recompiled and relinked to use the GPU equivalents of the GRAPE6 functions. All functions in the GRAPE6 library have an equivalent GPU implementation. Kirin can be used for direct N-body simulations as well as for treecodes; it can be run with shared-time steps or with block time-steps and allows non-softened potentials. As Kirin makes use of CUDA, it works only on NVIDIA GPUs.

[ascl:1401.002]
SpacePy: Python-Based Tools for the Space Science Community

SpacePy provides data analysis and visualization tools for the space science community. Written in Python, it builds on the capabilities of the NumPy and MatPlotLib packages to make basic data analysis, modeling and visualization easier. It contains modules for handling many complex time formats, obtaining data from the OMNI database, and accessing the powerful Onera library. It contains a library of commonly used empirical relationships, performs association analysis, coordinate transformations, radiation belt modeling, and CDF reading, and creates publication quality plots.

[ascl:1401.003]
PyMidas: Interface from Python to Midas

PyMidas is an interface between Python and MIDAS, the major ESO legacy general purpose data processing system. PyMidas allows a user to exploit both the rich legacy of MIDAS software and the power of Python scripting in a unified interactive environment. PyMidas also allows the usage of other Python-based astronomical analysis systems such as PyRAF.

[ascl:1401.004]
Reflex: Graphical workflow engine for data reduction

Reflex provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. It allows graphically specifying the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches. It eases inspection of the intermediate and final data products and allows repetition of selected processing steps to optimize the data reduction. The data organization necessary to reduce the data is built into the system and is fully automatic; advanced users can plug their own modules and steps into the data reduction sequence. Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so users can immediately start experimenting and familiarize themselves with the system.

[ascl:1401.005]
PyDrizzle: Python version of Drizzle

PyDrizzle provides a semi-automated interface for computing the parameters necessary for running Drizzle. PyDrizzle performs the task of determining the parameters necessary for aligning images based on the WCS information in the input image headers, as well as any supplemental alignment information provided in shift files, and combines the images onto the same WCS. Though it does not identify cosmic rays, it has the ability to ignore pixels flagged as bad, such as pixels identified by other programs as affected by cosmic rays.

[ascl:1401.006]
convolve_image.pro: Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes

The IDL package convolve_image.pro transforms images between different instrumental point spread functions (PSFs). It can load an image file and corresponding kernel and return the convolved image, thus preserving the colors of the astronomical sources. Convolution kernels are available for images from Spitzer (IRAC MIPS), Herschel (PACS SPIRE), GALEX (FUV NUV), WISE (W1 - W4), Optical PSFs (multi- Gaussian and Moffat functions), and Gaussian PSFs; they allow the study of the Spectral Energy Distribution (SED) of extended objects and preserve the characteristic SED in each pixel.

[ascl:1401.007]
abundance: High Redshift Cluster Abundance

abundance, written in Fortran, provides driver and fitting routines to compute the predicted number of clusters in a ΛCDM cosmology that agrees with CMB, SN, BAO, and H0 measurements (up to 2010) at some specified parameter confidence and the mass that would rule out that cosmology at some specified sample confidence. It also computes the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses.

[ascl:1401.008]
massconvert: Halo Mass Conversion

massconvert, written in Fortran, provides driver and fitting routines for converting halo mass definitions from one spherical overdensity to another assuming an NFW density profile. In surveys that probe ever lower cluster masses and temperatures, sample variance is generally comparable to or greater than shot noise and thus cannot be neglected in deriving precision cosmological constraints; massconvert offers an accurate fitting formula for the conversion between different definitions of halo mass.

[ascl:1401.009]
PPF module for CAMB

The main CAMB code supports smooth dark energy models with constant equation of state and sound speed of one, or a quintessence model based on a potential. This modified code generalizes it to support a time-dependent equation of state w(a) that is allowed to cross the phantom divide, i.e. w=-1 multiple times by implementing a Parameterized Post-Friedmann(PPF) prescription for the dark energy perturbations.

[ascl:1401.010]
SunPy: Python for Solar Physicists

SunPy is a community-developed free and open-source software package for solar physics and is an alternative to the SolarSoft data analysis environment. SunPy provides data structures for representing the most common solar data types (images, lightcurves, and spectra) and integration with the Virtual Solar Observatory (VSO) and the Heliophysics Event Knowledgebase (HEK) for data acquisition.

[ascl:1312.001]
SERPent: Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry

SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.

[ascl:1312.002]
WND-CHARM: Multi-purpose image classifier

WND-CHARM quantitatively analyzes morphologies of galaxy mergers and associate galaxies by their morphology. It computes a large set (up to ~2700) of image features for each image based on the WND-CHARM algorithm. It can then split the images into training and test sets and classify them. The software extracts the image content descriptor from raw images, image transforms, and compound image transforms. The most informative features are then selected, and the feature vector of each image is used for classification and similarity measurement using Fisher discriminant scores and a variation of Weighted Nearest Neighbor analysis. WND-CHARM's results comparable favorably to the performance of task-specific algorithms developed for tested datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.

[ascl:1312.003]
IMCOM: IMage COMbination

IMCOM allows for careful treatment of aliasing in undersampled imaging data and can be used to test the feasibility of multi-exposure observing strategies for space-based survey missions. IMCOM can also been used to explore focal plane undersampling for an optical space mission such as Euclid.

[ascl:1312.004]
BIE: Bayesian Inference Engine

The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates $ heta$ distributed according to $P( heta|D)$ so moments are trivially obtained by summing of the ensemble of variates.

[ascl:1312.005]
XAssist: Automatic analysis of X-ray astrophysics data

XAssist provides automation of X-ray astrophysics, specifically data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts, with an emphasis on galaxies. It has been used for data from Chandra, ROSAT, XMM-Newton, and other various projects.

[ascl:1312.006]
LTL: The Little Template Library

LTL provides dynamic arrays of up to 7-dimensions, subarrays and slicing, support for fixed-size vectors and matrices including basic linear algebra operations, expression templates-based evaluation, and I/O facilities for ascii and FITS format files. Utility classes for command-line processing and configuration-file processing are provided as well.

[ascl:1312.007]
SkyNet: Neural network training tool for machine learning in astronomy

SkyNet is an efficient and robust neural network training code for machine learning. It is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet is implemented in C/C++ and fully parallelized using MPI.

[ascl:1312.008]
BAMBI: Blind Accelerated Multimodal Bayesian Inference

BAMBI (Blind Accelerated Multimodal Bayesian Inference) is a Bayesian inference engine that combines the benefits of SkyNet (ascl:1312.007) with MultiNest (ascl:1109.006). It operated by simultaneously performing Bayesian inference using MultiNest and learning the likelihood function using SkyNet. Once SkyNet has learnt the likelihood to sufficient accuracy, inference finishes almost instantaneously.

[ascl:1312.009]
YODA: Yet another Object Detection Application

YODA, implemented in C++, performs object detection, photometry and star-galaxy classification on astronomical images. Developed specifically to cope with the multi-band imaging data common in modern extragalactic imaging surveys, it is modular and therefore easily adaptable to specific needs. YODA works under conditions of inhomogeneous background noise across the detection frame, and performs accurate aperture photometry in image sets not sharing a common coordinate system or pixel scale as is often the case in present-day extragalactic survey work.

[ascl:1312.010]
GalaxyCount: Galaxy counts and variance calculator

GalaxyCount calculates the number and standard deviation of galaxies in a magnitude limited observation of a given area. The methods to calculate both the number and standard deviation may be selected from different options. Variances may be computed for circular, elliptical and rectangular window functions.

[ascl:1312.011]
A_phot: Photon Asymmetry

Photon asymmetry is a novel robust substructure statistic for X-ray cluster observations with only a few thousand counts; it exhibits better stability than power ratios and centroid shifts and has a smaller statistical uncertainty than competing substructure parameters, allowing for low levels of substructure to be measured with confidence. A_phot computes the photon asymmetry (A_phot) parameter for morphological classification of clusters and allows quantifying substructure in samples of distant clusters covering a wide range of observational signal-to-noise ratios. The python scripts are completely automatic and can be used to rapidly classify galaxy cluster morphology for large numbers of clusters without human intervention.

[ascl:1312.012]
BINGO: BI-spectra and Non-Gaussianity Operator

The BI-spectra and Non-Gaussianity Operator (BINGO) code, written in Fortran, computes the scalar bi-spectrum and the non-Gaussianity parameter fNL in single field inflationary models involving the canonical scalar field. BINGO can calculate all the different contributions to the bi-spectrum and the parameter fNL for an arbitrary triangular configuration of the wavevectors.

[ascl:1312.013]
CJAM: First and second velocity moments calculations

CJAM calculates first and second velocity moments using the Jeans Anisotropic MGE (JAM) models of Cappellari (2008) and Cappellari (2012). These models have been extended to calculate all three (x, y, z) first moments and all six (xx, yy, zz, xy, xz, yz) second moments. CJAM, written in C, is based on the IDL implementation of the line-of-sight calculations by Michele Cappellari.

[ascl:1312.014]
SL1M: Synthesis through L1 Minimization

SL1M deconvolves radio synthesis images based on direct inversion of the measured visibilities that can deal with the non-coplanar base line effect and can be applied to telescopes with direction dependent gains. The code is more computationally demanding than some existing methods, but is highly parallelizable and scale well to clusters of CPUs and GPUs. The algorithm is also extremely flexible, allowing the solution of the deconvolution problem on arbitrarily placed pixels.

[ascl:1311.001]
SciDB: Open Source DMAS for Scientific Research

SciDB is a DMAS (Data Management and Analytics Software System) optimized for data management of big data and for big analytics. SciDB is organized around multidimensional array storage, a generalization of relational tables, and is designed to be scalable up to petabytes and beyond. Complex analytics are simplified with SciDB because arrays and vectors are first-class objects with built-in optimized operations. Spatial operators and time-series analysis are easy to express. Interfaces to common scientific tools like R as well as programming languages like C++ and Python are provided.

[ascl:1311.002]
PyCOOL: Cosmological Object-Oriented Lattice code

PyCOOL is a Python + CUDA program that solves the evolution of interacting scalar fields in an expanding universe. PyCOOL uses modern GPUs to solve this evolution and to make the computation much faster. The code includes numerous post-processing functions that provide useful information about the cosmological model, including various spectra and statistics of the fields.

[ascl:1311.003]
AstroAsciiData: ASCII table Python module

ASCII tables continue to be one of the most popular and widely used data exchange formats in astronomy. AstroAsciiData, written in Python, imports all reasonably well-formed ASCII tables. It retains formatting of data values, allows column-first access, supports SExtractor style headings, performs column sorting, and exports data to other formats, including FITS, Numpy/Numarray, and LaTeX table format. It also offers interchangeable comment character, column delimiter and null value.

[ascl:1311.004]
PlanetPack: Radial-velocity time-series analysis tool

PlanetPack facilitates and standardizes the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter that can run either in an interactive mode or in a batch mode of automatic script interpretation.

[ascl:1311.005]
Spheroid: Electromagnetic Scattering by Spheroids

Spheroid determines the size distribution of polarizing interstellar dust grains based on electromagnetic scattering by spheroidal particles. It contains subroutines to treat the case of complex refractive indices, and also includes checks for some limiting cases.

[ascl:1311.006]
CIAO: Chandra Interactive Analysis of Observations

CIAO is a data analysis system written for the needs of users of the Chandra X-ray Observatory. Because Chandra data is 4-dimensional (2 spatial, time, energy) and each dimension has many independent elements, CIAO was built to handle N-dimensional data without concern about which particular axes were being analyzed. Apart from a few Chandra instrument tools, CIAO is mission independent. CIAO tools read and write several formats, including FITS images and tables (which includes event files) and IRAF imh files. CIAO is a powerful system for the analysis of many types of data.

[ascl:1311.007]
CUPID: Clump Identification and Analysis Package

The CUPID package allows the identification and analysis of clumps of emission within 1, 2 or 3 dimensional data arrays. Whilst targeted primarily at sub-mm cubes, it can be used on any regularly gridded 1, 2 or 3D data. A variety of clump finding algorithms are implemented within CUPID, including the established ClumpFind (ascl:1107.014) and GaussClumps algorithms. In addition, two new algorithms called FellWalker and Reinhold are also provided. CUPID allows easy inter-comparison between the results of different algorithms; the catalogues produced by each algorithm contains a standard set of columns containing clump peak position, clump centroid position, the integrated data value within the clump, clump volume, and the dimensions of the clump. In addition, pixel masks are produced identifying which input pixels contribute to each clump. CUPID is distributed as part of the Starlink (ascl:1110.012) software collection.

[ascl:1311.008]
CUPID: Customizable User Pipeline for IRS Data

Written in c, the Customizable User Pipeline for IRS Data (CUPID) allows users to run the Spitzer IRS Pipelines to re-create Basic Calibrated Data and extract calibrated spectra from the archived raw files. CUPID provides full access to all the parameters of the BCD, COADD, BKSUB, BKSUBX, and COADDX pipelines, as well as the opportunity for users to provide their own calibration files (e.g., flats or darks). CUPID is available for Mac, Linux, and Solaris operating systems.

[ascl:1311.009]
CosmoTherm: Thermalization code

CosmoTherm allows precise computation of CMB spectral distortions caused by energy release in the early Universe. Different energy-release scenarios (e.g., decaying or annihilating particles) are implemented using the Green's function of the cosmological thermalization problem, allowing fast computation of the distortion signal. The full thermalization problem can be solved on a case-by-case basis for a wide range of energy-release scenarios using the full PDE solver of CosmoTherm. A simple Monte-Carlo toolkit is included for parameter estimation and forecasts using the Green's function method.

[ascl:1311.010]
ARPACK: Solving large scale eigenvalue problems

ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required; only the action of the matrix on a vector is needed. ARPACK is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas.

[ascl:1311.011]
MUSIC: MUlti-Scale Initial Conditions

MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10−4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

[ascl:1311.012]
ETC: Exposure Time Calculator

Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

Written for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey, the exposure time calculator (ETC) works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The program may be useful outside of WFIRST but no warranties are made regarding its suitability for general purposes. The software is available for download; IPAC maintains a web interface for those who wish to run a small number of cases without having to download the package.

[ascl:1310.001]
ORAC-DR: Astronomy data reduction pipeline

ORAC-DR is a generic data reduction pipeline infrastructure; it includes specific data processing recipes for a number of instruments. It is used at the James Clerk Maxwell Telescope, United Kingdom Infrared Telescope, AAT, and LCOGT. This pipeline runs at the JCMT Science Archive hosted by CADC to generate near-publication quality data products; the code has been in use since 1998.

[ascl:1310.002]
PyMSES: Python modules for RAMSES

PyMSES provides a python solution for getting data out of RAMSES (ascl:1011.007) astrophysical fluid dynamics simulations. It permits transparent manipulation of large simulations and interfaces with common Python libraries and existing code, and can serve as a post-processing toolbox for data analysis. It also does three-dimensional volume rendering with a specific algorithm optimized to work on RAMSES distributed data (Guillet et al. 2011 and Jones et a. 2011).

[ascl:1310.003]
AIDA: Adaptive Image Deconvolution Algorithm

AIDA is an implementation and extension of the MISTRAL myopic deconvolution method developed by Mugnier et al. (2004) (see J. Opt. Soc. Am. A 21:1841-1854). The MISTRAL approach has been shown to yield object reconstructions with excellent edge preservation and photometric precision when used to process astronomical images. AIDA improves upon the original MISTRAL implementation. AIDA, written in Python, can deconvolve multiple frame data and three-dimensional image stacks encountered in adaptive optics and light microscopic imaging.

[ascl:1310.004]
AIRY: Astronomical Image Restoration in interferometrY

Carbillet, Marcel; Fini, Luca; Anconelli, Barbara; Desiderà, Gabriele; La Camera, Andrea; Bertero, Mario; Boccacci, Patrizia

AIRY simulates optical and near-infrared interferometric observations; it can also perform subsequent image restoration or deconvolution. It is based on the CAOS (ascl:1106.017) Problem Solving Environment. Written in IDL, it consists of a set of specific modules, each handling a particular task.

[ascl:1310.005]
ASPRO 2: Astronomical Software to PRepare Observations

ASPRO 2 (Astronomical Software to PRepare Observations) is an observation preparation tool for interferometric observations with the VLTI or other interferometers such as CHARA and SUSI. It is a Java standalone program that provides a dynamic graphical interface to simulate the projected baseline evolution during observations (super-synthesis) and derive visibilities for targets (i.e., single star, binaries, user defined FITS image). It offers other useful functions such as the ability to load and save your observation settings and generate Observing Blocks.

[ascl:1310.006]
AIPSLite: ParselTongue extension for distributed AIPS processing

AIPSLite is an extension for ParselTongue (ascl:1208.020) that allows machines without an AIPS (ascl:9911.003) distribution to bootstrap themselves with a minimal AIPS environment. This allows deployment of AIPS routines on distributed systems, which is useful when data can be easily be split into smaller chunks and handled independently.

[ascl:1310.007]
SMURF: SubMillimeter User Reduction Facility

Jenness, Tim; Chapin, Edward L.; Berry, David S.; Gibb, Andy G.; Tilanus, Remo P. J.; Balfour, Jennifer; Tilanus, Vincent; Currie, Malcolm J.

SMURF reduces submillimeter single-dish continuum and heterodyne data. It is mainly targeted at data produced by the James Clerk Maxwell Telescope but data from other telescopes have been reduced using the package. SMURF is released as part of the bundle that comprises Starlink (ascl:1110.012) and most of the packages that use it. The two key commands are MAKEMAP for the creation of maps from sub millimeter continuum data and MAKECUBE for the creation of data cubes from heterodyne array instruments. The software can also convert data from legacy JCMT file formats to the modern form to allow it to be processed by MAKECUBE. SMURF is a core component of the ORAC-DR (ascl:1310.001) data reduction pipeline for JCMT.

[ascl:1310.008]
SPECX: Spectral Line Data Reduction Package

SPECX is a general purpose line data reduction system. It can read and write FITS data cubes but has specialist support for the GSD format data from the James Clerk Maxwell Telescope. It includes commands to store and retrieve intermediate spectra in storage registers and perform the fitting and removal of polynomial, harmonic and Gaussian baselines.

SPECX can filter and edit spectra and list and display spectra on a graphics terminal. It is able to perform Fourier transform and power spectrum calculations, process up to eight spectra (quadrants) simultaneously with either the same or different center, and assemble a number of reduced individual spectra into a map file and contour or greyscale any plane or planes of the resulting cube.

Two versions of SPECX are distributed. Version 6.x is the VMS and Unix version and is distributed as part of the Starlink software collection. Version 7.x is a complete rewrite of SPECX distributed for Windows.

[ascl:1309.001]
AstroImageJ: ImageJ for Astronomy

AstroImageJ is generic ImageJ (ascl:1206.013) with customizations to the base code and a packaged set of astronomy specific plugins. It reads and writes FITS images with standard headers, displays astronomical coordinates for images with WCS, supports photometry for developing color-magnitude data, offers flat field, scaled dark, and non-linearity processing, and includes tools for precision photometry that can be used during real-time data acquisition.

[ascl:1309.002]
VAPHOT: Precision differential aperture photometry package

VAPHOT is an aperture photometry package for precise time−series photometry of uncrowded fields, geared towards the extraction of target lightcurves of eclipsing or transiting systems. Its photometric main routine works within the IRAF (ascl:9911.002) environment and is built upon the standard aperture photometry task 'phot' from IRAF, using optimized aperture sizes. The associated analysis program 'VANALIZ' works in the IDL environment. It performs differential photometry with graphical and numerical output. VANALIZ produces plots indicative of photometric stability and permits the interactive evaluation and weighting of comparison stars. Also possible is the automatic or manual suppression of data-points and the output of statistical analyses. Several methods for the calculation of the reference brightness are offered. Specific routines for the analysis of transit 'on'-'off' photometry, comparing the target brightness inside against outside a transit are also available.

[ascl:1309.003]
LOSP: Liège Orbital Solution Package

LOSP is a FORTRAN77 numerical package that computes the orbital parameters of spectroscopic binaries. The package deals with SB1 and SB2 systems and is able to adjust either circular or eccentric orbits through a weighted fit.

[ascl:1309.004]
Spherical: Geometry operations and searches on spherical surfaces

The Spherical Library provides an efficient and accurate mathematical representation of shapes on the celestial sphere, such as sky coverage and footprints. Shapes of arbitrary complexity and size can be dynamically created from simple building blocks, whose exact area is also analytically computed. This methodology is also perfectly suited for censoring problematic parts of datasets, e.g., bad seeing, satelite trails or diffraction spikes of bright stars.

[ascl:1309.005]
SATMC: SED Analysis Through Monte Carlo

SATMC is a general purpose, MCMC-based SED fitting code written for IDL and Python. Following Bayesian statistics and Monte Carlo Markov Chain algorithms, SATMC derives the best fit parameter values and returns the sampling of parameter space used to construct confidence intervals and parameter-parameter confidence contours. The fitting may cover any range of wavelengths. The code is designed to incorporate any models (and potential priors) of the user's choice. The user guide lists all the relevant details for including observations, models and usage under both IDL and Python.

[ascl:1309.006]
VOPlot: Toolkit for Scientific Discovery using VOTables

Kale, Sonali; Vijayaraman, T. M.; Kembhavi, Ajit; Krishnan, P. R.; Navelkar, Amey, Hedge, Hrishikesh; Kulkarni, Pallavi; Balaji, K. D.

VOPlot is a tool for visualizing astronomical data. It was developed in Java and acts on data available in VOTABLE, ASCII and FITS formats. VOPlot is available as a stand alone version, which is to be installed on the user's machine, or as a web-based version fully integrated with the VizieR database.

[ascl:1309.007]
VOMegaPlot: Plotting millions of points

Urunkar, Nilesh; Kembhavi, Ajit K.; Navelkar, Ameya; Pandya, Jagruti; Moosani, Vivekananda; Nair, Prameela; Shaikh, Mohasin

VOMegaPlot, a Java based tool, has been developed for visualizing astronomical data that is available in VOTable format. It has been specifically optimized for handling large number of points (in the range of millions). It has the same look and feel as VOPlot (ascl:1309.006) and both these tools have certain common functionality.

[ascl:1309.008]
VOStat: Statistical analysis of astronomical data

VOStat allows astronomers to use both simple and sophisticated statistical routines on large datasets. This tool uses the large public-domain statistical computing package R. Datasets can be uploaded in either ASCII or VOTABLE (preferred) format. The statistical computations are performed by the VOStat and results are returned to the user.

[ascl:1308.001]
SMILE: Orbital analysis and Schwarzschild modeling of triaxial stellar systems

SMILE is interactive software for studying a variety of 2D and 3D models, including arbitrary potentials represented by a basis-set expansion, a spherical-harmonic expansion with coefficients being smooth functions of radius (splines), or a set of fixed point masses. Its main features include:

- orbit integration in various 2d and 3d potentials (including N-body and basis-set representations of an arbitrary potential);
- methods for analysis of orbital class, fundamental frequencies, regular or chaotic nature of an orbit, computation of Lyapunov exponents;
- Poincaré sections (in 2d) and frequency maps (in 3d) for analyzing orbital structure of potential;
- construction of self-consistent Schwarzschild models; and
- convenient visualization and integrated GUI environment, and a console scriptable version.

[ascl:1308.002]
LOSSCONE: Capture rates of stars by a supermassive black hole

LOSSCONE computes the rates of capture of stars by supermassive black holes. It uses a stationary and time-dependent solutions for the Fokker-Planck equation describing the evolution of the distribution function of stars due to two-body relaxation, and works for arbitrary spherical and axisymmetric galactic models that are provided by the user in the form of M(r), the cumulative mass as a function of radius.

[ascl:1308.003]
MapCurvature: Map Projections

MapCurvature, written in IDL, can create map projections with Goldberg-Gott indicatrices. These indicatrices measure the flexion and skewness of a map, and are useful for determining whether features are faithfully reproduced on a particular projection.

[ascl:1308.004]
LensEnt2: Maximum-entropy weak lens reconstruction

LensEnt2 is a maximum entropy reconstructor of weak lensing mass maps. The method takes each galaxy shape as an independent estimator of the reduced shear field and incorporates an intrinsic smoothness, determined by Bayesian methods, into the reconstruction. The uncertainties from both the intrinsic distribution of galaxy shapes and galaxy shape estimation are carried through to the final mass reconstruction, and the mass within arbitrarily shaped apertures are calculated with corresponding uncertainties. The input is a galaxy ellipticity catalog with each measured galaxy shape treated as a noisy tracer of the reduced shear field, which is inferred on a fine pixel grid assuming positivity, and smoothness on scales of w arcsec where w is an input parameter. The ICF width w can be chosen by computing the evidence for it.

[ascl:1308.005]
APPSPACK: Asynchronous Parallel Pattern Search

APPSPACK is serial or parallel, derivative-free optimization software for solving nonlinear unconstrained, bound-constrained, and linearly-constrained optimization problems, with possibly noisy and expensive objective functions.

[ascl:1308.006]
BASIN: Beowulf Analysis Symbolic INterface

BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.

[ascl:1308.007]
SYNAPPS: Forward-modeling of supernova spectroscopy data sets

SYNAPPS is a spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer. This open-source code is aimed primarily at the problem of systematically interpreting large sets of SN spectroscopy data.

[ascl:1308.008]
SYN++: Standalone SN spectrum synthesis

SYN++ is a standalone SN spectrum synthesis program. It is a rewrite of the original SYNOW (ascl:1010.055) code in modern C++. It offers further enhancements, a new structured input control file format, and the atomic data files have been repackaged and are more complete than those of SYNOW.

[ascl:1308.009]
CReSyPS: Stellar population synthesis code

CReSyPS (Code Rennais de Synthèse de Populations Stellaires) is a stellar population synthesis code that determines core overshooting amount for Magellanic clouds main sequence stars.

[ascl:1308.010]
GYRE: Stellar oscillation code

GYRE is an oscillation code that solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes. The code is accurate (up to 6th order in the number of grid points), robust, and makes efficient use of multiple processor cores and/or nodes.

[ascl:1308.011]
CRUSH: Comprehensive Reduction Utility for SHARC-2 (and more...)

CRUSH is an astronomical data reduction/imaging tool for certain imaging cameras, especially at the millimeter, sub-millimeter, and far-infrared wavelengths. It supports the SHARC-2, LABOCA, SABOCA, ASZCA, p-ArTeMiS, PolKa, GISMO, MAKO and SCUBA-2 instruments. The code is written entirely in Java, allowing it to run on virtually any platform. It is normally run from the command-line with several arguments.

[ascl:1308.012]
RADLite: Raytracer for infrared line spectra

RADLite is a raytracer that is optimized for producing infrared line spectra and images from axisymmetric density structures, originally developed to function on top of the dust radiative transfer code RADMC. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. It includes functionality for simulating telescopic images for optical/IR/midIR/farIR telescopes. It takes advantage of multi-threaded CPUs and includes an escape-probability non-LTE module.

[ascl:1308.013]
THELI GUI: Optical, near- & mid-infrared imaging data reduction

THELI is an easy-to-use, end-to-end pipeline for the reduction of any optical, near-IR and mid-IR imaging data. It combines a variety of processing algorithms and third party software into a single, homogeneous tool. Over 90 optical and infrared instruments at observatories world-wide are pre-configured; more can be added by the user. The code's online appendix contains three walk-through examples using public data (optical, near-IR and mid-IR) and additional online documentation is available for training and troubleshooting.

[ascl:1308.014]
SPEX: High-resolution cosmic X-ray spectra analysis

SPEX is optimized for the analysis and interpretation of high-resolution cosmic X-ray spectra. The software is especially suited for fitting spectra obtained by current X-ray observatories like XMM-Newton, Chandra, and Suzaku. SPEX can fit multiple spectra with different model components simultaneously and handles highly complex models with many free parameters.

[ascl:1308.015]
Ceph_code: Cepheid light-curves fitting

Ceph_code fits multi-band Cepheid light-curves using templates derived from OGLE observations. The templates include short period stars (<10 day) and overtone stars.

[ascl:1308.016]
JHelioviewer: Visualization software for solar physics data

Mueller, Daniel; Dimitoglou, George; Caplins, Benjamin; Garcia Ortiz, Juan Pablo; Wamsler, Benjamin; Hughitt, Keith; Alexanderian, Alen; Ireland, Jack; Amadigwe, Desmond; Fleck, Bernhard

JHelioview is open source visualization software for solar physics data. The JHelioviewer client application enables users to browse petabyte-scale image archives; the JHelioviewer server integrates a JPIP server, metadata catalog, and an event server. JHelioview uses the JPEG 2000 image compression standard, which provides efficient access to petabyte-scale image archives; JHelioviewer also allows users to locate and manipulate specific data sets.

[ascl:1308.017]
ChiantiPy: Python package for the CHIANTI atomic database

ChiantiPy is an object-orient Python package for calculating astrophysical spectra using the CHIANTI atomic database for astrophysical spectroscopy. It provides access to the database and the ability to calculate various physical quantities for the interpretation of astrophysical spectra.

[ascl:1308.018]
MoogStokes: Zeeman polarized radiative transfer

MOOGStokes is a version of the MOOG one-dimensional local thermodynamic equilibrium radiative transfer code that incorporates a Stokes vector treatment of polarized radiation through a magnetic medium. It consists of three complementary programs that together can synthesize the disk-averaged emergent spectrum of a star with a magnetic field. The MOOGStokes package synthesizes emergent spectra of stars with magnetic fields in a familiar computational framework and produces disk-averaged spectra for all Stokes vectors ( I, Q, U, V ), normalized by the continuum.

[ascl:1307.001]
DustEM: Dust extinction and emission modelling

Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

[ascl:1307.002]
Monte Python: Monte Carlo code for CLASS in Python

Monte Python is a parameter inference code which combines the flexibility of the python language and the robustness of the cosmological code CLASS into a simple and easy to manipulate Monte Carlo Markov Chain code.

[ascl:1307.003]
K3Match: Point matching in 3D space

K3Match is a C library with Python bindings for fast matching of points in 3D space. It uses 3-dimensional binary trees to find matches between large datasets in O(N log N) time.

[ascl:1307.004]
FieldInf: Field Inflation exact integration routines

FieldInf is a collection of fast modern Fortran routines for computing exactly the background evolution and primordial power spectra of any single field inflationary models. It implements reheating without any assumptions through the "reheating parameter" R allowing robust inflationary parameter estimations and inference on the reheating energy scale. The underlying perturbation code actually deals with N fields minimally-coupled and/or non-minimally coupled to gravity and works for flat FLRW only.

[ascl:1307.005]
LENSVIEW: Resolved gravitational lens images modeling

Lensview models resolved gravitational lens systems based on LensMEM but using the Skilling & Bryan MEM algorithm. Though its primary purpose is to find statistically acceptable lens models for lensed images and to reconstruct the surface brightness profile of the source, LENSVIEW can also be used for more simple tasks such as projecting a given source through a lens model to generate a “true” image by conserving surface brightness. The user can specify complicated lens models based on one or more components, such as softened isothermal ellipsoids, point masses, exponential discs, and external shears; LENSVIEW generates a best-fitting source matching the observed data for each specific combination of model parameters.

[ascl:1307.006]
im2shape: Bayesian Galaxy Shape Estimation

im2shape is a Bayesian approach to the problem of accurate measurement of galaxy ellipticities for weak lensing studies, in particular cosmic shear. im2shape parameterizes galaxies as sums of Gaussians, convolved with a psf which is also a sum of Gaussians. The uncertainties in the output parameters are calculated using a Markov Chain Monte Carlo approach.

[ascl:1307.007]
AstroTaverna: Tool for Scientific Workflows in Astronomy

AstroTaverna is a plugin for Taverna Workbench that provides the means to build astronomy workflows using Virtual Observatory services discovery and efficient manipulation of VOTables (based on STIL tool set). It integrates SAMP-enabled software, allowing data exchange and communication among local VO tools, as well as the ability to execute Aladin scripts and macros.

[ascl:1307.008]
Obit: Radio Astronomy Data Handling

Obit is a group of software packages for handling radio astronomy data, especially interferometric and single dish OTF imaging. Obit is primarily an environment in which new data processing algorithms can be developed and tested but which can also be used for production processing of a certain range of scientific problems. The package supports both prepackaged, compiled tasks and a python interface to the major class functionality to allow rapid prototyping using python scripts; it allows access to multiple disk--resident data formats, in particular access to either AIPS disk data or FITS files. Obit applications are interoperable with Classic AIPS and the ObitTalk python interface gives access to AIPS tasks as well as Obit libraries and tasks.

[ascl:1307.009]
MAH: Minimum Atmospheric Height

MAH calculates the posterior distribution of the "minimum atmospheric height" (MAH) of an exoplanet by inputting the joint posterior distribution of the mass and radius. The code collapses the two dimensions of mass and radius into a one dimensional term that most directly speaks to whether the planet has an atmosphere or not. The joint mass-radius posteriors derived from a fit of some exoplanet data (likely using MCMC) can be used by MAH to evaluate the posterior distribution of R_MAH, from which the significance of a non-zero R_MAH (i.e. an atmosphere is present) is calculated.

[ascl:1307.010]
cosmoxi2d: Two-point galaxy correlation function calculation

Cosmoxi2d is written in C and computes the theoretical two-point galaxy correlation function as a function of cosmological and galaxy nuisance parameters. It numerically evaluates the model described in detail in Reid and White 2011 (arxiv:1105.4165) and Reid et al. 2012 (arxiv:1203.6641) for the multipole moments (up to ell = 4) for the observed redshift space correlation function of biased tracers as a function of cosmological (though an input linear matter power spectrum, growth rate f, and Alcock-Paczynski geometric factors alphaperp and alphapar) as well as nuisance parameters describing the tracers (bias and small scale additive velocity dispersion, isotropicdisp1d).

This model works best for highly biased tracers where the 2nd order bias term is small. On scales larger than 100 Mpc, the code relies on 2nd order Lagrangian Perturbation theory as detailed in Matsubara 2008 (PRD 78, 083519), and uses the analytic version of Reid and White 2011 on smaller scales.

[ascl:1307.011]
PhoSim: Photon Simulator

The Photon Simulator (PhoSim) is a set of fast photon Monte Carlo codes used to calculate the physics of the atmosphere, telescope, and detector by using modern numerical techniques applied to comprehensive physical models. PhoSim generates images by collecting photons into pixels. The code takes the description of what astronomical objects are in the sky at a particular time (the instance catalog) as well as the description of the observing configuration (the operational parameters) and produces a realistic data stream of images that are similar to what a real telescope would produce. PhoSim was developed for large aperture wide field optical telescopes, such as the planned design of LSST. The initial version of the simulator also targeted the LSST telescope and camera design, but the code has since been broadened to include existing telescopes of a related nature. The atmospheric model, in particular, includes physical approximations that are limited to this general context.

[ascl:1307.012]
ITERA: IDL Tool for Emission-line Ratio Analysis

ITERA, the IDL Tool for Emission-line Ratio Analysis, is an IDL widget tool that allows you to plot ratios of any strong atomic and ionized emission lines as determined by standard photoionization and shock models. These "line ratio diagrams" can then be used to determine diagnostics for nebulae excitation mechanisms or nebulae parameters such as density, temperature, metallicity, etc. ITERA can also be used to determine line sensitivities to such parameters, compare observations with the models, or even estimate unobserved line fluxes.

[ascl:1307.013]
SIMX: Event simulator

SIMX simulates a photon-counting detector's response to an input source, including a simplified model of any telescope. The code is not a full ray-trace, but a convolution tool that uses standard descriptions of telescope PSF (via either a simple Gaussian parameter, an energy-dependent encircled-energy function, or an image of the PSF) and the detector response (using the OGIP response function) to model how sources will appear. simx uses a predefined set of PSFs, vignetting information, and instrumental responses and outputs to make the simulation. It is designed to be a 'approximation' tool to estimate issues such as source confusion, background effects, pileup, and other similar issues.

[ascl:1307.014]
Shapelets: Image Modelling

Shapelets are a complete, orthonormal set of 2D basis functions constructed from Laguerre or Hermite polynomials weighted by a Gaussian. A linear combination of these functions can be used to model any image, in a similar way to Fourier or wavelet synthesis. The shapelet decomposition is particularly efficient for images localized in space, and provide a high level of compression for individual galaxies in astronomical data. The basis has many elegant mathematical properties that make it convenient for image analysis and processing.

[ascl:1307.015]
CTI Correction Code

Massey, Richard; Stoughton, Chris; Leauthaud, Alexie; Rhodes, Jason; Koekemoer, Anton; Ellis, Richard; Shaghoulian, Edgar

Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in images from Charge-Coupled Device (CCD) imaging detectors. Radiation damage also creates unrelated warm pixels, which can be used to measure CTI. This code provides pixel-based correction for CTI and has proven effective in Hubble Space Telescope Advanced Camera for Surveys raw images, successfully reducing the CTI trails by a factor of ~30 everywhere in the CCD and at all flux levels. The core is written in java for speed, and a front-end user interface is provided in IDL. The code operates on raw data by returning individual electrons to pixels from which they were unintentionally dragged during readout. Correction takes about 25 minutes per ACS exposure, but is trivially parallelisable to multiple processors.

[ascl:1307.016]
orbfit: Orbit fitting software

Orbfit determines positions and orbital elements, and associated uncertainties, of outer solar system planets. The orbit-fitting procedure is greatly streamlined compared with traditional methods because acceleration can be treated as a perturbation to the inertial motion of the body. Orbfit quickly and accurately calculates orbital elements and ephemerides and their associated uncertainties for targets ≳ 10 AU from the Sun and produces positional estimates and uncertainty ellipses even in the face of the substantial degeneracies of short-arc orbit fits; the sole a priori assumption is that the orbit should be bound or nearly so.

[ascl:1307.017]
NEST: Noble Element Simulation Technique

Szydagis, M.; Barry, N.; Kazkaz, K.; Mock, J.; Stolp, D.; Sweany, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M.

NEST (Noble Element Simulation Technique) offers comprehensive, accurate, and precise simulation of the excitation, ionization, and corresponding scintillation and electroluminescence processes in liquid noble elements, useful for direct dark matter detectors, double beta decay searches, PET scans, and general radiation detection technology. Written in C++, NEST is an add-on module for the Geant4 simulation package that incorporates more detailed physics than is currently available into the simulation of scintillation. NEST is of particular use for low-energy nuclear recoils. All available liquid xenon data on nuclear recoils and electron recoils to date have been taken into consideration in arriving at the current models. NEST also handles the magnitude of the light and charge yields of nuclear recoils, including their electric field dependence, thereby shedding light on the possibility of detection or exclusion of a low-mass dark matter WIMP by liquid xenon detectors.

[ascl:1307.018]
ETC++: Advanced Exposure-Time Calculations

ETC++ is a exposure-time calculator that considers the effect of cosmic rays, undersampling, dithering, and imperfect pixel response functions. Errors on astrometry and galaxy shape measurements can be predicted as well as photometric errors.

[ascl:1307.019]
PURIFY: Tools for radio-interferometric imaging

PURIFY is a collection of routines written in C that implements different tools for radio-interferometric imaging including file handling (for both visibilities and fits files), implementation of the measurement operator and set-up of the different optimization problems used for image deconvolution. The code calls the generic Sparse OPTimization (SOPT) package to solve the imaging optimization problems.

[ascl:1307.020]
SOPT: Sparse OPTimisation

SOPT (Sparse OPTimisation) is a C implementation of the Sparsity Averaging Reweighted Analysis (SARA) algorithm. The approach relies on the observation that natural images exhibit strong average sparsity; average sparsity outperforms state-of-the-art priors that promote sparsity in a single orthonormal basis or redundant frame, or that promote gradient sparsity.

[ascl:1306.001]
SAC: Sheffield Advanced Code

The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

[ascl:1306.002]
grmonty: Relativistic radiative transport Monte Carlo code

grmonty is a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The code models hot accretion flows in the Kerr metric, it incorporates synchrotron emission and absorption and Compton scattering. grmonty can be readily generalized to account for other radiative processes and an arbitrary spacetime.

[ascl:1306.003]
Harmony: Synchrotron Emission Coefficients

Harmony is a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function.

[ascl:1306.004]
PROM4: 1D isothermal and isobaric modeler for solar prominences

PROM4 computes simple models of solar prominences which consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. PROM4 solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level populations and hydrogen line profiles. Written in Fortran 90 and with two versions available (one with text in English, one with text in French), the code needs 64-bit arithmetic for real numbers.

[ascl:1306.005]
PROS: Multi-mission X-ray analysis software system

PROS is a multi-mission x-ray analysis software system designed to run under IRAF. The PROS software includes spatial, spectral, timing, data I/O and conversion routines, plotting applications, and general algorithms for performing arithmetic operations with imaging data.

[ascl:1306.006]
BEHR: Bayesian Estimation of Hardness Ratios

BEHR is a standalone command-line C program designed to quickly estimate the hardness ratios and their uncertainties for astrophysical sources. It is especially useful in the Poisson regime of low counts, and computes the proper uncertainty regardless of whether the source is detected in both passbands or not.

[ascl:1306.007]
Tapir: A web interface for transit/eclipse observability

Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.

[ascl:1306.008]
MAPPINGS III: Modelling And Prediction in PhotoIonized Nebulae and Gasdynamical Shocks

MAPPINGS III is a general purpose astrophysical plasma modelling code. It is principally intended to predict emission line spectra of medium and low density plasmas subjected to different levels of photoionization and ionization by shockwaves. MAPPINGS III tracks up to 16 atomic species in all stages of ionization, over a useful range of 102 to 108 K. It treats spherical and plane parallel geometries in equilibrium and time-dependent models. MAPPINGS III is useful for computing models of HI and HII regions, planetary nebulae, novae, supernova remnants, Herbig-Haro shocks, active galaxies, the intergalactic medium and the interstellar medium in general. The present version of MAPPINGS III is a large FORTRAN program that runs with a simple TTY interface for historical and portability reasons.

[ascl:1306.009]
STF: Structure Finder

STF is a general structure finder designed to find halos, subhaloes, and tidal debris in N-body simulations. The current version is designed to read in "particle data" (that is SPH N-body data), but a simple modification of the I/O can have it read grid data from Grid based codes.

[ascl:1306.010]
MADCOW: Microwave Anisotropy Dataset Computational softWare

MADCOW is a set of parallelized programs written in ANSI C and Fortran 77 that perform a maximum likelihood analysis of visibility data from interferometers observing the cosmic microwave background (CMB) radiation. This software has been used to produce power spectra of the CMB with the Very Small Array (VSA) telescope.

[ascl:1306.011]
Pico: Parameters for the Impatient Cosmologist

Pico is an algorithm that quickly computes the CMB scalar, tensor and lensed power spectra, the matter transfer function and the WMAP 5 year likelihood. It is intended to accelerate parameter estimation codes; Pico can compute the CMB power spectrum and matter transfer function, as well as any computationally expensive likelihoods, in a few milliseconds. It is extremely fast and accurate over a large volume of parameter space and its accuracy can be improved by using a larger training set. More generally, Pico allows using massively parallel computing resources, including distributed computing projects such as Cosmology@Home, to speed up the slow steps in inherently sequential calculations.

[ascl:1306.012]
LRG DR7 Likelihood Software

This software computes likelihoods for the Luminous Red Galaxies (LRG) data from the Sloan Digital Sky Survey (SDSS). It includes a patch to the existing CAMB software (the February 2009 release) to calculate the theoretical LRG halo power spectrum for various models. The code is written in Fortran 90 and has been tested with the Intel Fortran 90 and GFortran compilers.

[ascl:1306.013]
Bessel: Fast Bessel Function Jn(z) Routine for Large n,z

Bessel, written in the C programming language, uses an accurate scheme for evaluating Bessel functions of high order. It has been extensively tested against a number of other routines, demonstrating its accuracy and efficiency.

[ascl:1306.014]
ZEUS-2D: Simulation of fluid dynamical flows

ZEUS-2D is a hydrodynamics code based on ZEUS which adds a covariant differencing formalism and algorithms for compressible hydrodynamics, MHD, and radiation hydrodynamics (using flux-limited diffusion) in Cartesian, cylindrical, or spherical polar coordinates.

[ascl:1306.015]
VHD: Viscous pseudo-Newtonian accretion

VHD is a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. VHD is based on ZEUS-2D (Stone & Norman 1992) with the addition of an explicit scheme for the viscosity.

[ascl:1306.016]
Yaxx: Yet another X-ray extractor

Yaxx is a Perl script that facilitates batch data processing using Perl open source software and commonly available software such as CIAO/Sherpa, S-lang, SAS, and FTOOLS. For Chandra and XMM analysis it includes automated spectral extraction, fitting, and report generation. Yaxx can be run without climbing an extensive learning curve; even so, yaxx is highly configurable and can be customized to support complex analysis. yaxx uses template files and takes full advantage of the unique Sherpa / S-lang environment to make much of the processing user configurable. Although originally developed with an emphasis on X-ray data analysis, yaxx evolved to be a general-purpose pipeline scripting package.

[ascl:1305.001]
ESTER: Evolution STEllaire en Rotation

The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

[ascl:1305.002]
pynbody: N-Body/SPH analysis for python

Pynbody is a lightweight, portable, format-transparent analysis package for astrophysical N-body and smooth particle hydrodynamic simulations supporting PKDGRAV/Gasoline, Gadget, N-Chilada, and RAMSES AMR outputs. Written in python, the core tools are accompanied by a library of publication-level analysis routines.

[ascl:1305.003]
TPM: Tree-Particle-Mesh code

TPM carries out collisionless (dark matter) cosmological N-body simulations, evolving a system of N particles as they move under their mutual gravitational interaction. It combines aspects of both Tree and Particle-Mesh algorithms. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The code is parallel and uses MPI for message passing.

[ascl:1305.004]
AdaptaHOP: Subclump finder

AdaptaHOP is a structure and substructure detector. It reads an input particle distribution file and can compute the mean square distance between each particle and its nearest neighbors or the SPH density associated to each particle + the list of its nearest neighbors. It can also read an input particle distribution and a neighbors file (output from a previous run) and output the tree of the structures in structures.

[ascl:1305.005]
PkdGRAV2: Parallel fast-multipole cosmological code

PkdGRAV2 is a high performance N-body treecode for self-gravitating astrophysical simulations. It is designed to run efficiently in serial and on a wide variety of parallel computers including both shared memory and message passing architectures. It can spatially adapt to large ranges in particle densities, and temporally adapt to large ranges in dynamical timescales. The code uses a non-standard data structure for efficiently calculating the gravitational forces, a variant on the k-D tree, and a novel method for treating periodic boundary conditions.

[ascl:1305.006]
Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1305.007]
PINOCCHIO: PINpointing Orbit-Crossing Collapsed HIerarchical Objects

PINOCCHIO generates catalogues of cosmological dark matter halos with known mass, position, velocity and merger history. It is able to reproduce, with very good accuracy, the hierarchical formation of dark matter halos from a realization of an initial (linear) density perturbation field, given on a 3D grid. Its setup is similar to that of a conventional N-body simulation, but it is based on the powerful Lagrangian Perturbation Theory. It runs in just a small fraction of the computing time taken by an equivalent N-body simulation, producing promptly the merging histories of all halos in the catalog.

[ascl:1305.008]
YNOGK: Calculating null geodesics in the Kerr spacetime

YNOGK, written in Fortran, calculates the null geodesics in the Kerr spacetime. It uses Weierstrass' and Jacobi's elliptic functions to express all coordinates and affine parameters as analytical and numerical functions of a parameter $p$, which is an integral value along the geodesic. The information about the turning points do not need to be specified in advance by the user, allowing applications such as imaging, the calculation of line profiles or the observer-emitter problem to become root finding problems. Elliptic integrations are computed by Carlson's elliptic integral method, which allows fast computation.

[ascl:1305.009]
GaussFit: Solving least squares and robust estimation problems

GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

[ascl:1305.010]
GILDAS: Grenoble Image and Line Data Analysis Software

GILDAS is a collection of software oriented toward (sub-)millimeter radioastronomical applications (either single-dish or interferometer). It has been adopted as the IRAM standard data reduction package and is jointly maintained by IRAM & CNRS. GILDAS contains many facilities, most of which are oriented towards spectral line mapping and many kinds of 3-dimensional data. The code, written in Fortran-90 with a few parts in C/C++ (mainly keyboard interaction, plotting, widgets), is easily extensible.

[ascl:1305.011]
FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra.

[ascl:1305.012]
MapCUMBA: Multi-grid map-making algorithm for CMB experiments

The MapCUMBA package applies a multigrid fast iterative Jacobi algorithm for map-making in the context of CMB experiments.

[ascl:1305.013]
Non-Gaussian Realisations

Non-Gaussian Realisations provides code based on a spectral distortion/quantile transformation that generates a realization of a field on a cubic grid that has a specified probability distribution function and a specified power spectrum.

[ascl:1305.014]
TAU: 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

TAU is a 1D line-by-line radiative transfer code for modeling transmission spectra of close-in extrasolar planets. The code calculates the optical path through the planetary atmosphere of the radiation from the host star and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++ and is parallelized using OpenMP.

[ascl:1305.015]
Merger Trees: Formation history of dark matter haloes

Merger Trees uses a Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes; the algorithm is implemented in Fortran. The algorithm is a modification of the algorithm of Cole et al. used in the GALFORM semi-analytic galaxy formation model (ascl:1510.005) based on the Extended Press–Schechter theory. It should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the Λ cold dark matter Millennium N-body simulation. The code should be a useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general.

[ascl:1304.001]
PEC: Period Error Calculator

The PEC (Period Error Calculator) algorithm estimates the period error for eclipsing binaries observed by the Kepler Mission. The algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. A simple C implementation of the PEC algorithm is available.

[ascl:1304.002]
Astropy: Community Python library for astronomy

Greenfield, Perry; Robitaille, Thomas; Tollerud, Erik; Aldcroft, Tom; Barbary, Kyle; Barrett, Paul; Bray, Erik; Crighton, Neil; Conley, Alex; Conseil, Simon; Davis, Matt; Deil, Christoph; Dencheva, Nadia; Droettboom, Michael; Ferguson, Henry; Ginsburg, Adam; Grollier, Frédéric; Moritz Günther, Hans; Hanley, Chris; Hsu, J. C.; Kerzendorf, Wolfgang; Kramer, Roban; Lian Lim, Pey; Muna, Demitri; Nair, Prasanth; Price-Whelan, Adrian; Shiga, David; Singer, Leo; Taylor, James; Turner, James; Woillez, Julien; Zabalza, Victor

Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.

[ascl:1304.003]
GALSVM: Automated Morphology Classification

GALSVM is IDL software for automated morphology classification. It was specially designed for high redshift data but can be used at low redshift as well. It analyzes morphologies of galaxies based on a particular family of learning machines called support vector machines. The method can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions. It is fully automated and consequently well adapted to large cosmological surveys.

[ascl:1304.004]
Wqed: Lightcurve Analysis Suite

Wqed (pronounced "Wicked") is a set of tools developed by the Delaware Asteroseismic Research Center (DARC) to simplify the process of reducing time-series CCD data on variable stars. It does not provide tools to measure the brightness of stars in individual frames, focusing instead on what comes next:

- - selecting and removing data lost to cloud,

- removing the effects of light cloud and seeing variations,

- keeping track of what star a given data set refers to, and when that data was taken, and

- performing barycentric corrections to data.

[ascl:1304.005]
VOBOZ/ZOBOV: Halo-finding and Void-finding algorithms

VOBOZ (VOronoi BOund Zones) is an algorithm to find haloes in an N-body dark matter simulation which has little dependence on free parameters.

ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points without any free parameters or assumptions about shape. It uses the Voronoi tessellation to estimate densities to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations.

[ascl:1304.006]
CosmicEmuLog: Cosmological Power Spectra Emulator

CosmicEmuLog is a simple Python emulator for cosmological power spectra. In addition to the power spectrum of the conventional overdensity field, it emulates the power spectra of the log-density as well as the Gaussianized density. It models fluctuations in the power spectrum at each k as a linear combination of contributions from fluctuations in each cosmological parameter. The data it uses for emulation consist of ASCII files of the mean power spectrum, together with derivatives of the power spectrum with respect to the five cosmological parameters in the space spanned by the Coyote Universe suite. This data can also be used for Fisher matrix analysis. At present, CosmicEmuLog is restricted to redshift 0.

[ascl:1304.007]
DESPOTIC: Derive the Energetics and SPectra of Optically Thick Interstellar Clouds

DESPOTIC (Derive the Energetics and SPectra of Optically Thick Interstellar Clouds), written in Python, represents optically thick interstellar clouds using a one-zone model and calculates line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. DESPOTIC calculates clouds' equilibrium gas and dust temperatures and their time-dependent thermal evolution. The code allows rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms, and prediction of their observable spectra across a wide range of interstellar environments.

[ascl:1304.008]
Diffusion.f: Diffusion of elements in stars

Diffusion.f is an exportable subroutine to calculate the diffusion of elements in stars. The routine solves exactly the Burgers equations and can include any number of elements as variables. The code has been used successfully by a number of different groups; applications include diffusion in the sun and diffusion in globular cluster stars. There are many other possible applications to main sequence and to evolved stars. The associated README file explains how to use the subroutine.

[ascl:1304.009]
Sérsic: Exact deprojection of Sérsic surface brightness profiles

Sérsic is an implementation of the exact deprojection of Sérsic surface brightness profiles described in Baes and Gentile (2011). This code depends on the mpmath python library for an implementation of the Meijer G function required by the Baes and Gentile (hereafter B+G) formulas for rational values of the Sérsic index. Sérsic requires rational Sérsic indices, but any irrational number can be approximated arbitrarily well by some rational number. The code also depends on scipy, but the dependence is mostly for testing. The implementation of the formulas and the formulas themselves have undergone comprehensive testing.

[ascl:1304.011]
TPZ: Trees for Photo-Z

TPZ, a parallel code written in python, produces robust and accurate photometric redshift PDFs by using prediction tree and random forests. The code also produces ancillary information about the sample used, such as prior unbiased errors estimations (giving an estimation of performance) and a ranking of importance of variables as well as a map of performance indicating where extra training data is needed to improve overall performance. It is designed to be easy to use and a tutorial is available.

[ascl:1304.012]
ORIGAMI: Structure-finding routine in N-body simulation

ORIGAMI is a dynamical method of determining the morphology of particles in a cosmological simulation by checking for whether