[submitted]
A Neural Network for the Identification of Dangerous Planetesimals (Including scripts for data generation)

Two neural networks were designed to identify hazardous planetesimals that were trained on object trajectories calculated in a cloud computing environment. The first neural network was fully-connected and was trained on the orbital elements (OEs) of real/simulated planetesimals, while the second was a 1-dimensional convolutional neural network that was trained on the position Cartesian coordinates of real/simulated planetesimals. Ultimately, the network trained on OEs had a better performance by identifying one-third of known potentially hazardous objects including the 3 asteroids with the highest chance of impact with Earth (2009 FD, 1999 RQ36, 1950 DA) as established by NASA's Monte Carlo based Sentry system.

[ascl:1104.014]
A Correction to the Standard Galactic Reddening Map: Passive Galaxies as Standard Crayons

We present corrections to the Schlegel, Finkbeiner, Davis (SFD98) reddening maps over the Sloan Digital Sky Survey northern Galactic cap area. To find these corrections, we employ what we dub the "standard crayon" method, in which we use passively evolving galaxies as color standards by which to measure deviations from the reddening map. We select these passively evolving galaxies spectroscopically, using limits on the H alpha and O II equivalent widths to remove all star-forming galaxies from the SDSS main galaxy catalog. We find that by correcting for known reddening, redshift, color-magnitude relation, and variation of color with environmental density, we can reduce the scatter in color to below 3% in the bulk of the 151,637 galaxies we select. Using these galaxies we construct maps of the deviation from the SFD98 reddening map at 4.5 degree resolution, with 1-sigma error of ~ 1.5 millimagnitudes E(B-V). We find that the SFD98 maps are largely accurate with most of the map having deviations below 3 millimagnitudes E(B-V), though some regions do deviate from SFD98 by as much as 50%. The maximum deviation found is 45 millimagnitudes in E(B-V), and spatial structure of the deviation is strongly correlated with the observed dust temperature, such that SFD98 underpredicts reddening in regions of low dust temperature. The maps of these deviations, as well as their errors, are made available to the scientific community as supplemental correction to SFD98 at the URL below.

[ascl:1708.020]
4DAO: DAOSPEC interface

4DAO launches DAOSPEC (ascl:1011.002) for a large sample of spectra. Written in Fortran, the software allows one to easily manage the input and output files of DAOSPEC, optimize the main DAOSPEC parameters, and mask specific spectral regions. It also provides suitable graphical tools to evaluate the quality of the solution and provides final, normalized, zero radial velocity spectra.

[ascl:1804.018]
3DView: Space physics data visualizer

Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.

3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.

[ascl:1111.011]
3DEX: Fast Fourier-Bessel Decomposition of Spherical 3D Surveys

High precision cosmology requires analysis of large scale surveys in 3D spherical coordinates, i.e. Fourier-Bessel decomposition. Current methods are insufficient for future data-sets from wide-field cosmology surveys. 3DEX (3D EXpansions) is a public code for fast Fourier-Bessel decomposition of 3D all-sky surveys which takes advantage of HEALPix for the calculation of tangential modes. For surveys with millions of galaxies, computation time is reduced by a factor 4-12 depending on the desired scales and accuracy. The formulation is also suitable for pre-calculations and external storage of the spherical harmonics, which allows for further speed improvements. The 3DEX code can accommodate data with masked regions of missing data. It can be applied not only to cosmological data, but also to 3D data in spherical coordinates in other scientific fields.

[ascl:1805.005]
3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

[ascl:1803.010]
3D-PDR: Three-dimensional photodissociation region code

3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.

[ascl:1507.001]
3D-Barolo: 3D fitting tool for the kinematics of galaxies

3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and estimates the intrinsic velocity dispersion even in barely resolved galaxies (about 2 resolution elements) if the signal to noise of the data is larger than 2-3. It has source-detection and first-estimate modules, making it suitable for analyzing large 3D datasets automatically, and is a useful tool for deriving reliable kinematics for both local and high-redshift galaxies.

[submitted]
3D texturized model of MARS (MOLA) regions

The Matlab Tool generates a 3D model (WRL, texturized in height false color map) of a defined region of the Mars surface. It defines the region of interest of the Mars surface (by Lat Long), a resolution of the MOLA DTMs to be considered (with a minimum px onground of 468 m), a scale factor to be multiplied to the height of the surface to improve features visibility for bumping or shadowing effect.

[ascl:1303.016]
2MASS Kit: 2MASS Catalog Server Kit

2MASS Kit is an open source software for use in easily constructing a high performance search server for important astronomical catalogs. It is tuned for optimal coordinate search performance (Radial Search, Box Search, Rectangular Search) of huge catalogs, thus increasing the speed by more than an order of magnitude when compared to simple indexing on a single table. Optimal conditions enable more than 3,000 searches per second for radial search of 2MASS PSC. The kit is best characterized by its flexible tuning. Each table index is registered in one of six table spaces (each resides in a separate directory), thus allowing only the essential parts to be easily moved onto fast devices. Given the terrific evolution that has taken place with recent SSDs in performance, a very cost-effective way of constructing high-performance servers is moving part of or all table indices to a fast SSD.

[ascl:1201.005]
2LPTIC: 2nd-order Lagrangian Perturbation Theory Initial Conditions

Setting initial conditions in numerical simulations using the standard procedure based on the Zel'dovich approximation (ZA) generates incorrect second and higher-order growth and therefore excites long-lived transients in the evolution of the statistical properties of density and velocity fields. Using more accurate initial conditions based on second-order Lagrangian perturbation theory (2LPT) reduces transients significantly; initial conditions based on 2LPT are thus much more appropriate for numerical simulations devoted to precision cosmology. The 2LPTIC code provides initial conditions for running cosmological simulations based on second-order Lagrangian Perturbation Theory (2LPT), rather than first-order (Zel'dovich approximation).

[ascl:1808.007]
2DSF: Vectorized Structure Function Algorithm

The vectorized physical domain structure function (SF) algorithm calculates the velocity anisotropy within two-dimensional molecular line emission observations. The vectorized approach is significantly faster than brute force iterative algorithms and is very efficient for even relatively large images. Furthermore, unlike frequency domain algorithms which require the input data to be fully integrable, this algorithm, implemented in Python, has no such requirements, making it a robust tool for observations with irregularities such as asymmetric boundaries and missing data.

[ascl:1608.015]
2DFFT: Measuring Galactic Spiral Arm Pitch Angle

Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from *Numerical Recipes in C* (Press et al. 1989).

P2DFFT (ascl:1806.011) is a parallelized version of 2DFFT.

[ascl:1505.015]
2dfdr: Data reduction software

2dfdr is an automatic data reduction pipeline dedicated to reducing multi-fibre spectroscopy data, with current implementations for AAOmega (fed by the 2dF, KOALA-IFU, SAMI Multi-IFU or older SPIRAL front-ends), HERMES, 2dF (spectrograph), 6dF, and FMOS. A graphical user interface is provided to control data reduction and allow inspection of the reduced spectra.

[ascl:1609.013]
21cmSense: Calculating the sensitivity of 21cm experiments to the EoR power spectrum

21cmSense calculates the expected sensitivities of 21cm experiments to the Epoch of Reionization power spectrum. Written in Python, it requires NumPy, SciPy, and AIPY (ascl:1609.012).

[ascl:1608.017]
21CMMC: Parallelized Monte Carlo Markov Chain analysis tool for the epoch of reionization (EoR)

21CMMC is an efficient Python sampler of the semi-numerical reionization simulation code 21cmFAST (ascl:1102.023). It can recover constraints on astrophysical parameters from current or future 21 cm EoR experiments, accommodating a variety of EoR models, as well as priors on individual model parameters and the reionization history. By studying the resulting impact on the EoR astrophysical constraints, 21CMMC can be used to optimize foreground cleaning algorithms; interferometer designs; observing strategies; alternate statistics characterizing the 21cm signal; and synergies with other observational programs.

[ascl:1102.023]
21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal

21cmFAST is a powerful semi-numeric modeling tool designed to efficiently simulate the cosmological 21-cm signal. The code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, the results were compared to a state-of-the-art large-scale hydrodynamic simulation, and the findings indicate good agreement on scales pertinent to the upcoming observations (>~ 1 Mpc). The power spectra from 21cmFAST agree with those generated from the numerical simulation to within 10s of percent, down to the Nyquist frequency. Results were shown from a 1 Gpc simulation which tracks the cosmic 21-cm signal down from z=250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmFAST can compute a redshift realization on a single processor in just a few minutes. The code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.

[ascl:1604.006]
2-DUST: Dust radiative transfer code

2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.

Would you like to view a random code?